
Gaussian Process Models
for Robust Regression, Classification, and

Reinforcement Learning

Vorgelegt von

Diplom Informatiker Malte Kuß
aus Wolfsburg

März 2006

Genehmigte Dissertation zur Erlangung des akademischen Grades
Doctor rerum naturalium (Dr. rer. nat.)

am Fachbereich Informatik der Technischen Universität Darmstadt
(Hochschulkennziffer D17)

Erstreferent: Prof. Dr. Thomas Hofmann
Korreferenten: PhD. Carl E. Rasmussen

Prof. Dr. Bernt Schiele

Eingereicht am 13. Februar 2006
Tag der Disputatiton 21. März 2006

Erklärung

Hiermit erkläre ich, daß ich die vorliegende Arbeit—mit Ausnahme der in
ihr ausdrücklich genannten Hilfen—selbständig verfasst habe.

Wissenschaftlicher Werdegang

10/96 – 02/02 Studium der Informatik an der Technischen Universität Berlin

• Nebenfach Wirtschaftswissenschaften (VWL)

• Studienschwerpunkte: Statistik, Maschinelles Lernen, Soft-
waretechnik, Datenbanken, Mikroökonomie, Spieltheorie

• Diplomarbeit am Lehrstuhl für Wirtschaftsmathematik und
Statistik zum Thema ,,Non-linear Multivariate Analysis with
Geodesic Kernels” (Prof. Kockelkorn)

• Diplom mit Auszeichnung

07/02 – 03/06 Doktorand am Max-Planck-Institut für biologische Kybernetik,
Tübingen

• Arbeitsgruppe für empirische Inferenz (Prof. Schölkopf)

• Forschungsinteressen: Bayesianische Statistik, Entschei-
dungstheorie, Monte Carlo Methoden

• Promotion an der Technischen Universität Darmstadt
(Prof. Hofmann)

Referenz

@PhdThesis{Kuss:06,
author = {M. Kuss},
title = {Gaussian Process Models for Robust Regression,

Classification, and Reinforcement Learning},
school = {Technische Universit{\"a}t Darmstadt},
year = {2006}

}

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Erweiterungen und Anwendungen einer
Klasse von statistischen Modellen, den so genannten Gauß-Prozess Modellen. Methoden
des überwachten Lernens, wie sie z.B. in der Regressions- und Diskriminanzanalyse ver-
wendet werden, zielen darauf ab, Abhängigkeiten zwischen Variablen zu identifizieren
und das so gewonnene Verständnis über den datengenerierenden Prozess zur Vorhersage
zu nutzen. Die in dieser Arbeit untersuchten Modelle beruhen auf der Annahme, dass
diese Abhängigkeiten in einen systematischen Zusammenhang und eine zufällige Kom-
ponente zerlegt werden können, wobei die systematische Zusammenhang mittels einer
latenten Funktion beschrieben werden kann. Als Gauß-Prozess Modelle bezeichnet man
statistische Modelle, in denen ein Gauß-Prozess verwendet wird, um die Bayesianische
a priori Unsicherheit über diese latente Funktion zu beschreiben.

Nach einer kurzen Einführung in die Bayesianische Statistik in Kapitel 2 wird in Kapi-
tel 3 die Klasse der Gauß-Process Modelle detailliert beschrieben. Darüber hinaus wird
darauf eingegangen, wie der Gauß-Prozess zur Beschreibung der a priori Unsicherheit
verstanden werden kann.

Der konzeptionellen Klarheit des Bayesianischen Ansatzes stehen oftmals praktis-
che Schwierigkeiten gegenüber, da die auftretenden Integrale nicht analytisch lösbar
sind. Approximationstechniken sind daher von zentraler Bedeutung für die Anwen-
dung Bayesianischer Methoden in der praktischen Datenanalyse. In Kapitel 4 werden
Laplaces Methode, Expectation Propagation und Markov chain Monte Carlo Verfahren
beschrieben sowie deren Anwendung in Gauß-Prozess Modellen.

Unter den Gauß-Prozess Modellen sticht das Regressionmodell mit normalverteilter
Störgröße heraus, da unter diesen Annahmen Bayesianische Inferenz analytisch hand-
habbar ist und die a posteriori Unsicherheit über die latente Funktion ebenfalls durch
einen Gauß-Process beschrieben werden kann. Allerdings macht die Annahme der Nor-
malverteilung das Modell sensitiv gegenüber Ausreissern, d.h. Beobachtungen die stark
von der systematischen Struktur abweichen. Kapitel 5 beschreibt verschiedene Gauß-
Prozess Modelle für nichtlineare robuste Regressionsanalyse. In diesen robusten Re-
gressionsmodellen wird die Verteilung der Störgröße durch eine leptokurtotische (heavy-
tailed) Verteilungen beschrieben.

Kapitel 6 beschäftigt sich mit dem Gauß-Prozess Modell zur binären Klassifikation-
sanalyse. In der Literatur finden sich verschiedene Ansätze, wie man Bayesianische
Inferenz in diesem Modell approximieren kann. Allerdings bestand bisher Unklarheit
darüber wie akkurat diese Näherungsverfahren sind und welches in der Praxis zu bevorzu-
gen ist. Dieses Fragen werden sowohl theoretisch durch eine Betrachtung der Struktur
der a posteriori Verteilung als auch experimentell durch einen Vergleich mit aufwendigen
Markov chain Monte Carlo Simulationen beantwortet.

i

Als Reinforcement Lernen bezeichnet man die das adaptive Lernen in sequentiellen
Entscheidungsproblemen. Kapitel 7 beschreibt Anwendungen von Gauß-Prozess Regres-
sionsmodellen für Reinforcement Lernen in Problem mit kontinuierlichen Zustandsräumen.
Dabei werden verschiedene Möglichkeiten vorgestellt wie man Gauss-Prozesse nutzen
kann, um die Effekte der Entscheidungen vorherzusagen und um die so genannte Value
Funktion zu repräsentieren.

ii

Summary

Gaussian process models constitute a class of probabilistic statistical models in which
a Gaussian process (GP) is used to describe the Bayesian a priori uncertainty about a
latent function.

After a brief introduction of Bayesian analysis, Chapter 3 describes the general
construction of GP models with the conjugate model for regression as a special case
(O’Hagan, 1978). Furthermore, it will be discussed how GP can be interpreted as priors
over functions and what beliefs are implicitly represented by this.

The conceptual clearness of the Bayesian approach is often in contrast with the prac-
tical difficulties that result from its analytically intractable computations. Therefore ap-
proximation techniques are of central importance for applied Bayesian analysis. Chap-
ter 4 describes Laplace’s method, the Expectation Propagation approximation, and
Markov chain Monte Carlo sampling for approximate inference in GP models.

The most common and successful application of GP models is in regression problems
where the noise is assumed to be homoscedastic and distributed according to a normal
distribution. In practical data analysis this assumption is often inappropriate and infer-
ence is sensitive to the occurrence of more extreme errors (so called outliers). Chapter 5
proposes several variants of GP models for robust regression and describes how Bayesian
inference can be approximated in each. Experiments on several data sets are presented
in which the proposed models are compared with respect to their predictive performance
and practical applicability.

Gaussian process priors can also be used to define flexible, probabilistic classification
models. Again, exact Bayesian inference is analytically intractable and various approx-
imation techniques have been proposed, but no clear picture has yet emerged, as to
when and why which algorithm should be preferred. Chapter 6 presents a detailed ex-
amination of the model, focusing on the question which approximation technique is most
appropriate by investigating the structure of the posterior distribution. An experimental
study is presented which corroborates the theoretical insights.

Reinforcement learning deals with the problem of how an agent can optimise its be-
haviour in a sequential decision process such that its utility over time is maximised.
Chapter 7 addresses applications of GPs for model-based reinforcement learning in con-
tinuous domains. If the environment’s response to the agent’s actions can be predicted
using GP regression models, probabilistic planning and an approximate policy iteration
algorithm can be implemented. A core concept in reinforcement learning is the value
function, which describes the long-term strategic value of a state. Using GP models we
are able to solve an approximate continuous equivalent of the Bellman equations, and
it will be shown how this can be used to estimate value functions.

iii

Contents

Acknowledgements ix

Symbols & Abbreviations xi

1. Introduction 1

2. Bayesian Analysis 5
2.1. Bayesian Inference . 6
2.2. Bayesian Decision Theory . 8
2.3. Model Comparison and Model Selection 10

2.3.1. Bayesian Model Comparison . 10
2.3.2. Model Selection by Evidence Maximisation 12

2.4. Bibliographical Remarks . 14

3. Gaussian Process Models 15
3.1. Structure of Gaussian Process Models 15
3.2. Regression with Normal Noise . 18

3.2.1. Model Selection . 20
3.2.2. Preprocessing of Data and Nonzero Mean Functions 23

3.3. Gaussian Processes & Covariance Functions 24
3.3.1. Gaussian Processes . 25
3.3.2. Covariance Functions . 26
3.3.3. Geometrical Properties of Gaussian Processes 28
3.3.4. Examples of Covariance Functions 29

3.4. Alternative Interpretations of Gaussian Process Priors 33
3.4.1. The Weight Space View & Kernel Machines 33
3.4.2. Infinite Neural Networks . 34

3.5. Bibliographical Remarks . 37

4. Approximate Bayesian Inference 39
4.1. Laplace’s Method . 40
4.2. Expectation Propagation . 42
4.3. Markov Chain Monte Carlo . 45

4.3.1. Metropolis-Hastings Sampling . 45
4.3.2. Gibbs Sampling . 47
4.3.3. Importance Sampling . 48
4.3.4. Hybrid Monte Carlo . 48

v

Contents

4.3.5. Annealed Importance Sampling 51
4.3.6. An Example For Gaussian Process Regression 53

4.4. Bibliographical Remarks . 56

5. Robust Gaussian Process Regression 57
5.1. Bayesian Perspective on Robustness . 57
5.2. Robust Gaussian Process Regression Models 59
5.3. Mixture Noise Models . 60

5.3.1. Expectation Propagation Approximation 62
5.3.2. Markov Chain Monte Carlo Sampling 64

5.4. Regression with Student-t Noise . 68
5.4.1. A Variational Approximation . 69
5.4.2. Markov Chain Monte Carlo Sampling 75

5.5. Regression with Laplace Noise . 76
5.6. Experiments . 80

5.6.1. Friedman Data . 83
5.6.2. Boston Housing . 86
5.6.3. Remote Sensing Data . 90

5.7. Conclusions & Discussion . 90
5.8. Bibliographical Remarks . 95

6. Assessing Approximations for Binary Gaussian Process Classification 97
6.1. The Gaussian Process Model for Binary Classification 98
6.2. Structural Properties of the Posterior 101
6.3. Experiments . 103

6.3.1. Synthetic Classification Problem 104
6.3.2. Ionosphere Data . 104
6.3.3. USPS Digits . 107
6.3.4. A Variational Approximation to the Evidence 110
6.3.5. Benchmark Data Sets . 112
6.3.6. Excursion on Label Regression 114

6.4. Conclusions & Discussion . 115
6.5. Bibliographical Remarks . 118

7. Gaussian Processes for Reinforcement Learning 121
7.1. Reinforcement Learning . 121

7.1.1. Markov Decision Processes . 122
7.1.2. Value Functions and Bellman Equations 123
7.1.3. Policy Iteration in Finite Markov Decision Processes 125
7.1.4. Temporal Difference Learning . 126

7.2. Model Identification and Propagation of Uncertainty 129
7.2.1. Prediction for Uncertain Inputs 130
7.2.2. Model Identification & Simulation 134

7.3. Approximate Policy Iteration in Continuous Domains 135

vi

Contents

7.3.1. Gaussian Process Approximate Policy Iteration 136
7.3.2. Estimating the Q-Value Function 140
7.3.3. The Mountain Car Problem . 141
7.3.4. The Inverted Pendulum . 145

7.4. Finite Horizon Planning under Uncertainty 146
7.4.1. The Mountain Car Problem . 150
7.4.2. The Inverted Pendulum . 152

7.5. Conclusions & Discussion . 155
7.6. Bibliographical Remarks . 157

A. Algorithms and Implementations 159
A.1. Implementing Gaussian Process Regression with Normal Noise 159
A.2. Implementation of Laplace’s Method . 160
A.3. Implementation of Expectation Propagation 163
A.4. Implementation of MCMC Sampling . 165

A.4.1. Hybrid Monte Carlo . 165
A.4.2. Annealed Importance Sampling 166

B. Mathematical Appendix 167
B.1. Matrix Analysis . 167

B.1.1. Identities Involving Inverses . 167
B.1.2. The Pseudoinverse . 168
B.1.3. Identities Involving Determinants 168
B.1.4. Matrix Derivatives . 168
B.1.5. The Cholesky Decomposition . 169
B.1.6. Quadratic Forms . 169

B.2. The Multivariate Normal Distribution 170
B.2.1. Probability Density Function . 170
B.2.2. Gaussian Identities . 170
B.2.3. Gaussian Integrals . 171
B.2.4. Generating Samples of a Multivariate Normal Distribution . . . 172

C. Dynamical Systems 173
C.1. Mountain Car . 173
C.2. Inverted Pendulum . 173

Bibliography 175

vii

Acknowledgements

This thesis is a product of my work in the department of empirical inference for ma-
chine learning and perception at the Max Planck Institute for Biological Cybernetics in
Tübingen, Germany. At first I would like to thank Bernhard Schölkopf for letting me be
part of his group and for providing an excellent environment for research. In this regard
I also would like to express my gratitude to Sabrina Nielebock and Sebastian Stark.

After arriving in Tübingen I had the fortune to meet Carl Edward Rasmussen who
became my advisor and from whom I learned a lot about Gaussian processes and many
other things. I would like to thank him for his generosity in sharing his thoughts and
knowledge.

Moreover, I wish to thank the members of my committee at the Technische Universität
Darmstadt, particularly my official “Doktorvater” Thomas Hofmann for his insightful
comments on an early draft.

My interest in machine learning was sparked years ago by Thore Graepel and Ralf
Herbrich back at the Technische Universität Berlin. A posteriori, I would like to thank
them for the encouragement to go to Tübingen and later for inviting me to spend several
weeks with them in Cambridge.

In the course of my study of Bayesian inference I had the pleasure to work with
and learn from many researchers in Tübingen and elsewhere. My understanding of
Gaussian process models greatly benefited from discussions and collaborations with
Tobias Pfingsten, Joaquin Quiñonero Candela, Anton Schwaighofer, Matthias Seeger,
and my former office mate Lehel Csató. Furthermore, I would like to thank Christine &
Felix Wichmann, Jeremy Hill, HyunJung Shin, Ule von Luxburg, Dilan Görür, Thomas
Navin Lal, Matthias Hein, Jan Eichhorn, Olivier Chapelle, and Peter Gehler for their
advise, encouragement, and friendship.

In the days before I submitted this thesis Jeremy Hill, Alexander Zien, Matthias Hein,
Tobias Pfingsten, and especially Dilan Görür helped me a lot by proof-reading parts of
(or even the whole) manuscript. Of course, any mistakes yet uncovered remain mine.

Finally, this is also the place to thank my parents and their spouses for their generous
support and encouragement during my studies and before.

The most beautiful thing during the past years was to have Claudia Beckmann by my
side. Doing research and writing a thesis involves moments of doubt and frustration.
But she always knew how to cheer me up and has proven an enormous patience with
me in times when I lost the necessary distance to my work.

ix

Symbols & Abbreviations

General

GP Gaussian process (defined in Section 3.3.1 on page 25)
MCMC Markov chain Monte Carlo
AIS Annealed Importance Sampling
HMC Hybrid Monte Carlo
EP Expectation Propagation
GPC Gaussian Process Classification
SVM Support Vector Machine (classification)
SVR Support Vector Regression
ARD Automatic relevance determination (see Section 3.3.4 on page 30)
ln Natural logarithm (base e)
≈ The left hand side is approximated by the

right hand side expression
← The left hand side is assigned the value of the

right hand side expression
p.s.d. Positive semi-definite
∇f The gradient of f
∇∇f The Hessian matrix of second derivatives of f

Matrix Analysis

a,b, c Column vectors (bold lower case letters)
A,B,C Matrices (bold capital letters)
ai The ith vector a
ai The ith element of vector a
Aij The jth element in the ith row of matrix A
A> Transpose of a matrix
tr(A) Trace of a square matrix
|A| Determinant
A−1 Inverse of a square matrix
A+ Pseudoinverse (see Appendix B.1.2 on page 168)
diag(a) A diagonal matrix with diagonal entries a
1 Vector of ones
I The identity matrix I = diag(1)
ei Unit vector in ith dimension, the ith column of I
[AB] Square brackets denote partitioned matrices

xi

Symbols & Abbreviations

Probability

No notational distinction is made between probabilities and probability density func-
tions. The parameterisation of probability distributions follows Gelman et al. (1995,
Appendix A).

p(x) A probability (density) function
q(x) An approximation to p(x)
cov Covariance of random variables
var Variance of a random variable
y|x Conditional random variable
φ Parameters of a model
ψ Hyper-parameters, parameters of a hyper-prior in a hierarchical

prior construction
D Data, all observed samples
M Model, a hypothesis about the data-generating process
L Loss function
R Risk, expected loss (see definitions in Section 2.2 on page 8)
N (x|µ,Σ) Multivariate normal distribution (see Appendix B.2 on page 170)
T (x|µ, σ2, ν) Student-t distribution (see description in Section 5.19 on page 68)
KL Kullback-Leibler divergence (defined in Appendix B.2.3.6 on page 172)
H Entropy of a distribution (defined in Appendix B.2.3.5 on page 171)
MAP Maximum a posteriori estimate (defined in Section 2.2 on page 8)
p.d.f. Probability density function
c.d.f. Cumulative distribution function
i.i.d. Independent and identically distributed

Gaussian process specific notation

X Input space, index set of a Gaussian process
m Number of observed examples, the size of D
n Number of input dimensions
X An [m× n] matrix of observed inputs (explanatory variables)
y An [m× 1] vector of target values (responses, labels)
f A (latent) function, or a Gaussian process
f An [m× 1] vector [f(x1), . . . , f(xm)]>

m(x) Mean function of a Gaussian process m : X → R
k(x,x′) Covariance function k : X × X → R, parameterised by ψ
K An [m×m] covariance matrix, where Kij = k(xi,xj)
k(x) An [m× 1] vector of covariances [k(x1,x), . . . , k(xm,x)]>

θ Additional parameters of the likelihood p(y|f(x),θ) besides f
` Characteristic length scale (described in Section 3.3.4 on page 30)
F Feature space (see Section 3.4.1 on page 34)
σ2

s Signal variance (introduced in Section 3.3.2 on page 27)
σ2

n Noise variance in the conjugate model (see Section 3.2 on page 18)

xii

Reinforcement learning notation

MDP Markov decision process
s ∈ S State from the set of all possible states
a ∈ A(s) Action from the set of all available actions in a given state
r Reward, can be a random variable
r Expected reward, E[r]
p ∈ P Policy (or strategy) from the set of all policies
V The state value function V : S → R (see Section 7.1.2 on page 123)
Q The state-action-value function Q : S ×A → R (see Section 7.1.2)
γ Discount rate

xiii

1. Introduction

The practical relevance of a theory is seen in its ability to solve problems, which is usually
synonymous to help making good decisions. Decision making is based on hypothesising
and learning about the state of nature, given limited experience and incomplete infor-
mation. Given that the ability to learn from examples is fundamental to many aspects
of life it clearly stands out as a setting that is worth studying.

Learning, in the sense as it will be used below, is an inductive process in which the
reasoning is from the particular to the general. The task is to make inference, to draw
conclusions about the population based on empirical observations. Based on finitely
many samples and other available information a model, i.e. a mathematical description,
is sought that captures the dependencies between observed quantities. Subsequently
this structure can be used to make statements about the underlying data-generating
process. In particular, the dependencies thus identified can be used to derive rules that
allow prediction of properties of yet unobserved instances.

Historically the formal study and development of prediction techniques was part of
statistical science. Classical models in multivariate analysis often assume normality of
the population distribution and linear dependencies. The applicability of linear models
is limited because of these rigid assumptions which are often not met in practical data
analysis problems. With the advent of modern computers more data could be handled
and more complex and flexible models were developed, e.g. generalised linear models
and non-parametric techniques. Furthermore, the observation that biological systems
implement adaptive behaviour motivated the study and simulation of artificial neural
networks. It was realised that these models constitute a general class of function ap-
proximators, applicable for prediction in various applications. Finally, machine learning
evolved as a discipline bundling the efforts towards understanding, applying, and im-
proving predictive models that had been developed in statistics, computer science, and
engineering.

The analysis of complex systems, e.g. as they appear in bioinformatics or economet-
rics, often demands flexible nonlinear models in order to capture the dependencies in the
data accurately. With the development of increasingly complex models several funda-
mental problems became apparent. Among the most urgent questions are how to choose
an appropriate type of model, how to adapt the model in view of the observed data,
e.g. parameter estimation, and how to judge the reliability of the model’s predictions.

One particular issue common to almost all data modelling is the question of how
flexible a model is allowed to be, i.e. how much complexity the model is able to capture.
The optimal flexibility of a model must be in some sense related to the amount of infor-
mation contained in the observations. If the adaptation of the model is not constrained,

1

1. Introduction

nothing prevents a very flexible model from pure memorisation of the examples without
capturing—learning—the underlying structures. Furthermore, the increase in flexibility
and predictive performance often comes at the cost of a loss in interpretability of the
model.

Historically, maximum likelihood estimation has often been the conventional way of
parameter estimation in mathematical statistics and has also been used, e.g., in back-
propagation training of artificial neural networks. But the more flexible a model is the
more this approach is prone to over-fitting, i.e. the misinterpretation of random fluctu-
ation in the data as systematic structure. The practical problem is to set the tradeoff
between the accuracy of the model in explaining the observations and the complexity
of the structure used for this. Various heuristic approaches had been proposed until the
problem was studied systematically in statistical learning theory, leading to the concept
of structural risk minimisation (Vapnik, 1998, 1999). In this context a new category of
classification and regression algorithms named Support Vector Machines was developed,
mating the idea of maximum margin separation and kernel based algorithms.

Another approach to the problem of handling complex statistical models was taken by
recalling the Bayesian tradition. The Bayesian school of statistics is based on a different
notion of probability, by which the probability of an event equals the subjective degree of
belief in its occurrence. Together with the conventional rules of mathematical probabil-
ity this constitutes a framework for inference in probabilistic models, i.e. constructions
describing dependencies between entities in terms of probabilities. Inference is per-
formed according to Bayes’ rule which describes how beliefs about the data-generating
process have to be changed to consistently incorporate the information contained in
observed examples. The work presented in this thesis follows the Bayesian approach
which will be described in more detail in the following chapter.

MacKay (1992a) and Neal (1996) analysed artificial neural networks using Bayesian
techniques which allowed them to control the effective flexibility of the model so that
large neural networks could be handled. In this context Gaussian process models were
recognised as the limit of a Bayesian neural network as the number of hidden units goes
to infinity. This observation can be linked to earlier work by Blight and Ott (1975) and
O’Hagan (1978) who introduced the use of Gaussian processes as priors over functions
in the statistics literature.

Gaussian process models and kernel methods, like the popular Support Vector Ma-
chines, are closely related in the sense that positive definite functions play an important
rôle in both. In Support Vector Machines kernel functions are interpreted geometrically,
as an inner product in a nonlinearly related feature space. In Gaussian process models
the same class of functions is used to describe the covariance of latent function val-
ues. Therefore, Gaussian process models have also been referred to as Bayesian kernel
machines.

This thesis presents extensions and applications of Gaussian process models from a
Bayesian point of view. The main contributions are several models for robust regres-
sion, a study of approximation techniques for binary classification, and applications in
reinforcement learning. Throughout, the understanding and numerically stable imple-

2

mentation of approximation techniques is an important concern, being a prerequisite
for future use in practical data analysis. In the course of this work, a wide range of
machine learning problems are addressed, demonstrating the versatility of Gaussian
process models.

After a brief introduction of Bayesian analysis, Chapter 3 describes the general con-
struction of Gaussian process models with the conjugate model for regression as a special
case. Furthermore, it will be discussed how Gaussian processes can be interpreted as
priors over functions and what beliefs are implicitly represented by this.

The conceptual clearness of the Bayesian approach is often in contrast with the prac-
tical difficulties that result from its analytically intractable computations. Therefore ap-
proximation techniques are of central importance for applied Bayesian analysis. Chap-
ter 4 describes Laplace’s method, the Expectation Propagation approximation, and
Markov chain Monte Carlo sampling for approximate inference in Gaussian process
models.

The most common and successful application of Gaussian processes models is in re-
gression problems where the noise is assumed to be homoscedastic and distributed ac-
cording to a normal distribution. In practical data analysis this assumption is often
inappropriate and inference is sensitive to the occurrence of more extreme errors (so
called outliers). Chapter 5 proposes several variants of Gaussian process models for
robust regression and describes how Bayesian inference can be approximated in each.
Experiments on several data sets are presented in which the proposed models are com-
pared with respect to their predictive performance and practical applicability. Parts of
the presentation are based on Kuss et al. (2005b).

Gaussian process priors can also be used to define flexible, probabilistic classifica-
tion models. Again, exact Bayesian inference is analytically intractable and various
approximation techniques have been proposed, but no clear picture has yet emerged, as
to when and why which algorithm should be preferred. Chapter 6 presents a detailed
examination of the model, focusing on the question which approximation technique is
most appropriate by investigating the structure of the posterior distribution. An exper-
imental study is presented which corroborates the theoretical insights. This chapter is
based on Kuss and Rasmussen (2005, 2006).

Reinforcement learning deals with the problem of how an agent can optimise its
behaviour in a sequential decision process such that its utility over time is maximised.
Chapter 7 addresses applications of Gaussian processes for model-based reinforcement
learning in continuous domains. If the environment’s response to the agent’s actions
can be predicted using Gaussian process regression models, probabilistic planning and
an approximate policy iteration algorithm can be implemented. A core concept in
reinforcement learning is the value function, which describes the long-term strategic
value of a state. Using Gaussian process models we are able to solve an approximate
continuous equivalent of the Bellman equations, and it will be shown how this can be
used to estimate value functions. Parts of this chapter are based on the ideas contained
in Rasmussen and Kuss (2004).

3

2. Bayesian Analysis

The Bayesian approach to inference constitutes the framework in which Gaussian process
models will be presented in the following chapters. Even though meeting the require-
ments of the Bayesian approach is often difficult in practice, its principles provide a
coherent guidance.

The most elementary concept in any probabilistic statistical inference is the proba-
bility of an event, e.g. the correctness of a hypothesis. Bayesian inference is founded
on the theory of subjective probability, by which the probability of an event equals the
subjective degree of belief in its occurrence. Cox (1946) proposed a set of postulates for
a calculus of reasonable beliefs:1

• The degree of belief in a statement can be represented by a real number, whereby
the scaling between the extremes of certainty and impossibility can be chosen
arbitrarily.

• The degree of belief in C ∧ B|A is in some way determined by the beliefs in B|A
and C|B ∧A.

• The plausibility of ¬B|A is determined in some way by the belief in B|A.

From these, Cox derived the rules of mathematical probability theory which are formally
identical to the rules derived from Kolmogorov’s system of probability. Furthermore,
what is known as Cox’s theorem states that any calculus of reasonable beliefs that meets
the above postulates is equivalent to the subjective probability model. Jaynes (2003)
presents a detailed elaboration suggesting the interpretation of subjective probability
theory as extended logic.

A competing approach is the frequency interpretation of probability by which the
probability of an event equals the relative frequency in which an event occurs in a
repeated experiment in the limit of large numbers of repetitions, see for example Fisher
(1922) or the discussion by Kendall (1952, ch. 7). This interpretation has been called
the frequentist, orthodox, Fisherian or piscatorial probability.

Both views have their respective conceptual advantages and practical shortcomings.
Subjective probability requires a person to state completely consistent beliefs about
arbitrarily complex systems of hypotheses. But it allows stating the probability of
an event that eludes repetition, e.g. the probability that it will rain at a given day.
Frequentists object that the use of subjective probability leads to arbitrariness and
incomparableness of scientific conclusions. It should be stressed that both approaches

1Let A, B, and C denote propositions, and let ¬A, A∧B, and A|B be given by the common notation
of Boolean algebra.

5

2. Bayesian Analysis

reach the same conclusions asymptotically and apart from the respective interpretation,
the mathematical laws of probability calculus apply to both notions of probability.

It is important to realise that randomness is not a physical property, e.g. like mass
or temperature, but probabilities only describe beliefs of the beholder. Jaynes (2003,
ch. 1.8.1) cautions against the “mind projection fallacy”, by which “one’s own private
thoughts and sensations” are interpreted as “realities existing externally in Nature”.

The most apparent difference between the Bayesian and the frequentist tradition is
the attribution of randomness in a statistical model. From the Bayesian point of view
probabilities are used to represent uncertainties about quantities which are not directly
observable, e.g. parameters of a model. However, adherents of the frequentist viewpoint
argue that only the data is (partially) random and that the values of the parameters
are fixed and therefore they should not be considered random variables.

2.1. Bayesian Inference

The starting point of any Bayesian analysis is a probabilistic model M which is a hy-
pothesis about the generative process giving rise to observable data D. A probabilistic
model is a construction that describes dependencies between its elements in terms of
probabilities. Within this construction there are parameters φ which are the object of
interest. Since the true value of these parameters is uncertain, φ is a random variable.
In the following it will be assumed that the parameters are continuous.

Before D is observed the sampling distribution p(D|φ,M) describes the predictive
distribution of observations for a particular value of φ. Thereby the model is generative,
i.e. it can be used to generate synthetic data. As a function of φ for observed D
we refer to p(D|φ,M) as the likelihood of the parameters. The likelihood equals the
probability (density) function of the sampling distribution evaluated on the observed
data. A synonymous term is direct probability.

The prior distribution p(φ|M) describes beliefs and uncertainties about the true
values of the model parameters previous to an inference step. By inference we refer to
the process of combining the information contained in D and the prior p(φ|M) into a
posterior distribution p(φ|D,M). The posterior is obtained according to Bayes’ rule

p(φ|D,M) =
p(D|φ,M) p(φ|M)

p(D|M)
(2.1)

which describes how the information contained in observations D changes the beliefs
about φ. Intuitively, Bayes’ rule can be interpreted as a weighting, in which prior
beliefs about φ are weighted according to their compatibility with the observed data.
So the prior and the posterior are probability distributions describing two states relative
to an inference step and correspond to potentially different beliefs about the value of
φ in M which gave rise to the observed data. Note that formally Bayes’ rule follows
directly from the definition of conditional probability.

6

2.1. Bayesian Inference

The normalising constant appearing in the denominator of Bayes’ rule

p(D|M) =
∫
p(D|φ,M) p(φ|M) dφ (2.2)

is referred to as the evidence or marginal likelihood. This quantity is of central impor-
tance for Bayesian model comparison as will be described in Section 2.3.

Any real application of Bayesian methods must acknowledge that both the prior and
the likelihood have only been specified as more or less convenient approximation to the
beliefs of the analyst. The prior distribution is often seen as the most controversial
element of Bayesian statistics. In principle the prior should be found by introspection
and consideration of all available factual information about φ before taking the data
D into account. However, this constitutes a non-trivial task and several approaches
have been suggested to help formulate priors in practice. The prior is usually chosen
from a parametric family of distributions or mixtures of those. This often gives a
reasonable compromise between an accurate representation of prior beliefs and analytical
tractability. In practice it is usually helpful to generate samples from the prior and
inspect whether the values are reasonable a priori. Furthermore, the corresponding
sampling distributions can be used to generate synthetic data sets whose properties
should also conform with prior beliefs. Nevertheless, in any Bayesian analysis it is
recommendable to examine how sensitive the posterior reacts to changes of the prior.

The more data is available and the more informative the data is about the parameters
φ, the less influential the prior will be. Comparing posteriors and priors can illustrate
how informative the observed data is about the parameters. When the data does not
reduce the uncertainty about a parameter then both distributions will be the same,
expressing that the beliefs are unchanged. Care should be taken to put non-zero prior
probability on all conceivable parameter values unless one knows for certain that they
are impossible (Cromwell’s dictum, O’Hagan (1994, ch. 3.19)).

For models with more than just a few parameters it can become difficult to assess
that a prior distribution represents precisely the prior beliefs and available factual in-
formation. If the prior information can be formulated as constraints on the parameters,
a prior can be found by maximising the entropy over a suitable class of distributions
subject to the parameter constraints (Jaynes, 2003, ch. 12). A prior is called improper
if it cannot be normalised properly, e.g. a uniform distribution of infinite width. This—
usually avoidable and unnecessary case—must be handled carefully, and it must be
verified that the posterior is a proper distribution. A parametric family of prior distri-
butions is called conjugate to a likelihood model if the resulting posterior is of the same
family of distributions as the prior, regardless of the observed data.

