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An Automated Combination of Sequence Motif
Kernels for Predicting Protein Subcellular

Localization

Alexander Zien, Cheng Soon Ong

Abstract. Protein subcellular localization is a crucial ingredient to many important inferences about cellular
processes, including prediction of protein function and protein interactions. While many predictive computational
tools have been proposed, they tend to have complicated architectures and require many design decisions from the
developer.

We propose an elegant and fully automated approach to building a prediction system for protein subcellular
localization. We propose a new class of protein sequence kernels which considers all motifs including motifs
with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We
further propose a multiclass support vector machine method which directly solves protein subcellular localization
without resorting to the common approach of splitting the problem into several binary classification problems.
To automatically search over families of possible amino acid motifs, we generalize our method to optimize over
multiple kernels at the same time. We compare our automated approach to four other predictors on three different
datasets.

1 Introduction

Support vector machines (SVMs) [5, 25] are nowadays in widespread and highly successful use for bioinformatics
tasks. One example is the prediction of the subcellular localization of proteins, as exemplified by many approaches
in the literature including [8, 11, 12, 17, 22, 32, 33].

SVMs are popular for two reasons. First, they exhibit very competitive classification performance, since over-
fitting is controlled by easily tunable regularization and the training is not hampered by any local minima. Second,
SVMs can conveniently be adapted to the problem at hand by designing appropriate kernel functions to represent
prior knowledge about the similarity between the examples of the problem at hand. The kernel function implicitly
maps points to a feature space via an associated functionΦ. In that space dot products are computed efficiently via
k(xi,xj) = 〈Φ(xi),Φ(xj)〉. For more details, see for example [25].

Many SVM-based subcellular localization prediction methods employ the Gaussian RBF kernel (eg [12, 17, 22,
33]). Further, in many approaches the representationx of a data point is naturally divided into parts. This arises
from the fact that different types of evidence are considered. For instance, in [22] different features are derived
from the protein sequence: its composition in terms of single amino acids, of pairs of adjacent amino acids, of
pairs of amino acids with one position gap inbetween them, and so on. As a second example, in [8, 13, 33] each
protein is divided into parts, and a separate set of amino acid composition features is computed for each part.

While all features mentioned so far are compositions, ie histograms of subsequences, several approaches intro-
duce features that relate to the primary sequence more indirectly and are of a different nature. Examples include
the search for known motifs [11, 17] or PFAM domains [13], the use of PSI-BLAST profiles [32], and the use of
PSI-BLAST similarities to other sequences [12]. In some cases, even SVMs or other classifiers are employed for
feature generation or for motif detection [11, 17].

When more than one set of features have been defined and computed, the task becomes to combine the evidence
they yield into a single final prediction. This is often done in complex, hand-crafted architectures that frequently
consist of two layers of learning machines or decision systems. In principle, there seem to exist three possible
strategies of dealing with this situation:1

1For simplicity, we describe all three strategies solely for the SVM setting. The first two of them similarly apply to any
other machine learning method; however note that the third strategy is restricted to kernel methods.
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1. Concatenating all feature sets into a single feature vector to be used in a single Gaussian kernel [8, 32].

2. Defining an individual kernel on each type of features, training an individual SVM on each kernel,
and combining the SVM outputs or predictions, for example by a jury method or by another SVM
[11, 12, 13, 17, 22, 33].

3. Defining an individual kernel on each set of features, combining them into a single kernel (for instance, by
adding them), and training a single SVM on that kernel.

The third method has empirically been shown to be the most effective [23]. Using this way it is possible to build
complex modular kernel functions by combining several simpler ones. However, this strategy has not yet been
used for predicting the subcellular localization of proteins.

One difficulty with adding kernels is that doing so with uniform weights is not always optimal. An extreme
example is the case that one kernel is not correlated with the labels at all – then giving it positive weight just in-
creases the amount of noise that the SVM has to cope with. Multiple kernel learning (MKL) is a way of optimizing
kernel weights. In [20] it has been shown to be useful for a binary classification of proteins related to subcellular
localization, namely membrane versus non-membrane proteins. In addition to leading to good classification ac-
curacies, MKL can also be useful for identifying biologically relevant features [27] (there, for the task of splice
site identification). In this paper we extend MKL to the multi-class case and demonstrate how it can be applied to
select a well-performing combination of kernels from a family of motif composition kernels.

In this paper, we develop two novel tools:

1. We define a class of sequence motif kernels on amino acid sequences in Section 2.

2. We derive a new optimization problem which solves the multiclass multiple kernel learning problem in Sec-
tion 3.

In Section 4, we show that our elegant and fully automated method compares favorably with the current state of
the art.

2 Motif Composition Kernels

We develop a family of kernels on sequences that is based on the occurence of motifs. This is a special case of a
general class of kernels on probability measures [14]. Our family of kernels allows to take into account pairwise
comparisons of amino acids (AAs) as well as sequence motifs.

2.1 Base kernels

Before we consider motifs consisting of several amino acids, we define a kernel on individual amino acids. This
will be useful as an ingredient to the more complex motif kernel.

LetA be the set of 20 amino acids. A substitution matrixM consists of a real-valued elementmab for each pair
of amino acidsa andb. It has been shown that every sensible substitution matrixM implies a matrixR of amino
acid substitution probabilities viamab = 1

λ log rab

qaqb
. Hereqa is the so-called background probability ofa, ie its

relative frequency of appearance in any protein sequence, andλ is a scaling factor for convenient representation of
the matrixM . Given the constraints

∑
a

∑
b rab = 1 andqa =

∑
b rab and the symmetry of bothM andR, R can

be computed fromM . We do so for the popular BLOSUM62 matrix [15] serving as ourM .
The elements of the obtainedR, being substitution probabilities, are positive, and thusR can be seen as a

(complete) similarity graph between amino acids with weighted edges. From this we derive a positive definite
kernelkAA on the amino acids by taking the graph Laplacian:

kAA(a, b) =
∑

c

rac − rab . (1)

Note that other choices of kernels are possible. One alternative is the diffusion kernel, which is computed by taking
the matrix exponential of a scalar multiple ofR. In this context we prefer the graph Laplacian since it does not
have any parameters to be adjusted.

