日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

会議論文

A psychophysical examination of Swinging Rooms, Cylindrical Virtual Reality setups, and characteristic trajectories

MPS-Authors
/persons/resource/persons83870

Cunningham,  DW
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84114

Nusseck,  H-G
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84255

Teufel,  H
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84298

Wallraven,  C
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Cunningham, D., Nusseck, H.-G., Teufel, H., Wallraven, C., & Bülthoff, H. (2006). A psychophysical examination of Swinging Rooms, Cylindrical Virtual Reality setups, and characteristic trajectories. In IEEE Virtual Reality Conference (VR 2006) (pp. 111-118). Piscataway, NJ, USA: IEEE Operations Center.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-D27D-F
要旨
Virtual Reality (VR) is increasingly being used in industry, medicine, entertainment, education, and research. It is generally critical that the VR setups produce behavior that closely resembles real world behavior. One part of any task is the ability to control our posture. Since postural control is well studied in the real world and is known to be strongly influenced by visual information, it is an ideal metric for examining the behavioral fidelity of VR setups. Moreover, VR-based experiments on postural control can provide fundamental new insights into human perception and cognition. Here, we employ the "swinging room paradigm" to validate a specific VR setup. Furthermore, we systematically examined a larger range of room oscillations than previously studied in any single setup. We also introduce several new methods and analyses that were specifically designed to optimize the detection of synchronous swinging between the observer and the virtual room. The results show that the VR setup has a very high behavioral fidelity and that increases in swinging room amplitude continue to produce increases in body sway even at very large room displacements (+/- 80 cm). Finally, the combination of new methods proved to be a very robust, reliable, and sensitive way of measuring body sway.