As it is difficult to express beliefs in terms of a distribution, it is often also difficult
to formulate a prior which expresses maximal uncertainty or indifference about φ, i.e. a
non-informative prior. For instance, for a location parameter an improper uniform
prior over an infinite range of values represents maximal uncertainty, but note that
in general a uniform prior is not uninformative. Simple re-parameterisation of the
likelihood changes the beliefs expressed by the prior, if the prior stays uniform. Jeffreys

7

2. Bayesian Analysis

proposed a likelihood dependent prior which takes the re-parameterisation argument
into account, the so called Jeffreys’ prior (Jeffreys, 1946).

In data analysis one should always be aware of the model’s assumptions, and the con-
clusions drawn from an analysis should obviously not be trusted more than the assump-
tions they are based on, whether we apply Bayesian inference or any other statistical
method.

In the course of a Bayesian analysis it is often necessary to make approximations
at various stages. The first step usually involves the approximation of prior beliefs by
choosing a particular type of likelihood and prior distribution. Subsequently the pos-
terior often cannot be computed analytically and approximations must be used. The
errors resulting from each of the approximations can accumulate and the resulting con-
clusions can become invalid. It is therefore of central importance to be conscious about
the accuracy of the approximations and to be as precise as possible when specifying
prior distributions. It should be stressed that the Bayesian framework can be sensitive
to inaccurate specifications of the prior, which can become a severe problem especially
in situations with complex models and few data.

2.2. Bayesian Decision Theory

A Bayesian analysis typically proceeds in two stages. At first the posterior distribution
p(φ|D,M) is computed which summarises all available information about φ. Having
obtained the posterior, it can be used to deduce further statements about the true value
of φ. The degree of belief in any statement regarding the parameters can be computed
by evaluating the probability of the statement under the posterior distribution.

The most common problem is to state a single point estimate of φ which in the
Bayesian framework is considered a decision problem. Let φ̂ be a point estimate of
the true value of φ. The loss function L(φ̂,φ) characterises the loss associated with a
discrepancy between the point estimate and the unknown true parameter value. The
risk of a decision is the expected loss

RL(φ̂) =
∫

L(φ̂,φ) p(φ|D,M)dφ (2.3)

where the expectation is taken with respect to the posterior distribution. The optimal
Bayesian decision is the point estimate

φ? = argmin
φ̂

RL(φ̂) , (2.4)

which minimises the risk. For example, the expected absolute error L(φ̂,φ) = |φ̂−φ| is
minimised by the median of the posterior distribution. Likewise minimising the expected
squared error L(φ̂,φ) = (φ̂− φ)2 leads to choosing the mean of the posterior.

The mode of the posterior, which will be referred to as the maximum a posteriori
(MAP) estimate, is optimal given a loss function which is zero if the estimate and the
true value match exactly and a positive constant otherwise (Jaynes, 2003, ch. 13.9).

8

2.2. Bayesian Decision Theory

Often the MAP estimate is relatively easy to compute

φ?
MAP = argmax

φ
p(φ|D) = argmax

φ
p(D|φ)p(φ) (2.5)

since it can be found without normalising the posterior. The MAP estimate is also
known as the penalised maximum likelihood estimate. Quite contrary to the outstand-
ing rôle of the maximum likelihood estimate in frequentist statistics, the MAP estimate
is subject to severe criticism from a Bayesian perspective. The MAP focuses on the
posterior density and neglects posterior mass and can therefore be very atypical for the
posterior distribution. Equivalently, the mode of the posterior might be atypical for
the whole distribution (an example thereof will be encountered in Chapter 6). From a
practical point of view the loss function minimised by the MAP estimate is question-
able because it states that if an error is made it does not matter how large the error
is. A further point of criticism is that by re-parameterisation of the model the MAP
estimate can be changed arbitrarily. Assume continuous parameters φ and let ξ = h(φ)
denote a bijective (one-to-one) function used for mapping of parameters between the
parameterisations. The maximum a posteriori estimate of ξ is

ξ?
MAP = argmax

ξ
p(ξ|D) = argmax

ξ
p(h−1(ξ)|D)

∣∣∣∣∂h−1(ξ)
∂ξ>

∣∣∣∣ (2.6)

where the last term on the right hand side is the Jacobi determinant of the transforma-
tion φ = h−1(ξ) (DeGroot and Schervish, 2002, ch. 3.9). By comparing estimates (2.6)
and (2.5) it becomes obvious why for general bijective re-parameterisation h the MAP
estimate ξ? will not be identical to h(φ?). Note that this does not hold for maximum
likelihood estimates, which are invariant to re-parameterisation, since a likelihood is
not a density and therefore no Jacobian correction is necessary. This is not unique to
maximum likelihood estimates, since in general Bayesian inference is invariant to re-
parameterisations of the likelihood, if both the loss function and the prior distributions
are correctly transformed as well.

We described above how a point estimate of parameters φ can be found using Bayesian
decision theory. This approach is not limited to decisions about model parameters but
can also be used to derive statements about any random variable. In particular, we will
use models to make predictive statements about unobserved quantities. Let y∗ denote
such an unobserved quantity and let p(y∗|φ,M) describe the dependency of y∗ on φ
given by M. The posterior predictive distribution of y∗ is found by averaging over the
posterior uncertainty in the model’s parameters

p(y∗|D,M) =
∫
p(y∗|φ,M) p(φ|D,M) dφ . (2.7)

The predictive distribution p(y∗|D,M) describes the posterior beliefs about y∗. If we
are asked to give a point estimate ŷ∗ of y∗, we again make use of Bayesian decision
theory. Given a loss function the optimal (point) prediction is found by minimising the
risk, which is now a loss function averaged over the predictive distribution (2.7).

9

2. Bayesian Analysis

2.3. Model Comparison and Model Selection

In the previous sections, Bayesian inference was used to describe how observed data
changes the beliefs and uncertainties about the values of parameters in a given model.
The idea can be applied at a higher level addressing uncertainty about the model itself.
The modelM can be interpreted as a hypothesis about the data-generating process and
refers to both a likelihood and a prior on the parameters.

Model comparison and hypothesis testing are conceptually identical in the Bayesian
framework, since different models can be understood as different hypotheses about the
data-generating process. Selecting a single best model corresponds to a decision prob-
lem, analogous to finding a point estimate of a parameter.

2.3.1. Bayesian Model Comparison

Assume a finite number i = 1, . . . , N of hypotheses Mi about the data-generating
process. Let p(Mi) denote the prior belief in model i. The posterior belief in Mi is
obtained by applying Bayes’ rule

p(Mi|D) ∝ p(D|Mi) p(Mi) . (2.8)

Making a pairwise comparison of models A and B avoids computing the normalising
constant p(D) and the ratio

p(MA|D)
p(MB|D)

=
p(D|MA)
p(D|MB)

p(MA)
p(MB)

(2.9)

is called the posterior odds. Assuming the prior p(Mi) to be uniform over all models,
the posterior odds equal the ratio of evidences which is called Bayes factor (Good, 1958).
The Bayes factor quantifies the relative plausibility of model A compared to model B.

Moreover, if the prior p(Mi) is uniform over all models, the posterior belief in a
model (2.8) is proportional to its evidence. Thereby the evidence allows us to rank
models according to the posterior belief.

The central rôle of the evidence for model comparison motivates a closer look at this
quantity. The synonym marginal likelihood refers to the interpretation that p(D|M) is
obtained by marginalisation of the joint probability p(D,φ|M) over φ as in eq. (2.2).
Before the data is observed p(D|M) can be interpreted as an a priori predictive dis-
tribution of the data. Therefore, once the data becomes available p(D|M) measures
the expectedness of the data under a given model. Note that p(D|M) must normalise
properly, so that if a model gives high predictive probability to certain data sets it
must give less to others. A very flexible (versatile or complex) model can generate a
wide range of data sets but the predictive probability for a particular data set will be
small. A model that explains only a small set of possible observations will be considered
very plausible if such a data set is actually observed. Therefore, if there are several
possible explanations of a data set, the simpler model is favoured over an alternative
complex explanation, i.e. the model for which the observed data appears most typical.

10

2.3. Model Comparison and Model Selection

D

p(D|M)

D1 D2

M1

M2

M3

M4

.

Figure 2.1.: Rôle of the evidence for model comparison. The abscissa abstractly represents all
possible data sets D of a given size. Shown are the evidence p(D|Mi) as a function
of D for four modelsM1, . . . ,M4. The dashed lines mark two data sets D1 and D2

that could be observed. Model M4 covers a wide range of data sets representing
the most flexible model. ModelM3 is the most constricted, being able to generate
a smaller variety of data sets. If the data set D1 had been observed, the most
plausible model would be M2 which would be roughly twice as plausible as M1

and M4. Since D1 would be highly implausible under M3 the posterior belief in
this model would be very small. If instead data D2 were observed, the posterior
uncertainty would remain relatively large with models M2, M3, and M4 being
almost equally plausible and only M1 seeming unlikely. The illustration is similar
to Figure 2 in MacKay (1992b).

This characteristic of Bayesian model comparison has been interpreted as an instance
of “Occam’s Razor” which is often quoted as “Entities are not to be multiplied with-
out necessity” and attributed to Willam of Ockham (approx. 1287–1347). Figure 2.1
illustrates the rôle of the evidence in Bayesian model comparison. Note that the use of
the terms flexible and simple was associated with the expressiveness of a probabilistic
model, i.e. the variability of data sets that a model can generate, and not the number
of parameters as in other criteria for model selection, see Kass and Raftery (1995) for a
discussion.

The predictive nature of the evidence can also be understood by rewriting it in a
sequential way. Let D = {x1, . . . , xm} where the elements x are individual observations.
By rewriting the evidence as a product of conditional distributions we obtain

p(D|M) = p(x1, . . . , xm|M) =
m∏

i=1

p(xi|{xj}j<i,M) (2.10)

where each term p(xi|{xj}j<i,M) can be interpreted as the posterior predictive dis-
tribution of xi given the observations x1, . . . , xi−1 and the model M. If the x are
exchangeable the argument is invariant to the order of observations. So if observations
can be well predicted from “previous” observations, the evidence for the model increases.

In the machine learning context models are usually used for prediction. Assume N

11

2. Bayesian Analysis

models, all able to produce a predictive distribution p(y∗|Mi,D), as for example given
by eq. (2.7). The predictions of different models are then weighted by the posterior
belief in the respective model

p(y∗|D) =
N∑

i=1

p(y∗|Mi,D) p(Mi|D) , (2.11)

which is an averaging over the posterior model uncertainty.
In judging the appropriateness of a model two desiderata have to be balanced: the

ability to explain the observed data and the ability to generalise to the whole popula-
tion. For the latter, prior beliefs and the choice of model become decisive. A common
problem when seeking a single explanation of the observed data, e.g. a maximum likeli-
hood estimate in frequentist statistics or a neural network trained by backpropagation,
is the bias-variance-dilemma and its effects are known as under-fitting and over-fitting.
Assume that the data-generating process is decomposable into a systematic (determin-
istic) and a random component, as for example assumed in regression analysis. If a
model of the systematic component is flexible enough, a maximum likelihood estimate
can misinterpret random fluctuation as systematic variation, i.e. over-fitting may oc-
cur. Likewise, if a model makes too simplistic assumptions, systematic variation can
be interpreted as random fluctuation which is known as under-fitting. In the Bayesian
framework these problems are avoided—in principle—by not picking a single explana-
tion but by weighted averaging according to the posterior beliefs on both the parameter
(2.7) and model level (2.11).

2.3.2. Model Selection by Evidence Maximisation

The previous section described how model uncertainty can be handled conceptually. In
situations where handling multiple models is computationally prohibitive, a common
approach is to select a single model which appears to be most plausible given the ob-
served data. Assuming the prior p(Mi) to be uniform over all models this corresponds
to selecting the model showing the highest evidence.

In the above description a model M represented both a sampling distribution, i.e. a
likelihood and a fixed prior on its parameters. If the likelihood is considered to be correct
with certainty, then from a dogmatic point of view no model comparison is necessary
since the prior should reflect beliefs independent of D. However, practically the same
formalism can be used to implement what could be called prior selection.

Suppose the priors under consideration all belong to a parametric family p(φ|ψ) where
ψ are referred to as hyper-parameters. In principle, the use of hyper-parameters is an
unnecessary construction since given a hyper-prior p(ψ) they can always be integrated
out

p(φ) =
∫
p(φ|ψ) p(ψ) dψ . (2.12)

However, in many situations it has shown to be easier to construct a hierarchical struc-
ture to represent prior beliefs, because it allows a more intuitive description of depen-

12

2.3. Model Comparison and Model Selection

dencies between parameters, see for example Gelman et al. (1995, ch. 5). The problem
of prior selection can be seen as finding the value of ψ that maximises the evidence

p(D|ψ) =
∫
p(D|φ) p(φ|ψ) dφ (2.13)

which is now conditioned on the hyper-parameters. Ignoring conceptual objections
eq. (2.13) has the form of a likelihood for ψ and

ψ? = argmax
ψ

p(D|ψ) (2.14)

gives the maximum likelihood type II (ML-II) estimate of ψ. The corresponding p(φ|ψ?)
is called the maximum likelihood type II prior and ψ? are referred to as the ML-II hyper-
parameters. Intuitively, the ML-II prior is the prior that would have made the observed
data most expected given the assumed sampling distribution, i.e. the likelihood. This
approach is also known as empirical Bayes, although this name is somewhat misleading
because Bayesian inference itself is always empirical, see Gelman et al. (1995, ch. 5),
O’Hagan (1994, chs. 5.25ff), or Berger (1985, chs. 3.5.4 & 4.5) for details.

From a Bayesian point of view, selecting a single model is a decision problem as
described in Section 2.2. The ML-II estimate can be interpreted as the MAP estimate
of

p(ψ|D) ∝ p(D|ψ) p(ψ) (2.15)

when p(ψ) is uniform, i.e. a constant and degenerate prior. Note that the MAP estimate
depends on the parameterisation as described in Section 2.2.

In principle, Bayesian inference can proceed almost automatically once a likelihood
and a prior are specified. But in practice the analysis is often complicated by the
necessity to solve integrals which are analytically intractable. In the following chapters
a common situation will be that Bayesian inference can be performed analytically for
a subset of parameters and the remaining parameters and hyper-parameters will be set
to their ML-II estimated values. Let the parameters be divided into φ = [φA,φB] such
that the conditional posterior of φB can be computed

p(φB|φA,ψ,D) =
p(D|φB,φA) p(φB|ψ)

p(D|φA,ψ)
, (2.16)

but inference over φA and ψ is intractable. Nevertheless, maximum likelihood type II
estimates can be computed

(φ?
A,ψ

?) = argmax
φA,ψ

p(D|φA,ψ) (2.17)

by maximising the evidence, i.e. the denominator in eq. (2.16):

p(D|φA,ψ) =
∫
p(D|φA,φB) p(φB|ψ) dφB . (2.18)

13

2. Bayesian Analysis

If for example φA and ψ are nuisance parameters, the marginal posterior of φB can be
approximated by conditioning on the ML-II estimates of the parameters:

p(φB|D) =
∫
p(φA,φB,ψ|D) dφA dψ ≈ p(φB|φ?

A,ψ
?,D) . (2.19)

The evidence has been praised for the built-in compromise between model complexity
and ability to explain the data. However, optimising the prior or likelihood parameters
in the light of the observed data can lead to serious over-fitting, as we will observe in
later chapters.

2.4. Bibliographical Remarks

The Bayesian approach is named after Thomas Bayes (1702–1761) whose “Essay towards
solving a problem in the doctrine of chances” was posthumously published in 1763.
The attribution is somewhat misleading since the so called Bayes’ rule (2.1) cannot be
found explicitly in his work. As Jaynes (2003, ch. 4.6.1) points out, Bayes’ rule follows
directly from the definition of conditional probability which had been described long
before, e.g. by Bernoulli and de Moivre. But it was Laplace (1774) who described its
use for inference in general terms in his “Mémoire sur la probabilité des causes par
les évènemens”. Before this approach has been named Bayesian it was known as the
method of inverse probability, describing the posterior, in contrast to direct probability,
the likelihood (Kendall, 1952, ch. 7).

The development of the statistical science gained accelerated momentum in the early
20th century. In this phase the frequentist approach was almost uncontested in the
statistical science. Since around the 1960’s a revival of Bayesian ideas was stimulated
amongst others by physicists like Harold Jeffreys. Many books about the historical
development of probability theory and statistics exist of which Stigler (1999) is a rec-
ommendable example. Jaynes (1986) and Fienberg (2006) give historical reviews of
Bayesian analysis and the development of its core concepts. Bayes’ original 1763 essay
is reprinted with an introduction by Barnard (1958). A summary of Laplace’s 1774
“Mémoire sur la probabilité des causes par les évènemens” can be found in Stigler
(1986). The relation of Occam’s razor and Bayesian reasoning is examined in more
detail by Jeffreys and Berger (1992) and Rasmussen and Ghahramani (2001). Good
(1958) introduced the Bayes factor which is further described by Kass and Raftery
(1995). Maximum likelihood II estimation is discussed in detail by MacKay (1999a)
and Berger (1985, ch. 4.5). A comparison of Bayesian and frequentist approaches to
parameter estimation and model selection is given by Ripley (1998).

General references regarding Bayesian methods include Box and Tiao (1973), O’Hagan
(1994), Bernardo and Smith (1994), Gelman et al. (1995), and Jaynes (2003). Berger
(1985) and Robert (1994) approach Bayesian inference from a decision theoretic point
of view.

14

3. Gaussian Process Models

If I were actively concerned with the analysis of data from stochastic pro-
cesses, I believe that I should try to seek out techniques of data processing
which were not too closely tied to individual models, which might be likely
to be unexpectedly revealing, and which were being pushed by the needs of
actual data analysis.

— Tukey (1962)

This chapter introduces the class of Gaussian process models of which several instances
will be studied in the following chapters. Common to all these models is that they
assume a directional dependency between an input or covariate x and the corresponding
observable output or response y. Based on empirical observations the model attempts to
describe the conditional distribution p(y|x). If y ∈ R, then p(y|x) is called a regression
model and if y is nominal, then it is called a classification model.

3.1. Structure of Gaussian Process Models

The conditional distribution p(y|x) describes the dependency of an observable y on a
corresponding input x ∈ X . The class of models described in this section assumes that
this relation can be decomposed into a systematic and a random component. Further-
more, the systematic dependency is given by a latent function f : X → R such that the
sampling distribution, i.e. the likelihood, is of the form

p(y|f(x),θ) , (3.1)

which describes the random aspects of the data-generating process. In general, we
will use θ to denote additional parameters of the likelihood besides f . Note that the
conditional distribution of the observable y depends on x via the value of the latent
function f at x only.

An example is a regression model where the systematic relation f(x) cannot be ob-
served directly but only noisy samples thereof. For instance the sampling distribution
p(y|f(x),θ) = N (y|f(x), σ2

n) describes regression with normal noise where the noise
variance σ2

n is an additional parameter, such that θ = σ2
n. However, models of the form

of eq. (3.1) are not limited to regression models, as will be shown in Chapter 6.
The aim of inference is to identify the systematic component f from empirical ob-

servations and prior beliefs. The data comes in the form of pairwise observations
D = {(yi,xi)|i = 1, . . . ,m} where m is the number of samples. Let X = [x1, . . . ,xm]>

and y = [y1, . . . , ym]> collect the inputs and responses respectively. In general we as-
sume x ∈ Rn unless stated otherwise. In the following we will distinguish between

15

3. Gaussian Process Models

training data which is used for model selection and inference and test data for which
the model is used to make predictions, e.g. in order to assess the model’s generalisation
ability.

In order to make inference about f we need to formalise a prior belief about the latent
function. The parametric approach is to assume a structure for f(x,φ) with finitely
many parameters φ, e.g. an artificial neural network or a classical linear model f(x) =
x>φ. In this case the prior uncertainty about f is usually expressed in terms of a prior
distribution on φ. However, in situations where the form of f is not known, assuming a
particular parametric form might be too restrictive. The drawback of parametric models
is that the accuracy by which f can be identified is bounded by the best function having
the assumed structure. However, in the end we are interested in inference about the
function f and not about parameters. Therefore it is an intuitively appealing approach
to make inference about f directly, i.e. in a non-parametric way.

The name Gaussian process model refers to using a Gaussian process (GP) as a prior
on f . The Gaussian process prior is non-parametric in the sense that instead of assuming
a particular parametric form of f(x,φ) and making inference about φ, the approach is
to put a prior on function values directly.1 Each input position x ∈ X has an associated
random variable f(x). A Gaussian process prior on f technically means that a priori the
joint distribution of a collection of function values f = [f(x1), . . . , f(xm′)]> associated
with any collection of m′ inputs [x1, . . . ,xm′]> is multivariate normal (Gaussian)

p(f |X,ψ) = N (f |m,K) (3.2)

with mean m and covariance matrix K. A Gaussian process is specified by a mean
function m(x) and a covariance function k(x,x′,ψ) such that Kij = k(xi,xj ,ψ) and
m = [m(x1), . . . ,m(xm′)]>.2 By choosing a particular form of covariance function we
may introduce hyper-parameters ψ to the Gaussian process prior. Depending on the
actual form of the covariance function k(x,x′,ψ) the hyper-parameters ψ can control
various aspects of the Gaussian process, as will be described in Section 3.3. For no-
tational simplicity, below we will often write the covariance function k(x,x′) without
writing the dependency of k on further parameters ψ explicitly.

Note that the (sampling) distribution (3.1) of y depends on f only through f(x). As

1The term non-parametric, as it is used here, is only meant to emphasise that a prior is put directly
on functions without explicitly parameterising the unknown function. Using a prior directly on the
space of functions corresponds to an infinite dimensional parameter space. Making inference about
an infinite number of parameters seems impractical, but it turns out that for any given data set only a
finite number of parameters (function values) has to be represented explicitly. However, this effective
number of parameters depends on the number of observations, which is a typical characteristic of
non-parametric models. Note that this is not the case for certain Gaussian process priors, depending
on the covariance function, because there exists an equivalent parametric model with a fixed number
of parameters, as will be described in Section 3.4.

2Note that throughout we use m(x) to denote mean functions of Gaussian processes while m (without
x) refers to the number of observations.

16

3.1. Structure of Gaussian Process Models

an effect the likelihood of f given D factorises

p(y|f,θ) =
m∏

i=1

p(yi|f(xi),θ) = p(y|f ,θ) (3.3)

and depends on f only through its value at the observed inputs f . According to the
model, conditioning the likelihood on f is equivalent to conditioning on the full function
f . This is of central importance since it allows us to make inference over finite dimen-
sional quantities instead of handling the whole function f . The posterior distribution
of the function values f is computed according to Bayes’ rule

p(f |D,θ,ψ) =
p(y|f ,θ) p(f |X,ψ)

p(D|θ,ψ)
=
N (f |m,K)
p(D|θ,ψ)

m∏
i=1

p(yi|fi,θ) (3.4)

where fi = f(xi). If the likelihood (3.1) is log-concave in f , the posterior is a concave,
unimodal distribution (Boyd and Vandenberghe, 2004, ch. 3.5).

The posterior distribution of f can be used to compute the posterior predictive dis-
tribution of f(x∗) for any input x∗ where in the following the asterisk is used to mark
test examples. If several test cases are given, X∗ collects the test inputs and f∗ denotes
the corresponding vector of latent function values. The predictive distribution of f∗ is
obtained by integration over the posterior uncertainty

p(f∗|D,X∗,θ,ψ) =
∫
p(f∗|f ,X,X∗,ψ) p(f |D,θ,ψ) df (3.5)

where the first term of the right hand side describes the dependency of f∗ on f induced by
the GP prior. The joint prior distribution of f and f∗ due to the GP prior is multivariate
normal

p(f , f∗|X,X∗,ψ) = N
([

f
f∗

]∣∣∣∣ [m
m∗

]
,

[
K K∗
K>
∗ K∗∗

])
(3.6)

where the covariance matrix is partitioned such that K∗∗ is the prior covariance matrix
of the f∗ and K∗ contains the covariances between f and f∗. The conditional distribution
of f∗|f can be obtained from the joint distribution (3.6) using relation (B.22) to give

p(f∗|f ,X,X∗,ψ) = N
(
f∗|m∗ + K>

∗ K−1(f −m),K∗∗ −K>
∗ K−1K∗

)
(3.7)

which is again multivariate normal.

The simplest possible model assumes that the function can be observed directly y =
f(x) so that the posterior on f becomes p(f |D) = δ(f − y), describing that no posterior
uncertainty about f remains. From this posterior the predictive distribution of f∗ can be
obtained according to eq. (3.5) which corresponds to simply replacing f by y in eq. (3.7).
See Figure 3.1 for an illustration.

17

3. Gaussian Process Models

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

0

2

x

f(
x)

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

0

2

x

f(
x)

(b)

Figure 3.1.: Gaussian process regression without observational noise. Panel (a) shows
a GP prior with zero mean m(x) = 0 and covariance function k(x, x′) =
exp(−‖x− x′‖2 /2). The grey area depicts ±2 standard deviations of f(x) and
the dashed line describes the mean function. The five solid lines are sample paths
from the Gaussian process (how these are generated will be described in Section
3.3.1). Panel (b) shows the posterior Gaussian process which is obtained by con-
ditioning the prior on the five observations depicted as points. The predictive
uncertainty is zero at the locations where the function value has been observed.
Between the observations the uncertainty about the function value grows and the
sampled functions represent valid hypothesis about f under the posterior process.

3.2. Regression with Normal Noise

Bayesian inference about the latent function f in Gaussian process regression models is
analytically tractable if the observational noise is assumed to be normally distributed.3

In this case the resulting posterior process f |D is again a Gaussian process so this can
be considered as the conjugate setting.

The model assumes y = f(x)+ε where the homoscedastic additive observational error
follows a normal distribution N (ε|0, σ2

n) such that p(y|f(x),θ) = N (y|f(x), σ2
n). The

noise variance σ2
n is an additional parameter of the likelihood, such that θ = σ2

n below.

3Note that the regression model without noise described in the previous section can be seen as an
instance of regression with normal Gaussian noise in the limit of zero noise variance.

18

3.2. Regression with Normal Noise

Given the observed input locations X the likelihood of f becomes

p(y|f ,θ) =
m∏

i=1

N (yi|fi, σ
2
n) = N (y|f , σ2

nI) . (3.8)

Again a Gaussian process is used as a prior on f . For simplicity of exposition the
prior mean function is set to be zero m(x) = 0. This might agree with actual prior
beliefs only if the problem is transformed accordingly, e.g. by subtracting the mean of
y or some other form of transformation as will be described in Section 3.2.2. Note
that also nonzero mean functions can be handled, e.g. deterministic functions or linear
models with uncertain parameters. Assuming the mean to be zero, the prior on the
latent function values at the observed inputs is

p(f |X,ψ) = N (f |0,K) (3.9)

where the elements of the covariance matrix K are computed element-wise using a
covariance function k(x,x′,ψ). Since likelihood and prior are both multivariate normal,
the posterior on f can be calculated analytically

p(f |D,θ,ψ) ∝ p(y|f ,θ) p(f |X,ψ) (3.10a)
= N (y|f , σ2

nI)N (f |0,K) (3.10b)
∝ N (f |K(K + σ2

nI)
−1y, (K−1 + σ−2

n I)−1) (3.10c)

and is also a multivariate normal distribution according to eq. (B.16) given in Ap-
pendix B.2.2.1.

The posterior predictive distribution of the latent function values f∗ for an arbitrary
set of test locations X∗ can be computed according to eq. (3.5) by averaging over the
posterior (3.10), where the first term of the right hand side of eq. (3.5) is given by
eq. (3.7). Using eq. (B.19) the resulting predictive distribution is again multivariate
normal

p(f∗|D,X∗,θ,ψ) = N
(
f∗|K>

∗ (K + σ2
nI)

−1y,K∗∗ −K>
∗ (K + σ2

nI)
−1K∗

)
. (3.11)

Note that the predictive uncertainty, i.e. the covariance matrix of f∗, does not depend
on y, but only on the dependencies induced by the covariance as a function of X∗ and
X. The predictive distribution of noisy observations y∗ can be derived from eq. (3.11)
by adding σ2

nI to the posterior covariance matrix of f∗.

The above argumentation generalises to an arbitrary set of input locations, meaning
that the posterior process f |D is again a Gaussian process with posterior mean and
covariance function

m∗(x) = k(x)>(K + σ2
nI)

−1y (3.12a)
k∗(x,x′) = k(x,x′)− k(x)>(K + σ2

nI)
−1 k(x′) (3.12b)

19

3. Gaussian Process Models

where k(x) = [k(x1,x), . . . , k(xm,x)]> is a vector of prior covariances between x and
the training inputs X. Thereby for any given set of input locations X∗ we can compute
the posterior predictive distribution of the corresponding function values f∗ which is a
multivariate normal distribution. Note that instead of the assumption of i.i.d. Gaussian
noise, we could also describe dependencies between errors by substituting σ2

nI by any
(full rank) covariance matrix of errors in eq. (3.10), e.g. by using a covariance function
of errors.

3.2.1. Model Selection

So far we have described inference over the latent function f for a given noise variance
θ = σ2

n and hyper-parameters ψ of the Gaussian process prior. Typically, values of these
parameters are not known a priori. In a full Bayesian setting one should also perform
inference over these parameters. Therefore one has to assign prior distributions p(θ)
and p(ψ) and compute the joint posterior distribution

p(f ,θ,ψ|D) ∝ p(y|f ,θ) p(f |X,ψ) p(θ) p(ψ) (3.13)

of all uncertain elements of the model. Furthermore, the predictions of the model should
be averaged over the posterior uncertainty

p(f∗|D,X∗) =
∫
p(f∗|f ,X,X∗,ψ) p(f ,θ,ψ|D) df dθ dψ . (3.14)

However, Bayesian inference over all uncertain elements of the model is analytically
intractable, because we do not know how to normalise the posterior (3.13) or to compute
the integral in eq. (3.14). As will be shown in Section 4.3, the integral (3.14) can be
approximated using Markov chain Monte Carlo techniques.

In the regression model with normal noise inference over f is analytically tractable
for fixed values of θ and ψ, as shown in the previous section. Instead of doing proper
Bayesian inference over θ and ψ, a computationally convenient procedure is to fix them
to their respective maximum-likelihood II point estimates as described in Section 2.3.2.
Following the ML-II scheme, values for the parameters are found by maximising the
conditional evidence

(θ?,ψ?) = argmax
θ,ψ

p(D|θ,ψ) . (3.15)

where f has been integrated out. The integration over θ and ψ in (3.14) is approximated
by fixing their values to their respective ML-II estimates

p(f∗|D,X∗) ≈ p(f∗|D,X∗,θ
?,ψ?) (3.16)

such that f can be integrated out analytically, as in eq. (3.5).

20

3.2. Regression with Normal Noise

Within the Gaussian process framework the logarithm of the conditional evidence4 is

ln p(D|θ,ψ) = ln
∫
p(y|f ,θ) p(f |X,ψ) df (3.17)

which can be computed analytically for the regression model with Gaussian noise:

ln p(D|θ,ψ) = ln
∫
N (y|f , σ2

nI)N (f |0,K) df (3.18a)

= lnN (y|0,K + σ2
nI) (3.18b)

= −m
2 ln(2π)− 1

2 ln
∣∣K + σ2

nI
∣∣− 1

2y
>(K + σ2

nI)
−1y (3.18c)

using integral (B.24). The log evidence is maximised in θ = σ2
n and ψ to find point

estimates of these parameters given the observed data (see Appendix A.1 for details
of a numerically stable implementation). Note that finding the ML-II estimates of
the parameters involves a non-convex optimisation problem. Often the parameters are
constrained to be positive, e.g. the noise variance σ2

n. Re-parameterising the evidence
in terms of lnθ and lnψ we can make use of standard methods for unconstrained
optimisation, e.g. conjugate gradient, to find a local maximum.