We extend the AA-kernel tok-tuples of amino acids by simply adding kernel values over the components. For
s, t ∈ Ak we define

kAA(s, t) =
k∑

i=1

kAA(si, ti) . (2)
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2.2 Motif compositions

Previous work has shown that the amio acid composition (AAC) of a sequence is a useful basis for classifying its
subcellular localization [24]. An advantage of this set of features is that it is robust with respect to small errors in
the sequences, as may be caused by automated determination from genomic DNA. In subsequent work the AAC
has been refined in two directions.

First, instead of just considering the AAC of the entire protein sequence, it was calculated on different subse-
quences [8, 13, 17]. This makes sense since important indications of localization are not global. For example the
targeting of a protein to the mitochondrion or to the chloroplast is indicated by an N-terminal signal peptide with
specific properties (eg, pH or hydrophobicity) that are reflected by the AAC.

Second, it was noted that features corresponding to more than a single amino acid can increase the prediction
performance. This seems plausible since there exist a number of (rather short) known motifs that are important
for subcellular targeting. Examples include the C-terminal targeting signal for microbodies (SKL), the C-terminal
endoplasmatic reticulum targeting sequence (KDEL), and the bipartite nuclear targeting sequence (which consists
of five basic amino acids, R or K, in a certain arrangement). Existing prediction methods that generalize the
AAC to higher order compositions do so in at least two ways: [22] and [12] use composition of pairs of amino
acids, possibly with fixed-length gaps between them. [33] consider distributions ofk-length subsequences, where
a reduced size alphabet is used to avoid combinatorial explosion of the feature space for largek.

Here we carry the generalization a bit further, by allowing for patterns consisting of any numberk of amino
acids in any (fixed) positional arrangement. For example, we could choose the frequencies of occurance of AA
triplets with two positions gap between the first two and no gap between the second two, corresponding to a pattern
(0, 3, 4). More formally, we define a patternd to be a list(d1, . . . , dk) ∈ Nk of relative positionsdi with d1 = 0
anddi < di+1. We say thatd is of orderk and has length|d| := dk.

For any given pattern, we can compute the empirical distribution of corresponding motifs from a given AA
sequence. This is a histogram of occurrences of each possiblek-mer sequence. The example above will result in
a histogram of all possible 3-mers where each sequence is represented by the counts of the occurrences of each
3-mer with the specified gap. Note that the combinatorial explosion of possible motifs for increasing orderk is not
a real problem, because the number of motifs with positive probability is bounded by the protein length, and we
employ sparse representations.

2.3 Motif composition kernels

The feature sets defined as described above are histograms, and after normalization they are probability distribu-
tions over discrete sets. While we can use standard kernels (like the Gaussian RBF) on these data, this would
ignore the fact that they are not arbitrary vectors, but that the features are in fact probabilities. We prefer to resort
to kernels that are specially designed for probability distributions [14]. These kernels have the added benefit of al-
lowing us to model pairwise similarities between amino acids. To our knowledge, this is the first time such kernels
have been applied to (protein) sequence analysis.

For brevity, we choose the Jensen-Shannon divergence kernel (corresponding toα = 1 in [14]), which is
based on a symmetric version of the Kullback-Liebler divergence of information theory. Applied to histograms on
patterns of orderk we have

kJS(p, q) =
∑

s∈Ak

∑
t∈Ak

kAA(s, t)(
p(s) log

p(s)
p(s) + q(t)

+ q(s) log
q(s)

p(s) + q(t)

)
,

(3)

wherep andq are the histograms corresponding to two sequences, ands andt are the amino acid motifs that the
distributions range over. For this paper, we define the kernels between amino acidskAA(s, t) using the summed
graph Laplacian defined in Equations (1) and (2).

Even using these choices, we are still left with a large number of possible patterns (as defined in Section 2.2) to
consider. Instead of using an arbitrary combination of them, we develop a method which optimizes over any finite
set of the kernels automatically to form the best predictor. In principle, our method is only limited by computational
and storage limits.
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3 Multiclass Multiple Kernel Learning

Recently there have been developments in machine learning on optimizing over a set of kernels while choosing the
best predictor [1, 2, 6, 19, 21]. The algorithms consider a linear combination of kernels and optimize to find the best
combination for the prediction task at hand. In this paper, we propose the first multiclass version of this approach.
Furthermore, we use anL1 regularizer on the combination weights to promote sparsity. To our knowledge, this
particular regularizer is also new.

3.1 Multiclass SVMs (m-SVMs)

We consider linear classifiers in a feature spaceH defined by a potentially non-linear mapΦ : X → H. Binary
SVMs learn a linear decision functionf(·;w, b) : X → R defined byf(x;w, b) = 〈w,Φ(x)〉+b. More precisely,
training amounts to finding good values for the feature weightsw and the biasb. The valuef(x;w, b) is often
called the SVM output forx. The sign off(x;w, b) corresponds to the predicted class inY = {+1,−1}. The
magnitude of the output can be seen as a measure of confidence in the prediction.

This suggests a way of generalizing the learning machine to more than two classes. LetY now be a set ofm > 2
classes. We now considerm output functions, one for each class, that quantify the confidence in the corresponding
prediction. To do so we follow the modelling used in [29]. The key idea of this approach is to use a joint feature
map between dataX and labelsY denoted byΦ(x, y). The output function for a classy ∈ Y can then be defined
as

fy(x;w,b) = 〈w,Φ(x, y)〉+ by , (4)

with b = (b1, . . . , bm). Thus, the predicted classy for a pointx is chosen to maximize the confidence in the
prediction:

arg max
y∈Y

fy(x;w,b) . (5)

Training consequently amounts to finding parametersw andb that satisfy, at least to a large extent,

fyi
(xi;w,b) > fu(xi;w,b) ∀u ∈ Y − {yi} ,

for data points(xi, yi). Hence for a general convex monotonically decreasing loss function`, training (withL2

regularization, which enables kernelization) can be implemented by the following optimization problem:

min
w,b

1
2
‖w‖2 +

n∑
i=1

max
u 6=yi

{`y (fyi
(xi;w,b)− fu(xi;w,b))} , (6)

wheren is the number of examples in the training set, and we writeu 6= yi short foru ∈ Y − {yi}.
For the particular choice of the hinge loss,`(t) = C min{0, 1 − t}, we call (6) and any derived equivalent

optimization problemm-SVM (for m-class SVM), since it generalizes the standard binary SVM. Deriving the
Lagrange dual (cf. [3]) of (6) yields an SVM style expansion of the hyperplane normal,

w =
∑

i

∑
u∈Y

αiuΦ(xi, u) . (7)

This nice property also follows from the famous representer theorem (eg [25]). Hereα ∈ Rn×m is the solution of
the following quadradic program (QP):

min
α

1
2
‖w(α)‖2 +

∑
i

αiyi

s.t. ∀i : −C ≤ αiyi
≤ 0

∀i : ∀u 6= yi : αiu ≥ 0
∀i :

∑
u∈Y

αiu = 0

∀u ∈ Y :
∑

i

αiu = 0 ,

(8)

where we writew(α) in the objective function to stress that the right hand side of (7) should be plugged in. For
Lagrange duals of versions with different losses (but without a biasb) see [29]. In our formulation, the bias can be
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calculated according to the complementary slackness conditions [3] as follows. For a pointi with −C < αiyi < 0
we havefyi(xi;w, b) − fu(xi;w, b) = 1 for all u ∈ Y − {yi} with αiu > 0. For fixedα, this results in a linear
equality system inb that can be solved, for instance, by least squares.

Lagrange duals demonstrate the significance of kernel functions. Since the QP can be expressed in terms of
dot products of data points, instead of having to compute the feature mapΦ(x, y) explicitly it is sufficient for the
training to compute the associated kernel function,

k((x, y), (x′, y′)) := 〈Φ(x, y),Φ(x′, y′)〉 , (9)

which maps(X × Y)2 to R. Further, as the hyperplane normalw can be expressed as a linear combination of
feature maps of data points 7, kernel function evaluations are also sufficient for prediction:

fy(x) =
∑

i

∑
u∈Y

αiu 〈Φ(xi, u),Φ(x, y)〉+ by . (10)

Multiclass classification can be considered the simplest learning problem with non-trivial structure on the out-
puts. Multiclass SVMs have been investigated for several years now [18, 31]. While it is still common practice
to reduce it to a set of binary classification problems (eg. [9]), in general genuine multiclass approaches can be
superior [7]. Further, they can naturally be extended to more complex output structures, eg sequences [28, 29].

3.2 Multiple kernel learning (MKL)

We can generalize the abovem-SVM further to operate onp ≥ 1 feature mapsΦk(xi, yi) (for k = 1, . . . , p). For
each feature map there will be a separate weight vectorwk; for convenience, we will denote them jointly byw =
(w1, . . . ,wp). Here we consider linear combinations of feature maps of the formΦ(xi, yi) =

∑p
k=1 βkΦk(xi, yi)

that are specified by mixture weightsβ = (β1, . . . , βp). This gives rise to the following output functions:

fy(x;w,b,β) =
p∑

k=1

βk 〈wk,Φk(x, y)〉+ by .

As before, an ideal combination of functions would correctly classify any pointx, including the training points
xi. We thus aim at choosingw andβ such thatfyi(xi;w,b,β) ≥ fu(xi;w,b,β) for all u ∈ Y − {yi}. The
resulting optimization problem, a generalization of Equation (6), can be written like this:

min
β,w,b,ξ

1
2

p∑
k=1

βk‖wk‖2 +
n∑

i=1

ξi

s.t. ∀i : ξi = max
u 6=yi

`y (fyi
(xi;w,b,β)− fu(xi;w,b,β))

p∑
k=1

βk = 1, ∀k : 0 ≤ βk

(11)

Note that we constrain eachβk to be positive; this way, it is guaranteed that the combined kernel is positive definite.
We also constrain theL1 norm ofβ to be unity. Otherwise, the regularizer onw would not be effective: it could be
driven to zero without changingf by dividingw by any positive scalar while multiplyingβ with the same number.

By deriving the Lagrangian dual, we again find that at the optimum each hyperplane normal can be expanded in
the training points,

wk =
∑

i

∑
y∈Y

αiuΦk(xi, u) . (12)

From the general dual, we derive our specific optimization problem by using the popular SVM hinge loss, where
we use the same loss for each class. While it is possible to use a different loss for each class, we focus on a single
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loss function to reduce the number of parameters in our problem.

min
α

γ +
∑

i

αiyi

s.t. ∀i : −C ≤ αiyi
≤ 0

∀i : ∀u 6= yi : αiu ≥ 0
∀i :

∑
u∈Y

αiu = 0

∀u ∈ Y :
∑

i

αiu = 0

∀k : γ ≥ 1
2
‖wk(α)‖2

(13)

For the case of a single kernel,p = 1, there is a single constraint in addition to those in problem (8). We further
observe that at the optimum this constraint will always be at equality, so that we can substitute its right hand side
back into the objective. This way, we exacly get back (8), demonstrating that ourm-SVM is just a special case of
the MKL formulation.