Figure 3.2 gives an example of Gaussian process regression with normal noise and il-
lustrates ML-II parameter estimation. The data is generated by sampling 15 x-locations
uniformly from [−10, 10] and computing the outputs using the sinc function plus an ad-
ditive normal noise with standard deviation σ = 0.1. The GP prior has zero mean and
covariance function k(x, x′) = σ2

s exp(−‖x− x′‖2 /(2`2)) such that ψ = [σ2
s , `]. The

two columns illustrate inference over the latent function f for two different values of `
and σ2

n. For the left column some randomly chosen parameter values were used, while
the right column shows the posterior process for ML-II estimated parameters. The top
row depicts the data and the respective posterior Gaussian processes. Note that in the
left plot the resulting posterior process gives a poor fit to the generating function. We
now pick two points xi and xj that are marked by circles. The middle row shows the
contours of the prior and the likelihood in the plane spanned by f(xi) and f(xj). The
prior is a multivariate normal distribution centred at zero with covariance k(xi, xj). The
likelihood is a spherical Gaussian centred at [yi, yj]> with covariance σ2

nI. The lower
row shows the corresponding posterior distributions on f(xi) and f(xj) which is again
a multivariate normal with mean [m∗(xi),m∗(xj)]> and covariance given element-wise
by eq. (3.12b). As described in Section 2.3.1 the evidence quantifies the expectedness
of the data, i.e. the agreement between prior and likelihood given the data. Therefore,
ML-II estimation gives the parameter values such that prior and likelihood show max-
imum agreement. The plots in the middle row show that the likelihood peaks sharply
and under the ML-II prior f(xi) and f(xj) are strongly correlated. The values of the
evidence (3.18) for the two settings differ by several orders of magnitude.

Maximum likelihood estimation of parameters is based on the assumption that the

4In accordance with Section 2.3 the evidence is denoted by p(D|θ,ψ) although technically the evidence
for Gaussian process models p(y|X,θ,ψ) is conditional on X since we always consider y|x only.

21

3. Gaussian Process Models

Random θ and ψ ML-II estimated θ and ψ

−10 −5 0 5 10

−1

−0.5

0

0.5

1

x

f(
x)

−10 −5 0 5 10

−1

−0.5

0

0.5

1

x

f(
x)

(1a) (1b)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

f(x
i
)

f(
x j)

Log evidence = −5.9517

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

f(x
i
)

f(
x j)

Log evidence = 4.6708

(2a) (2b)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

f(x
i
)

f(
x j)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

f(x
i
)

f(
x j)

(3a) (3b)

Figure 3.2.: Regression with normal noise and an illustration of ML-II parameter estimation.
The data is generated from a sinc function sinc(x) = sin(x)/x and additive normal
noise with standard deviation σn = 0.1. The input locations are uniformly sampled
from [−10, 10]. Column (a) illustrates inference over f given some random values
of θ and ψ while column (b) is for ML-II estimated values. The top row shows
the respective posterior Gaussian processes where the dashed lines describes the
mean function and the gray area covers ±2 standard deviations. Two observations
xi and xj are selected (marked by circles). The middle row shows the contours of
the prior and the likelihood marginalised to the plane spanned by f(xi) and f(xj).
The lower row shows the corresponding posterior distributions on f(xi) and f(xj).

22

3.2. Regression with Normal Noise

model is correct. However, in any practical data analysis a mismatch between the model
and data-generating process seems unavoidable. ML-II type parameter estimation is
likely to give reasonable parameters if the discrepancy is somehow small, but it is by no
means guaranteed that the ML-II parameters give the most accurate predictive model.
In practice it is advisable to compare to other methods of parameter estimation and to
assess the generalisation accuracy as a sanity check for model mismatch. This is usually
done by using some form of cross-validation, in which the data is repeatedly divided
into training and test partitions (Stone, 1974), see also the discussion by Wahba (1990,
ch. 4).

Geisser and Eddy (1979) proposed a framework for model selection and parameter
estimation by maximising the leave-one-out predictive probability

(θ?,ψ?) = argmax
θ,ψ

m∏
i=1

p(yi|D\i,xi,θ,ψ) , (3.19)

where D\i is obtained by removing the ith example (yi,xi) from D. Comparing this cri-
terion to the evidence, especially as it is written in eq. (2.10), we observe that eq. (3.19)
directly maximises an estimate of the predictive performance, without measuring the
agreement between the model and the data, i.e. the expectedness of the data. Thereby
the leave-one-out predictive probability can be expected to give estimates that are more
robust with respect to model mismatch, see also the examples given by Rasmussen and
Williams (2006, ch. 5.4.3). Sundararajan and Keerthi (2001) show that for the Gaussian
process regression model with normal noise the leave-one-out predictive probability can
be computed in closed form. Furthermore, the gradient of this quantity can be com-
puted such that gradient based optimisation methods can be used to find the parameter
values which maximise this criterion on the available data.

3.2.2. Preprocessing of Data and Nonzero Mean Functions

Above we used a Gaussian process prior with zero mean function m(x) = 0. This
corresponds to the a priori belief that it is equally likely that the latent function has
a positive or negative value at any given input position. This assumption might be
reasonable if outputs y are transformed, i.e. y is pre-processed, such that this assumption
holds, e.g. subtracting the mean and removal of trends. But note that in general the
mean of the data is not necessarily the mean of the process.

A suitable transformation of either outputs y or inputs x can also be estimated from
the data, thereby making the transformation a part of the model. Using a parametric
function to transform the data, ML-II estimation can be used to set its parameters such
that the transformed data agrees with the Gaussian process model as well as possible,
see for instance Snelson et al. (2004).

It is also possible to use a parametric function m(x) as the mean function and to
make inference about its parameters. The simplest possible model is a constant mean
function m(x) = c, see Figure 3.3 for an example. O’Hagan (1978, 1994, ch. 10.50)
proposes a Gaussian process regression model with linear mean function m(x) = β>x

23

3. Gaussian Process Models

0 1 2 3 4 5 6 7 8
8

9

10

11

12

(a)

0 1 2 3 4 5 6 7 8
8

9

10

11

12

(b)

Figure 3.3.: Illustration of the rôle of the mean function in Gaussian process regression. The
data was generated from the function shown as solid line plus an additive Gaus-
sian noise. Note that the mean of the data is ≈ 10. For this example a squared
exponential covariance function k(x, x′) = σ2

s exp(−||x− x′||/`2) was used and the
signal variance σ2

s , the characteristic length scale `, and the noise variance σ2
n are

set to their respective ML-II estimates. Panel (a) shows the posterior GP when the
prior mean function is assumed to be zero m(x) = 0. The posterior mean function
is given by the dashed line while the grey area depicts two standard deviations. In
Panel (b) the mean function of the GP prior was assumed to be constant m(x) = c,
and c is set to its ML-II estimate. We observe that the solutions differ, especially
in areas where no data has been observed. Given the form of covariance function
used, this is not surprising since away from the data the predictive distribution will
tend to the prior.

and describes how to make inference over β analytically. The prior belief that f has a
linear trend can also be modelled by using a covariance function k(x,x′) = x>x′ + . . .
that includes a linear term, as will be explained in Section 3.3.4.

3.3. Gaussian Processes & Covariance Functions

As described above a Gaussian process can be used as a non-parametric prior on a latent
function f . This section gives some more details on Gaussian processes and covariance
functions that will help to understand which characteristics of f are encoded by a GP
prior.

24

3.3. Gaussian Processes & Covariance Functions

3.3.1. Gaussian Processes

A stochastic process f on an index set X is a random function whose value f(x) is a
random variable for any x ∈ X . We refer to X as the input space and unless stated
otherwise we assume that X = Rn. Synonymously a stochastic process is called random
field or random function, the latter being the most descriptive term for the use as a
prior over functions.

Let (Ω,A,P) be a probability space and let X denote an index set. A stochastic
process is a discrete or real valued function f(x, ω) which for every fixed x ∈ X is a
measurable function of ω ∈ Ω.

Usually the dependence on ω will be suppressed but the formal definition is useful
to understand why a stochastic process is called a random function. For fixed ω ∈ Ω,
f(x, ω) becomes a non-random function of x. This function is called a realisation or a
sample path of the stochastic process. For fixed x ∈ X f(x, ω) is a random variable on
Ω.

The mean of f(x) is defined as m(x) = E[f(x)] and the covariance between the two
random variables f(x) and f(x′) corresponding to x and x′ is

cov(f(x), f(x′)) = E[(f(x)−m(x))(f(x′)−m(x′))] (3.20)

where the expectation is taken w.r.t. ω. A stochastic process is defined by consis-
tently specifying the finite-dimensional marginal distributions of function values f =
[f(x1), . . . , f(xm)]> for any collection of inputs [x1, . . . ,xm]>.

A Gaussian process is a stochastic process where all such finite-dimensional marginal
distributions are multivariate normal

p(f |X,θ) = N (f |m,K) (3.21a)

= (2π)−
m
2 |K|−

1
2 exp

(
−1

2(f −m)>K−1(f −m)
)

(3.21b)

with mean m and covariance matrix K. Note that the multivariate normal distribution
is completely determined by its first- and second-order moments. Similarly, a Gaussian
process is specified by a mean function m : X → R and a positive definite covariance
function k : X × X → R such that Kij = k(xi,xj) and m = [m(x1), . . . ,m(xm)]>.

In the above definition the mean function can be chosen arbitrarily but the covari-
ance function must be positive definite in order to ensure the existence of all finite-
dimensional distributions. This constraint can be relaxed to positive semi-definiteness
of K in which case we refer to the process as a degenerate Gaussian processes. The
finite dimensional marginal distributions of a degenerate Gaussian process are singular
multivariate normal. Let r = rank(K) and λ1, . . . , λr denote the non-zero eigenvalues,
then the probability density5 function of the singular multivariate normal distribution

5Note that eq. (3.22) is not a density w.r.t. the Lebesgue measure on Rm but only on the r-dimensional
subspace, see Mardia et al. (1979, p. 41ff) for details.

25

3. Gaussian Process Models

x

f
(x

)

xi xj

-3

-2

-1

0

1

2

3

f(xi)

f
(x

j
)

-2 0 2

-3

-2

-1

0

1

2

3

(a) (b)

Figure 3.4.: Illustration of the covariance function k(x, x′) = cov(f(x), f(x′)) of a Gaussian
process. Panel (a) shows 40 sample paths from a zero-mean Gaussian process with
covariance function k(x, x′) = exp(−‖x − x′‖2/2). The vertical lines mark two x-
positions xi and xj . In panel (b) the values of f(xi) and f(xj) for 400 samples
are plotted against each other. The contour-lines describe a zero mean bivariate
normal density with covariance k(xi, xj). Note that the empirical covariance of the
samples agrees with the covariance given element-wise by k(xi, xj).

can be defined as

Nr (f |m,K) = (2π)−
r
2

r∏
i=1

λ
− 1

2
i exp

(
−1

2(f −m)>K+(f −m)
)

(3.22)

where K+ is the pseudo-inverse of K, see Appendix B.1.2.
Sample paths of Gaussian processes cannot be obtained in closed form. For illustra-

tion purposes a dense regular grid of x-values (in one or two dimensions) is generated.
Then a sample of N (f |m,K) is plotted against the corresponding x values and linearly
interpolated between the discrete samples (see for example Figure 3.4(a)).

3.3.2. Covariance Functions

The covariance function characterises the dependencies between function values

k(x,x′) = cov(f(x), f(x′)) (3.23)

for any pair of inputs x,x′ ∈ X as illustrated in Figure 3.4. Intuitively, the covariance
function k(x,x′) describes the strength and direction of linear dependence, the similarity,
or the mutual informativeness of the function values f(x) and f(x′) as a function of the
corresponding inputs.

For k to be a valid covariance function it has to be a symmetric positive semi-definite

26

3.3. Gaussian Processes & Covariance Functions

function. A function is said to be positive semi-definite on X × X if

m∑
i=1

m∑
j=1

αiαjk(xi,xj) = α>Kα ≥ 0 (3.24)

holds for any choice of m, α ∈ Rm, and x1, . . . ,xm ∈ X . Many covariance functions
can be written in the form

k(x,x′) = σ2
sc(x,x

′) (3.25)

where |c(x,x′)| ≤ 1 (and c(x,x) = 1) is a positive semi-definite correlation function and
σ2

s > 0 will be referred to as the signal variance.
Assuming X to be a vector space, a covariance function is called stationary if it is

invariant under arbitrary translation t ∈ X such that k(x,x′) = k(x + t,x′ + t). Let
τ = x − x′ denote the separation vector, then a stationary covariance function can be
written as k(x,x′) = σ2

sc(τ) where |c(τ)| ≤ 1 is a stationary correlation function. A
Gaussian process is called stationary if its covariance function is stationary and its mean
function is constant. Gaussian processes with stationary covariance functions are also
called homogeneous.

Furthermore, the class of stationary covariance functions contains the isotropic and
anisotropic covariance functions. A covariance function is isotropic if it is a function of
the Euclidean distance τ = ‖x− x′‖ only, such that k(x,x′) = σ2

sc(τ). An anisotropic,
or ellipsoidal, covariance functions depends on τ through a norm ‖τ‖2W = τ>W−1τ
such that k(x,x′) = σ2

sc(‖τ‖W) and W is positive definite. Any anisotropic correla-
tion function c(‖τ‖W) is positive semi-definite if c(τ) is positive semi-definite. This
equivalence is trivial since an anisotropic covariance function can be seen as an isotropic
covariance function after linear transformation of the inputs. A stationary correlation
function is called separable if c(τ) can be written as the product c(τ) = c1(τ1) · · · cn(τn)
of valid correlation functions on R.

In general, it is a difficult problem to show positive-semi-definiteness of a function.
But the class of positive semi-definite covariance functions is closed under certain op-
erations such that valid covariance functions can be constructed from known positive
semi-definite functions. Let k1, k2 be valid covariance functions and scalar d > 0 then
any of the operations

k(x,x′) = k1(x,x′) + k2(x,x′) (3.26a)
k(x,x′) = k1(x,x′) · k2(x,x′) (3.26b)
k(x,x′) = k1(x,x′) + d (3.26c)
k(x,x′) = k1(x,x′) · d (3.26d)

results in a valid covariance function (Stein, 1999, ch. 2.3). Furthermore, the inputs can
be embedded by some h : X → Y such that k(h(x), h(x′)) is a valid covariance function
if k is positive semi-definite on Y × Y. For example h could be a neural network with
fixed parameters or a linear transformation. Note that the covariance function (3.12b)
of a posterior Gaussian process in the conjugate regression model is also a valid non-

27

3. Gaussian Process Models

stationary covariance function.

3.3.3. Geometrical Properties of Gaussian Processes

Using a Gaussian process prior can be understood as an expression of the belief that
the latent function has the form of a realisation, i.e. a sample path, of a Gaussian
process. It is therefore of interest to understand the geometrical properties of Gaussian
processes which can be linked to characteristics of the covariance function. This section
describes some basic properties without any proofs, which can be found in Adler (1981)
and Abrahamsen (1997). What is informally referred to as smoothness can be related
to continuity and differentiability.

A Gaussian process f(x) on Rn with continuous mean function is said to be mean-
square continuous at x∗ ∈ Rn if

lim
x→x∗

E
[
|f(x)− f(x∗)|2

]
= 0 (3.27)

and the whole process f(x) is called everywhere mean-square continuous if it is mean-
square continuous for all x ∈ Rn. Whether a process is mean-square continuous can
be determined by looking at the covariance function as stated in the following theorem
(Adler, 1981, p. 26): A Gaussian process is mean-square continuous at x∗ ∈ Rn if and
only if its covariance function k(x,x′) is continuous at x = x′ = x∗. If k(x,x′) is
continuous at all x = x′ = x∗ ∈ Rn, then f is everywhere mean-square continuous.

Therefore a stationary Gaussian processes is mean-square continuous if the covariance
functions k(τ) is continuous at 0. Mean-square continuity does not imply continuous
sample paths which is more difficult to assure. Adler (1981, p. 60) states the following
theorem: Let f be a zero mean Gaussian process with continuous covariance function
over x ∈ Rn. Then if, for some 0 < C <∞ and ε > 0,

E
[
(f(x)− f(x′))2

]
≤ C

|log ‖x− x′‖|1+ε (3.28)

holds for all x,x′ ∈ In, then f has continuous samples paths over the n-dimensional
unit cube In with probability one. This states that the expected squared difference be-
tween two function values should not grow faster than a certain function of the distance
between the corresponding inputs. In terms of a covariance function the above theorem
implies

k(x,x)− 2k(x,x′) + k(x′,x′) ≤ C
∣∣log

∥∥x− x′
∥∥∣∣−(1+ε) (3.29)

which for isotropic covariance functions k(x,x′) = σ2
sc(τ) reduces to

1− c(τ) ≤ C

2σ2
s

|log τ |−(1+ε) . (3.30)

Abrahamsen (1997, ch. 2.3.1) shows that this property holds, for instance, for correlation
functions of the form c(τ) = exp(−τν) for 0 < ν ≤ 2.

28

3.3. Gaussian Processes & Covariance Functions

Let f be a Gaussian process on Rn with differentiable mean function m(x) and co-
variance function k. The partial derivative ḟi of a Gaussian process can be defined
as

ḟi(x, ω) =
∂ḟ(x, ω)
∂xi

(3.31)

assuming differentiability of the sample paths. A Gaussian process f is said to be mean-
square differentiable on Rn if for every sequence {xn} which converges ‖xn − x‖ → 0 as
n→∞ also

E
[
(ḟi(xn)− ḟi(x))2

]
→ 0 (3.32)

holds. Whether a Gaussian process with differentiable mean function m is mean-square
differentiable depends again on the properties of the covariance function. If the deriva-
tive ∂2k(x,x′)/∂xi∂x

′
i exists and is finite for all i = 1, . . . , n at the point (x,x), then

f(x) is mean-square differentiable at x (Abrahamsen, 1997, ch. 2.3.1). In this case the
mean and covariance function of ḟi(x) are given by

ṁi(x) =
∂m(x)
∂xi

and k̇i(x,x′) =
∂2k(x,x′)
∂xi∂x′i

. (3.33)

The sample paths of f are differentiable if the partial derivatives of the sample paths
are continuous (Abrahamsen, 1997).

The relations sketched in this section emphasise the importance of the covariance
function which determines important properties of the Gaussian process and its sam-
ple paths. When using a Gaussian process as a prior over functions the covariance
function encodes prior beliefs about the smoothness of this function. The following sec-
tion describes several covariance functions that have been used in the Gaussian process
literature.

3.3.4. Examples of Covariance Functions

For regression analysis the use of stationary covariance functions is often reasonable
since it expresses the belief that inputs which are close in X should have similar function
values independent of their location. On the other hand, if the function is known to
have different characteristics in different regions of the input space, a non-stationary
covariance function might be more appropriate.

Several covariance functions are unsuited for data analysis like the constant covariance
function k(x,x′) = σ2

s or the white noise covariance function which is constant k(x,x′) =
σ2

s if x = x′ and k(x,x′) = 0 otherwise. Although these are valid covariance functions
they do not take the structure of inputs into account.

The general question is how informative is the function value at x about the func-
tion at x′ and vice versa. For stationary covariance functions the answer depends on
the difference vector τ only and a reasonable assumption is that the covariance between
function values decays with distance. To control the rate at which the covariance decays
with distance we introduce a characteristic length scale ` > 0 parameter. Intuitively this
parameter, also referred to as correlation length or practical range, controls at which dis-

29

3. Gaussian Process Models

tance two observations become approximately independent or mutually uninformative.

For anisotropic covariance functions the matrix W can be used to describe length scale
behaviour. If the characteristic length scale is equal in all directions, then W = `I, being
equivalent to the isotropic case. This assumes that all input dimensions have the same
length scale and are equally informative about the local behaviour of f . This assumption
is often too simplistic and instead it is common to set W = diag(`) where ` = [`1, . . . `n]>

is a vector of length scale parameters, one for each input dimension respectively. This
construction allows specifying the behaviour of f along each axis separately. If the
length scale `i is set to large values, the covariance becomes practically independent of
the ith dimension of the inputs x. When (approximate) Bayesian inference is performed
over ` this can be seen as an instance of automatic relevance determination (ARD) as
described by Neal (1996, 1998b), because if the posterior distribution on `i only supports
large values, the corresponding input dimension is effectively ignored. Thereby the
posterior scale of `i automatically determines the relevance of the ith input dimension.
More complex parameterisations are possible, e.g. W = AA> + diag(`) where A can
implement any (low rank) transformation of the inputs.

Many correlation functions have been proposed in the literature of which only a
handful seems to be used for practical data analysis—or combinations thereof using
eqs. (3.26). The following examples are positive definite on Rn. The covariance functions
are stated in their anisotropic form, which can be understood as an isotropic covariance
function on linearly transformed inputs.

In the literature on spatial (geo-) statistics the Matérn covariance function, also known
as the modified Bessel covariance function, is studied extensively. Variations on its
parameterisation exist, but the basic functional form is

k(x,x′) =
σ2

s

Γ(ν)2ν−1
(2
√
ν ‖τ‖W)νKv(2

√
ν ‖τ‖W) (3.34)

where Γ denotes the gamma function and Kv is the modified Bessel function of the
second kind of order ν > 0. The parameter ν controls the differentiability of the
covariance function and several other covariance functions can be derived as special
cases for specific values of ν, see Abrahamsen (1997, ch. 3.3) or Stein (1999, ch. 2.10)
for details.

The exponential, or Laplace, covariance function has the form

k(x,x′) = σ2
s exp

(
−1

2 ‖τ‖W
)

(3.35)

which is equivalent to a scaled Matérn covariance function for ν = 1/2. Note that the
sample paths of a GP with this type of covariance function are continuous, but the
GP is not mean-square differentiable, since the derivatives of (3.35) at τ = 0 are not
defined. The squared exponential covariance function, also referred to as the Gaussian
covariance function:

k(x,x′) = σ2
s exp

(
−1

2 ‖τ‖
2
W

)
(3.36)

30

3.3. Gaussian Processes & Covariance Functions

appears to be the most frequently used covariance function in machine learning contexts.
Note that the corresponding sample paths are continuous and the corresponding GP is
infinitely often mean-square differentiable. Hence, using a squared exponential covari-
ance function in Gaussian process models corresponds to rather strong beliefs about the
smoothness of the latent function. It can also be derived as a special case of the Matérn
form in the limit ν →∞ (Stein, 1999, ch. 2.10). In later chapters the running example
will be the anisotropic squared exponential covariance

k(x,x′) = σ2
s exp

(
−

n∑
d=1

‖xd − x′d‖
2

2`2d

)
(3.37)

with individual length scale parameters W = diag(`) for each input dimension. A
related covariance function is the rational quadratic

k(x,x′) = σ2
s

(
1 +

1
2a
‖τ‖2W

)−a

(3.38)

which contains the squared exponential covariance function as a limiting case as a→∞.

Non-stationary covariance functions are more difficult to work with, since typically
it is difficult to align the non-stationarity implemented by the covariance function and
non-stationarity of the target function, i.e. how the characteristics of the function change
over the input space. Examples of non-stationary covariance functions include the neural
network covariance functions by Williams (1998) and the constructions proposed by
Paciorek and Schervish (2004) and Schmidt and O’Hagan (2003).

Examples of non-stationary semi-definite covariance functions include the class of
polynomial covariance functions

k(x,x′) = σ2
s(x

>Σx′ + c)a (3.39)

where c ≥ 0, a ∈ N is referred to as the degree, and Σ is a positive definite matrix. For
a = 1 the class of polynomial covariance functions includes the linear covariance function
k(x,x′) = x>Σx′ + c as a special case. The linear covariance function is of theoretical
interest because a degenerate Gaussian process with linear covariance function puts a
prior on linear functions. Therefore, Bayesian linear models can be recovered as a special
case of Gaussian process models.

Figure 3.5 shows some covariance functions and sample paths from the correspond-
ing Gaussian processes. The top row shows the Matérn covariance function (3.34) as a
function of τ for different values of ν. Although the covariance functions appear rela-
tively similar, the corresponding sample paths show different characteristics. Note the
relation between the peakedness (differentiability) at τ = 0 and the roughness of the
sample paths. The middle row compares the exponential (3.35), the squared exponen-
tial (3.36), and the rational quadratic (3.38) covariance functions. For all stationary
covariance functions we observe that especially the behaviour for small values of τ is
important for the characteristics of the sample paths. The lower row illustrates the effect

31

3. Gaussian Process Models

0 0.5 1 1.5 2 2.5 3
0

1

τ

c(
τ)

ν = 1/2
ν = 3/2
ν = 7/2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

x

f(
x)

ν = 1/2
ν = 3/2
ν = 7/2

(a) (b)

0 0.5 1 1.5 2 2.5 3
0

1

τ

c(
τ)

Exponential
Squared Exponential
Rational Quadratic

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

x

f(
x)

Exponential
Squared Exponential
Rational Quadratic

(c) (d)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

x

f(
x)

l = 1/100
l = 1/10
l = 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

x

f(
x)

(e) (f)

Figure 3.5.: Panel (a) shows the Matérn covariance (3.34) as a function of τ for different
values of ν and (b) shows sample paths from the corresponding zero mean Gaussian
processes. Panel (c) shows the exponential (3.35), the squared exponential (3.36)
and the rational quadratic (3.38) and (d) shows sample paths from corresponding
zero-mean Gaussian processes. Panel (e) shows three samples paths of a zero mean
Gaussian process with squared exponential covariance function for three different
values of the length-scale parameter. Panel (f) shows sample paths from a Gaussian
process with linear covariance function (3.39).

32

3.4. Alternative Interpretations of Gaussian Process Priors

of the length scale parameter ` exemplified for a squared exponential covariance function
(3.37). Intuitively, the characteristic length scale ` controls at which distance function
values become approximately independent. As an effect, the smaller the characteristic
length scale the faster the sample paths can vary.

Figure 3.5(f) shows sample paths of a degenerate Gaussian process with a linear
covariance function. This illustrates that the classical linear model can be seen as
a particular case of Gaussian process models. In Bayesian linear models the latent
function is assumed to be of the form f(x) = w>x and classically a Gaussian prior
N (w|0,Σw) is used, see for example Box and Tiao (1973). This specifies a prior over
linear functions where E[f(x)] = 0 and cov(f(x), f(x′)) = x>Σwx′, equivalent to a
degernate zero-mean Gaussian process with covariance function k(x,x′) = x>Σwx′.

3.4. Alternative Interpretations of Gaussian Process Priors

Above we introduced a class of models in which a Gaussian processes is used as a
prior over a latent function. We have shown that using a GP corresponds to certain
prior beliefs about the latent function, which are expressed by means of the mean and
covariance function. However, the Gaussian process prior can also be understood and
motivated differently than described above. Two alternative interpretations will be
presented briefly in this section. In what is known as the weight-space view, Gaussian
processes models are interpreted as Bayesian generalised linear models in a fixed set of
basis functions. Furthermore, a Gaussian process prior can be obtained as the limit of
an artificial neural network prior as the number of hidden units goes to infinity.

3.4.1. The Weight Space View & Kernel Machines

Assume a function f(x) that comes in the form of a weighted sum of basis functions:

f(x) =
N∑

i=1

wiφi(x) = w>φ(x) (3.40)

where φ(x) = [φ1(x), . . . , φN (x)]> collects the values of the N basis functions at x. If
we use a multivariate normal prior N (w|0,Σw) on the weights, we implicitly specify a
prior over functions, since for each realisation of w sampled from the prior, there is a
corresponding function f . Given this form of prior, f(x) for any given x is a random
variable which is distributed according to a normal distribution. Since the mean of w
is zero also the expectation of f(x) is zero. The function values corresponding to any
two inputs x and x′ are jointly Gaussian with covariance (function):

cov(f(x), f(x′)) = φ(x)> E[ww>]φ(x′) = φ(x)>Σwφ(x′) = k(x,x′) . (3.41)

Therefore, the joint distribution of m ≤ N function values f = [f(x1), . . . , f(xm)]>

is multivariate normal with zero mean and a covariance matrix given element-wise by
eq. (3.41). Note that this only holds if the resulting covariance matrix is non-singular,

33

3. Gaussian Process Models

which will not be the case if m > N , or if the φ(xi) are linearly dependent. In this
case f will follow a degenerate normal distribution (3.22). For finite N this defines a
degenerate zero-mean Gaussian process and in the limit of N →∞ the Gaussian process
becomes proper.

This interpretation is known as the weight-space view of Gaussian processes while
the description used in previous sections has been named the function-space view by
Williams (1999). Based on the weight-space view it can be argued that a GP prior is
equivalent to assuming a linear model on a set of basis functions with a Gaussian prior
on the weights. If a covariance function can be written in the form of eq. (3.41) such
that φ is of finite dimensionality N , eq. (3.40) constitutes a parametric model which
is equivalent to the corresponding degenerate Gaussian process prior. As an example
consider the linear covariance function k(x,x′) = x>x′ which corresponds to φ(x) = x
and Σw = I, see again Figure 3.5(f).

The weight-space view is closely related to the geometric perspective taken in the
non-Bayesian kernel methods. In these methods the kernel function is interpreted as an
inner product k(x,x′) = 〈φ(x),φ(x′)〉F where φ : X → F is a mapping into a so called
feature space. This interpretation is based on a theorem by Mercer (1909), which states
that a positive definite kernel function k(x,x′) can be written in terms of its orthogonal
eigenfunctions ψi and corresponding eigenvalues λi as

k(x,x′) =
N∑

i=1

λ2
i ψi(x)ψi(x′) = 〈φ(x),φ(x′)〉F , (3.42)

such that φ(x) = [λ1ψ1(x), . . . , λNψN (x)]>, see Schölkopf and Smola (2002, ch. 2.2)
for details. For certain kernel functions the mapping φ can also be written explicitly,
e.g. for polynomial kernels (3.39). The basic idea in kernel methods is to reformulate
algorithms such that the data only appear in terms of inner products. The linear dot
products are then substituted by kernel function evaluations, which are interpreted as
dot products of the non-linearly mapped data in some (potentially high dimensional)
feature space F .

Note that the covariance (3.41) can be interpreted as a special case of the right hand
side of eq. (3.42). Therefore, using the weight space perspective, Gaussian process mod-
els can be interpreted as Bayesian (generalised) linear models in a kernel feature space
F with a multivariate normal prior on the weights w. Williams (1999) for instance
has shown that the conjugate Gaussian process regression model, as described in Sec-
tion 3.2, is recovered when implementing Bayesian inference about the weights w in
the basis function representation (3.40). In later chapters only the function-space view
will be used, which—from the author’s point of view—is the more elegant and practical
perspective for Gaussian process models since it avoids the explicit representation of
weights w.

3.4.2. Infinite Neural Networks

Neal (1996, ch. 2) describes how a Gaussian process can be obtained as a limit of an

34

3.4. Alternative Interpretations of Gaussian Process Priors

x1 x2 · · · xn

1 h(· ,w1) · · ·
h(· ,wN)

f(x)

b
v1 vN

.

Output layer

Hidden layer

Input layer

Figure 3.6.: Illustration of an feed-foreward neural network (3.43) with one hidden layer.

artificial neural network with a certain form of priors on the network weights. A one
hidden-layer feed-forward neural-network can be written as

f(x) = b+
N∑

i=1

vi h(x,wi) (3.43)

whereN is the number of hidden units, b is a bias term, h(·, ·) denotes a bounded transfer
function, also referred to as the activation function, and v and wi are parameters, see
Figure 3.6 for an illustration. Under certain conditions Hornik et al. (1989) have shown
that neural networks of this form are universal approximators, i.e. they are capable of
representing any continuous function, as the number of hidden units N tends to infinity.

Again, by defining prior distributions on b, v, and the wi we implicitly define a prior
over functions. Let N (b|0, σ2

b) and N (v|0, σ2
vI) be the prior distributions on b and the

elements of v respectively. Using this kind of prior the expectation of f(x) is zero

E[f(x)] = E[b] +
N∑

i=1

E[vi] E[h(x,wi)] = 0 , (3.44)

because the expectations of b and vi are zero and the parameters are independent under
the prior. For the variance of f(x) one obtains

E[f(x)2] = E[b2] +
N∑

i=1

E[v2
i] E[h(x,wi)2] = σ2

b +Nσ2
v E[h(x,w)2] , (3.45)

were we have used that all N transfer functions and the prior distributions of all wi are
identical. The expectation E[h(x,w)2] is finite since h was assumed to be bounded.

Following Neal (1996, ch. 2) we now let the number of hidden units N go to infinity
and simultaneously let the prior variance of the hidden-to-output weights vi scale as σ2

v =
ω2N−1. Given the assumed prior structure the output f(x) of the neural network (3.43)
is a sum of N +1 independent and identically distributed (i.i.d.) random variables with

35

3. Gaussian Process Models

zero mean and finite variance. In the limit of N → ∞ the central limit theorem states
that f(x) becomes normally distributed with zero mean and variance σ2

b +ω2 E[h(x,w)2],
see for example Schervish (1997, Theorem B.97). Note that we assumed a particular
form of prior on b and v, but the derivation also holds for any other prior with zero
mean, finite second moments and independence between parameters.