The problem (13) is a quadratically constrained linear program: its objective is linear, and so are all constraints
but the last, which each consist of the square of a linear form in the optimization variables. In order to solve this
optimization problem, we convert it into an equivalent semi-infinite linear program (SILP) formulation by a second
(partial) dualization. We obtain:

max
β

θ

s.t. ∀α ∈ S : θ ≤ 1
2

∑
k

βk ‖wk(α)‖2 +
∑

i

αiyi

∀k : 0 ≤ βk
p∑

k=1

βk = 1 ,

(14)

where

S =

α

∣∣∣∣∣∣∣∣
∀i : −C ≤ αiyi ≤ 0
∀i : ∀u 6= yi : αiu ≥ 0
∀i :

∑
u∈Y αiu = 0

∀u ∈ Y :
∑

i αiu = 0

 (15)

is the set of admissable parametrizations for the first constraint. Contrary to (13), solving the problem (14) yields
the values forβ, but not forα. However, once we know the optimalβ, the problem reduces to am-SVM (8) with
a correspondingly mixed kernel, andα andb can be determined as described in the last section.

Observe that for a fixedβ, Equation (14) is equivalent to a quadratic program (QP) which is only slightly more
complicated than a standard SVM. Furthermore, for fixedα, the optimization problem inβ is a linear program
(LP). However, the constraint onθ has to hold for every suitableα; hence the name (refering to the infinitely many
constraints).

This suggest the use of a column generation strategy to solve (14): Solving the QP given by the constraints for a
fixedβ results in a particularα, which gives rise to a constraint onθ which is linear inβ. We alternate generating
new constraints in this way, and solving the LP with the constraints collected so far. This procedure is known to
converge [16, 27]. Hence our seemingly complicated problem of finding the best multiclass predictor with several
kernels can be solved with off-the-shelf QP and LP solvers. In our implementation, we used CPLEX for both
problems. Another way of achieving this is the use of semi-definite programing (SDP) [3, 19], which however is
computationally more expensive. The above result extends the result of [27], and the details of the derivation can
be found in the appendix.

3.3 Decomposable Kernels

The multiclass SVM is defined in a very general problem setting, in which the feature mapsΦk (and accordingly,
also the kernelskk) are defined on pairs(x, y) of data points and labels. However, the motif compostion kernels
that we define in Section 2 are only defined on the pointsx. We now extend those kernels to pairs(x, y).
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Let kX be a kernel onX , ie kX : X × X → R, and letkY be a kernel onY, ie kY : Y × Y → R. Then a joint
kernelkX×Y can be defined by

kX×Y ((x, y), (x′, y′)) = kX (x,x′) · kY(y, y′) . (16)

This structure is reflected in the feature space: the joint feature space will be the tensor product of the features
space onX with that onY.

In our experiments, we will use (16) with the matching kernel (or identity kernel) onY, ie kY(y, y′) = δyy′ .
This kernel imposes the least structure on the classes. Note that available prior knowledge on pairwise relationships
between classes could be taken into account by defining a correspondingkY .

With a kernel that decomposes as in (16), the quadratic terms in the optimization problems (8, 12, 13) simplify
to a Kronecker product of kernel matrices onX andY. Further, for our choice of the matching kernel onY, we
get

‖w‖2 =
∑

i

∑
j

∑
u∈Y

∑
v∈Y

αiuαjv 〈Φ(xi, u),Φ(xj , v)〉

=
∑

i

∑
j

kX (xi,xj)
∑
u∈Y

αiuαju .
(17)

Thus the joint kernel matrix is sparse (withn2m non-zero elements) and can be arranged into a block-diagonal
form. This structure allows to save memory and computation time.

4 Experiments

In this section, we perform two types of experiments to compare our proposed method to current state of the art
methods. The first (Section 4.3) is to demonstrate that the kernels proposed in Section 2 discover useful motifs
for predicting subcellular location from the associated amino acid sequence. The second experiment (Section 4.4)
uses a subset of the data from [20] to compare our proposed multiclass multiple kernel learning algorithm to their
related binary classification multiple kernel learning algorithm.

4.1 Performance Measures

To be clear about the definitions of the various performance measures used to report multiclass results, we collect
all the definitions in this section. Most measures are defined with respect to a particular class, say A, and can be
calculated from the corresponding confusion matrix:

Predicted Label
A ¬A

Actual A True Positive (TP) False Negative (FN)
Label ¬A False Positive (FP) True Negative (TN)

From the confusion matrix above, we can define the various performance measures, including the Matthews
Correlation Coefficient (MCC).

Measure Formula

Accuracy (TP+TN)
(TP+TN+FP+FN)

Precision TP
(TP+FP )

Recall / Sen-
sitivity

TP
(TP+FN)

Specificity TN
(TN+TP )

MCC TP TN−FP FN√
(TP+FN)(TP+FP )(TN+FP )(TN+FN)

4.2 Experimental Protocol

In the optimization problem described by Equation (14), we have only one parameter to choose, namely the reg-
ularization parameterC. Following [4], for each kernelkk its default value of the regularization parameterCk

is computed to be the inverse of the variance of the points in feature space. Then the global default value ofC

is defined to be their geometric mean, that isC0 := (
∏p

k=1 Ck)(1/p). The protocol for all our experiments is as
follows:
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1. Ten random splits into 80% training / 20% test data are prepared.

2. For each training set, the parameterC is chosen using 5-fold or 2-fold cross validation on the training set
only. We searched over a grid of values{1/27, 1/9, 1/3, 1, 3, 9, 27} relative to the defaultC0.

3. The figure of merit for choosingC is the area under receiver operating characteristic (auROC) for binary
classification and the F1 score for all the multiclass tasks. The bestC is chosen using the performance
indicator on the validation (hold out) set.

4. Using the best value ofC, we solve Equation (14) using the full training set and predict the labels of the test
set.

In order to compare with existing methods, we compute several different measures of performance, each corre-
sponding to the method we are comparing to. This also demonstrates the robustness of our method with respect to
various figures of merit.

4.3 Comparing with other localization predictors

To investigate the usefulness of the kernel proposed in Section 2, we compare our approach with four other ap-
proaches on three different datasets. Here, we focus our investigations on the kernel, and we investigate our
proposed algorithm in Section 4.4. Observe that it is not possible to evaluate the many patterns available to the
histogram kernels using traditional methods, hence our proposed algorithm is crucial.

For a comparative evaluation of the performance of our approach we utilize two different datasets, for which
results with other methods are reported in the literature. The first is the data set used for training and evaluating
TargetP [10]. It consists of two subsets for plants and non-plants. The second dataset is a database of bacterial
proteins, PSORTdb [11].

4.3.1 Comparison on TargetP dataset

The original plant dataset of TargetP [10] is divided into five classes: chloroplast (ch), mitochondria (mi),
secretory pathway (SP), cytoplasm (cy), and nucleus (nuc). However, in many reported results, cy and nuc are
fused into a single class “other” (OT). We retain the original class distributions throughout the model selection and
training phases. However, for comparison purposes, we merge the nuclear and cytoplasmic proteins during the test
phase.

In our experiments with the plant data, we use 81 kernels, corresponding to motifs up to length 6 with up to 2
gaps. Each random split contains 14 cross validation optimizations (2-fold cross-validation to select from 7 values
of C), with an additional larger optimization at the end. The computation time for each split is roughly 10 hours
on a 2.4Ghz AMD64 machine.

From Table 1, our performance is comparable to TargetP but worse than TargetLoc. Our method has much
higher specificity but suffers from lower sensitivity. The features most often selected for classification as seen in
Table 2 are at the N-terminus of the protein and are 6-mers. This implies that the localization signals in plants may
contain rather long motifs.

Data Class Our Method TargetP TargetLoc
SE SP MCC SE SP MCC SE SP MCC

plant ch 78.8±8.9 96.1±1.7 75.5±6.2 85 69 72 88 76 78
mi 88.3±4.0 89.8±2.3 77.7±3.6 82 90 77 87 94 84
SP 93.5±3.6 96.8±1.2 90.2±2.8 91 95 90 93 97 93
OT 76.3±4.5 96.4±1.5 75.0±5.3 85 78 77 92 84 86

nonplant mi 83.6±3.7 96.2±1.1 77.6±4.8 89 67 73 91 77 81
SP 90.0±2.6 94.9±1.2 83.9±1.9 96 92 92 95 92 91
OT 91.2±1.4 91.0±1.4 81.5±1.4 88 97 82 91 97 86

Table 1: Comparing with TargetP and TargetLoc on sensitivity (SE), specificity (SP) and Matthew’s Correlation Coefficient
(MCC) on the plant dataset. The classes are chloroplast (ch), mitochondria (mi), secretory pathway (SP) and other (OT).
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subsequence pattern times selected meanβk

[1, 15] (0,1,2,3,5,6) 10 0.204
[1, 60] (0,1,2,3,5,6) 10 0.165
[1, 15] (0,1,2,4,5,6) 10 0.131
[100,∞] (0,1,2,4) 9 0.085
[1,∞] (0,1,2,3) 8 0.082
[1,∞] (0,1,2,4) 6 0.059
[1, 15] (0,1,2,3,4,5) 7 0.056
[1, 60] (0,1,2,3,4,6) 7 0.055
[1, 15] (0,1,3,4,5,6) 7 0.052
[1, 100] (0,1,2,4) 8 0.044
[1, 100] (0,1,3,4) 6 0.031
[100,∞] (0,1,2,3) 3 0.028
[1, 15] (0,1,2,3,4) 2 0.006
[1,∞] (0,2,3,4) 1 0.002
[1, 15] (0,2,3,4,5,6) 1 0.001

Table 2: Kernels selected in the ten repetitions of experiments on the plant dataset, sorted by importance as indicated by the
averaged coefficientβk. Note that the selection is very consistent across the repetitions, and that only a small fraction of kernels
obtained a positive weight in any repetition. The first column shows the considered region of the protein, starting with 1 at the
N-terminus;∞ means that the region extends to the C-terminus. The second column shows the pattern associated with the
kernel.

4.3.2 Comparison on PSORTdb dataset

We use sequences and localizations of proteins in Gram-positive bacteria as obtained from PSORTdb [11]. We
only consider singly localized proteins. For the Gram positive bacteria, we compute 50 kernels corresponding to
motifs up to length 5 with up to 2 gaps. PSORTb has the option of withholding a prediction when it is uncertain
about the localization. To compare our performance with the results in [11], we estimate the proportion of “un-
known” prediction from their supplementary website to be 13% for the Gram positive bacteria. Then, we compute
probabilistic outputs from our method by using the softmax function, that isexp f(x)P

u exp f(u) . We then discard the
most uncertain predictions based on the fraction obtained above. The results of Table 3 are the mean and standard
deviations of this reduced test set.