We now look at the joint distribution of function values f(x) and f(x′). For finite N
the covariance of function values at x and x′ is

cov(f(x), f(x′)) = E[b2] +
N∑

i=1

E[v2
i] E[h(x,wi)h(x′,wi)] (3.46)

= σ2
b +Nσ2

v E[h(x,w)h(x′,w)] = σ2
b +Nσ2

vk(x,x
′)

where we have set k(x,x′) = E[h(x,w)h(x′,w)]. Using a multivariate form of the
central limit theorem, see for example Schervish (1997, Theorem B.99), an analogous
argumentation to the above can be made for the joint distribution of f(x) and f(x′) in
the limit as N →∞. In this limit we obtain that the joint distribution of any collection
of function values becomes multivariate normal with zero mean and covariance:

cov(f(x), f(x′)) = σ2
b + ω2 E[h(x,w)h(x′,w)] = σ2

b + ω2k(x,x′) . (3.47)

Therefore the neural network prior converges to a Gaussian process in the limit of
an infinite number of hidden units. Williams (1998) derives the covariance functions
corresponding to a sigmoidal and a Gaussian transfer function h.

In the finite case, working with (large) neural networks comes with certain practical
difficulties (Hastie et al., 2001, ch. 11.5). For example, it is unclear how to choose an op-
timal network architecture, which includes the question of the optimal number of hidden
units. Another problem is that of local minima and over-fitting in conventional back-
propagation maximum likelihood estimation (Bishop, 1995, ch. 4), or multi-modalities
in a Bayesian analysis due to symmetries in the architecture. However, by using a Gaus-
sian process—an infinite neural network—prior these problems can often be avoided. In
particular, in the conjugate regression model Bayesian inference over f can be done
analytically, as shown in Section 3.2.

One could also argue that using a Gaussian processes makes the assumptions about
the latent function more transparent and intelligible than a prior over weights in a
large neural network, especially in higher dimensional problems when inspecting samples
from the prior becomes impractical. In this sense, choosing or designing a covariance
function is often easier than specifying priors over network weights such that certain
prior beliefs about f are represented. Note that the GP approach also comes with
certain disadvantages and limitations, especially when it comes to computational costs
of handling large data sets which typically scale as O(m3) in time and O(m2) in memory,
where m refers to the number of data points.

36

3.5. Bibliographical Remarks

3.5. Bibliographical Remarks

Regression models based on Gaussian processes have been developed in different appli-
cation contexts in parallel. In spatial statistics, regression with Gaussian processes is
known as kriging, named after a South African mining engineer Krige (1951), see for
example Cressie (1993) or Stein (1999). A Bayesian description as a non-parametric
prior over functions is given by O’Hagan (1978). The noise free model as described
in Section 3.1 was used by Sacks et al. (1989) for inference about functions f(x) that
are computationally expensive to evaluate. Mardia and Marshall (1984) described an
equivalent method to maximum likelihood type II parameter estimation for Gaussian
process regression, see also Handcock and Stein (1993). The relation between the pos-
terior mean function and spline techniques has been described by Kimeldorf and Wahba
(1970). An empirical comparison between spline models and kriging can be found in
Laslett (1994). The degenerate normal distribution can be found in Mardia et al. (1979,
p. 41–43).

Neal (1996, ch. 2) described how Gaussian processes can be interpreted as a neural
network prior in the limit of an infinite hidden layer. Williams and Rasmussen (1996)
introduced Gaussian process regression to the machine learning community. Rasmussen
(1996) presented a comparative study of the predictive performance of GP regression
(with normal noise) and other non-linear regression techniques, e.g. neural networks. A
highly recommendable introduction to Gaussian process models and a summary of GP
related developments in the field of machine learning can be found in Rasmussen and
Williams (2006). Short introductions are also given by Williams (1999) and MacKay
(1998, 2003, ch. 45).

Descriptions of frequentist non-parametric techniques can be found for instance in
Härdle et al. (2004), Efromovich (1999), and Györfi et al. (2002) to mention only three.
Note that the construction of Gaussian process models is similar to generalised linear
models as described by McCullagh and Nelder (1989), but without making the assump-
tion that the latent function is linear.

The presentation of general properties of Gaussian processes and covariance functions
is based on the reviews by Abrahamsen (1997), Rasmussen and Williams (2006, ch. 4),
and the relevant chapters in Yaglom (1962), Adler (1981), and Stein (1999). The class of
covariance functions coincides with the positive semi-definite kernel functions. This class
of functions has been studied extensively in the mathematics literature, see for example
Schoenberg (1938), Aronszajn (1950), and Saitoh (1988). Positive semi-definite kernel
functions gave its name to kernel methods in machine learning, see e.g. Schölkopf and
Smola (2002), Genton (2001), or Herbrich (2002).

37

4. Approximate Bayesian Inference in
Gaussian Process Models

Far better an approximate answer to the right question, which is often vague,
than the exact answer to the wrong question, which can always be made
precise. — Tukey (1962)

The practising Bayesian is well advised to become friends with as many
numerical analysts as possible. — Berger (1985)

The previous chapter described the procedure of Bayesian inference about the latent
function in Gaussian process models. Unfortunately the necessary calculations are an-
alytically intractable for all but the conjugate model with normal noise described in
Section 3.2. For all other models the posterior (3.4), the predictive distribution (3.5),
and the evidence (3.17) cannot be computed analytically, so techniques for approxi-
mate inference have to be used. Furthermore, for none of the Gaussian process models
Bayesian inference about the likelihood parameters θ and hyper-parameters ψ can be
done in closed form.

The basic ingredients of a Gaussian process model are a sampling distribution, i.e. a
likelihood, p(y|f(x),θ) relating the latent function value to an observable quantity y and
a Gaussian process prior on f with covariance function k(x,x′). For the sake of simplicity
we again assume that the prior mean function is zero m(x) = 0, see Section 3.2.2 for a
discussion. Let lnL(f) = ln p(y|f ,θ) denote the joint log likelihood of f

lnL(f) =
m∑

i=1

ln p(yi|fi,θ) (4.1)

which factorises since the observations are independent given f . The posterior is pro-
portional to the product of likelihood and prior, but the normalisation constant, i.e. the
evidence, cannot be computed analytically. The posterior density can be evaluated up
to this normalisation constant and let

lnQ(f |D,θ,ψ) = ln (p(y|f ,θ)N (f |0,K)) (4.2a)
= lnL(f)− 1

2 ln |K| − 1
2 f
>K−1f − m

2 ln(2π) (4.2b)

denote the log unnormalised posterior density function. Below we always assume that
the likelihood is differentiable w.r.t. fi and θ and that the covariance function is differ-
entiable w.r.t. ψ, such that the derivatives of lnQ with respect to all these quantities
can be computed.

39

4. Approximate Bayesian Inference

For Gaussian process models approximations are either based on a Gaussian approx-
imation to the posterior

p(f |D,θ,ψ) ≈ q(f |D,θ,ψ) = N (f |m,A) (4.3)

or involve Markov chain Monte Carlo (MCMC) sampling. Note that throughout we use
p to denote exact quantities and q for approximations.

A key insight is that a Gaussian approximation to the posterior over f also implies an
approximation of the posterior process f |D by a Gaussian process. This is in analogy to
the regression model with normal noise in which the posterior over f is a multivariate
normal distribution and f |D is a Gaussian process. By substituting the approximate
Gaussian posterior (4.3) into eq. (3.5) and using identity (B.19) gives the approximate
posterior predictive distribution:

p(f∗|D,θ,ψ,X∗) ≈
∫
p(f∗|f ,X,X∗,ψ)N (f |m,A) df (4.4a)

= N (f∗|K>
∗ K−1m,K∗∗ −K>

∗ (K−1 −K−1AK−1)K∗) (4.4b)

which is again a multivariate normal distribution. Since this holds for all possible sets
of test inputs X∗ this defines a Gaussian process with mean and covariance function

m∗(x) = k(x)>K−1 m (4.5a)
k∗(x,x′) = k(x,x′)− k(x)>(K−1 −K−1AK−1)k(x′) (4.5b)

where k(x) = [k(x1,x), . . . , k(xm,x)]> is a vector of prior covariances between x and
the training inputs X, compare to eqs. (3.12).

Several approaches to find the mean m and covariance A of the posterior approxima-
tion (4.3) have been proposed in the literature. In the following Laplace’s method (Sec-
tion 4.1) and Expectation Propagation (Section 4.2) will be described. Both methods
also give an approximation of the evidence so that approximate ML-II hyper-parameter
estimation can be implemented.

A different approach to approximate Bayesian inference can be implemented using
MCMC sampling techniques. In MCMC methods the posterior is not approximated
by another distribution, but samples are generated from the posterior, in particular
the joint posterior of f , θ, and ψ. Markov chain Monte Carlo techniques for Gaussian
process models will be described in Section 4.3.

4.1. Laplace’s Method

Laplace’s method can be used to find a Gaussian approximation N (f |m,A) to the
posterior p(f |D,θ,ψ) over latent function values for fixed θ and ψ. The approximation
is found by a second order Taylor expansion:

lnQ(f |D,θ,ψ) ≈ lnQ(m)− 1
2(m− f)>A−1(m− f) (4.6)

40

4.1. Laplace’s Method

around the (largest) mode of the posterior:

m = argmax
f∈Rm

lnQ(f |D,θ,ψ) , (4.7)

which is the MAP estimate of f . The mode is unique if lnL is concave, i.e. if the
likelihood p(y|f(x),θ) is log-concave in the value of the latent function f(x). If this
condition is not satisfied, the posterior can be multimodal and so an approximation
by a unimodal multivariate normal distribution can be inappropriate. However, if the
posterior distribution has a single dominant mode, Laplace’s approximation can still
be used in the hope that approximating this mode gives a reasonable representation
of the main posterior mass. Another potential disadvantage is the locality of Laplace’s
method since the whole approximation is determined by local properties of the posterior
at f = m.

Assume for the moment that the posterior is unimodal and let:

∇f lnQ = ∇f lnL −K−1f (4.8a)
∇∇f lnQ = ∇∇f lnL −K−1 (4.8b)

denote the gradient and the Hessian of the unnormalised log posterior density w.r.t. f .
The mode of the posterior (4.7) can be found, e.g., using Newton’s method, iterating:

f (t+1) ← f t − (∇∇f lnQ|f t)−1∇f lnQ|f t , (4.9)

which usually converges rapidly to m. Note that if the posterior is not unimodal the
Hessian might be indefinite and in this case it is more convenient to use a conjugate
gradient method to find a local mode. The posterior covariance matrix:

A = − (∇∇f lnQ|m)−1 = (K−1 + W)−1 (4.10)

is approximated by the curvature at the mode, equal to the negative inverse Hessian,
where W = −∇∇f lnL|m denotes a diagonal matrix of second derivatives of the log
likelihood. Note that if the likelihood is log-concave its second derivative must be
negative such that the Hessian is guaranteed to be positive semi-definite.

Laplace’s method also facilitates an approximation to the evidence:

p(D|θ,ψ) =
∫
p(y|f ,θ) p(f |X,ψ) df =

∫
exp(lnQ(f)) df . (4.11)

Substituting lnQ(f) by its Taylor approximation (4.6) the integral becomes Gaussian
and can therefore be solved using identity (B.24). The resulting approximate log evi-
dence is:

ln p(D|θ,ψ) ≈ ln q(D|θ,ψ) = lnQ(m) + 1
2 ln |A|+ m

2 ln(2π) (4.12)

and the derivatives of this quantity w.r.t. θ and ψ can be derived and used for opti-
misation, e.g. using conjugate gradient methods, in an ML-II type setting. Finding the

41

4. Approximate Bayesian Inference

gradients is complicated by an indirect dependency of the mode m on θ and ψ, see
Appendix A.2 for a derivation and details about numerically stable implementations.

4.2. Expectation Propagation

Minka (2001a) proposed the Expectation Propagation (EP) method which can be ap-
plied to Gaussian process models. EP finds a Gaussian approximation q(f |D,θ,ψ) =
N (f |m,A) to the posterior p(f |D,θ,ψ) by moment matching of approximate marginal
distributions. The starting point is to impose a factorising structure:

p(f |D,θ,ψ) =
N (f |0,K)
p(D|θ,ψ)

m∏
i=1

p(yi|fi,θ) (4.13a)

≈ N (f |0,K)
q(D|θ,ψ)

m∏
i=1

t(fi, µi, σ
2
i , Zi) = q(f |D,θ,ψ) (4.13b)

resembling the structure of the prior times the factorising likelihood (3.4) where the
terms:

t(fi, µi, σ
2
i , Zi) = ZiN (fi|µi, σ

2
i) (4.14)

are called site functions. Note that the site functions are approximating the likelihood
(which normalises over observations yi), with a Gaussian in fi, so we cannot expect
the site functions to normalise, hence the explicit term Zi is necessary. For notational
convenience we hide the site parameters µi, σ2

i , and Zi and write t(fi) instead. From
eq. (4.14) the Gaussian approximation q(f |D,θ,ψ) as given by eq. (4.13b) has mean
and covariance:

m = AΣ−1µ and A = (K−1 + Σ−1)−1, (4.15)

where µ = [µ1, . . . , µm]> and Σ = diag(σ2
1, . . . , σ

2
m) collect site function parameters.

The EP algorithm iteratively visits each site function in turn, and adjusts the site
parameters to match moments of an approximation to the marginal distributions of the
posterior. The kth non-central moment of fi under the posterior is:

E[fk
i] =

1
p(D|θ,ψ)

∫
fk

i p(y|f ,θ) p(f |X,ψ) df (4.16a)

=
1

p(D|θ,ψ)

∫
fk

i p(yi|fi,θ) p\i(fi) dfi (4.16b)

where:
p\i(fi) =

∫ ∏
j 6=i

p(yj |fj ,θ) p(f |X,ψ) df \i (4.17)

is called the cavity distribution and f \i denotes f without fi. The marginalisation
required to compute the exact cavity distribution is intractable. The key step in the
EP algorithm is to replace the intractable exact cavity distribution with a tractable

42

4.2. Expectation Propagation

approximation based on the site functions:

p\i(fi) ≈ q\i(fi) =
∫ ∏

j 6=i

t(fj) p(f |X,ψ) df \i. (4.18)

The approximate cavity function comes in the form of an unnormalised Gaussian q\i(fi) ∝
N (fi|µ\i, σ2

\i). Multiplying both sides by t(fi):

q\i(fi) t(fi) =
∫
N (f |0,K)

m∏
j=1

t(fj) df \i ∝ N (fi|mi, Aii), (4.19)

and using basic Gaussian identities we obtain the parameters:

σ2
\i =

(
(Aii)−1 − σ−2

i

)−1 and µ\i = σ2
\i

(
mi

Aii
− µi

σ2
i

)
, (4.20)

of the approximate cavity function.

The core idea of EP is to adjust the site parameters µi, σ2
i , and Zi such that the ap-

proximate posterior marginal using the exact likelihood approximates as well as possible
the posterior marginal based on the site function:

q\i(fi) p(yi|fi,θ) ≈ q\i(fi) t(fi, µi, σ
2
i , Zi) (4.21)

by matching the zeroth, first, and second moments.

Matching of moments minimises Kullback-Leibler divergence KL(p || q), as defined in
Appendix B.2.3.6. Although the classical KL argument only applies to the first and
second (and higher) moments for normalised distributions, it seems natural also to
match zeroth moments.

Therefore, the zeroth, first, and second non-central moment

mk =
∫
fk

i p(yi|fi,θ) q\i(fi) dfi =
∫
fk

i p(yi|fi,θ)N (fi|µ\i, σ2
\i) dfi (4.22)

of the left hand side of eq. (4.21) have to be computed for k = 0, 1, 2. This can be
implemented using numerical integration techniques, but if the moments can be com-
puted analytically this is usually computationally advantageous. In this case a generic
approach is to use the moment generating function

M(λ) =
∫

exp(λfi) p(yi|fi,θ)N (fi|µ\i, σ2
\i) dfi (4.23)

and differentiating with respect to λ gives the non-central moments:

m0 = M(0), m1 =
1
m0

∂M

∂λ

∣∣∣∣
λ=0

, and m2 =
1
m0

∂2M

∂λ2

∣∣∣∣
λ=0

, (4.24)

43

4. Approximate Bayesian Inference

see for example DeGroot and Schervish (2002, ch. 4.4). By equating these moments with
the right hand side of eq. (4.21) the update equations for the site parameters become:

σ2
i =

(
(m2 −m2

1)
−1 − σ−2

\i

)−1
(4.25a)

µi = σ2
i

(
m1(σ−2

\i + σ−2
i)− µ\i

σ2
\i

)
(4.25b)

Zi = m0

√
2π(σ2

\i + σ2
i) exp

(
(µi − µ\i)2

2(σ2
\i + σ2

i)

)
. (4.25c)

Once the values of µi and σ2
i are updated, the effect on m and A has to be computed

according to eq. (4.15), which in practice is done using rank-one updates of A.

The EP algorithm iteratively updates the site parameters until convergence. A formal
proof of convergence does not exist but for log-concave likelihood functions, i.e. when
the posterior is concave, EP usually converges reliably.

Finally the evidence can be approximated from the normalisation of eq. (4.13b):

ln p(D|θ,ψ) ≈ ln q(D|θ,ψ) = ln
∫
N (f |0,K)

m∏
i=1

t(fi) df

=
m∑

i=1

lnZi − 1
2 ln |K + Σ| − 1

2µ
>(K + Σ)−1µ− m

2 ln(2π) (4.26)

and its derivatives can be computed in order to implement ML-II parameter estimation
of θ and ψ. The derivatives and further details on implementing EP for Gaussian
process models can be found in Appendix A.3, where also a pseudo-code description is
given.

Note that if the moments (4.24) cannot be computed analytically, numerical approxi-
mations can be used instead, e.g. Gauss-Hermite quadrature (Golub and Welsch, 1969).
In this case the derivatives of the form ∂ lnZi/∂θj cannot be computed analytically and
so the approximation (4.26) cannot be used in gradient based ML-II estimation. In-
stead, a variational approximation to the evidence can be used, which will be described
in Section 6.3.4.

In practical applications the EP approximation shows to work and converge better
for some likelihood models than for others. Unimodality of the posterior—log concavity
of the likelihood—seems to be an important factor. Note that in the update equations
(4.25) of the site function parameters we ignored the possibility that updates lead to
an invalid, non-positive definite covariance matrix A. In those cases one can either
skip the update in the hope that a later update will be valid or dampen (soften) the
update using a “learning rate” parameter small enough to obtain a positive definite A.
However, in general it is not guaranteed that EP converges and often it is a challenging
task to implement EP for a particular likelihood avoiding numerical difficulties.

44

4.3. Markov Chain Monte Carlo

4.3. Markov Chain Monte Carlo

A Gaussian approximation as made by Laplace’s method or Expectation Propagation
is computationally convenient but its accuracy is limited and difficult to ascertain. In
contrast Markov chain Monte Carlo (MCMC) methods are known to be asymptotically
exact in the limit of computationally costly simulations. In the remainder of this section
we describe MCMC methods for approximate Bayesian inference in Gaussian process
models. Note that the two problems of approximating inference over parameters and
approximating the value of the evidence have to be handled separately, of which the
latter will be considered in Section 4.3.5 only.

Recall the general notation introduced in Chapter 2 by which p(D|φ) represents a
generic model and φ are continuous and unconstrained parameters. Some data D have
been observed and the objective is to compute the posterior according to Bayes’ rule

p(φ|D) ∝ p(D|φ) p(φ) = Q(φ|D) . (4.27)

A common situation is that we can evaluate the likelihood p(D|φ) and the prior p(φ) for
every possible value of φ but we cannot compute or work with the posterior analytically.
Either the normalising constant of Q, i.e. the evidence, cannot be computed or the
resulting posterior is of non-standard form and we would be unable to work with it
analytically, e.g. for prediction. Markov chain Monte Carlo methods sidestep these
problems by generating samples from the posterior p(φ|D) using only evaluations of the
unnormalised posterior Q(φ|D).

The conception is that statistics of the samples can be used to approximate properties
of the posterior distribution. In particular, the samples can be used to make Monte Carlo
approximations of integrals of the form∫

h(φ) p(φ|D) dφ ≈ 1
T

T∑
i=1

h(φi) (4.28)

where h is any given function and φ1, . . . ,φT are samples drawn from the posterior
p(φ|D). However, generating samples from a particular distributions is often non-trivial,
especially if p(φ|D) is of non-standard form, which is typically the case for posterior
distributions in Bayesian analysis.

Note that the techniques described in the following are by no means restricted to
generating samples of posterior distributions p(φ|D), but could be used to generate
samples of any distribution p(φ). However, since in later chapters we will be mostly
interested in generating samples from posterior distributions we stick to this particular
case.

4.3.1. Metropolis-Hastings Sampling

A general approach is to simulate a Markov chain in the parameter space φ0,φ1,φ2, . . .
such that the stationary distribution of the chain is identical to the posterior distri-
bution. This means that φN becomes an approximately independent sample of the

45

4. Approximate Bayesian Inference

posterior as the length of the sequence t = 1, . . . , N increases. In practice the chain
is generated for a finite length N and the state φN is interpreted as samples of the
posterior. The procedure is continued until enough samples are obtained such that the
characteristics of the posterior distribution can be well approximated by the generated
samples.

One basic technique to construct such a Markov chain is the Metropolis-Hastings
method which describes how the consecutive state is found. Assume φt is the current
state of the chain. In order to find a valid consecutive state φt+1 a candidate value φ̃ is
sampled from a proposal distribution p(φ̃|φt). The proposal is accepted φt+1 ← φ̃ as
the consecutive state of the Markov chain if

Q(φ̃|D)
Q(φt|D)

p(φt|φ̃)
p(φ̃|φt)

≥ u (4.29)

where u is a sample from a uniform distribution on the unit interval. Otherwise the
proposal is rejected and φt+1 ← φt. The first term in the Metropolis-Hastings rule
(4.29) captures whether the proposed state φ̃ yields a higher posterior density. The
second term captures how reversible the transition is. Since φt+1 only depends on φt

and not on the history of previous states, the resulting chain is a Markov chain.
The computational efficiency of an MCMC sampling method depends on how the con-

secutive state is proposed. While simulating the Markov chain, states that occur close-by
in the chain are dependent through the proposal distribution. In the simplest form of
Metropolis-Hastings sampling, local perturbations of the current state are proposed by
sampling from a parametric proposal distribution, for example a Gaussian distribution
p(φ̃|φt) = N (φ̃|φt,Σ) centred at the current state. If the proposal φ̃ is very close to
the current state, it is likely to be accepted because the first term in eq. (4.29) will
be close to one. But the Markov chain will take a long time to traverse the support
of the posterior distribution and successive states will be highly dependent. If φ̃ is far
away from the current state φt, then the proposal is likely to be rejected because it will
fall into a low density region if the proposal distribution differs significantly from the
posterior distribution.

A good proposal distribution should propose states such that the chain moves quickly
in the support of the posterior distribution while the acceptance rate is high enough to
ensure computational efficiency. The degree to which the chain moves quickly in the
support of the posterior distribution is referred to as mixing of the chain. The better the
chain mixes the faster the state becomes approximately independent of previous states.

In principle, Bayesian inference can be approximated arbitrarily exact using MCMC as
the number of independent samples from the posterior increases. However, for practical
data analysis several issues have to be addressed in order to generate as many approxi-
mately independent samples as possible in reasonable time. The most important aspect
is to design a sampling scheme, i.e. a proposal mechanism and parameterisation, such
that the chains mix as well as possible.

The starting value φ0 should itself be in the posterior support, e.g. the MAP estimate
of φ or a sample of the prior. The chain will move from the initial state to the typical set

46

4.3. Markov Chain Monte Carlo

of the posterior distribution. The initial phase of the simulation before the chain reaches
the equilibrium distribution is called the burn-in period. The better the chain mixes
and the better the initial state is similar to a posterior sample, the shorter the burn-in
period will be. Once the chain has converged to the equilibrium distribution states
can be picked from the chain at a certain rate, at which the states are approximately
independent samples of the posterior. The length of the simulation depends on the
necessary number of samples which is equivalent to the precision of the approximation
(4.28). In practice, the available computational resources often limit the number of
samples in an MCMC approximation. Instead of simulating one long chain, it can be
advantageous to run several shorter chains, especially if the posterior is multimodal and
a single chain is unlikely to traverse between modes. In general, MCMC sampling can
be parallelised this way, although each individual simulation will have its own burn-in
period.

Using MCMC techniques in practice requires some experience in designing a sampling
scheme and inspecting the resulting chains in order to assess convergence. The aim is to
find a MCMC scheme such that the ratio of the number of approximately independent
samples and the corresponding computational effort is maximised. Usually several pa-
rameters, e.g. of the proposal mechanism, can be tuned in order to improve the mixing
behaviour. This is usually done by inspecting trace plots which show the elements of φt

over t = 1, . . . , T , see Figure 4.1 on page 54 for an example. The rate at which the states
of the chain become approximately independent samples can be estimated by inspecting
the empirical auto-correlation structure of samples. A formal proof of convergence of
the chain to the posterior distribution is almost impossible to obtain in the general case.
In practice the assessment of convergence is often based on visual inspection of trace
plots and empirical auto-correlation coefficients, see the discussion of Kass et al. (1998).

4.3.2. Gibbs Sampling

Markov chain Monte Carlo sampling for a particular posterior distribution can often
be implemented using various alternative proposal techniques. Instead of updating the
whole state φ it is often more convenient to divide φ into c components φ = [φ1, . . . ,φc]
and update them successively. This decomposition is for instance used in Gibbs sampling
where the components of the state are updated element-wise using proposals from the
full conditional distributions p(φi|φ\i

t ,D) for i = 1, . . . , c in turn. Hence, samples have to
be generated from the conditional distributions φi

t+1 ∼ p(φi|φ\i
t ,D) where φ\i denotes

all parameters but the ith component. Gibbs sampling is a parameter free instance of
the Metropolis-Hastings method in which the proposed states are always accepted. This
can be shown easily by substituting the Gibbs proposal distribution into the Metropolis-
Hastings rule (4.29):

p(φi
t+1,φ

\i
t |D)

p(φt|D)
p(φt|φi

t+1,φ
\i
t ,D)

p(φi
t+1,φ

\i
t |φt,D)

= 1 . (4.30)

47

4. Approximate Bayesian Inference

A practical problem with Gibbs sampling is that dependencies between parameters are
not taken into account. Components that are strongly correlated cannot be updated in
a coordinated way, see MacKay (2003, ch. 29.5) for an illustrative example. As an effect
the chain may take relatively long to explore the whole posterior support.

4.3.3. Importance Sampling

Importance sampling is another method to approximate the expectation of a function
h(φ) with respect to a probability distribution p(φ|D) as given by eq. (4.28), but avoids
sampling from p(φ|D) directly. The idea is to use samples of another distribution q(φ)
called the importance sampler, from which samples can be obtained more easily. Let
φ1, . . . ,φT denote T samples of q(φ). In order to use the samples from q in a Monte
Carlo approximation (4.28) one has to correct for not using samples from the correct
distribution p one wants to integrate over. This is done by using importance weights of
the form

wi = p(φi|D)/q(φi) (4.31)

which capture the relative importance of each sample. If q(φ) 6= 0 whenever p(φ|D) 6= 0,
the approximation ∫

h(φ) p(φ|D) dφ ≈
∑T

i=1wih(φi)∑T
i=1wi

(4.32)

will become exact in the limit as T → ∞. Note that importance sampling does not
require that the densities are normalised, since the normalisation constants of p(φ|D)
and q(φ) cancel in eq. (4.32), e.g. it can be used if we can evaluate the unnormalised
posterior p(D|φi)p(φi) only. For finite T the variance of the importance sampling esti-
mate (4.32) depends on the variance of the weights (4.31). The variance will be smaller
the more similar q is to p. For high dimensional p it is usually very difficult to find
a suitable importance sampler, especially if p is multimodal (MacKay, 2003, ch. 29).
Even if a suitable q distribution can be derived, importance sampling is sensible only
if it is (much) easier to sample from q than from p directly. For generating samples
of common types of distributions that could be used as importance sampler q see for
instance Devroye (1986) or Hörmann et al. (2004).

In the following section two Markov chain Monte Carlo techniques will be described
that are particularly suited for approximate inference in Gaussian process models. Two
aspects have to be addressed separately. The first is how to make predictions based on
samples from the posterior and the second is how to estimate the evidence.

4.3.4. Hybrid Monte Carlo

In the Metropolis-Hastings sampling scheme as described above the proposal distribu-
tion was fixed and could not adapt to local properties of the posterior distribution.
When derivatives of the unnormalised posterior Q with respect to φ can be computed,
these provide useful information about the direction in which regions of higher posterior
density can be found.

48

4.3. Markov Chain Monte Carlo

4.3.4.1. Hamiltonian Dynamics as a Proposal Mechanism

The Hybrid Monte Carlo method uses simulations in a fictitious physical system to gen-
erate proposal states in a Metropolis-Hastings sampler (Duane et al., 1987). The state
φ is interpreted as the location of particles with momentum q. New states are pro-
posed using a procedure that can be understood as a discrete simulation of Hamiltonian
dynamics.

The potential energy of φ is set to E(φ) = − lnQ(φ|D). The Hamiltonian of the
fictitious system is

H(φ,q) = − lnQ(φ|D) +K(q) (4.33)

where the kinetic energy is set to K(q) = ‖q‖2 /2. Instead of sampling the posterior
distribution of φ, one generates samples of the joint distribution:

p(φ,q) ∝ exp(−H(φ,q)) = p(φ|D) exp(−‖q‖2 /2) . (4.34)

Since the joint distribution factorises the marginal distribution of φ is identical to the
posterior p(φ|D). The key idea is that proposal states in a Metropolis-Hastings sampler
are obtained by discrete simulation of the Hamiltonian dynamics of the above system.
Surprisingly, the augmentation of the problem by introducing auxiliary variables q ef-
fectively eases sampling of the φ. Starting from state φt the initial momentum q is
drawn from a multivariate normal distribution. Then the system is simulated using the
Hamiltonian equations

φ̇ =
∂H(φ,q)

∂q
= q (4.35a)

q̇ = −∂H(φ,q)
∂φ

=
∂ lnQ(φ|D)

∂φ
(4.35b)

where the gradient of the unnormalised posterior equals the change in momentum. The
simulation is discretised using the leapfrog method, which ensures reversibility of the
proposal (Liu, 2001, ch. 9.3). The discretisation requires to set additional parameters,
namely the number of steps l (so called leapfrog steps) and the step sizes ε, see Appendix
A.4.1.

Assume the system is simulated for a certain time and its current state (φ̃, q̃) is
proposed as the new state of the Markov chain. The core idea is that while the system
is simulated—ideally—the total energy H remains constant, such that p(φ̃, q̃) equals
p(φt,qt) and the proposed state should be always accepted according to the Metropolis-
Hastings rule (4.29). But due to the discretisation an error is introduced such that the
simulation can only be considered a proposal mechanism and the acceptance has to
be decided on using the Metropolis-Hastings rule. The product of step sizes ε and
the number of steps l gives the maximum difference between the starting point of the
simulation and its end point. The further away the proposal can be, the better the chain
will mix. The acceptance rate is mainly influenced by the step size ε since the larger
the step size the larger the approximation errors in the simulation. See Appendix A.4.1
for a pseudo-code description of the algorithm.

49

4. Approximate Bayesian Inference

4.3.4.2. Hybrid Monte Carlo for Gaussian Process Models

In the remainder of this section it will be described how Hybrid Monte Carlo sampling
can be used for approximate inference in Gaussian process models, see also Neal (1998a).
Therefore we switch back to the Gaussian process notation introduced in Chapter 3,
such that f refers to a vector of latent function values, θ denotes additional parameters
of the likelihood, and ψ are hyper-parameters, i.e. parameters of the covariance function
of the GP prior. In the previous sections approximate inference was implemented over
the conditional posterior of latent function values by approximating

p(f |θ,ψ,D) ∝ p(y|f ,θ) p(f |X,ψ) (4.36)

by a multivariate normal distribution. Instead of making inference over the likelihood
parameters θ and the hyper-parameters ψ, they were set to their ML-II point estimates.
However, when using MCMC methods it is more natural to approximate inference jointly
over all unknown parameters, see eq. (3.13), which is also favourable from a principled
Bayesian perspective. Assuming differentiability of the likelihood and the prior distri-
butions, samples can be generated using Hybrid Monte Carlo from the joint posterior

p(f ,θ,ψ|D, ξ) ∝ p(y|f ,θ) p(f |X,ψ) p(ψ|ξ) p(θ|ξ) = Q(f ,θ,ψ|D, ξ) (4.37)

of function values, likelihood parameters, and hyper-parameters. In the former notation
this corresponds to φ = [f ,θ,ψ]. Since inference is also performed over θ and ψ, prior
distributions p(θ|ξ) and p(ψ|ξ) must be defined, potentially introducing hyper-hyper-
parameters ξ. The conjugate regression model with normal noise is again a special
case since inference over f can be handled analytically and therefore only sampling
p(θ,ψ|D, ξ) is necessary.