Comparing the results of our method versus PSORTb shows that we significantly better at class EC, but signif-
icantly worse at class CW. We perform comparably in the other two classes. It is important to note that PSORTb
uses various sources of information in a two layer architecture while our method directly uses the sequence infor-
mation only. We also analyze the motifs most often selected for classification, which is shown in Table 4. Of the
50 kernels, these are the only ones with non-zero weight in our method. More detailed analysis of the top features
show that 2-mers on the C-Terminal end of the protein are useful for classification, and 4-mers on the N-terminal
end of the protein are useful.

Data Class Our Method PSORTb v2.0
Precision Recall F1-Score Precision Recall F1-Score

PSORT+ C 85.7±5.5 97.3±2.5 91.1±3.4 97.1 86.6 91.6
CM 97.8±3.0 87.6±7.6 92.2±4.4 96.9 91.3 94.0
CW 88.5±12.8 75.4±14.0 80.0±8.3 94.7 88.5 91.5
EC 86.1±7.4 84.4±5.8 85.1±5.5 93.9 67.8 78.7

Table 3: Comparing with PSORTb v2.0 on singly located proteins from PSORTdb on Gram positive bacteria. The classes are
cytoplasm (C), cytoplasmic membrane (CM), extracellular (EC) and cell wall (CW).

4.4 Comparing with a previous/binary MKL approach

We investigate the performance of the proposed algorithm by using previously defined kernels computed for the
detection of membrane proteins [20]. Since we generalize their binary classification method to multiclass, we also
generalize the data by splitting the class of non-membrane proteins. Using the MIPS classifications of yeast protein
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subsequence pattern times selected meanβk

[60,∞] (0,2) 10 0.359
[60,∞] (0,3) 10 0.139
[1, 15] (0,1,3,4) 10 0.125
[1, 60] (0,1,2,4) 10 0.092
[60,∞] (0,1) 8 0.085
[1, 15] (0,1,2,4) 8 0.068
[1, 100] (0,1,3,4) 6 0.046
[1, 100] (0,1,2,4) 6 0.046
[1, 60] (0,2,3,4) 4 0.021
[1, 60] (0,1,3,4) 2 0.007
[1, 100] (0,2,3,4) 1 0.005
[1,∞] (0,1) 1 0.004
[1, 15] (0,1,2,3) 2 0.002

Table 4: Analoguous to Table 2, but for gram-positive bacteria for PSORTb.

subcellular localization [30] (version of 14 Nov 2005), we selected the three localizations with the largest numbers
of singly localized proteins from the subset of non-membrane proteins. Hence our dataset contains 284 cytoplasmic
proteins, 228 nuclear proteins, 140 mitochondrial proteins, and 497 membrane proteins (corresponding to the ones
in [20]).

To directly compare the two algorithms, we merged the three classes of non-membrane proteins and applied our
multiclass algorithm to the two class problem. We use exactly the same 7 kernel matrices provided by [20]. The
results in Table 5 show that we perform slightly worse than the binary classifier. This may have been caused by the
significantly smaller dataset (we have 1149 examples while the original data had 2318 examples).

Method Accuracy AROC TP1FP
Our Method 87.9±1.4 87.1±2.8 21.3±14.1
Lanckreit et. al. 88.7±0.2 92.2±0.2 36.1±2.0

Table 5: Membrane versus non-membrane proteins: comparing with a previous MKL approach for test set accuracy, area under
the receiver operating characteristic curve (AROC) and the percentage true positives at one percent false positives (TP1FP).

However, our algorithm can distinguish between the non-membrane proteins as well, as shown in Table 6. The
definition of recall score is the same as the sensitivity score in Section 4.3.

Class Accuracy Precision Recall F1-Score
C 89.6±1.5 79.8±4.9 80.5±5.0 80.0±3.2
N 91.9±1.3 80.8±6.7 82.8±3.2 81.6±3.0
mi 92.0±1.8 79.0±6.4 56.0±11.9 65.1±9.4
mem 88.0±1.6 84.9±2.7 90.5±2.4 87.6±1.9

Table 6: Performance on yeast data, classifying the proteins into the cytoplasm (C), nucleus (N), mitochondria (mi), and
membrane (mem).

5 Conclusion

We have proposed a family of histogram-based motif kernels for amino acid sequences. We then optimize over
the set of kernels using a multiclass multiple kernel learning method. We demonstrate that our method performs
comparably to the current state of the art in protein subcellular localization. Further, this is already achieved with
only using information from the amico acid sequence, while our method offers a principled way of integrating
other data types (cf. [20, 23]).

As has been shown before [26], multiple kernel learning can be used to identify individual features that are
relevant to the classification. This makes the results interpretable and may aid in getting insight into biological
mechanisms. The idea of this approach is to represent the kernel by a sum of subkernels and to learn a weight

10



(importance) for each of them. In principle, we could proceed in a similar way for our motif kernels, in order to
identify individual relevant motifs. However, subdividing the Jensen-Shannon kernel may be difficult, and simpler
kernels might have to be used.

Finally, the proposed approach is very general, and could be beneficial for other multiclass bioinformatics pre-
diction problems. Since the derivation works with arbitrary monotonically decreasing convex loss functions, class-
dependent (and even data point-dependent) loss can easily be implemented. This provides another possibility for
piping prior knowledge on the classes or the data into the learning process.
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Appendix: Deriving the Optimization Problem

We prove the dualization for the multiple kernel case. Recall thatn denotes the number of data points, and there
arem := |Y| classes andp kernels. The single kernel case falls out as special case withp = 1.