In the general case, for implementing Hybrid Monte Carlo sampling the value of the
unnormalised log posterior

lnQ(f ,θ,ψ|D, ξ) = ln p(y|f ,θ)− 1
2 ln |K| − 1

2 f
>K−1f + ln p(θ|ξ) + ln p(ψ|ξ) (4.38)

and its derivatives have to be computed. It is advisable to update [f ,θ] and ψ separately,
because of different computational costs: evaluating the unnormalised log posterior
lnQ for different values of ψ requires expensive re-computations of the inverse and
determinant of the covariance matrix K. In contrast, evaluating lnQ for different values
of f and θ is computationally inexpensive, since only the log likelihood, the quadratic
form and the log priors need to be re-computed.

Even if the covariance function is non-degenerate, inverting K is often numerically
badly conditioned. A common remedy is to add jitter, a small multiple of the identity
matrix, to the covariance matrix before inverting it. Furthermore, to ease the sampling
task by reducing correlations between the elements of f , a linear transformation into
new variables g = L−1f can be helpful, such that g is white w.r.t. K, where K = LL>

is the Cholesky decomposition of the covariance matrix. Since the re-parameterisation
is linear, no Jacobian correction is necessary.

50

4.3. Markov Chain Monte Carlo

Assume T samples of the joint posterior (4.37) have been generated. The samples
can be used to make predictions analogously to eq. (3.5) but now averaging over all
unknown parameters:

p(f∗|D,X∗, ξ) =
∫
p(f∗|f ,θ,ψ,X∗,D) p(f ,θ,ψ|D, ξ) df dθ dψ (4.39a)

≈ 1
T

T∑
i=1

p(f∗|fi,θi,ψi,X∗,D) (4.39b)

where each of the p(f∗|fi,θi,ψi,X∗,D) is a multivariate normal distribution of the form
given by eq. (3.7), so the predictive distribution is approximated by a mixture of Gaus-
sians.

4.3.5. Annealed Importance Sampling

As described in the previous section MCMC methods can be used to implement approx-
imate inference over all parameters in a Gaussian process model. However, as described
in Section 2.3, for model comparison the evidence is the quantity of central importance.
This section describes an MCMC technique which can be used to estimate the evidence

p(D|θ,ψ) =
∫
p(y|f ,θ) p(f |X,ψ) df (4.40)

in Gaussian process models conditioned on fixed values of θ and ψ. Note that in
principle one could apply the technique also to integrate over those parameters but in
later chapters only the conditional setting will be considered.

The evidence (4.40) comes in the form of an m dimensional integral where m is
the number of data points. Good MCMC estimates of normalisation constants are
notoriously difficult to obtain, being equivalent to the free-energy estimation problem
in physics (Gelman and Meng, 1998).

An apparently simple approach to obtain an estimate of the evidence (4.40) would be
to make a Monte Carlo approximation (4.28) by sampling f values from the prior and to
average the corresponding values of the likelihood p(y|f ,θ). But the chance that a prior
sample agrees with the likelihood would be very small, especially in high dimensional
problems. Most samples would have extremely small likelihood and only occasionally a
sample would “hit” the likelihood and yield a large value. The resulting estimate would
have large variance and is therefore too unreliable in practice. Another approach would
be to use importance sampling, for example with an EP or Laplace approximation of
the posterior as the importance sampler. However, typically the resulting importance
weights (4.31) show large variances as well, such that more sophisticated techniques
have to be used in order to obtain reliable estimates (MacKay, 2003, ch. 29).

In the following it will be described how Annealed Importance Sampling (AIS) as
proposed by Neal (2001) can be used to obtain reliable estimates of the log evidence.
Instead of solving the integral (4.40) directly, a sequence of easier quantities is computed.

51

4. Approximate Bayesian Inference

We define:
Zt =

∫
p(y|f ,θ)τ(t)p(f |X,ψ) df (4.41)

where τ(t) is an inverse temperature schedule such that τ(0) = 0 and τ(T) = 1. The
trick is to rewrite the evidence as a fraction and expanding it:

Z =
ZT

Z0
=

ZT

ZT−1

ZT−1

ZT−2
· · · Z1

Z0
, (4.42)

where Z0 = 1 since the prior normalises properly. Each term in eq. (4.42) is approxi-
mated by importance sampling with

q(f |D,θ,ψ, τ(t)) ∝ p(y|f ,θ)τ(t)p(f |X,ψ) (4.43)

as the importance sampler. This results in

Zt

Zt−1
=

∫
p(y|f ,θ)τ(t)p(f |X,ψ)
p(y|f ,θ)τ(t−1)p(f |X,ψ)

q(f |D,θ,ψ, τ(t− 1)) df (4.44a)

≈ 1
S

S∑
i=1

p(y|fi,θ)τ(t)−τ(t−1) (4.44b)

where fi are samples of q(f |D,θ,ψ, τ(t)) generated by Hybrid Monte Carlo sampling.
This leaves the choice of how many samples S and how many temperatures T to use.
Using a single sample S = 1 and a large number of temperatures, the log of each ratio
is:

ln
(

Zt

Zt−1

)
≈
(
τ(t)− τ(t− 1)

)
ln p(y|ft,θ) (4.45)

where ft is the only sample at temperature τ(t). Combining eq. (4.42) with eq. (4.45)
we obtain the final estimate:

lnZ ≈
T∑

t=1

ln
(

Zt

Zt−1

)
. (4.46)

What has been described so far is known as Thermodynamic Integration, which gives
an unbiased estimate in the limit of slow temperature changes. In Annealed Importance
Sampling the bias caused by finite temperature schedules is removed by combining mul-
tiple estimates Z1, . . . ZR obtained by R independent annealing runs by their geometric
mean

ln p(D|θ,ψ) ≈ ln

(
1
R

R∑
i=1

Zi

)
, (4.47)

see Neal (2001) and Appendix A.4.2 for further details.

52

4.3. Markov Chain Monte Carlo

4.3.6. An Example For Gaussian Process Regression

This section presents examples for Hybrid Monte Carlo and Annealed Importance Sam-
pling used for approximate Bayesian inference in Gaussian process models. Since one
of our interests will be to probe the accuracy of AIS, the example will be based on the
conjugate Gaussian process regression model with normal noise for which the evidence
can be computed analytically. For the experiments the Boston Housing data set is used
which has been introduced by Harrison and Rubinfeld (1978) and has become a popular
reference problem in non-linear regression. The data will be analysed in more detail in
Section 5.6.2. The task is to predict the median price of houses in different parts of the
Boston metropolitan area based on n = 13 input variables. The data set consists of
506 observations which we normalise to zero mean and unit variance. Then the data is
randomly split into a training set of m = 400 observations, leaving the remaining 106
observations for testing.

In all experiments an anisotropic squared exponential covariance function (3.37) is
used with individual length scale parameters `i for each input dimension i = 1, . . . , n
respectively. In total the model has 14 hyper-parameters ψ = [`, σ2

s] and the noise
variance θ = σ2

n is the only likelihood parameter.

4.3.6.1. Hybrid Monte Carlo

Since inference over f can be done analytically we only need to approximate inference
over the noise variance and the hyper-parameters. All parameters are positive and for
simplicity we use wide, independent Gaussian priors on the log value of the variables.
We use Hybrid Monte Carlo to generate samples of the posterior distribution

p(θ,ψ|D) ∝ p(D|θ,ψ) p(θ) p(ψ) (4.48)

where the log of p(D|θ,ψ) is given by eq. (3.18c). The parameters of the leap-frog
discretisation were set by visual inspection of chains in some initial simulations.

Figure 4.1 shows trace plots of chains of length T = 500 generated by HMC using
l = 100 leapfrog steps each of size ε = 0.08. The burn-in period appears not to be longer
than 20 samples. The acceptance rate was approximately 90% and the samples show
relatively low auto-correlation. While sampling, some of the length scales show to be
better determined by the data than others, i.e. the posterior uncertainty in the value
of the respective length scale parameters differs. Note that the larger the characteristic
length scale the less influential the corresponding input dimension will be in a prediction.
The posterior uncertainty in the signal variance σ2

s and the noise variance σ2
n show to

be relatively small.
As a side remark, note that compared to ML-II estimation of θ and ψ approximating

inference over these parameters using MCMC sampling usually improves the predictive
performance significantly. For the given example we discard the first 50 samples as
burn-in period and subsequently pick every 10th state as a posterior sample. Averaging
over the corresponding predictive distributions, we observe that the root mean square
error can be reduced by approximately 10% compared to using just the ML-II estimates.

53

4. Approximate Bayesian Inference

0 100 200 300 400 500

10
0

10
2

10
4

t

le
ng

th
 s

ca
le

 1

0 100 200 300 400 500

10
0

10
2

10
4

t

le
ng

th
 s

ca
le

 2

0 100 200 300 400 500

10
0

10
2

10
4

t

le
ng

th
 s

ca
le

 3

0 100 200 300 400 500

10
0

10
2

10
4

t

le
ng

th
 s

ca
le

 4

0 100 200 300 400 500

10
0

10
2

10
4

t

le
ng

th
 s

ca
le

 5

0 100 200 300 400 500

10
0

10
2

10
4

t

le
ng

th
 s

ca
le

 6

0 100 200 300 400 500

10
0

10
2

10
4

t

le
ng

th
 s

ca
le

 7

0 100 200 300 400 500

10
0

10
2

10
4

t

le
ng

th
 s

ca
le

 8

0 100 200 300 400 500

10
0

10
2

10
4

t
le

ng
th

 s
ca

le
 9

0 100 200 300 400 500

10
0

10
2

10
4

t

le
ng

th
 s

ca
le

 1
0

0 100 200 300 400 500

10
0

10
2

10
4

t

le
ng

th
 s

ca
le

 1
1

0 100 200 300 400 500

10
0

10
2

10
4

t

le
ng

th
 s

ca
le

 1
2

0 100 200 300 400 500

10
0

10
2

10
4

t

le
ng

th
 s

ca
le

 1
3

0 100 200 300 400 500
10

−2

10
0

10
2

10
4

t

si
gn

al
 v

ar
ia

nc
e

0 100 200 300 400 500
10

−2

10
−1

10
0

no
is

e
va

ria
nc

e

Figure 4.1.: Trace plots for Hybrid Monte Carlo sampling from p(θ,ψ|D) for Boston Housing
data set for t = 1, . . . , 500. For the 13 length scale parameters `, we observe that
the respective chains show different mean values and amplitudes. Note that the
larger the value the more the covariance between examples becomes independent of
the respective input dimension. The last two plots correspond to the signal variance
σ2

s (larger values) and the noise variance σ2
n (lower values). Usually, one would also

inspect the potential energy, which is not plotted here, but also does not indicate
any noticeable problems, e.g. trends or shifts.

54

4.3. Markov Chain Monte Carlo

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

t

ln
(Z

t/Z
t−

1)

0 1000 2000 3000 4000 5000 6000 7000 8000
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

t

cu
m

su
m

 ln
(Z

t/Z
t−

1)

(a) (b)

Figure 4.2.: Estimating the evidence using Annealed Importance Sampling. Panel (a) shows
the value of ln(Zt/Zt−1) over t for one run of Thermodynamic Integration. Panel
(b) shows the cumulative sums for all R = 4 runs. The horizontal line marks the
true analytic value.

However, finding ML-II estimates of θ and ψ is computationally faster by an order of
magnitude, taking only a few minutes compared to a few hours for MCMC sampling. In
the above experiment we simulated 500 samples using 100 leapfrog steps which sums to
50000 evaluations of the potential energy, i.e. the log of the right hand side of eq. (4.48),
and its gradients. Note that each evaluation requires to compute the log evidence which
involves a Cholesky decomposition of an [m×m] covariance matrix K, see Appendix A.1.
In contrast, ML-II parameter estimation using a conjugate gradient optimisation scheme
requires on the order of 200 evaluations of the log evidence (3.18c).

4.3.6.2. Annealed Importance Sampling

The purpose of the presented experiment is solely to demonstrate that AIS can be used
for estimating the evidence in Gaussian process models. In later chapters AIS will be
used to estimate the evidence when it cannot be computed analytically.

For the Boston Housing data described in the previous section, the ML-II estimates of
the likelihood parameters θ? and hyper-parameters ψ? where found by maximising the
log evidence (3.18c). The true value of the evidence conditioned on the ML-II estimates
is a m = 400 dimensional integral whose analytic solution is ln p(D|θ?,ψ?) = −141.55.

Four runs (R=4) of Thermodynamic Integration were simulated with a temperature
schedule τ(t) = (t/T)4 for t = 0, . . . , 8000. Figure 4.2(a) shows the values of ln(Zt/Zt−1)
as given by eq. (4.45) for one of the runs. Figure 4.2(b) shows the cumulative sums of
ln(Zt/Zt−1) over t for all four runs. The horizontal line marks the true value and the
endpoints of all four estimates are relatively close by. Combining the runs into an AIS
estimate of the log evidence yields a value of −142.23 which is off the true value by less
than one log unit.

55

4. Approximate Bayesian Inference

4.4. Bibliographical Remarks

Laplace’s approximation is a standard technique and is described in many introductory
texts on Bayesian analysis, e.g. Bernardo and Smith (1994, ch. 5.5.1) and MacKay (2003,
ch. 27). Williams (1998) proposed Laplace’s method for approximate inference in the
Gaussian process model for classification, which will be described in Chapter 6. It was
also used for ordinal regression by Chu and Ghahramani (2005).

Expectation Propagation as proposed by Minka (2001a,b) is an extension to online
moment matching methods, also known as assumed-density filtering (ADF), as described
for example by Lauritzen (1992). The approximations proposed by Opper and Winther
(2000) are equivalent to EP.

General references to Markov chain Monte Carlo methods with a focus on Bayesian
analysis are Neal (1993), Gilks et al. (1996), and Liu (2001). A recommendable intro-
duction is given by MacKay (1999b). The Metropolis-Hastings method is named after
the work of Metropolis et al. (1953) and Hastings (1970). Gibbs sampling is due to
Geman and Geman (1984). Hybrid Monte Carlo has been introduced by Duane et al.
(1987) and its use in the context of Gaussian process models was proposed by Neal
(1997, 1998a). MacKay (2003, ch. 30) proposes the name Hamiltonian Monte Carlo for
obvious reasons.

The problem of estimating the evidence using MCMC techniques is reviewed by Gel-
man and Meng (1998). Annealed Importance Sampling has been proposed by Neal
(2001) and it has been shown above that it can be used for approximating the evidence
in Gaussian process models. The analysis of convergence of Markov chains is addressed
by Gelman (1996) and Cowles and Carlin (1996). Several other important practical
issues have been described by Raftery and Lewis (1996), see also the round table dis-
cussion by Kass et al. (1998). For details on generating random samples of standard
distributions see for example Devroye (1986).

56

5. Robust Gaussian Process Regression

All models are wrong, but some are useful. — Box (1979)

To solve a real-world regression problem the analyst should carefully screen the data and
use all prior information at hand in order to choose an appropriate regression model.
However, in practice a discrepancy between the model and the data-generating process
seems unavoidable. Robust Bayesian methods can be understood as attempts to limit
undesired distractions and distortions that result from this mismatch.

5.1. Bayesian Perspective on Robustness

In the Bayesian framework the notion of robustness is associated with two different
aspects of stability. One aspect is the stability of the conclusions with respect to small
changes of the prior distribution. This desideratum is related to the practical problem
that the prior beliefs can only be formalised up to a limited accuracy. It is therefore
important that the conclusions are known to be insensitive to this source of inaccuracy.
Another kind of stability is desired with respect to inaccuracies of the sampling distri-
bution, relative to the true data-generating process, i.e. limiting the effects of model
mismatch. If observations occur that are highly implausible under the likelihood model,
these cannot be rejected and can become decisive in the analysis. Whenever surprising
data are observed, i.e. data that is highly unlikely to be generated from the model,
sensitivity of posterior inferences must be suspected (O’Hagan, 1994, ch. 7.19). Robust
models aim at limiting the influence of such unexpected observations and the effects of
model mismatch.

In frequentist methods, a robust statistic is a criterion (such as an estimator) that is
insensitive to large errors in small portions of the data (Huber, 1981). Box and Tiao
(1964, 1973, ch. 3.2) suggest the terms inference robustness and criterion robustness to
distinguish between the Bayesian and the frequentist notion. In the following we will
focus on inference robustness and describe several alternative sampling distributions of
errors in Gaussian process regression models.

In the context of regression analysis, robustness is associated with the notion of out-
liers, which refers to observations that deviate strongly from the regular structure. Often
the presence of such outliers is attributed to observational errors, e.g. data processing
errors or failures of measuring instruments, but it can also be an original feature of the
data-generating process. Another possible explanation of large errors could be that not
all relevant inputs are available or included in the model. Therefore, if an unconsidered
source of variation occasionally affects the target variable, the effect could be interpreted
as outliers, because the model cannot distinguish between random noise and systematic

57

5. Robust Gaussian Process Regression

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

x

f(
x)

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

x
f(

x)

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

x

f(
x)

(a) (b) (c)

Figure 5.1.: Illustration of the effect of a single outlier in Gaussian process regression models
depending on the noise assumption. The dashed line shows the sinc function f(x) =
sin(x)/x and the points mark noisy samples thereof. Panel (a) shows the posterior
process of a GP model with normal noise and ML-II estimated parameters. The
posterior process is represented by its mean (solid line) and ±2 standard deviations
(shaded area). Panel (b) shows that adding a single outlier (marked by a circle)
highly affects the ML-II estimation and the posterior process when the noise is
assumed to normal. As before, the mean function roughly interpolates the samples
while the uncertainty about the function is increased dramatically. This can be
explained as an effect of the inferred shorter length scale ` and larger signal variance
σ2

s . Note that this can be seen as an instance of over-fitting, i.e. random fluctuation
is interpreted as systematic variation. Panel (c) shows the posterior GP obtained
when the noise is modelled as a mixture of two normal distributions as will be
described in Section 5.3.

effects due to external dependencies. In this sense, outliers could be understood as an
indicator for model mismatch as well.

Decomposing the data-generating process into a systematic and a random component,
outliers occur when the random distortion can occasionally be very large. Box and Tiao
(1968) describe an outlier as being an observation which is suspected of being partially
or wholly irrelevant because it is not generated by the stochastic model assumed or its
error is so large that it is effectively uninformative about the systematic component.

As Jaynes (2003, ch. 21) phrases it: “One seeks data analysis methods that are
robust, which means insensitive to the exact sampling distribution of errors, as it is
often stated, insensitive to the model, or are, resistant, meaning that large errors in
small proportion of the data do not greatly affect the conclusions.” So a statistical model
can be called robust if it leads to conclusions which are insensitive to the occurrence of
outlier observations. Note that this implies that an observation can only be called an
outlier relative to a given model. Therefore, when referring to observations as outliers
below, the interpretation as outlier must be seen relative to a normal distribution.

58

5.2. Robust Gaussian Process Regression Models

5.2. Robust Gaussian Process Regression Models

The Bayesian approach to robust regression, i.e. handling outliers, results automatically
from the common statement that a model should be chosen so as to reflect all the
analyst’s beliefs and uncertainties. So a Bayesian regression model can be considered
robust if it explicitly accounts for the potential existence of outliers, i.e. extra-normal
variation. Therefore, unless the analyst has absolutely no doubt that a model accounts
for all possible observations—in other words, unless one is certain that there are no
outliers relative to that model—one should adjust the model to account explicitly for
the potential occurrence of outliers.

As described in Section 3.1 the Gaussian process regression model assumes a latent
function f(x) of which only noisy samples y = f(x) + ε can be observed. The error
ε is assumed to be independent and identically distributed according to a sampling
distribution p(ε|θ) which is usually a symmetric distribution with zero mean, i.e. E[ε] =
0.

In Section 3.2 it was described that the assumption of normal noise enables us to
compute the posterior process and the evidence in closed form. However, as illustrated
in Figure 5.1 when the noise is assumed to be normal, a single outlier can drastically
influence the posterior process and in particular the maximum likelihood II estimates
of parameters. As described in Section 2.3.2, ML-II estimation can be understood
intuitively as finding values of the likelihood parameters and the hyper-parameters of
the prior such that the observed data would have been as unsurprising as possible. If
the model and the data-generating process differ significantly, observations with outliers
(relative to the assumed model) will be very surprising and the outliers will be highly
influential on the ML-II estimates.

The classical justification for assuming normal noise is based on the central limit
theorem. The idea is that the errors are compounded of a very large number of random
additive perturbations originating from independent sources. However, in practical
data analysis this argument is often not appropriate. In fact, the precise distribution
of errors is usually unknown and a model mismatch almost certain. Nevertheless, by
using a likelihood that can explain a wider range of errors we can reduce the effects of
this mismatch, i.e. a more robust model.

To account for more extreme observations the sampling distribution of errors p(ε|θ)
has to be a more kurtotic distribution, i.e. a leptokurtic distribution with more proba-
bility mass in its tails relative to a normal (Box and Tiao, 1973, 3.1.1). In the following
several alternative noise models and respective techniques for approximate inference will
be discussed. The question which noise model is preferable from a conceptual point is
ill posed since the answer will always depend on the data set at hand, i.e. how well
the (noise) model matches the data-generating process. Instead, the focus will be to
compare the practicability of several alternative approximation schemes.

All noise models studied in the following can be represented as scale mixtures of
normal distributions as introduced by Andrews and Mallows (1974). These distributions

59

5. Robust Gaussian Process Regression

can be written as

p(y|f(x),θ) =
∫
N (y|f(x), σ2) pM (σ2|θ) dσ2 (5.1)

where pM (σ2|θ) will be referred to as the scale-mixture distribution. This class of distri-
butions contains mixtures of finitely many normal distributions with different individual
variances as a degenerate case (Section 5.3). The Student-t distribution can be obtained
as a mixture of infinitely many normal distributions when the scale-mixture distribu-
tion is chosen to be an inverse gamma distribution (Section 5.4). Using an exponential
distribution as the scale-mixture distribution gives the Laplace, or double exponential,
distribution (Section 5.5).

5.3. Mixture Noise Models

Bayesian regression models can be considered robust if the possible occurrence of outliers
is represented explicitly in the sampling distribution of errors. An intuitive approach
is to introduce separate noise models for regular and extreme observations respectively.
Jaynes (2003, ch. 21) calls it a “two-model model” being a mixture of a model which
accounts for the regular observations and a second model for explaining outliers. The
“two-model model” will be the line of thought in the remainder of this section although
also mixtures of more than two models are covered.

Let pr(yi|fi,θ) denote a noise model which describes our beliefs about regular ob-
servations, like the typical error of a measuring instrument. Furthermore, assume that
the potential occurrence of outliers cannot be denied. For these outliers we believe the
distribution of errors po(yi|fi,θ) to be different. If we use π to denote the fraction of
outlier observations, we can combine both models

p(yi|fi,θ) = (1− π) pr(yi|fi,θ) + π po(yi|fi,θ) (5.2)

and obtain a mixture likelihood, i.e. a “two-model model”. In the following we consider
the mixture of two normal distributions as proposed by Box and Tiao (1968). For regular
observations we assume a relatively small variance σ2

r compared to the variance σ2
o of

the outlier distribution. Thus the Gaussian mixture noise model is

p(yi|fi,θ) = (1− π)N (yi|fi, σ
2
r) + πN (yi|fi, σ

2
o) (5.3)

where θ = [π, σ2
r , σ

2
o] collects the likelihood parameters. Assuming pr to be a normal

Figure 5.2.: The
p.d.f. of a mixture
of two Gaussians.

distribution is a common and often plausible hypothesis. It seems more questionable to
explain the outliers by normal noise with relatively large variance. If we were certain
that this were the case, the Gaussian mixture noise model would be correct and we would
not call it robust. Generally, if the outlier-generating process was known, the notion
of robustness would vanish. But the notion of an outlier involves a large uncertainty
about their origin and distribution. Consequently, using a wide normal distribution for
po must be interpreted as a back-up model explaining observations which are highly

60

5.3. Mixture Noise Models

x

f(
x)

Figure 5.3.: Sampled functions from the posterior process of a GP regression model where
the noise is modelled as a mixture of two normal distributions (5.3). The data
(circles) have been designed in order to offer multiple alternative hypotheses to
explain the data. Accordingly, the model shows uncertainty about whether the
observations in the upper- and/or lower arc should be considered outliers. Therefore
several hypotheses are mixed which leads to multimodality in the conflicting region.
The samples have been generated using MCMC sampling as will be described in
Section 5.3.2.

unlikely to stem from pr.
We now turn towards the problem of Bayesian inference in the Gaussian process

regression model with mixture noise of the form given by equation (5.3). According to
eq. (3.4) the posterior distribution of latent function values f becomes

p(f |D,θ,ψ) =
N (f |0,K)
p(D|θ,ψ)

m∏
i=1

[
(1− π)N (yi|fi, σ

2
r) + πN (yi|fi, σ

2
o)
]

(5.4)

where the evidence is given by the integral

p(D|θ,ψ) =
∫
N (f |0,K)

m∏
i=1

[
(1− π)N (yi|fi, σ

2
r) + πN (yi|fi, σ

2
o)
]
df . (5.5)

In principle this integral is analytically solvable by rewriting it in terms of Gaussian
integrals. However, this requires a change in the order of summation and the product,
which would lead to a combinatorial explosion in the number of terms and the resulting
posterior comes in the form of a mixture of 2m normal distributions. Therefore, for
problems of moderate size the huge number of components makes it computationally
intractable and we have to resort to approximations.

Since the sampling distributions of errors (5.3) is not log-concave, the posterior (5.4)
will in general be a multimodal distribution. Likewise, the posterior process for the
mixture noise model is not a Gaussian process anymore but becomes a mixture of
Gaussian processes which can have multi-modal marginal distributions p(f∗|D,x∗) as
illustrated in Figure 5.3.

The multimodality can be understood intuitively by considering that each observation

61

5. Robust Gaussian Process Regression

0 5
0

5

f
i

f j

0 5
0

5

f
i

f j

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

f

Likelihood p(y|f)
Prior p(f)
Posterior p(f|y)
EP p(f|y)

(a) (b) (c)

Figure 5.4.: Two dimensional illustration of the posterior for the GP regression model where
the sampling distribution of errors is a mixture of normal distributions (5.3). Panel
(a) shows contours of the prior (dashed), which is a bivariate normal distribution
centred at zero, and the likelihood (solid) which is of the form (5.3) centred on the
observation at y = [5, 5]>. Panel (b) shows contours of the resulting posterior dis-
tribution which shows four modes of different magnitude. Each mode corresponds
to an alternative assignment of the 2 observations to be outliers or regular obser-
vations. Panel (c) shows a one dimensional illustration and the EP approximation
to the posterior.

can either be an outlier or a regular observation. Hence, for m observations there
are 2m different possible interpretations of the data, each representing an alternative
assignment of the data into regular observations and outliers. Each such hypothesis
can have a certain posterior probability which can give rise to a mode in the posterior
distribution. An illustrative example is given in Figure 5.4.

The properties of the posterior make it difficult to approximate Bayesian inference.
A Laplace approximation as described in Section 4.1 can only approximate one mode
and practically it can not be guaranteed to find the mode of largest magnitude. Never-
theless, in experiments presented below, the Laplace approximation has shown to work
relatively well, if only a few but extreme outliers are present. Note that in this case
the posterior on f will in fact be very similar to a multivariate normal such that the
assumptions of the Laplace’s method are approximately met if the dominant mode is
found. Furthermore, as will be shown in Section 5.3.1 Expectation Propagation can be
implemented to approximate the posterior, although this comes with certain technical
difficulties. Section 5.3.2 describes an MCMC implementation which exploits the (finite)
scale-mixture representation.

5.3.1. Expectation Propagation Approximation

Expectation Propagation was described in its general form in Section 4.2. This section
gives the necessary details for implementing EP for Gaussian process regression with
mixture noise models. In general, let the sampling distribution of observations be a

62

5.3. Mixture Noise Models

finite mixture

p(y|f(x),θ) =
N∑

n=1

πn pn(y|f(x),θn) (5.6)

of N distributions with weights πn ≥ 0 such that π1 + . . .+ πN = 1. For implementing
Expectation Propagation moments (4.22) of the form

mk =
∫
fk

i p(y|fi,θ)N (fi|µ\i, σ2
\i) df (5.7)

have to be computed for k = 0, 1, 2 in order to update the site parameters using equations
(4.25). The moment generating function of the mixture (5.6) can be written as

M(λ) =
N∑

n=1

πn

∫
exp(fiλ) pn(y|fi,θn)N (fi|µ\i, σ2

\i) df (5.8)

such that the non-central moments of the mixture can be computed by combining the
non-central moments of its components. Let mn

k be the kth non-central moment of the
nth component then

m0 =
N∑

n=1

πnm
n
0 (5.9a)

m1 =
1
m0

N∑
n=1

πnm
n
0m

n
1 (5.9b)

m2 =
1
m0

N∑
n=1

πnm
n
0m

n
2 (5.9c)

gives the moments of the mixture. The moments of the individual components can
either be computed using numerical integration techniques, but if p(y|f(x),θ) is, e.g., a
normal or a Laplace distribution these can be computed analytically as will be described
below.

For the normal distribution p(y|f(x),θ) = N (y|f(x), σ2
n) the non-central moments

(5.7) are:

m0 =
1

√
2π
√
σ2

n + σ2
\i

exp

(
− (y − µ\i)2

2(σ2
n + σ2

\i)

)
(5.10a)

m1 =
µ\iσ

2
n + yσ2

\i

(σ2
n + σ2

\i)
(5.10b)

m2 =
y2σ4

\i + σ2
n
2(µ2

\i + σ2
\i) + σ2

n(2yµ\iσ
2
\i + σ4

\i)
(σ2

n + σ2
\i)2

. (5.10c)

We now have everything necessary to implement EP for Gaussian process regres-

63

5. Robust Gaussian Process Regression

x

f(
x)

Figure 5.5.: The EP approximation for the Gaussian process regression model with normal
mixture noise. The solid line describes the mean function of the approximate
posterior process and the gray area covers ±2 standard deviations. The data was
introduced in Figure 5.3 to illustrate the multimodality of the posterior. In the
EP approximation the posterior predictive distribution is unimodal and the mean
function remains relatively constant over the region where alternative explanations
of the data are possible. Note that a Gaussian process model with a single normal
noise component interprets the data as pure noise without systematic structure,
when the parameters are estimated using ML-II.

sion with normal mixture noise (5.3). The moments of the individual components are
computed using eqs. (5.10) and combined using eqs. (5.9). See Figure 5.4(c) for a one
dimensional illustration. Unfortunately, for the GP regression model with a mixture
likelihood of two normal components, EP does not converge reliably for all values of the
parameters θ and ψ. For every update of the site parameters (4.25) it has to be verified
that the resulting covariance matrix A remains positive definite. In case an update gives
rise to an invalid covariance matrix, the update has to be damped, e.g. by making the
largest feasible update. The search for a feasible update of the parameters of a single
site can involve several rank-one updates of the Cholesky decomposition of A, which
leads to a significant increase in computational costs, see also Kuss et al. (2005b).

5.3.2. Markov Chain Monte Carlo Sampling

An alternative way to approximate inference is Markov chain Monte Carlo sampling as
described in Section 4.3. Sampling multimodal posterior distributions can be difficult if
the modes are widely separated such that the chain is extremely unlikely to switch be-
tween the modes. In this situation the mixing behaviour of the chain has to be analysed
carefully and it is advisable to run several chains with different initial states. Compar-
ing the samples generated in independent simulations, it can be inspected whether the
chains have mixed properly or whether chains stay in different modes.

The mixture of two normal distributions suggests an alternative sampling scheme
by representing the noise variances σ2

1, . . . , σ
2
m of each likelihood term explicitly. For

the mixture of two normal noise components we introduce binary variables ci ∈ {0, 1}
which indicate whether an observation is attributed to the outlier component. Given

64

5.3. Mixture Noise Models

the indicator variables the error on the ith observation is distributed according to

εi|ci, σ2
r , σ

2
o ∼ (1− ci)N (εi|0, σ2

r) + ciN (εi|0, σ2
o) (5.11)

where ci indicates whether εi is attributed to the noise component with (larger) variance
σ2

o . This gives rise to the joint likelihood

p(y|f ,θ) =
m∏

i=1

[
(1− ci)N (yi|fi, σ

2
r) + ciN (yi|fi, σ

2
o)
]

= N (y|f ,Σ) (5.12a)

where
Σii = (1− ci)σ2

r + ciσ
2
o (5.12b)

is a diagonal matrix containing the individual variances. Note that the likelihood pa-
rameters θ = [c, σ2

r , σ
2
o] now also include the indicator variables.

We must specify prior distributions for the parameters of interest—namely for the
parameters of the likelihood p(θ|ξ) and for the parameters of the GP prior p(ψ|ξ),
where we use ξ to collect parameters of both priors. The ci are Bernoulli variables
p(ci|π) = Bernoulli(π) where π is the fraction of samples attributed to noise variance σ2

o .
On π we put a beta prior p(π|α, β) = Beta(α, β) introducing two more hyper-parameters.
The choice of p(ψ|ξ) depends on the particular form of covariance function that is used.
For example for positive parameters like length scales ` and signal variances σ2

s using
log-normal or gamma distributions are common choices. However, when comparing to
other methods of approximate inference below, flat (constant, degenerate) priors will be
used in order to minimise the influence of a particular choice.

The introduction of c is advantageous as it allows us to integrate over f |c analyti-
cally such that the function values do not need to be represented explicitly. Instead of
sampling f values we sample from

p(θ,ψ|D, ξ) ∝ p(y|X,θ,ψ) p(θ|ξ) p(ψ|ξ) (5.13a)

=
[∫
N (y|f ,Σ) N (f |0,K) df

]
p(θ|ξ) p(ψ|ξ) (5.13b)

= N (y|0,K + Σ) p(θ|ξ) p(ψ|ξ) (5.13c)

where f is integrated out using eq. (B.24) and θ includes the indicator variables c,
compare to eq. (4.48).

To generate samples, a Markov chain has to be constructed whose state [θ,ψ]t repre-
sents all the uncertain parameters we want to make inference about. The Markov chain
is constructed according to the Metropolis-Hastings procedure and we employ different
proposal techniques to exploit the structure of the model efficiently. The implemented
sampling scheme iterates between Gibbs updates for the indicator variables c and π and
Hybrid Monte Carlo updates for ψ, σ2

r , and σ2
o .

First, however, we have to describe how the state is initialised. We initialise π by a
sample from its prior distribution Beta(α, β) and consecutively sample c element-wise
from a Bernoulli(π). If proper prior distributions for ψ, σ2

r , and σ2
o are defined, initial

65

5. Robust Gaussian Process Regression

values can be sampled from them. Alternatively we can use ML-II estimates for σ2
r and

ψ from a model with simple normal noise. In this case, the initial value of σ2
o is simply

set to 2σ2
r afterwards. In the following we describe how we update the elements of the

state—the value of the parameters—in the Markov chain.
Gibbs sampling as described in Section 4.3.2 is a common MCMC technique in

which the state is updated component-wise by sampling from the respective condi-
tional distributions of the components. The method is appealing since the proposed
updates are always accepted and no further parameters are introduced. We can use
this method to sample the fraction of outliers π and indicator variables c. We have
to sample from the conditional distribution of ci given the values of all other variables
p(ci|c\i, σ2

r , σ
2
o ,ψ,D, ξ), where c\i denotes all elements of c except for the ith. We can

decompose this probability

p(ci|c\i,D, σ2
r , σ

2
o ,ψ, ξ) =

p(D|c, σ2
r , σ

2
o ,ψ, ξ) p(c|ξ)

p(D|σ2
r , σ

2
o ,ψ, ξ) p(c\i|D, σ2

r , σ
2
o ,ψ, ξ)

(5.14)

and observe that p(ci|c\i,D, σ2
r , σ

2
o ,ψ, ξ) ∝ p(D|θ,ψ, ξ) p(c|ξ). Since ci is a binary

indicator it is Bernoulli distributed. The probability of success π̃i of this Bernoulli
distribution can be computed by comparing p(D|θ,ψ, ξ) p(c|ξ) evaluated for ci = 1 and
ci = 0. Terms independent of ci cancel and we find π̃i by looking at the ratio

π̃i =
π p(D|ci = 1, c\i, σ2

r , σ
2
o ,ψ)

(1− π) p(D|ci = 0, c\i, σ2
r , σ

2
o ,ψ) + π p(D|ci = 1, c\i, σ2

r , σ
2
o ,ψ)

(5.15)

which can be interpreted as the relative plausibility of the ith sample being an outlier
given the current values of all other variables. Technically equation (5.15) compares the
evidence evaluated for both values of ci weighted by the current value of π.

The log evidence ln p(D|θ,ψ) can be computed according to

ln p(D|θ,ψ) = −m
2 ln(2π)− 1

2 ln |K + Σ| − 1
2y

>(K + Σ)−1y (5.16)

where the noise term Σ, as given by eq. (5.12b), reflects the currently assumed noise on
the observations (compare to (3.18c)). Hence, we can update ci easily by a sample from
Bernoulli(π̃i). Note that it would be computationally very costly to re-compute the log
determinant and the inverse in eq. (5.16) for every proposal. Instead this step can be
implemented using rank-one updates of the Cholesky decomposition of K + Σ.

A drawback of Gibbs sampling is that variables cannot change in a coordinated way.
Take for example the data shown in Figure 5.3. In this case the posterior will have
two modes of large magnitudes corresponding to whether the upper or lower points are
considered outliers. A switch between the modes would require a coordinated change of
all the ci corresponding to the observations in the conflicting region. It is unclear how
such a coordinated change of indicators could be proposed. However, we use ordered
overrelaxation as described by Neal (2001) to improve the mixing behaviour.

The basic idea of ordered overrelaxation is to improve the mixing behaviour of Gibbs
sampling schemes by encouraging larger changes in the variable based on order statistics

66

5.3. Mixture Noise Models

of the conditional distribution. Here we only describe the special case of sampling from
a Bernoulli distribution ci ∼ Bernoulli(π̃i). Let cti denote the current value of ci. Using
ordered overrelaxation the distribution of the consecutive value ct+1

i depends on value
of cti:

p(ct+1
i |π̃i, c

t
i = 0) = Bernoulli

(⌈
π̃i

1−π̃i

⌉)
(5.17a)

p(ct+1
i |π̃i, c

t
i = 1) = Bernoulli

(
1−

⌈
1−π̃i

π̃i

⌉)
(5.17b)

where d · e denotes min(1, ·). The intuition is that the variable is encouraged to change
its value as often as possible while leaving its distribution invariant, see Neal (2001) for
details.

The next step in the sampling scheme is a Gibbs update of the mixing proportion
π by a sample from p(π|c, α, β) = Beta(α + |c|, β +m − |c|) where |c| is the sum over
elements of c. This is a standard result, since the beta distribution is conjugate to the
binomial, see for example O’Hagan (1994, ch. 1).

For updating the part of the state corresponding to ψ, σ2
r , and σ2

o we use Hybrid
Monte Carlo where the potential energy is equivalent to eq. (5.16) plus the value of
the respective log priors. Algorithm 1 provides a schematic overview of the sampling
scheme.

Algorithm 1 MCMC sampling scheme for GP regression with mixture noise
Given: D, α, β, ξ, and number and size of leapfrog steps for Hybrid MCMC
Initialisation:
Sample π from Beta(α, β)
Sample c element wise from Bernoulli(π)
Find initial values for ψ, σ2

r and σ2
o (e.g. by maximising the evidence of a model with

simple Gaussian noise and setting σ2
o ← 2σ2

r)
t← 0
for each step of the Markov chain do
t← t+ 1
1. Gibbs updates (note that you can also do several sweeps over c)
for all ci do

Compute π̃i by (5.15)
Update ci by a sample from Bernoulli(π̃i) using ordered overrelaxation

end for
Sample π from Beta(α+ |c|, β +N − |c|)
2. Hybrid MC updates
Update ψ, σ2

r , and σ2
o using Hybrid MCMC

Save state [π,θ,ψ]t
end for

Having t = 1, . . . , T samples of the form [θ,ψ]t the predictive distribution can be

67

5. Robust Gaussian Process Regression

approximated by a mixture of T multivariate normal distributions:

p(f∗|D,X∗, ξ) ≈
1
T

T∑
t=1

∫
p(f∗|f ,X,X∗,ψt) p(f |D,θt,ψt) df

=
1
T

T∑
t=1

N (f∗|K>
∗ (K + Σ)−1y,K∗∗ −K>

∗ (K + Σ)−1K∗) (5.18)

where all covariance matrices (K, K∗, and K∗∗) depend on ψt and the noise covariance
matrix Σ depends on θt (compare to (3.11)).

5.4. Regression with Student-t Noise

The most common approach to robust probabilistic regression is to assume that the
sampling distribution of errors follows a Student-t distribution, because of its heavy
tails. The probability density function of the Student-t distribution is given by

T (x|ν, µ, σ) =
Γ((ν + 1)/2)
Γ(ν/2)

√
νπσ

(
1 +

1
ν

(
x− µ
σ

)2
)−(ν+1)/2

(5.19)

where ν is referred to as the degrees of freedom, µ is the location, and σ > 0 is a
scale parameter. In the limit of ν → ∞ the Student-t distribution approaches the
normal distribution while for ν = 1 the Cauchy distribution is recovered as a particular
case. The Student-t distribution is a scale-mixture (5.1) of infinitely many normal

Figure 5.6.:
P.d.f. of the
Student-t distri-
bution.

distributions

T (x|2α, µ,
√
β/α) =

∫ ∞

0
N (x|µ, σ2) InvΓ(σ2|α, β) dσ2 , (5.20)

where the scale-mixture distribution pM (σ2
n|θ) is an inverse gamma distribution

InvΓ(x|α, β) =
βα

Γ(α)
x−(1+α) exp

(
−β
x

)
, (5.21)

with shape α and inverse scale β. Note that if σ2 varies according to an inverse gamma
distribution the precision σ−2 varies according to a gamma distribution.

The probability density function of the Student-t distribution is not log-concave.
Therefore the posterior p(f |D,θ,ψ) in the Gaussian process regression model with
Student-t noise can be multimodal. An EP approximation could be implemented but

Figure 5.7.: Log
of Student-t p.d.f.

the necessary moments must be approximated using numerical integration techniques.
Furthermore, it could be expected that the EP approximation would show the same
problems as for the mixture models described above, due to the non-concavity of the
log likelihood. Nevertheless, a variational approximation can be made, as will be de-
scribed in the following section. Section 5.4.2 provides a description of a Markov chain

68

5.4. Regression with Student-t Noise

Monte Carlo sampling scheme, again exploiting the scale-mixture representation.

5.4.1. A Variational Approximation

Tipping and Lawrence (2003, 2005) describe a variational approximation for regression
with Student-t noise in the Relevance Vector Machine framework (Tipping, 2001). A
similar approximation can also be applied to find a Gaussian approximation

p(f |D,θ,ψ) ≈ q(f |D,θ,ψ) = N (f |m,A) (5.22)

to the posterior in the Gaussian process regression model with Student-t noise. The
approach is based on the property that the Student-t distribution can be written as a
scale-mixture (5.20) by representing the individual variances σ2 = [σ2

1, . . . , σ
2
m]> explic-

itly. The distribution of y given f and the individual variances is

p(y|f ,σ2) =
m∏

i=1

N (yi|fi, σ
2
i) = N (y|f ,Σ) (5.23)

where Σ = diag(σ2) and using a joint inverse gamma prior on the variances

pM (σ2|θ) =
m∏

i=1

InvΓ(σ2
i |α, β) (5.24)

the Student-t model is obtained. The joint posterior of latent function values and
variances is

p(f ,σ2|D,θ,ψ) =
p(y|f ,σ2) p(σ2|θ)N (f |0,K)

p(y|X,θ,ψ)
(5.25)

which cannot be computed in closed form since the integral in the denominator, i.e. the
evidence

p(y|X,θ,ψ) =
∫
p(y|f ,σ2) p(σ2|θ)N (f |0,K) df dσ2 , (5.26)

is analytically intractable. The idea of the variational approximation is to minimise the
Kullback-Leibler divergence KL(q || p) (as defined in Appendix B.2.3.6) where q is the
approximation and p the true posterior distribution (5.25), see for instance Beal (2003).
Simultaneously we are interested in finding ML-II estimates of θ and ψ. Combining
these two desiderata leads to an expectation maximisation (EM) type algorithm as
proposed by Dempster et al. (1977).

The approximation q to the posterior is chosen to be of a factorising form

p(f ,σ2|D,θ,ψ) ≈ q(f)q(σ2) (5.27a)

69

5. Robust Gaussian Process Regression

where the approximate posterior distributions of f and σ2:

q(f) = N (f |m,A) (5.27b)

q(σ2) =
m∏

i=1

InvΓ(σ2
i |α̃i, β̃i) (5.27c)

are of the same parametric family as their respective prior distributions.

The variational approximation is found by maximising the evidence (5.26) using the
EM algorithm while f and σ2 are treated as latent variables. The evidence cannot be
evaluated in closed form, but Jensen’s inequality can be used to obtain a lower bound
V:

p(y|X,θ,ψ) =
∫
p(y,σ2, f |X,θ,ψ) df dσ2

≥ V(q(f), q(σ2),θ,ψ) =
∫
q(f) q(σ2) ln

p(y,σ2, f |X,θ,ψ)
q(f) q(σ2)

df dσ2 (5.28)

which can be computed explicitly. Expanding the variational lower bound leads to a
sum of five expectations:

V = E
q(f)q(σ2)

ln p(y|f ,σ2) + E
q(σ2)

ln p(σ2|θ) + E
q(f)

lnN (f |0,K) +H(q(f)) +H(q(σ2)) (5.29)

where H denotes the entropy of a distribution, see Appendix B.2.3.5. The EM algorithm
iterates between updates of the approximate distributions and the parameter values. In
the so called E-step, the expectation step, V is maximised in q(f) and q(σ2) for fixed
values of θ and ψ. Each E-step is followed by an M-step, a maximisation step, in
which new values of θ and ψ are found by maximising V for fixed q(f) and q(σ2). The
algorithm iterates E-steps and M-steps until convergence of V which is guaranteed not
to decrease in each iteration. In the following sections the E-step and the M-step will
be described in detail and Algorithm 2 (on page 75) will summarise the computations.

5.4.1.1. The E-step

In the E-step the q distributions are estimated as to maximise V for given θ and ψ which
is equivalent to minimising the Kullback-Leibler divergence between the approximation
and the posterior distribution:

argmax
q(f),q(σ2)

V(q(f), q(σ2),θ,ψ) = argmin
q(f),q(σ2)

KL(q(f)q(σ2)||p(f ,σ2|D,θ,ψ)) (5.30)

The true posterior would be the minimiser of this KL divergence but since the solution is
constrained to be of the form q(f)q(σ2) it is unlikely that this minimum will be attained.
Instead a sequential approach will be taken in which one of the distributions is fixed

70

5.4. Regression with Student-t Noise

while optimising over the respective other distribution

q(f) = argmin
q(f)

KL(q(f) q(σ2) || p(f ,σ2|D,θ,ψ)) (5.31a)

q(σ) = argmin
q(σ)

KL(q(f) q(σ2) || p(f ,σ2|D,θ,ψ)) (5.31b)

subject to the constraint that the distributions are of their respective form given by
eqs. (5.27). Expanding equations (5.31) and neglecting terms that do not depend on
q(f) and q(σ2) respectively, the above problems can be shown to be equivalent to

q(f) = argmin
q(f)

E
q(σ2)

KL(q(f) || p(f |D,σ2,θ,ψ)) (5.32a)

q(σ2) = argmin
q(σ2)

E
q(f)

KL(q(σ2) || p(σ2|D, f ,θ,ψ)) . (5.32b)

Using the property that both p(f) and q(σ2) are in the exponential family and that the
inverse gamma is conjugate to the normal distribution the following update equations
can be derived

q(f) ∝ exp E
q(σ2)

ln p(f |D,σ2,θ,ψ) (5.33a)

q(σ2) ∝ exp E
q(f)

ln p(σ2|D, f ,θ,ψ) . (5.33b)

For the mean and covariance of q(f) = N (f |m,A) one obtains

A = (K−1 + Σ−1)−1 (5.34a)
m = AΣ−1y (5.34b)

where Σ is a diagonal matrix such that Σ−1
ii = E[σ−2

i] = α̃i/β̃i. The update equation of
A can be rewritten as

A = K−KΣ−1/2(I + Σ−1/2KΣ−1/2)−1Σ−1/2K (5.35)

which is numerically more stable since the eigenvalues of the inverse are known to be
larger than one and Σ−1/2 is a positive definite diagonal matrix. Note that the equations
(5.34) can also be derived directly by computing the derivatives of the variational lower
bound (5.29) with respect to A and m and equating them with zero.

Analogously, from eq. (5.33b) the update equations of the parameters of q(σ2) come
in the form of

α̃i = α+ 1
2 (5.36a)

β̃i = β + 1
2

(
(yi −mi)2 +Aii

)
(5.36b)

from which we can see that all elements of α̃ have the same value while β̃ depends on
both m and A.

71

5. Robust Gaussian Process Regression

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

p(
x)

p(x)
EP q(x)
Variational q(x)
Laplace q(x)

µ

σ2

−4 −2 0 2 4

1

2

3

4

5

6

7

8

µ

σ2

−4 −2 0 2 4

1

2

3

4

5

6

7

8

(a) (b) (c)

Figure 5.8.: Illustration of the difference between the approximations minimising KL(p || q) and
KL(q || p). Panel (a) shows a bimodal distribution p(x) and approximations thereof
q(x) = N (x|µ, σ2). The distribution p(x) is a weighted combinations of two normal
distributionsN (x|−2, 0.52) andN (x|2, 0.72). Panel (b) shows contours of KL(p || q)
as a function of µ and σ2. The approximation EP q(x) corresponds to the minimum
of KL(p || q). Panel (c) shows contours of KL(q || p) as minimised in variational
approximations. Note that the function has two local minima corresponding to the
modes of p(x). The approximation Variational q(x) in Panel (a) corresponds to the
local minimum close to µ = 2 and is very similar to a Laplace approximation of
this mode.

The update equations (5.34) and (5.36) form a set of coupled nonlinear equations. In
each E-step one iterates update equations (5.34) and (5.36) until convergence. The iter-
ations are known to converge since each update does not decrease V. In the simulations
we have done usually three to five iterations were sufficient.

Note that from a conceptual point of view the variational approximation attempts
to minimise KL(q || p) in each E-step, where q is the approximation and p the true
posterior. In contrast, Expectation Propagation can be interpreted as an approximate
minimisation of KL(p || q) (Minka, 2001a). Since the Kullback-Leibler divergence (B.30)
is asymmetric, different properties of the solutions can be expected, see Figure 5.8 for
an illustration. Intuitively the EP approximation attempts to be nonzero wherever the
true posterior is nonzero, which corresponds to a coverage of the whole posterior by the
approximation. By minimising the KL divergence the other way around, the variational
approximation will not necessarily cover the whole posterior but can focus on one mode,
as can be seen in the examples given in Figure 5.9.

5.4.1.2. The M-step

In the M-Step the variational lower bound V is maximised with respect to the likelihood
parameters θ = [α, β]> and the hyper-parameters of the Gaussian process prior ψ, for
example using a conjugate gradient optimisation routine. Therefore the value of V as
given by equation (5.29) has to be computed.

72

5.4. Regression with Student-t Noise

To compute the individual terms of V as given by eq. (5.29) several integrals involving
the inverse gamma distribution have to be evaluated. Note that if x is distributed
InvΓ(x|α, β), then E[x] = β/(α + 1), E[x−1] = α/β, and E[lnx] = lnβ − ψ(α), where
ψ(x) = ∂ ln Γ(x)/∂x is the digamma function (Abramowitz and Stegun, 1965, ch. 6.3).
The integral over a product of an inverse gamma distribution and the log of another
inverse gamma distribution is∫

InvΓ(x|α̃, β̃) ln InvΓ(x|α, β) dx =

− α̃

β̃
β − (1 + α) ln β̃ + α lnβ − ln Γ(α) + (1 + α)ψ(α̃) (5.37)

from which the entropy of the inverse gamma distribution

H(InvΓ(x|α, β)) = α+ lnβ + lnΓ(α)− (1 + α)ψ(α) (5.38)

can be derived as a special case.

Using these integrals and the results for multivariate normal distributions given in
Appendix B.2.3 the first term of the variational lower bound (5.29) can be computed in
which the expectation of the multivariate normal term p(y|f ,σ2) is taken with respect
to both q distributions:

E
q(f)q(σ2)

ln p(y|f ,σ2) =
∫
q(σ2)

[∫
N (f |m,A) lnN (y|f ,diag(σ2))df

]
dσ2 =

− m ln(2π)
2 − 1

2

m∑
i=1

(ln β̃i − ψ(α̃i))− 1
2(y −m)>Σ−1(y −m)− 1

2 tr(Σ−1A) . (5.39)

Note that the resulting term does not depend on either θ or ψ, hence it is unnecessary
to compute it in the M-step. The second term of eq. (5.29) is an integral over a product
of an inverse gamma distributions and the log of another inverse gamma distribution.
Using eq. (5.37) this leads to

E
q(σ2)

ln p(σ2|θ) =
m∑

i=1

[
− α̃iβ

β̃i

+ α lnβ − ln Γ(α) + (1 + α)(ψ(α̃i)− ln β̃i)
]

(5.40)

which depends on θ. The third term of the variational lower bound (5.29) is an integral
over the product of a multivariate normal and the log of another multivariate normal
distribution

E
q(f)

lnN (f |0,K) = −m ln(2π)
2 − 1

2 ln |K| − 1
2m

>K−1m− 1
2 tr(K−1A) (5.41)

which depends on ψ. The remaining two terms are the entropy of the multivariate

73

5. Robust Gaussian Process Regression

x

f(
x)

Figure 5.9.: The variational approximation for the Gaussian process regression model with
Student-t noise. The solid line describes the mean function of the approximate
posterior process and the gray area covers ±2 standard deviations. The data was
introduced in Figure 5.3 to illustrate the multimodality of the posterior, see also
Figure 5.5. In the shown example the approximation considers the upper points
to be outliers, which means it only approximates one mode of the posterior. For
different initialisations of θ and ψ also the opposite solution occurs in which only
the lower points in the central region are considered outliers. This behaviour can be
explained by the discussion in the context of Figure 5.8. Note that in this respect
the variational approximation seems to be similar to a Laplace approximation.

normal q(f) and the inverse gamma distributions q(σ)

H(q(f)) = m
2 ln(2π) + 1

2 ln |A|+ m
2 (5.42)

H(q(σ2)) =
m∑

i=1

(
α̃i + ln β̃i + lnΓ(α̃i)− (1 + α̃i)ψ(α̃i)

)
(5.43)

which can be computed using eq. (5.38) and eq. (B.29) and which are independent of θ
and ψ.

From the equations above follows that maximising V in the M-Step is equivalent to
maximising the sum of eq. (5.40) and eq. (5.41). See Algorithm 2 for a summary of
the variational approximation scheme. Note that the optimisation problems in the E-
Step and the M-Step are non-convex, so the scheme is prone to local maxima problems.
In practice, it is therefore advisable to run the scheme several times using different
initial values and to select the approximation which shows the highest overall value of
V. Figure 5.9 shows the resulting variational approximation for the Gaussian process
regression model with Student-t noise for ML-II estimates of the parameters.

5.4.1.3. Prediction

After convergence of the EM algorithm, i.e. convergence of V, we have the approximation
p(f |D,ψ,θ) ≈ q(f) = N (f |m,A) which implies an approximation to the posterior
process. By substituting eqs. (5.34) into eqs. (4.5) the mean and covariance function of

74

5.4. Regression with Student-t Noise

Algorithm 2 Variational Approximation for GP Regression with Student-t noise

Initialisation: α̃← 1, β̃ ← 1, set θ and ψ to random (positive) values
Compute K from X and ψ
repeat

E-step:
repeat

Σ−1 ← diag(α̃� β̃) [Let � denote element-wise division]
A← K−KΣ−1/2(I + Σ−1/2KΣ−1/2)−1Σ−1/2K [Numerically stable]
m← AΣ−1y
α̃← 1(α+ 1

2)
β̃ ← β + 1

2(diag(A) + (y −m)2)
until convergence
M-step:
[θ,ψ]← argmaxV(θ,ψ) [Note that only (5.40) and (5.41) depend on θ and ψ]
Compute K from X and ψ

until convergence of V

the Gaussian process approximation to the posterior process can be computed:

m∗(x) = k(x)>(K + Σ)−1y (5.44a)
k∗(x,x′) = k(x,x′)− k(x)>(K + Σ)−1k(x′) . (5.44b)

The predictive distribution of noisy targets y∗ is given by

p(y∗|x∗, α, β) =
∫
T (y∗|2α, f∗,

√
β/α)N (f∗|µ∗, σ2

∗) df∗ (5.45)

which cannot be computed analytically but Gauss-Hermite quadrature can be used to
solve this one-dimensional integral for a given y∗ efficiently.

5.4.2. Markov Chain Monte Carlo Sampling

Several alternative Markov chain Monte Carlo schemes can be used to implement ap-
proximate inference in the Gaussian process regression model with Student-t noise. As
described in Section 4.3.4 the generic approach is to represent the function values f
explicitly and to sample from

p(f ,θ,ψ|D, ξ) ∝ p(y|f ,θ) p(f |X,ψ) p(θ|ξ) p(ψ|ξ) (5.46)

using Hybrid Monte Carlo. The disadvantage of this approach is that the elements of
f can be highly correlated such that the mixing behaviour can be poor. Particularly if
the posterior is multimodal, as for the Student-t model, switching between modes can
be difficult.

If the likelihood can be represented as a scale-mixture of normal distributions, an

75

5. Robust Gaussian Process Regression

alternative implementation usually shows to be easier to sample from. The idea is
to represent the noise variances Σ = diag(σ2) explicitly and to integrate over f |σ2

analytically. Hybrid Monte Carlo is used to sample from

p(σ2,θ,ψ|D, ξ) ∝
[∫
N (y|f ,Σ)N (f |0,K)df

]
pM (σ2|θ) p(θ|ξ)p(ψ|ξ) (5.47a)

∝ N (y|0,K + Σ) pM (σ2|θ) p(θ|ξ) p(ψ|ξ) (5.47b)

where pM (σ2|θ) is the scale-mixture distribution, which for Student-t noise is a product
of inverse gamma distributions as given by eq. (5.24). Note that the elements of σ2

are constraint to be positive. This is implemented by sampling lnσ2, which requires an
additional Jacobian term in order to correct for the log transformation.

After having generated samples of the posterior (5.47) the predictive distribution
p(f∗|D,X∗, ξ) can be approximated using eq. (5.18). The MCMC scheme described for
the mixture model in Section 5.3.2 can be seen as a special case in which pM (σ2|θ)
constrains the elements of σ2 to take one of to values, i.e. σ2

r or σ2
o . Because of the

discrete nature of the indicator variables c, Gibbs sampling had to be used instead of
Hybrid MCMC as used here for the continuous σ2.

5.5. Regression with Laplace Noise

The practical difficulties in approximating Bayesian inference for the models discussed
in previous sections were caused by the multimodality of the posterior. As described,
in the context of robust models multimodal posteriors are meaningful in the sense that
several alternative explanations of the data coexist under the posterior.

However, in order to assure unimodality of the posterior in Gaussian process mod-
els the sampling distribution of errors—the likelihood—has to be log-concave, which
effectively limits the thickness of its tails. Therefore, Laplace noise is of particular in-
terest because its density function falls off maximally slowly in the tails while still being
log-concave. The Laplace distribution, which is also known as the double exponential
distribution, has the probability density function

Laplace(x|µ, s) =
1
2s

exp
(
−|x− µ|

s

)
(5.48)

which is log-concave, but its derivative with respect to x is not continuous at zero. The

Figure 5.10.:
The p.d.f. of
the Laplace
distribution.

Laplace distribution is a scale-mixture of normal distributions (5.1) where the scale-
mixture pM (σ2|θ) is an exponential distribution. Let Exponential(x|β) = β exp(−βx)
denote the exponential distribution where x ≥ 0 and E[x] = 1/β. The Laplace distribu-
tion

Laplace(x|µ, s) =
∫
N (x|µ, σ2) Exponential(σ2|β) dσ2 (5.49)

is obtained as a scale-mixture of normal distributions and s = 1/
√

2β.
Using Laplace noise in a Gaussian process regression model can be seen as a compro-

76

5.5. Regression with Laplace Noise

0 5
0

5

f
i

f j

0 5
0

5

f
i

f j

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

f

Likelihood p(y|f)
Prior p(f)
Posterior p(f|y)
EP p(f|y)

(a) (b) (c)

Figure 5.11.: Two dimensional illustration of the posterior for the GP regression model with
Laplace noise. Panel (a) shows contours of the prior (dashed), which is a bivariate
normal distribution centred at zero, and the likelihood centred on the observation
at y = [5, 5]>. Panel (b) shows contours of the resulting posterior distribution
which is unimodal. Panel (c) shows a one dimensional illustration of the posterior
and its EP approximation. Note that at the maximum of the posterior the first
derivative has a discontinuity such that a Laplace approximation is not properly
defined. Compare to Figure 5.4.

mise between the desideratum of outlier resistance and practical computational advan-
tages that come with the unimodality of the posterior. Assuming i.i.d. Laplace noise,
the likelihood of f comes in the form of

p(y|f , s) =
m∏

i=1

Laplace(yi|f(xi), s) . (5.50)

The assumption of Laplace noise is rarely found in the literature on Bayesian regres-
sion models. However, in frequentist robust regression maximum likelihood estimates
of the form

f? = argmax
f∈F

p(y|f , s) = argmin
f∈F

m∑
i=1

|yi − f(xi)| (5.51)

are common where F is usually chosen to be the class of linear functions (Rousseeuw
and Leroy, 1987). The method appears under various names including: “least absolute
deviation”, “least absolute errors”, “least absolute value”, and L1 regression. Although
being less sensitive with respect to outliers, the breakdown point of L1 regression is
still 0%, i.e. a single observation can have an arbitrary large effect on the maximum
likelihood estimate. See Narula and Wellington (1982) for a review of frequentist linear
L1 regression.

The log likelihood of the Laplace noise model can also be related to the ε-insensitive
loss function

|y − f(x)|ε = max{0, |y − f(x)| − ε} (5.52)

77

5. Robust Gaussian Process Regression

x

f(
x)

Figure 5.12.: The EP approximation for the Gaussian process regression model with Laplace
noise. The solid line describes the mean function of the approximate posterior pro-
cess and the gray area covers ±2 standard deviations. The data was introduced in
Figure 5.3 to illustrate the multimodality of the posterior, see also Figures 5.5 and
5.9. The observations in the central region are considered outliers, i.e. these ob-
servations show large deviation from the systematic component. The variance of
the Laplace distribution needs to be relatively large and as an effect the posterior
uncertainty on the regular observations is larger than in the previous methods.
Note the similarity to Figure 5.5 for the EP approximation for Gaussian mix-
ture noise. However, here the unimodality is a characteristic of the posterior,
whereas in Figure 5.5 it is only due to inability of the approximation to capture
the multimodality of the posterior.

as used in Support Vector Regression, which is zero for residuals smaller than ε and
linear in the absolute value of the residual otherwise. Interpreted as the negative log
likelihood of a probabilistic noise model

p(y|f(x), ε) ∝ exp(−c |y − f(x)|ε) (5.53)

the probability density of errors is uniform over 2ε and then falls off like a Laplace
distribution (Chu et al., 2004). In Support Vector Regression the sum of the ε-insensitive
loss and a regularization term is minimised (Vapnik, 1999, ch. 6). For details on the
connection between Support Vector Regression and frequentist robust estimators the
reader is referred to Schölkopf and Smola (2002, ch. 9).

We now turn to the question how approximate Bayesian inference can be implemented
for the Gaussian process regression model with Laplace noise. Since the posterior is a
unimodal distribution one could think of implementing a Laplace approximation by
making a second order Taylor approximation around the mode of the unnormalised
log-posterior. However, due to the discontinuous derivatives of the likelihood (5.48) at
zero, the posterior is also likely to have a kink at its maximum, see Figure 5.11 for
an illustration. Therefore, a Laplace approximation of the posterior is inappropriate
since the maximum of the posterior and the kink can coincide in which case the Hessian
is undefined. Markov chain Monte Carlo sampling can be implemented analogously to
Student-t noise described in Section 5.4.2, using the scale-mixture representation (5.49).

78

5.5. Regression with Laplace Noise

Alternatively an Expectation Propagation approximation as described in Section 4.2
can be implemented and the necessary moments (4.22):

mk =
∫
fk

i Laplace(y|fi, s)N (fi|µ\i, σ2
\i) dfi (5.54)

can be computed analytically for k = 0, 1, 2. However, in practice is has shown to
be non-trivial to implement the computation of moments in a numerically stable way.
Computing the moments näıvely requires to evaluate the complementary error function

−2 2

Figure 5.13.: The
erfc function.

erfc for large argument values, where the function is very close to zero and numerical
approximations fail to give the necessary accuracy, see Figure 5.13.