For later use in the proof we recall a lemma about conjugate functions and perspective functions [3].

Lemma 1 (Perspective of a conjugate function)For α, t,η ∈ Rn×m such thatη ≥ 0,

−ηiu`∗y

(
−αiu

ηiu

)
= inf

tiu

(αiutiu + ηiu`y(tiu))

for all i = 1, . . . , n andu ∈ Y.

Proof Recall the definitions of conjugate functions and perspective functions. For anyf : Rn → R the conjugate
dualf∗ : Rn → R ∪ {+∞} is given by:

f∗(q) = sup
t∈Rn

(
q>t− f(t)

)
.

Forf : Rn → R the perspective off is the functiong : Rn+1 → R defined by

g(α, η) = ηf(α/η)

for η > 0.
Hence forηiu > 0, the lemma above follows from the definition of the perspective function of the conjugate

function. From the right hand side,

inftiu
(αiutiu + ηiu`y(tiu)) = ηiu inftiu

(
αiu

ηiu
tiu + `y(tiu)

)
= −ηiu suptiu

(
−αiu

ηiu
tiu − `y(tiu)

)
= −ηiu`∗y

(
−αiu

ηiu

)
.

Some care has to be taken whenη ≥ 0 butηiu = 0 for somei andu. In this case, observe from the right hand side

that if αiu = 0 andηiu = 0 then−ηiu`∗y

(
−αiu

ηiu

)
= 0, and ifαiu 6= 0 andηiu = 0 then−ηiu`∗y

(
−αiu

ηiu

)
= −∞.

Hence the function−ηiu`∗y

(
−αiu

ηiu

)
is well defined for allη ≥ 0.

Theorem 2 The dual of the multiclass multiple kernel learning problem

min
β,w,b

1
2

p∑
k=1

βk‖wk‖2 +
n∑

i=1

max
u 6=yi

`y (fyi(xi;w,b,β)− fu(xi;w,b,β))

s.t.
p∑

k=1

βk = 1, ∀k : 0 ≤ βk

(18)
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is equivalent to

wk =
∑

i

∑
u 6=yi

α̃iu (Φk(xi, yi)− Φk(xi, u)) (19)

whereα̃ is deterimined by

min
η,α̃,γ

γ +
∑

i

∑
u 6=yi

ηiu`∗y

(
− α̃iu

ηiu

)
s.t. ∀k : γ ≥ 1

2

∑
i

∑
j

∑
u 6=yi

∑
v 6=yj

α̃iuα̃jv 〈Φk(xi, yi)− Φk(xi, u),Φk(xj , yj)− Φk(xj , v)〉 ,

∀i : ∀u 6= yi : 0 ≤ ηiu,

∀i : 1 =
∑
u 6=yi

ηiu,

∀v : 0 =
∑

i

(1− δyiv)α̃iv −
∑

i

δyiv

∑
u 6=yi

α̃iu

(20)

with γ ∈ R, α̃ ∈ Rn×m, η ∈ Rn×m.

Proof [of Theorem 2] We first note that (18) can eqivalently be rewritten as

min
β,w,b,s,t

1
2

∑
k

βk‖wk‖2 +
∑

i

si

s.t.
∑

k

βk = 1, ∀k : 0 ≤ βk,

∀i : ∀u 6= yi : tiu =
∑

k

βk 〈wk,Φk(xi, yi)− Φk(xi, u)〉+ byi − bu,

∀i : ∀u 6= yi : si ≥ `y (tiu) .

(21)

The Lagrangian of this is given by

L =
1
2

∑
k

βk‖wk‖2 +
∑

i

si + γ

(∑
k

βk − 1

)
−
∑

k

εkβk

+
∑

i

∑
u 6=yi

α̃iu

(
tiu −

∑
k

βk 〈wk,Φk(xi, yi)− Φk(xi, u)〉 − byi
+ bu

)
+
∑

i

∑
u 6=yi

ηiu (`y (tiu)− si) ,

(22)

with Lagrange variables̃α ∈ Rm×Y , 0 ≤ ε ∈ Rp, and0 ≤ η ∈ Rm×Y .

We find the stationary points by setting the partial derivatives

∂L
∂wk

= βkwk −
∑

i

∑
u 6=yi

α̃iuβk (Φk(xi, yi)− Φk(xi, u)) , (23)

∂L
∂βk

=
1
2
‖wk‖2 −

∑
i

∑
u 6=yi

α̃iu 〈wk,Φk(xi, yi)− Φk(xi, u)〉+ γ − εk, (24)

∂L
∂si

= 1−
∑
u 6=yi

ηiu, (25)

∂L
∂bv

= −
∑

i

δyiv

∑
u 6=yi

α̃iu +
∑

i

∑
u 6=yi

δuvα̃iu (26)
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to zero, yielding:
∀k : wk =

∑
i

∑
u 6=yi

α̃iu (Φk(xi, yi)− Φk(xi, u)) ,

∀k : εk = γ − 1
2
‖wk‖2,

∀i : 1 =
∑
u 6=yi

ηiu,

∀v : 0 =
∑

i

(1− δyiv)α̃iv −
∑

i

δyiv

∑
u 6=yi

α̃iu.

(27)

Plugging these equations back into the Lagrangian, it simplifies considerably, and the problem that remains to be
solved is the following:

max
η,α̃,γ

min
t

∑
i

∑
u 6=yi

(ηiu`y(tiu) + α̃iutiu)− γ,

s.t. ∀k : γ ≥ 1
2
‖wk‖2,

∀i : ∀u : 0 ≤ ηiu,

∀i : 1 =
∑
u 6=yi

ηiu,

∀v : 0 =
∑

i

(1− δyiv)α̃iv −
∑

i

δyiv

∑
u 6=yi

α̃iu .