Although we cannot avoid this problem completely, we can rewrite the expressions in
order to obtain numerically more stable expressions later. Therefore, the variables are
linearly transformed first

µ̃\i = (µ\i − y)/s (5.55a)
σ̃2
\i = σ2

\i/s
2 (5.55b)

such that the mean of the Laplace distribution is at zero. In a next step the moments
of the transformed variable are computed. Therefore the following two quantities will
be needed

a = erfc

(
σ̃2
\i − µ̃\i√

2σ̃2
\i

)
and b = exp (2µ̃\i) erfc

(
σ̃2
\i + µ̃\i√

2σ̃2
\i

)
(5.56)

where erfc(z) = 1− erf(z) is the complementary error function. The error function erf
is defined as the integral

erf(z) =
2√
π

∫ z

0
exp(−t2) dt (5.57)

which is approximated numerically (Abramowitz and Stegun, 1965, ch. 7). For large
positive values of z the erfc function is very close to zero and standard numerical routines
give insufficient accuracy to compute the moments. In our numerical implementation
we compute ln a and ln b using the approximation

ln erfc(z) ≈ ln
(

2√
π

)
− z2 − ln

(
z +

√
z2 +

4
π

)
, (5.58)

for large values of z (for all z > 0 the right hand side is an upper bound on ln erfc(z)).
The moments of the transformed problem can be computed according to

m̃0 =
a+ b

4
exp

(
1
2 σ̃

2
\i − µ̃\i

)
(5.59a)

m̃1 =
1

a+ b

(
a
(
µ̃\i − σ̃2

\i

)
+ b

(
µ̃\i + σ̃2

\i

))
(5.59b)

79

5. Robust Gaussian Process Regression

and

m̃2 =
a

a+ b

(
σ̃2
\i +

(
µ̃\i − σ̃2

\i

)2)+
b

a+ b

(
σ̃2
\i +

(
µ̃\i + σ̃2

\i

)2) (5.59c)

− 2
a+ b

exp

(
−1

2

(
σ̃2
\i +

µ̃2
\i

σ̃2
\i

− ln
(

2
π

))
+ µ̃\i +

3
2

ln σ̃2
\i

)

which have to be implemented in a numerically safe way by handling logarithmic values
wherever possible. Finally, moments of the original problem (5.54) are

m0 = m̃0/s (5.60a)
m1 = sm̃1 + y (5.60b)
m2 = m̃2s

2 + 2ym̃1s+ y2 (5.60c)

which corrects for the transformation (5.55). Figure 5.11(c) gives an illustration of the
posterior and its EP approximation in one dimension.

In various experiments we observed that the EP approximation for the Gaussian
process regression model with Laplace noise converges more reliably than the EP ap-
proximation for the mixture noise model. To avoid numerical problems it is important
to scale the targets y such that the moments (5.59) can be computed in a numerically
stable range of values. In our experiments it was sufficient to scale the targets to zero
mean and unit variance.

A variational approximation as described for Student-t noise cannot be implemented
analogously since if the noise variance σ2 has an exponential prior distribution, the
expectation of the precision E[σ−2] is not finite.

5.6. Experiments

This section presents experiments comparing the performance of several regression mod-
els and approximation techniques. The purpose of the experiments will be twofold. One
aspect of interest will be the question whether the proposed robust Gaussian process
models lead to improved predictive performance. A second aspect will be the assess-
ment of practical problems of the approximation schemes, e.g. convergence and runtime
behaviour.

For all Gaussian process models an anisotropic squared exponential covariance func-
tion (3.37) is used with individual length scale parameters `i for each input dimension
i = 1, . . . , n. Including the signal variance σ2

s , the Gaussian process prior has n + 1
hyper-parameters ψ = [`, σ2

s]. Note that using a covariance function of this type makes
the model inherently robust with respect to outliers in the inputs x, since observations
far away will become uncorrelated to regular observations.

For comparison, the performance of Support Vector Regression (SVR) will be re-
ported. The implementation provided by Chang and Lin (2001) is used with a radial
basis function (RBF) kernel, which is equivalent to an isotropic squared exponential
covariance function where σ2

s = 1 and one common length scale `, so that all input di-

80

5.6. Experiments

mensions are weighted equally. This is a clear disadvantage compared to the anisotropic
(ARD) parameterisation we implemented in the Gaussian process models, because the
SVR cannot adapt the influence of the input dimensions separately. The SVR algo-
rithm has three parameters, i.e. the insensitivity parameter ε, defined in eq. (5.52), a
regularization parameter C, and the length scale `, or width, of the RBF kernel. In the
experiments values for all three parameters are found by an inner loop of 5-fold cross-
validations on the training data. We manually refine the parameter grids and repeat
the cross-validation procedure until we find the grid that covers the parameter values
for which we observe good performance on the training data, with the empirically best
performing values not at the boundary.

The following abbreviations will be used to refer to the different models in the com-
parison:

• OLS: As a baseline we use ordinary least squares linear regression, as is described
for example by Mardia et al. (1979, ch. 6).

• SVR: Support Vector Regression using the implementation provided by Chang
and Lin (2001).

• Gaussian process regression with (single) normal noise as described in Section 3.2.

– snMLII: Values for θ and ψ are found by ML-II estimation.

– snMCMC: Bayesian inference over θ and ψ is approximated by MCMC sam-
pling as described in the example given in Section 4.3.6.1. We use a wide
log-normal prior for the elements of ` while we use constant priors on all
other parameters.

• Gaussian process regression where the sampling distribution of errors is a mixture
of two normal distributions as described in Section 5.3.

– mnEP: Bayesian inference is approximated using Expectation Propagation
as described in Section 5.3.1. Values of θ and ψ are found by maximising
the EP approximation to the evidence.

– mnLAP: Laplace’s method as described in Section 4.1 is used for prediction
and approximate ML-II estimation of θ and ψ.

– mnMCMC: Inference is approximated using the MCMC scheme described in
Section 5.3.2.

• Gaussian process regression with Student-t noise as described in Section 5.4.

– tVar: Approximate inference and ML-II estimation is implemented using the
variational EM scheme described in Section 5.4.1.

– tMCMC: MCMC sampling using the implementation described in Section
5.4.2.

81

5. Robust Gaussian Process Regression

• lapEP: Expectation Propagation approximation in the GP regression model with
Laplace noise as described in Section 5.5.

Hence, for the GP regression models the prefix encodes the noise model1 whereas the
postfix specifies how Bayesian inference is approximated.

For all methods involving maximum likelihood II estimation, the implementations
minimise the negative (approximate) value of the log evidence using a conjugate gradient
optimisation routine.

Basically all techniques for approximate Bayesian inference based on Gaussian approx-
imations to the posterior involve non-convex optimisation problems, such that numerical
optimisation routines do not necessarily find the global optimum, getting stuck in local
optima. Therefore an approximation scheme usually gives different results depending on
the initialisation, i.e. the starting point of the optimisation. Examples for non-convex
optimisation problems include maximum likelihood II estimation, the localisation of the
mode in Laplace’s method for multimodal posteriors, and the EM steps in the varia-
tional approximation for regression with Student-t noise. Markov chain Monte Carlo
sampling gives a non-deterministic answer by definition. Asymptotically the results be-
come independent of the initial state and the parameterisation of the sampling scheme,
but for practical data analysis and finite simulations, the accuracy depends on the mix-
ing of the chains and the number of generated samples. In the following experiments
each algorithm was run several times on the same data (fold) using different initiali-
sations. For ML-II based methods, the solution showing highest approximate evidence
was chosen for prediction on the test data. For MCMC based methods several prelim-
inary simulations were made in order to find good parameter values of the sampling
scheme, e.g. the ε for Hybrid MCMC, but the reported results origin from a single last
simulation.

In the sampling based Gaussian process methods we perform approximate inference
over the elements of θ and ψ and so we have to specify prior distributions over their
elements respectively. In order to be as fair as possible we used constant, uniform
(e.g. p(π) = Beta(1, 1) in mnMCMC) or very broad priors and we believe their influence
on the posterior to be negligible relative to the influence of the observed samples.

For comparing the predictive performance of the various models we report the root
mean square error (RMSE) and the mean absolute error (MAE) of the (mean) pre-
diction. For methods providing full predictive distributions the negative log predictive
probability (NLP) of the test cases will be reported. For artificial data sets these mea-
sures will be given for separate test sets, while for real-world data-sets a 10-fold cross-
validation will be used (Stone, 1974). In the experiments presented below it will become
apparent that the performance of an algorithm can have large variance over the folds
in a cross-validation scheme. It can be expected that the variance over the folds is
increased if outliers are present in the data set.

Let X∗ again denote test inputs and t∗ the corresponding test targets, either in the
form of noise free f∗ or noisy targets y∗ depending on whether the data is synthetic.

1Abbreviations of noise models: sn = single normal, mn = mixture noise, t = Student-t, and lap =
Laplace.

82

5.6. Experiments

The root mean square error is defined as

RMSE =

√√√√ 1
m∗

m∗∑
i=1

(t∗i − E[f∗i])2 (5.61)

where m∗ denotes the number of test cases. The RMSE can be highly dominated by a
few large residuals, so we also report the mean absolute error

MAE =
1
m∗

m∗∑
i=1

|t∗i − E[f∗i]| (5.62)

in which the influence of a single error scales linearly. Note that from a decision theoretic
point of view the expected absolute loss would be minimised by the median of the
predictive distribution. If the predictive distribution of f∗i is Gaussian, as for the analytic
approximations, the mean and the mode coincide and therefore no distinction has to
be made. For MCMC methods the predictive distribution is a mixture of Gaussians,
in which mode and median can be very different. However, we do not exploit this
distinction and report the absolute error of the mean prediction.

Gaussian process models provide predictive distributions for the latent function values
p(f∗|D,X∗,M) and including the inferred noise we can compute p(y∗|D,X∗,M), where
M denotes the model. By negative log predictive probability we refer to the average
negative log value of the predictive distribution

NLP = − 1
m∗

m∗∑
i=1

ln p(t∗i |D,x∗,M) (5.63)

evaluated at the test samples. The NLP is a measure of accuracy of the predictive
distribution. Note that NLP are highly non-robust in the sense that a single large error
can dominate the estimate. For artificially generated data the test targets t∗ are noise-
free function values so we use the predictive distribution p(f∗|D,X∗,M), while for real
world data sets only noisy test targets y∗ are given and the respective noise model has
to be used to compute the NLP.

5.6.1. Friedman Data

For the first set of experiments an artificial regression problem has been derived from
an example described by Friedman (1991). Given 10-dimensional input vectors x the
function value f(x) depends on the first five input dimensions only

f(x) = 10 sin(π x1 x2) + 20 (x3 − 0.5)2 + 10x4 + 5x5 , (5.64)

while the purpose of the remaining input dimensions x6, . . . , x10 is only to complicate the
task by adding a feature selection problem, i.e. identification of the relevant inputs. We
generate 10 training sets of m = 100 examples respectively. The inputs x are randomly

83

5. Robust Gaussian Process Regression

OLS SVR snMLII snMCMC tMCMC tVar mnMCMC mnEP mnLAP lapEP

0.2

0.3

0.4

0.5

0.6

0.7

R
M

S
E

(a)

snMLII snMCMC tMCMC tVar mnMCMC mnEP mnLAP lapEP

−0.5

0

0.5

1

1.5

N
LP

(b)

Figure 5.14.: Performance of various methods on the Friedman data sets. The methods cor-
responding the abbreviations are described in the beginning of Section 5.6 on
page 81. Panel (a) shows box-plots of the root mean square errors on the 10
different data sets. The dotted line marks the median, while the diamond marks
the mean of the performance measures. Panel (b) reports the corresponding NLP
measures of the methods giving predictive distributions of the noise free targets
f∗.

sampled from the uniform distribution on the unit hyper-cube [0, 1]10. We then compute
the corresponding function values (5.64) and add normal noise with zero mean and unit
variance. So far this procedure is identical to the description by Friedman (1991). To
generate outliers, 10 randomly selected outputs are replaced in each training set by
samples drawn from a normal distribution with mean µ = 15 and variance σ2

o = 9.
Thereby outliers are generated which are unrelated to the function (5.64) but are likely
to lie in the same range as the function values. For evaluation we generate a test set
of m∗ = 10000 noise-free samples of (5.64). We report NLP values for predicting these
noise-free test targets f∗.

Experimental results are summarised in Figure 5.14. The RMSE measures show that
the robust Gaussian process regression models perform significantly better on average

84

5.6. Experiments

Sample t

In
di

ca
to

rs
 c

500 1000 1500 2000 2500 3000 3500 4000

10

20

30

40

50

60

70

80

90

100

Figure 5.15.: Illustration of indicator variables c in mnMCMC. The figure shows 4000 samples
of the posterior distribution of c as simulated using mnMCMC for one of the
Friedman data sets. Each row corresponds to one training observation and a
black stripe shows that an observation is attributed to the outlier component.
Several observations are considered outliers with high probability, which appear
as almost continuous black lines.

than the ones with simple normal noise, which is not surprising given the way the data
was generated. The Gaussian process models clearly benefit from their ARD capability,
which allows them to ignore the input dimensions which do not prove to be informative
about the output. The absence of a similar mechanism may explain the rather poor
performance of Support Vector Regression, which performs only slightly better than
OLS. The respective mean absolute errors show a very similar pattern and are therefore
not discussed separately.

Among the robust GP regression methods tVar, mnEP, and mnLAP show relatively
large errors on two folds. Comparing to the respective MCMC results for these noise
models (tMCMC and mnMCMC) the poor performance on these two folds must be
attributed to the approximation scheme, for example due to local optima problems. In
comparison the EP implementation of regression with Laplace noise gives more reliable
results. The NLP measures in Figure 5.14(b) give a similar impression. As to be
expected, the GP models with simple normal noise also exhibit worse NLP values than
the robust variants.

During the experiments none of the implementations showed (unexpected) difficulties.
For the mixture noise model the EP approximation did not converge for all values of
θ and ψ. Figure 5.15 shows samples of the posterior on the indicator variables c used
in the mnMCMC scheme. The method identifies several observations as outliers, which
appear as almost continuous black lines.

85

5. Robust Gaussian Process Regression

5.6.2. Boston Housing

The second set of experiments was carried out on the Boston Housing data set. These
data have been analysed by Harrison and Rubinfeld (1978) and since then the data has
become a popular reference problem in non-linear regression. The task is to predict the
median price of houses in different parts of the Boston metropolitan area based on 13
input variables. The target variable appears to be truncated at $50,000. For a more
detailed description, the reader is referred to Harrison and Rubinfeld (1978) or Neal
(1996, ch. 4.4.2).

The data set consists of m = 506 observations which were normalised to zero mean
and unit variance. The data is split into 10 stratified folds, such that the empirical
distribution of targets y in each fold is similar to the empirical distribution over the
whole sample (Davison and Hinkley, 1997, ch. 3.7). A 10 fold cross-validation procedure
is used to estimate the performance of the various methods, which means that each of
the folds is left out once as a test set, while the remaining nine folds constitute the
training data.

The performance of the various Gaussian process models will be compared to Support
Vector Regression and Bayesian neural networks as described by Neal (1996). Appar-
ently, the performance of Bayesian neural networks reported by Neal (1996, ch. 4.4.2)
are the best to be found in the literature. Since the Boston Housing data was split
differently into folds, we cannot compare to Neal’s results directly but used the his soft-
ware package2 to replicate the method for our splitting of the data. Following Neal’s
description a two hidden-layer neural-network was used with six units in each hidden
layer. The observational additive noise is modelled by a Student-t distribution with
four degrees of freedom. Using the provided software, approximate Bayesian inference
is performed over the weights in the neural network using MCMC sampling, i.e. Hybrid
Monte Carlo and Gibbs sampling. The exact specification of the network, the priors
on the weights, and the sampling scheme are taken from Neal (1996, ch. 4.4.2). After
a burn-in period of 150 samples we generated 2000 samples for prediction which took
on the order of twelve hours (per fold). Below we use NealNN to refer to this method.
Note that the MAE measures computed by Neal’s software are mean absolute errors of
the median prediction, not the mean prediction as in eq. (5.62), which is motivated by
a decision theoretic viewpoint as described in Section 2.2.

The experimental results are summarised in Figure 5.16 and Table 5.1. All the Gaus-
sian process models and the Bayesian neural networks show relatively similar perfor-
mance w.r.t. the average RMSE and MAE values.

The lowest average RMSE values are found for mnEP followed by tVar and lapEP.
The average RMSE for snMLII is 2.74 compared to 2.55 for mnEP, which is an improve-
ment of 7.5%. Note that the average RMSE for snMCMC is 2.63 which advises caution
when attributing the improvement to the noise model only. Support Vector Regression
gives worse results on average (RMSE = 3.22) and larger variance over the folds. The
Bayesian neural network has a slightly higher average (RMSE = 2.68) which is consid-

2The “Software for Flexible Bayesian Modeling and Markov Chain Sampling” by Radford Neal can be
obtained from http://www.cs.toronto.edu/∼radford/fbm.software.html.

86

5.6. Experiments

OLS SVR snMLII snMCMC mnLAP mnEP mnMCMC tMCMC tVar Neal NN lapEP

2

3

4

5

6

R
M

S
E

(a)

OLS SVR snMLII snMCMC mnLAP mnEP mnMCMC tMCMC tVar Neal NN lapEP

1.5

2

2.5

3

3.5

4

M
A

E

(b)

snMLII snMCMC mnLAP mnEP mnMCMC tMCMC tVar Neal NN lapEP

−0.2

0

0.2

0.4

0.6

0.8

1

N
LP

(b)

Figure 5.16.: Performance of various methods on the Boston Housing data. The methods
corresponding the abbreviations are described in the beginning of Section 5.6 on
page 81. Panel (a) shows box-plots of the root mean square errors on the 10
folds and Panel (b) shows the corresponding mean absolute errors. The dotted
line marks the median, while the diamond marks the mean of the performance
measures. Panel (b) reports the NLP measures for the methods giving predictive
distributions.

87

5. Robust Gaussian Process Regression

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Fold #

R
M

S
E

SVR snMLII snMCMC mnLAP mnEP mnMCMC tMCMC tVar Neal NN lapEP

(a)

SVR snMLII snMCMC mnLAP mnEP

mnMCMC tMCMC tVar Neal NN lapEP

(b)

Figure 5.17.: Fold-wise comparison of the root mean square errors of various methods on the
Boston Housing data set. The methods corresponding to the abbreviations are
described in the beginning of Section 5.6 on page 81. Panel (a) shows a bar-plot
of RMSE for the individual folds. Panel (b) compares the performance pattern
of the methods over 10 folds. In this snowflake plot each of the ten rays of a
snowflake corresponds to one fold of the Boston Housing data and the magnitude
of a ray is proportional to the RMSE on that fold.

88

5.6. Experiments

Table 5.1.: Average root mean squared error (RMSE), mean absolute error (MAE) and negative
log probability (NLP) for various probabilistic regression models and approximation
schemes on the Boston Housing data set. The abbreviations are described in Sec-
tion 5.6 on page 81.

snMLII snMC mnLAP mnEP mnMC tMC tVar NealNN lapEP
RMSE 2.743 2.629 2.869 2.552 2.748 2.629 2.574 2.678 2.617
MAE 1.924 1.854 1.960 1.840 1.880 1.863 1.858 1.807 1.827
NLP 0.226 0.178 0.096 0.075 0.125 0.132 0.101 0.025 0.063

erably worse than the RMSE = 2.49 reported by Neal (1996). This discrepancy can
be explained by the different allocation of the data into the folds. A potential mistake
in the attempt to set all parameters to exactly the same value as in Neal’s simulations
can also not be excluded. Furthermore, the results reported by Neal (1996, ch. 4.4.2)
were based on 150 posterior samples which were taken of a simulation of length 200.
Although we could not reproduce Neal’s results, we found the performance measures
to have high variance in this experimental setting due to the small number of samples.
Using 2000 samples instead stabilised the performance on the folds, but led to slightly
worse values. Nevertheless, the Bayesian neural network performed very well in terms
of MAE and NLP, also showing less variance over the folds compared to the robust GP
models.

Breaking the results down to the individual folds in Figure 5.17 we cannot observe a
regular pattern anymore. Fold #4 stands out showing the highest error for almost all
methods. Inspecting the Markov chains of several mnMCMC simulations we observed
that—especially for folds #5 and #7—the chains had not mixed properly, i.e. the state
of the chain did not travel the support of the posterior evenly but rather infrequently
switched between discrete areas. This behaviour indicates the presence of local modes
of the posterior. We believe that this behaviour did not occur in the previous example
because the problems were such that one hypothesis clearly displaced the alternatives.
For the folds #5 and #7 the model shows uncertainty whether a few training samples
with maximum (truncated) target value should be fitted as regular observations or
should be ignored as outliers. Therefore the model is cautious to predict large y-values
for test data which leads to a tendency to underestimate the value for test cases which
indeed have maximum target value.

Neal’s Bayesian neural networks shows a different pattern of errors. While the method
performs very well on most folds, larger errors are observed on folds #2 and #7. Since
the noise is also assumed to be Student-t distributed, the advantage of this model may
be the non-stationary neural network prior.

The simulation time per fold in the cross-validation for mnMCMC and mnLAP was
in the order of twelve hours. For mnEP the ML-II parameter optimisations converged
slowly and the runtime per fold was similar to mnMCMC. The fraction of outliers π
inferred by mnEP and mnMCMC lies in the range of 2% − 4% for all folds and for σ2

o

we obtain values that are an order of magnitude larger than σ2
r . The methods mnLAP

89

5. Robust Gaussian Process Regression

and tVar were considerably faster with running times of a few hours per fold.

5.6.3. Remote Sensing Data

The third set of experiments were conducted on artificially generated data from a model
of the medium resolution imaging spectrometer (MERIS) on board of the Envisat satel-
lite, and in particular the spectral behaviour of chlorophyll concentration in subsurface
waters.3 Eight channels in the visible range (412nm−681nm) where selected, following
the work described by Cipollini et al. (2001). The range of variation of the chlorophyll
concentration is from 0.02 to 25 mg/m3. Note that in the experiments presented be-
low the data will be used as a benchmark problem only. The focus will be to show
differences between regression models and not to analyse the data as one should do in
a careful Bayesian analysis of remote sensing data. The data has been chosen as an
example because analysing the data has shown to be numerically challenging, showing
larger differences between the methods.

The total number of samples (pairs of in situ concentrations and radiances) available
for the experiments was equal to 5000. These samples were divided into 10 folds using
the same stratification method as described for the Boston Housing data. Both inputs
and outputs were standardised to zero mean and unit variance. Furthermore, a linear
model is subtracted from the outputs y. Since the radiances are highly correlated the
inputs were projected onto the first five principle components. This rather arbitrary
transformation of the data was necessary to make the regression models with normal
noise work on the data. Screening the original data no obvious outliers can be detected
(see Figure 5.18), but using a Gaussian process regression model with normal noise gives
very poor predictions and extreme ML-II estimates of the parameters, especially of the
signal variance. Note that this indicates severe model mismatch, which could be with
respect to both the noise model and the GP prior.

Results are shown in Figure 5.19. The GP regression models with normal noise
show large errors and are clearly inferior to the robust models. For the Student-t
model we observe that tMCMC gives more accurate predictions than the variational
approximation tVar. The regression model with Laplace noise shows lowest variance over
the folds and low RMSE values. The NLP measures for tVar show that on several folds
the predictive distributions were inaccurate. Although the median NLP is relatively
small, there are three folds on which tVar shows poor performance. Inspecting the folds
we see that for a few test examples the predictions are over-confident, which highly
affects the NLP measure. The reason behind this over-confidence could either be over-
fitting or a problem related to local minima.

5.7. Conclusions & Discussion

In applied regression analysis the potential existence of outliers in the data can rarely be
ruled out with certainty. In this situation the analyst should choose a model which takes

3I would like to thank Joaquin Quiñonero-Candela, Gustavo Camps-Valls, and Paolo Cipollini for
kindly providing the data.

90

5.7. Conclusions & Discussion

Figure 5.18.: Illustration of the MERIS remote sensing data by pairwise scatter-plots. The first
eight columns/rows correspond to the inputs (radiances) and the final column/row
are the targets (chlorophyll concentrations). Histograms of the respective mea-
surements are plotted on the diagonal.

91

5. Robust Gaussian Process Regression

SVR snMLII snMCMC tMCMC tVar mnLAP mnEP lapEP

0.05

0.1

0.15

0.2

0.25
R

M
S

E

(a)

SVR snMLII snMCMC tMCMC tVar mnLAP mnEP lapEP

0.01

0.02

0.03

0.04

0.05

0.06

M
A

E

(b)

snMLII snMCMC tMCMC tVar mnLAP mnEP lapEP
−4

−2

0

2

4

6

8

10

N
LP

(b)

Figure 5.19.: Performance of various regression methods on the MERIS remote sensing data.
The abbreviations are described in Section 5.6 on page 81. Panel (a) shows box-
plots of the root mean square errors on the 10 folds and Panel (b) shows the
corresponding mean absolute errors and (c) the NLP measures for methods that
provide a predictive distribution. The dotted line marks the median, while the
diamond marks the mean of the performance measures.

92

5.7. Conclusions & Discussion

this belief explicitly into account. In this chapter several variants of Gaussian process
models for robust regression were proposed and described how approximate Bayesian
inference can be implemented.

Robust regression models are constructed by using a heavy-tailed distribution to
model the sampling distribution of errors. In this chapter the use of a mixture noise
model, Student-t noise, and Laplace noise has been studied. Markov chain Monte Carlo
sampling can be used for approximate inference in all of the proposed models. For
GP regression with Laplace noise and the Gaussian mixture noise model it has been
described how the EP approximation can be implemented. For regression with Student-
t noise a variational approximation has been described.

In the experiments the performance of the robust regression models and several other
regression techniques have been compared on three data sets. Experiments on artificially
generated data show that the robust Gaussian process regression models outperform the
other models in this comparison when outliers in y are present in the training data. In
terms of RMSE the performance of GP models on the Boston Housing data set could not
be improved by more than 7.5%. Since the target variable is the median of house prices
in a given area the presence of extreme outliers also seems unlikely. There are arguments
suggesting that the noise is not Gaussian, but whether outliers in y are present is unclear.
The remote sensing data set has shown to be a difficult problem for Gaussian process
regression models. While above the data was used just as a benchmark problem, it
would be interesting to study what exactly makes this data difficult, e.g. whether other
types of covariance functions would be better suited to explain the data.

All noise models proposed in this chapter have their respective strengths and weak-
nesses. The normal noise model is convenient, because the posterior and the evidence
can be computed in closed form. But the assumption of normal noise makes the model
very sensitive to outliers in the data. Using a finite mixture of normal distributions
gives a more robust model but inference becomes analytically intractable and difficult
to approximate. The finite mixture approach has the conceptual advantage that the
outliers do not affect the uncertainty on regular observations, since they are modelled
separately. Assuming a Student-t distribution is appealing since its density has very
heavy tails. As for the finite mixture noise model, the resulting posterior can be mul-
timodal, which makes approximate Bayesian inference technically challenging. This is
avoided by using the Laplace noise model, for which the resulting posterior is unimodal,
while the noise distribution is more kurtotic than the normal distribution. See Figure
5.20 for a graphical comparison.

In the Student-t and the mixture noise GP models the posterior distribution can be
multimodal. Intuitively, the posterior is multimodal if the model can explain the data
in various distinct but equally plausible ways. In this case the approximation by a
single Gaussian, as in mnEP or tVar, can be inappropriate and also MCMC sampling
is difficult. For simpler outlier-structures this problem might be negligible, since the
posterior can be expected to have a strongly dominant mode.

However, most methods used in the comparisons involve either non-convex optimisa-
tion problems, sampling from multimodal posteriors or iterative algorithms that do not
converge reliably. This introduces a certain difficulty when comparing them, because

93

5. Robust Gaussian Process Regression

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15

10
−4

10
−3

10
−2

10
−1

10
0

Normal
Student−t
Laplace
Mixture Noise

−5 0 5
−3

−2

−1

0

1

2

3

(a) (b) (c)

Figure 5.20.: Comparison of noise models. Panel (a) depicts the probability density functions
of the normal, Student-t, Laplace and a mixture of two normal distributions. To
emphasise the different behaviours in the tails, Panel (b) shows the log of the
probability density functions. Clearly normal noise and Laplace noise show to be
log-concave. Panel (c) shows Huber’s ψ functions (ψ(x) = −∂ ln p(x)/∂x) for the
four noise models.

the observed performances of the methods will depend on the respective initialisation
of parameters or the length of MCMC simulations. For the analytic approximations
(snMLII, mnLAP, mnEP, tVar, lapEP) several restarts were made and results were re-
ported for the solution showing highest (approximate) evidence. The comparisons are
fair (and realistic) in the sense that each method was given only a limited amount of
runtime, which was on the order of several hours per fold for the Boston Housing and
the remote sensing examples.

MCMC sampling in the mixture noise model (mnMCMC) was the computationally
most demanding method in the comparison. A conceptual advantage of MCMC methods
is that inference is performed over the function and all parameters jointly. In sampling
methods problems related to multimodal posterior distributions can be alleviated by
running several shorter chains from different initial states in favour of a single long chain,
which in finite simulation can get stuck in a local mode. However, setting the parameters
in MCMC sampling schemes and inspecting the chains requires some experience.

Approximate inference by Expectation Propagation iterates between approximate in-
ference over the latent function and ML-II estimation of the remaining parameters.
Our implementation suffers from convergence problems in two ways. The first is that
for given parameters EP might not converge. We observed that its convergence be-
haviour highly depends on the values of the parameters, especially for the mixture noise
model (mnEP). The second problem is inherent to the ML-II parameter estimation,
where our gradient ascent method can get caught in local maxima. Doing multiple
runs of the algorithm on the same data sets the respective values of the approximate
evidence, however, provide a reliable indication as to which solution to choose. Note
that for large data sets, e.g. N � 1000, one could explore sparse EP approximations to

94

5.8. Bibliographical Remarks

the posterior process following the lines of Csató and Opper (2002) or Lawrence et al.
(2003).

The variational approximation for the regression model with Student-t noise has
shown to work relatively well in the experiments, although convergence of V can be
slow and the algorithm can converge to sub-optimal local maxima. An advantage of
this approximation is that it is relatively easy to implement and it does not require
to set additional parameters. However, it is difficult to characterise properties of the
approximation relative to the true posterior.

The Laplace noise model is advantageous from a computational point of view, since the
posterior is unimodal and thereby easier to approximate. In practice the Laplace noise
model may give a reasonable compromise between outlier robustness and computational
reliability.

In summary, this chapter introduced and compared several robust models for Gaussian
process regressions. These models constitute a practical way of implementing Gaussian
process regression in situations in which the potential existence of outliers in the data
cannot be ruled out. But the increase in robustness comes with the price of a significant
increase in computational complexity and implementing approximate Bayesian inference
becomes technically challenging.

5.8. Bibliographical Remarks

A large amount of literature on robust Bayesian methods has been published since
the middle of the last century, see for example the overview by Berger (1991) and
the references therein. An early and influential work is Box and Tiao (1962), who
proposed the use of more kurtotic sampling distributions than the normal distribution
for the construction of robust models. O’Hagan (1979) discusses the effects of outliers
in Bayesian models based on the “outlier-prone” and “outlier-resistant” distributions
described by Green (1976). Box (1979) considers robustness from a more conceptual
point of view based on the insight that a mismatch between the model and the data-
generating process is unavoidable in practical data analysis.

Robust frequentist techniques for location parameter estimation have been introduced
by Huber (1964, 1981), developing many useful concepts like the breakdown point and
influence functions. Rousseeuw and Leroy (1987) focus on robust estimation in the
linear regression model including L1 regression. Support Vector Regression has been
introduced by Drucker et al. (1997) and is described in more detail by Vapnik (1999,
ch. 6) and Schölkopf and Smola (2002, ch. 9). Experiments using SVR on the Boston
Housing data—in a different experimental setting—can be found in Schölkopf and Smola
(2002, ch. 9.6).

The scale-mixture of normal distributions has been introduced by Andrews and Mal-
lows (1974). West (1987) has shown that the scale-mixtures of normal distributions
contain the power exponential distributions of Box and Tiao (1962).

The idea of using a mixture of two normal distributions for robust regression can
already be found in Box and Tiao (1968). The approach of having separate models for

95

5. Robust Gaussian Process Regression

regular and outlier observations is also advocated by Jaynes (2003, ch. 21).
The use of Student-t noise in linear regression models has been described by West

(1984) and has been further developed for example by Lange et al. (1989), Geweke
(1993), and Fernandez and Steel (1999). In the context of neural network models
Student-t noise has been used for instance by Briegel and Tresp (2000) and Neal (1996).
The variational approximation described in Section 5.4.1 is based on the work by Tip-
ping and Lawrence (2003, 2005) who describe the variational approximation for robust
regression with Student-t noise in the Relevance Vector Machine (RVM) framework
introduced by Tipping (2001). See also Faul and Tipping (2001) for a related mix-
ture noise model. More general descriptions of variational methods for approximate
Bayesian inference can be found in Jordan et al. (1999), Ghahramani and Beal (2000,
2001), Jaakkola and Jordan (2000), and Beal (2003).