(28)

We plug Lemma 1 into (28) and get the optimization problem:

max
η,α̃,γ

min
t

∑
i

∑
u 6=yi

(ηiu`y(tiu) + α̃iutiu)− γ

⇔ max
η,α̃,γ

∑
i

∑
u 6=yi

inf
tiu

(ηiu`y(tiu) + α̃iutiu)− γ

⇔ max
η,α̃,γ

∑
i

∑
u 6=yi

−ηiu`∗y

(
− α̃iu

ηiu

)
− γ

⇔ min
η,α̃,γ

γ +
∑

i

∑
u 6=yi

ηiu`∗y

(
− α̃iu

ηiu

)
(29)

which is subject to the same constraints as above.

Corollary 3 When choosing the hinge loss,`(t) := C max (0,∆iu − t), the optimumw of (21) can be computed
as

∀k : wk =
∑

i

∑
u∈Y

αiuΦk(xi, u) , (30)

whereα ∈ Rn×Y is the solution of the following quadratically constrained linear program:

min
α

γ +
∑

i

αiyi

s.t. ∀i : −C ≤ ∆iuαiyi
≤ 0

∀i : ∀u 6= yi : ∆iuαiu ≥ 0
∀i :

∑
u∈Y

∆iuαiu = 0

∀u :
∑

i

∆iuαiu = 0

∀k : γ ≥ 1
2

∑
i

∑
j

∑
u

∑
v

αiuαjv 〈Φk(xi, u),Φk(xj , v)〉

(31)

Proof We apply Theorem 2 with the observation that the conjugate function of the margin-scaled hinge loss
`y(t) := Ciu max (0,∆iu − t) is given by

`∗y(ν) =

{
∆iuαiu −Ciu ≤ ν ≤ 0
∞ otherwise

. (32)
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This yields

wk =
∑

i

∑
u 6=yi

α̃iu (Φk(xi, yi)− Φk(xi, u)) . (33)

whereα̃ is deterimined by

min
η,α̃,γ

γ −
∑

i

∑
u 6=yi

∆iuα̃iu

s.t. ∀k : γ ≥ 1
2

∑
i

∑
u 6=yi

α̃iu (Φk(xi, yi)− Φk(xi, u))

2

,

∀i : ∀u 6= yi : 0 ≤ ∆iuα̃iu ≤ ηiuC,
∀i : ∀u 6= yi : 0 ≤ ηiu,

∀i : 1 =
∑
u 6=yi

ηiu,

∀v : 0 =
∑

i

(1− δyiv)α̃iv −
∑

i

δyiv

∑
u 6=yi

α̃iu

(34)

For the next step, we assumeCiu ≡ C for all i andu. We note the following equality of constraints, and apply
it for everyi.  (α̃iu)u∈Y

∣∣∣∣∣∣
∀u 6= yi : 0 ≤ ∆iuα̃iu ≤ ηiuC

∀u 6= yi : 0 ≤ ηiu

1 =
∑

u 6=yi
ηiu


=

{
(α̃iu)u∈Y

∣∣∣∣ ∀u 6= yi : 0 ≤ ∆iuα̃iu∑
u 6=yi

∆iuα̃iu ≤ C

}
=

 (αiu)u∈Y

∣∣∣∣∣∣
∑

u ∆iuαiu = 0
−C ≤ ∆iyiαiyi ≤ 0
∀u 6= yi : ∆iuαiu ≥ 0


(35)

where the last line is expressed in terms ofα ∈ Rn×Y defined by

αiu =
{

α̃iu if u 6= yi

−
∑

v 6=yi
α̃iv if u = yi

(36)

Plugging both into (33) and (34), we obtain

wk =
∑

i

∑
u 6=yi

α̃iu

Φk(xi, yi)−
∑
u 6=yi

α̃iuΦk(xi, u)

 =
∑

i

∑
u

αiuΦk(xi, u) (37)

and
min
η,α̃,γ

γ −
∑

i

∑
u 6=yi

∆iuαiu

s.t. ∀k : γ ≥ 1
2

(∑
i

∑
u

αiuΦk(xi, u)

)2

,

∀i : −C ≤ ∆iyi
αiyi

≤ 0
∀i : ∀u 6= yi : ∆iuαiu ≥ 0
∀i :

∑
u

∆iuαiu = 0,

∀u :
∑

i

∆iuαiu = 0

(38)
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Theorem 4 The QCLP multiclass multiple kernel learning problem defined by Equation(13), is equivalent to the
SILP

max
β

θ

s.t. ∀α ∈ S : θ ≤ 1
2

∑
k

βk ‖wk(α)‖2 +
∑

i

αiyi

∀k : 0 ≤ βk
p∑

k=1

βk = 1 ,

(39)

where

S =

α

∣∣∣∣∣∣∣∣
∀i : −C ≤ αiyi

≤ 0
∀i : ∀u 6= yi : αiu ≥ 0
∀i :

∑
u∈Y αiu = 0

∀u ∈ Y :
∑

i αiu = 0

 (40)

is the set of admissable parametrizations for the first constraint.

Proof We partially dualise Equation (13) with respect toγ while keeping all the other constraints. Considering
only the objective and the constraint containingγ, we have the Lagrangian

L(γ, α,β) = γ −
n∑

i=1

αiyi +
p∑

k=1

βk

(
1
2
‖wk‖2 − γ

)
,

whereβ ≥ 0. Differentiating this with respect toγ, we obtain

∂L
∂γ

= 1−
p∑

k=1

βk.

Setting this to zero, we obtain the result.
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