96

6. Assessing Approximations for Binary
Gaussian Process Classification

“What should be done” is almost always more important than “what can
be done exactly”. — Tukey (1954)

In recent years probabilistic classification models based on Gaussian process priors have
attracted much attention in the machine learning community. Whereas inference in the
Gaussian process regression model with Gaussian noise can be done analytically (see
Section 3.2), probabilistic classification using GPs is analytically intractable. Several
approaches to approximate Bayesian inference have been suggested, including Laplace’s
method, Expectation Propagation, variational approximations, mean field methods, and
Markov chain Monte Carlo sampling, some of these in conjunction with generalisation
bounds, online learning schemes and sparse approximations (Neal, 1998a; Williams and
Barber, 1998; Gibbs and MacKay, 2000; Opper and Winther, 2000; Csató and Opper,
2002; Seeger, 2002).

Despite the abundance of recent work on probabilistic GP classifiers, most experi-
mental studies provide only anecdotal evidence, and no clear picture has yet emerged,
as to when and why which algorithm should be preferred. Thus, from a practitioners
point of view it remains unresolved which approximation should be used to implement
probabilistic Gaussian process classification. This chapter is about understanding and
comparing two of the most wide-spread approximations for Gaussian process classifica-
tion: Laplace’s method and Expectation Propagation. The results of these analytic ap-
proximations are compared to computationally more demanding MCMC results, which
become exact in the limit of long running times. Sparse variants of the EP approx-
imation will not be addressed and the focus will be on comparing the two types of
approximation.

Two aspects of the approximation schemes will be examined: Firstly the accuracy of
approximations to the evidence which is of central importance for model selection and
model comparison. In any practical application of GPs in classification, usually mul-
tiple parameters of the covariance function (hyper-parameters ψ) have to be handled,
while in its basic form the likelihood has no additional parameters. As described in
Section 2.3, Bayesian model selection provides a consistent framework for setting such
parameters. Therefore, it is essential to evaluate the accuracy of the evidence approxi-
mations as a function of the hyper-parameters in order to assess the practical usefulness
of the approach. The related question of whether the evidence correlates well with the
generalisation performance cannot be answered in general but depends on the appro-
priateness of the model for a given data set, as described in Section 2.3.2. However, the
issue will be assessed empirically for two data-sets.

97

6. Assessing Approximations for Binary Gaussian Process Classification

−6

−4

−2

0

2

4

x

f

−5 0 5

0

1

f

Φ
(f

)

0

1

x

Φ
(f

)

Figure 6.1.: Illustration of the Gaussian process classification model. The left panel depicts an
unconstrained latent function f(x) which is mapped to the unit interval by using
the probit function (centre panel) which results in p(y=1|x) = Φ(f(x)) in the right
panel.

Secondly, the quality of the approximate probabilistic predictions will be assessed.
In the past, the probabilistic nature of the GP predictions have not received much
attention, the focus being mostly on classification error rates. This unfortunate state of
affairs is caused primarily by typical benchmarking problems being considered outside of
a realistic context. The ability of a classifier to produce class probabilities or confidences
have obvious relevance in most areas of application, e.g. medical diagnosis and ROC
analysis. The predictive distributions of the approximate methods will be evaluated
and compared to the ones obtained by extensive MCMC simulations.

6.1. The Gaussian Process Model for Binary Classification

This section describes the Gaussian process model for binary classification (GPC). Let
y ∈ {−1, 1} denote the class label corresponding to on an input x. The GPC model
is discriminative in the sense that it models p(y|x) which for fixed x is a Bernoulli
distribution. The probability of success p(y=1|x) is related to an unconstrained latent
function f(x) which is mapped to the unit interval by a sigmoidal transformation. Most
common are the logit :

p(y=1|x) =
1

1 + exp(−f(x))
(6.1)

or the probit function:
p(y=1|x) = Φ(f(x)) (6.2)

where Φ denotes the cumulative density function of the standard normal distribution
such that Φ(f(x)) = 1

2(1 + erf(f(x)/
√

2)). For reasons of analytic convenience (for the
EP algorithm) only the probit model will be considered in the following, see Figure 6.1.

Given the latent function, the class labels are independent Bernoulli variables, so the
joint likelihood factorises:

p(y|f) =
m∏

i=1

p(yi|f(xi)) = p(y|f) (6.3)

98

6.1. The Gaussian Process Model for Binary Classification

and depends on f only through its value at the observed inputs. For the probit model
the individual likelihood terms become

p(yi|fi) = Φ(fi)
yi+1

2 + (1− Φ(fi))
yi−1

2 = Φ(yifi) (6.4)

due to the symmetry of Φ. Note that the likelihood has no additional parameters. As
prior over functions f we again use a zero-mean Gaussian process prior. The zero mean
function encodes that a priori p(y= 1|x) = 1/2. Note that a non-zero mean could be
used to implement a bias towards one of the classes. As described in Section 3.3 the
choice of mean and covariance function can be used to encode further beliefs about the
characteristics of the latent function.

The posterior distribution over the latent function values f for given hyper-parameters
ψ becomes:

p(f |D,ψ) =
p(y|f) p(f |X,ψ)

p(D|ψ)
=
N (f |0,K)
p(D|ψ)

m∏
i=1

Φ(yifi) (6.5)

which is unimodal but non-Gaussian due to the log-concavity of the probit function.
Properties of the posterior will be further described in Section 6.2.

The main purpose of classification models is to predict the class label y∗ for test inputs
x∗. The distribution of the corresponding latent function value f(x∗) can be computed
using eq. (3.5) by averaging over the posterior uncertainty:

p(f∗|D,ψ,x∗) =
∫
p(f∗|f ,X,x∗,ψ) p(f |D,ψ) df , (6.6)

and by computing the expectation:

p(y∗|D,ψ,x∗) =
∫
p(y∗|f∗) p(f∗|D,ψ,x∗) df∗ (6.7)

the predictive distribution of y∗ is obtained, which is again a Bernoulli distribution. The
first term of the right hand side of eq. (6.6) is Gaussian and obtained by conditioning
the joint Gaussian prior distribution, which is given by eq. (3.7).

Unfortunately we cannot compute the posterior p(f |D,ψ), the predictive distribu-
tion p(y∗ = 1|D,ψ,x∗), and the evidence p(D|ψ) analytically, so approximations are
needed. As described in Chapter 4 approximations for Gaussian process models are
either based on a multivariate normal approximation q(f |D,ψ) = N (f |m,A) to the
posterior p(f |D,ψ) or involve Markov chain Monte Carlo sampling.

Introducing the approximate Gaussian posterior N (f |m,A) into eq. (6.6) gives the
approximate posterior predictive distribution p(f∗|D,ψ,x∗) ≈ N (f∗|µ∗, σ2

∗) where µ∗ =
m∗(x) and σ2

∗ = k∗(x,x) as given by eqs. (4.5). Using this approximation, for the probit
likelihood the predictive probability (6.7) of x∗ belonging to class 1 can be computed

99

6. Assessing Approximations for Binary Gaussian Process Classification

x
1

x 2

0

0.2

0.4

0.6

0.8

x
2x

1

p(
y=

1|
x)

−20

−10

0

10

x
2

x
1

E
[f(

x)
]

(a) (b) (c)

Figure 6.2.: Two dimensional toy example of Gaussian process classification. Panel (a) shows
a binary classification problem where black dots correspond to observations of class
y=1 and white dots are labelled y=−1. The contour lines describe the posterior
probability of p(y = 1|x) which is also plotted in Panel (b). Panel (c) show the
posterior mean latent function (found by the EP approximation). The Gaussian
process prior uses a squared exponential covariance function (3.36) and the hyper-
parameters ψ where selected by maximising the EP approximation to the evidence.
Note that away from the observations the mean of the latent function value would be
zero, as in the prior, such that the predictive distribution would be p(y=1|x) = 1/2.

analytically:

q(y∗=1|D,ψ,x∗) =
∫

Φ(f∗)N (f∗|µ∗, σ2
∗) df∗ = Φ

(
µ∗√

1 + σ2
∗

)
, (6.8)

see Rasmussen and Williams (2006, ch. 3.9) for a derivation. The parameters m and A
of the multivariate normal approximation to the posterior can be found using Laplace’s
method or by Expectation Propagation. Both methods also give an approximate value of
the marginal likelihood and so ML-II hyper-parameter optimisation can be implemented.

We implemented Laplace’s method for the GPC model as described in Section 4.1,
details can also be found in Appendix A.2. Since the probit likelihood is log-concave, the
posterior is unimodal and the second derivative of the log likelihood is non-positive, such
that the W matrix is always positive semi-definite in eq. (4.10). This ensures that the
approximate posterior covariance A is positive semi-definite in Laplace’s approximation,
which is in fact always the case for log-concave likelihoods.

In order to implement Expectation Propagation as described in Section 4.2, the zeroth,
first, and second moments (4.22) of the product of likelihood and approximate cavity

mk =
∫
fk

i p(yi|fi) q\i(fi) dfi =
∫
fk

i Φ(yifi)N (fi|µ\i, σ2
\i) dfi (6.9)

have to be computed for k = 0, 1, 2. For the probit model these can be found analytically:

100

6.2. Structural Properties of the Posterior

−4 0 4 8
0

0.05

0.1

0.15

0.2

−4 0 4 8
0

0.2

0.4

0.6

0.8

1

f

Likelihood p(y|f)
Prior p(f)
Posterior p(f|y)
Laplace p(f|y)
EP p(f|y)

��

���

�
(a) (b)

Figure 6.3.: Panel (a) provides a one-dimensional illustration of approximations. The prior
N (f |0, 52) combined with the probit likelihood (y = 1) results in a skewed posterior.
The likelihood uses the right axis, all other curves use the left axis. In Panel (b)
we caricature a high dimensional zero-mean Gaussian prior as an ellipse. The gray
shadow indicates that for a high dimensional Gaussian, most of the mass lies in a
thin shell. For large latent signals, the likelihood essentially cuts off regions which
are incompatible with the training labels (hatched area), leaving the upper right
orthant as the posterior. The dot represents the mode of the posterior, which is
relatively unaffected by the truncation and remains close to the origin.

m0 = Φ(z) where z =
yiµ\i√
1 + σ2

\i

(6.10a)

m1 = µ\i +
σ2
\iN (z|0, 1)

Φ(z)yi

√
1 + σ2

\i

(6.10b)

m2 = 2µ\im1 − µ2
\i + σ2

\i −
zσ4

\iN (z|0, 1)
Φ(z)(1 + σ2

\i)
. (6.10c)

Although the convergence of EP has not been proven formally, for the probit GPC
model in various experiments it always converged empirically without exception. Fig-
ure 6.2 illustrates the GPC solution for a two dimensional toy example with m = 40
observations.

6.2. Structural Properties of the Posterior

The previous sections described the GPC model. This section provides more details on
the properties of the posterior which is compared to the structure of Laplace’s and the
EP approximation.

Figure 6.3(a) provides a one-dimensional illustration. The univariate normal prior

101

6. Assessing Approximations for Binary Gaussian Process Classification

combined with the probit likelihood (y = 1) results in a skewed posterior. Intuitively,
the likelihood cuts off the f values which have the opposite sign of y. The mode
of the posterior remains relatively close to the origin, while the mass is placed over
positive values in accordance with the observation. Laplace’s approximation peaks at
the posterior mode, but places far too much mass over negative values of f and too
little over large positive values. The EP approximation attempts to match the first two
posterior moments, which results in a larger mean and a more accurate placement of
probability mass compared to Laplace’s approximation.

Structural properties of the posterior in higher dimensions can best be understood by
examining its construction. The prior is a correlated m-dimensional Gaussian N (f |0,K)
centred at the origin. Each likelihood term p(yi|fi) softly truncates the half-space from
the prior that is incompatible with the observed label, see Figure 6.3(b). The resulting
posterior is unimodal and skewed, similar to a multivariate Gaussian truncated to the
orthant containing y. The mode of the posterior remains close to the origin, while
the mass is placed in accordance with the observed class labels. Additionally, high
dimensional Gaussian distributions exhibit the property that most probability mass is
contained in a thin ellipsoidal shell—depending on the covariance structure—away from
the mean (MacKay, 2003, ch. 29.2). Intuitively this occurs since in high dimensions
the volume grows extremely rapidly with the radius. As an effect the mode becomes
less representative (typical) for the prior distribution as the dimension increases. For
the GPC posterior this property persists: the mode of the posterior distribution stays
relatively close to the origin, still being unrepresentative for the posterior distribution,
while the mean moves towards the mass of the posterior making mean and mode differ
significantly.

As described, one cannot generally assume the posterior to be close to Gaussian, as in
the often studied limit of low-dimensional parametric models with large amounts of data,
see for example Schervish (1997, ch. 7.4.2) or O’Hagan (1994, chs. 3.23–3.25). Therefore
in GPC one must be aware of making a Gaussian approximation to a non-Gaussian
posterior. Laplace’s approximation is centred around the mode of the posterior, which
lies in the correct orthant but too close to the origin, such that the approximation will
overlap with regions having practically zero posterior mass. As an effect the amplitude
of the approximate latent posterior GP will be underestimated systematically, leading
to overly cautious predictive distributions.

The EP approximation does not rely on a local expansion, but assumes that the
marginal distributions of the posterior can be well approximated by Gaussians. As
described above, the posterior is similar to a high dimensional multivariate normal
distribution truncated to one orthant. Although the marginals of such a distribution
are also truncated, they can be surprisingly similar to a Gaussian.

As a low-dimensional illustration Figure 6.4(a-b) shows the marginal distribution of a
bivariate normal distribution. Depending on the covariance structure, the mode of the
marginal distribution moves away from the origin and the resulting distribution appears
similar to a truncated univariate Gaussian.

In order to inspect the marginals of a truncated high-dimensional multivariate normal
distribution we made an additional synthetic experiment. We constructed a 767 dimen-

102

6.3. Experiments

0
1

2
3 0

0.5

1

1.5

2

2.5

3

0
x

2

x
1

p(
x 1,x

2)

0 1 2 3
x

1
p(

x 1)
0 2 4 6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x
i

p(
x i)

(a) (b) (c)

Figure 6.4.: Panel (a) illustrates a bivariate normal distribution truncated to the positive quad-
rant. The lines describe slices through the probability density function for fixed
x2 values. Panel (b) shows the marginal distribution of p(x1) (thick line) obtained
by (numerical) integration over x2, which—intuitively speaking—corresponds to an
averaging of the slices (thin lines) from Panel (a). Panel (c) shows a histogram of
samples of a marginal distribution of a 767-dimensional truncated Gaussian. The
line describes a Gaussian with mean and variance estimated from the samples. Note
that the particular choice of using a 767-dimensional distribution is motivated by
a later experiment shown in Figure 6.10.

sional Gaussian N (x|0,C) with a covariance matrix having one eigenvalue of 100 with
eigenvector 1, and all other eigenvalues are 1. We then truncate this distribution such
that all xi ≥ 0. Note that the mode of the truncated Gaussian is still at zero, whereas
the mean has moved towards the remaining mass. Metropolis-Hastings sampling was
used to generate samples from this truncated multivariate distribution. Figure 6.4(c)
shows a normalised histogram of samples from a marginal distribution of one xi. The
samples agree very well with a Gaussian approximation. Note that Laplace’s method
would be completely inappropriate for approximating a truncated multivariate normal
distribution.

In order to validate the above arguments we will use Markov chain Monte Carlo
methods to generate samples from the GPC posterior and also to estimate the marginal
likelihood.

6.3. Experiments

In this section we compare and inspect approximations for GPC using various bench-
mark data sets. The primary focus is not to optimise the absolute performance of GPC
models but to compare the relative accuracy of approximations and to validate the
arguments given in Section 6.2.

In all the GPC experiments we use an isotropic squared exponential covariance func-
tion of the form:

k(x,x′,ψ) = σ2
s exp

(
− 1

2`2

∥∥x− x′
∥∥2)

, (6.11)

103

6. Assessing Approximations for Binary Gaussian Process Classification

such that ψ = [σ2
s , `] where again σ2

s denotes the signal variance and ` will be referred
to as the characteristic length-scale. Note that for many classification tasks it may
be reasonable to use an individual length scale parameter for every input dimension
(ARD), i.e. an anisotropic covariance function eq. (3.37). Nevertheless, for the sake of
presentability we use the above covariance function and we believe the conclusions to
be independent of this choice.

Both analytic approximations have a computational complexity which is cubic O(m3)
as it is common among non-sparse GP models due to inversions of [m ×m] matrices.
In our implementations Laplace’s method and EP need similar running times, on the
order of a few minutes for several hundred data-points.

In order to assess the approximations of the evidence we make use of Annealed Im-
portance Sampling (AIS) as described in Section 4.3.5. Making AIS work efficiently
requires some fine-tuning and a single estimate of p(D|ψ) can take several hours for
data sets of a few hundred examples, but this could conceivably be improved upon. In
all the experiments τ(t) = (t/T)4 for t = 0, . . . , 8000 was used. Using this temperature
schedule we found that the sampling spends most of its efforts at temperatures with high
variance of the individual ratios (4.45) such that the variance of the resulting estimate
(4.46) is relatively small. Note that this was only examined on the data sets used below
and only for certain values of ψ. In the experiments we combine the estimates of R = 3
runs of Thermodynamic Integration to an AIS estimate of the log evidence.

6.3.1. Synthetic Classification Problem

The first experiment is a synthetic classification problem with scalar inputs. The obser-
vations for class 1 were generated from two normal distributions with means −6 and 2,
each with a standard deviation of 0.8. For class −1 the mean is 0 and the same standard
deviation was used.

We computed Laplace’s and the EP approximation for the ML-II estimated value
of ψ that maximised Laplace’s approximation to the marginal likelihood (4.12). Note
that this particular choice of ψ should be in favour of Laplace’s method. Figure 6.5
shows the resulting classifiers and the underlying latent functions. In Figure 6.5(a) the
approximations to p(y|x) appear to be similar for positive x but we observe an appre-
ciable discrepancy for negative values. Laplace’s approximation gives an unreasonably
high predictive uncertainty, which is caused by a significant overlap of the approxi-
mate predictive distribution p(f∗|D,ψ,x∗) ≈ N (f∗|µ∗, σ2

∗) with zero as shown in Figure
6.5(b). However, note that both approximations agree very accurately on the sign of
the predictive mean.

6.3.2. Ionosphere Data

The Ionosphere data origins from a real radar study of free electrons in the ionosphere
and was first analysed by Sigillito et al. (1989) using neural networks. The data consists
of 351 examples in n = 34 dimensions. We standardised the data to zero mean and unit
variance. The training set is a random subset of size m = 200 leaving the remaining

104

6.3. Experiments

−8 −6 −4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

p(
y

=
 1

|x
)

Class 1
Class −1
Laplace q(y|X)
EP q(y|X)
True p(y|X)

(a)

−8 −6 −4 −2 0 2 4
−10

−5

0

5

10

15

x

f(
x)

Laplace q(f|X)
EP q(f|X)

(b)

Figure 6.5.: Synthetic classification problem: Panel (a) illustrates the classification task, the
generating p(y=1|x) and two approximations thereof obtained by Laplace’s method
and EP. Panel (b) illustrates the predictive distribution of latent function values
showing the mean µ∗ and the range of ±2σ∗.

m∗ = 151 instances out as a test set.
An exhaustive investigation on a regular [21 × 21] grid of values for the log hyper-

parameters is done. For each ψ on the grid the approximated log evidence by Laplace’s
method (4.12), EP (4.26), and AIS is computed. Additionally the predictive perfor-
mance on the test set is evaluated. As performance measure we use the average in-
formation in bits of the predictions about the test targets in excess of that of random
guessing. Let p∗ = p(y∗=1|x∗) be the model’s prediction, then we average:

0 0.5 1

0
1

p*

Figure 6.7.:
The information
(6.12) as a func-
tion of p∗ for
y = 1.

I(p∗i , yi) = yi+1
2 log2(p

∗
i) + 1−yi

2 log2(1− p∗i) + 1 (6.12)

over all test cases. This measure equals 1 bit if the true label is predicted with absolute
certainty, 0 bits for random guessing and takes negative values if the prediction gives
higher probability to the wrong class, see also Kononenko and Bratko (1991). Results
are shown in Figure 6.6.

For all three approximation techniques we see an agreement between evidence esti-

105

6. Assessing Approximations for Binary Gaussian Process Classification

L
ap

la
ce

’s
A

pp
ro

xi
m

at
io

n
−200

−150

−120

−120 −100

−100

−90

−80
−75

−70

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Log marginal likelihood

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

0.1
0.1

0.2

0.2

0.3

0.3

0.4 0.5

0.55

0.55

0.6

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Information about test targets in bits

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

(1a) (1b)

E
xp

ec
ta

ti
on

P
ro

pa
ga

ti
on

−120

−120

−100

−100

−90

−90

−80

−75

−75

−70

−65

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Log marginal likelihood

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

0.1

0.1

0.2
0.2

0.3

0.3
0.4

0.4
0.5

0.5

0.55

0.55

0.6
0.65

0.68

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Information about test targets in bits

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

(2a) (2b)

M
C

M
C

Sa
m

pl
in

g

−120

−120

−100
−100

−90

−90

−80

−75

−75

−70

−65

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Log marginal likelihood

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4
0.5

0.5

0.55

0.55

0.6

0.65

0.68

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Information about test targets in bits

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

(3a) (3b)

Figure 6.6.: Comparison of marginal likelihood approximations and predictive performances
for the ionosphere data set. The first column shows the estimates of log marginal
likelihood, while the second column shows the performance on the test set. The
first row contains results obtained Laplace’s approximation, second row gives the
corresponding results for EP and the third row gives MCMC results.

106

6.3. Experiments

mates and test performance, which justifies the use of ML-II parameter estimation. But
the shape of the contours and the values differ between the methods. The contours for
Laplace’s method appear to be slanted compared to EP. However, most remarkable is
that the evidence estimates of EP and AIS agree very well.1 The EP predictions contain
as much information about the test cases as the MCMC predictions and significantly
more than for Laplace’s method.

Note that for small signal variances (roughly ln(σ2
s) < 0) Laplace’s method and EP

give very similar results. A possible explanation is that for small signal variances the
likelihood does not truncate the prior but only down-weights the tail that disagrees with
the observation. As an effect the posterior will be less skewed and both approximations
will lead to relatively similar results.

6.3.3. USPS Digits

The USPS digit database contains images of hand-written digits scanned from envelopes
and originates from a study described by Hull (1994). Each image is of size [16 × 16]
pixels such that the inputs x are n = 256 dimensional. A binary sub-problem from the
USPS digit data is defined by considering the problem of discriminating images showing
the digits 3 and 5. Because the training and test partitions in the original data differ
significantly, we pooled cases and randomly divided them into new sets, with m = 767
cases for training and m∗ = 773 for testing.

The experiments described in the previous section are repeated for a slightly modified
grid of ψ values. Examining the results shown in Figure 6.8 leads to similar conclusions
as for the Ionosphere data mentioned above. The EP and MCMC approximations agree
very well, given that the evidence comes as a 767 dimensional integral.

We now take a closer look at the approximations p(f |D,ψ) ≈ N (f |m,A) for a given
value of ψ. The values ln(σ) = 3.35 and ln(`) = 2.85 were chosen which are between
the ML-II estimates of EP and Laplace’s method. Comparing the respective means
of the approximations in Figure 6.9(a) we see that the magnitude of the means from
the Laplace approximation is much smaller than from EP. The relation appears to be
roughly linear. Figure 6.9(b) compares the elements of W (Laplace’s method) and Σ−1

(EP) which cause the difference in the approximations (4.10) and (4.15) of the posterior
covariance matrix A. It shows that the relatively large entries in W are larger than the
corresponding entries in Σ−1, but in total W contains more small values than Σ−1. The
exact effect on the posterior covariance is difficult to characterise due to the inversion,
but intuitively the smaller the values the more the posterior covariance will be similar
to the prior.

Figures 6.9(c–d) compare the predictive uncertainty p∗ resulting from the respective
approximations to MCMC predictions. For both training and test set we observe that
EP and MCMC agree very well, while Laplace’s method shows over-conservative (too
uncertain) predictions.

1Note that the agreement between the two seems to be limited by the accuracy of the AIS runs, as
judged by the regularity of the contour lines; the tolerance is less than one unit on a (natural) log
scale.

107

6. Assessing Approximations for Binary Gaussian Process Classification

L
ap

la
ce

’s
A

pp
ro

xi
m

at
io

n

−200

−200

−150

−150

−130

−130

−115

−115

−105

−100

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Log marginal likelihood

2 3 4 5

0

1

2

3

4

5

0.25

0.25

0.5

0.5
0.70.7

0.8

0.8

0.84

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Information about test targets in bits

2 3 4 5

0

1

2

3

4

5

(1a) (1b)

E
xp

ec
ta

ti
on

P
ro

pa
ga

ti
on

−200

−200

−160

−160

−130

−115

−105

−105

−100
−95

−92

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Log marginal likelihood

2 3 4 5

0

1

2

3

4

5

0.25
0.5

0.7

0.7

0.8

0.8 0.84
0.84

0.860.86

0.88

0.89

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Information about test targets in bits

2 3 4 5

0

1

2

3

4

5

(2a) (2b)

M
C

M
C

Sa
m

pl
in

g

2 3 4 5

0

1

2

3

4

5

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Log marginal likelihood

−92
−95

−100
−105

−105

−115

−130

−160

−160

−200

−200

0.25

0.5

0.7

0.7

0.8

0.84

0.84

0.86

0.86

0.88

0.89

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Information about test targets in bits

2 3 4 5

0

1

2

3

4

5

(3a) (3b)

Figure 6.8.: Comparison of evidence (marginal likelihood) approximations and predictive per-
formances of the different methods for classifying 3s vs. 5s from the USPS image
database. The first column shows the estimates of log marginal likelihood, while
the second column shows the performance on the test set. The first row contains
results obtained by Laplace’s approximation, second row gives the corresponding
results for EP and the third row reports MCMC results.

108

6.3. Experiments

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

m Laplace

m
 E

P

Class 5
Class 3

−30 −20 −10 0
−20

−15

−10

−5

0

ln(w) Laplace

−
ln

(σ
2)

E
P

Class 5
Class 3

(a) (b)

0 0.5 1
0

0.5

1

p* MCMC

p*
 L

ap
la

ce
 &

 E
P

Laplace p*
EP p*

0 0.5 1
0

0.5

1

p* MCMC

p*
 L

ap
la

ce
 &

 E
P

Laplace p*
EP p*

(c) (d)

Figure 6.9.: Comparison of approximations p(f |D,ψ) ≈ N (f |m,A) for a given value of ψ.
Panel (a) shows a comparison of the means mi. In Panel (b) we compare the ele-
ments of the diagonal matrices Wii and Σii. Panels (c) and (d) compare predictions
p∗ obtained by MCMC (abscissa) to predictions obtained from Laplace’s method
and EP (ordinate). Panel (c) shows predictions on training cases and (d) shows
predictions on test cases.

109

6. Assessing Approximations for Binary Gaussian Process Classification

−15 −10 −5 0 5
0

0.05

0.1

0.15

0.2

f

MCMC samples
Laplace p(f|D)
EP p(f|D)

−40 −30 −20 −10 0 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

f

MCMC samples
Laplace p(f|D)
EP p(f|D)

(a) (b)

Figure 6.10.: Two marginal distributions p(fi|D,ψ) from the posterior. For Panel (a) we picked
the fi for which the posterior marginal is maximally skewed (see again Figure 6.3).
The true posterior is approximated by a normalised histogram of 9000 samples of
fi obtained by Hybrid Monte Carlo sampling. Panel (b) shows a case where EP
and Laplace’s approximation differ significantly.

We now inspect the marginal distributions p(fi|D,ψ) of single latent function val-
ues under the posterior approximation. We use Hybrid Monte Carlo to generate 9000
samples from the posterior of f for the above ψ. For Laplace’s method and EP the
approximated distribution is N (fi|mi, Aii) where m and A are found by the respective
approximation techniques.

In general we observe that the marginal distributions of MCMC samples agree very
well with the respective marginal distributions of the EP approximation. For Laplace’s
approximation we find the mean to be underestimated and the marginal distributions
to overlap with zero far more than the EP approximations. Note that this corroborates
the conjectures made in Section 6.2 about the structure of the posterior and the prop-
erties of the approximations. Figure 6.10(a) displays the marginal distribution and its
approximations for which the MCMC samples show maximal skewness. Figure 6.10(b)
shows a typical example where the EP approximation agrees very well with the MCMC
samples. This particular example was chosen because under the EP approximation
p(yi =1|D,ψ) < 0.1% but Laplace’s approximation gives p(yi =1|D,ψ) ≈ 18%. In the
experiment we saw that the marginal distributions of the posterior typically agree very
well with a Gaussian approximation.

6.3.4. A Variational Approximation to the Evidence

In the context of sparse EP approximations Seeger (2003) proposed a lower bound on the
evidence. Several authors maximise this lower bound instead of maximising eq. (4.26)
for ML-II hyper-parameter estimation with EP approximation (Seeger, 2004; Kim and
Ghahramani, 2003; Chu and Ghahramani, 2005). The bound is obtained from the (EP)

110

6.3. Experiments

−250
−200

−150

−120

−120

−100

−100

−90

−90

−80

−80

−75

−75

−70

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)
Lower bound on log marginal likelihood

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

−200

−200

−160

−160

−130

−130

−115

−115

−105

−100

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Lower bound on log marginal likelihood

2 3 4 5

0

1

2

3

4

5

(a) (b)

Figure 6.11.: Panel (a) shows the lower bound (6.13c) on the marginal likelihood for the Iono-
sphere data set (compare to left column of Figure 6.6). Panel (b) shows the value
of the lower bound for the USPS 3’s vs. 5’s (compare to left column of Figure 6.8).

approximation of the posterior using Jensen’s inequality:

ln p(D|ψ) = ln
∫
p(y|f)N (f |0,K) df (6.13a)

≥
∫
N (f |m,A) ln

p(y|f)N (f |0,K)
N (f |m,A)

df (6.13b)

=
m∑

i=1

∫
N (fi|mi, Aii) lnΦ(yifj) dfi (6.13c)

−1
2m

>K−1m− 1
2 tr(K−1A) + 1

2 ln
∣∣K−1A

∣∣+ m
2 .

Note that the one dimensional integrals in eq. (6.13c) have to be solved using numerical
integration methods.

In Figure 6.11 we show the value of the lower bound as a function of the hyper-
parameters for the Ionosphere and USPS data described in the previous sections. Inter-
estingly, for both data sets the lower bounds appear to be more similar to the approxi-
mate evidence obtained by Laplace’s method than by EP (compare to Figures 6.6(1a)
and 6.8(1a)). However, the maxima of the lower bounds correspond to sub-optimal
predictive performances compared to the maxima of the approximate evidence (4.26)
(compare to Figures 6.6(2a-b) and 6.8(2a-b)). Therefore for non-sparse EP approxima-
tions the use of eq. (4.26) seems advisable, which is also computationally advantageous.

111

6. Assessing Approximations for Binary Gaussian Process Classification

6.3.5. Benchmark Data Sets

In this section we compare the performance of Laplace’s method and Expectation Prop-
agation for GPC on several well known benchmark problems for binary classification.

The Ionosphere, the Wisconsin Breast Cancer, and the Sonar data sets are taken
from Hettich et al. (1998). The Leptograpsus Crabs and the Pima Indians Diabetes
data sets were described by Ripley (1996). Note that for the Crabs data set we use the
sex (not the colour) of the crabs as target variable, by which it becomes a slightly more
difficult task. The largest data set in the comparison are the 3’s vs. 5’s from the USPS
hand-written digits database described above.

We standardise the data to zero mean and unit variance. All data sets are randomly
split into 10 folds of which one at a time is left out as a test set to measure the predictive
performance of a model trained (or selected) on the remaining nine folds.

For GPC we implement model selection by ML-II hyper-parameter estimation. We
use a conjugate gradient optimisation routine to find a minimum

ψ? = argmin
ψ

− ln q(D|ψ) (6.14)

of the negative log evidence approximated by Laplace’s method (4.12) and EP (4.26)
respectively. For the respective ψ? the approximations N (f |m,A) are computed and
predictions are made for the left out test set. From the predictive distributions the
average information (6.12) is computed and averaged over the ten folds, i.e. we obtain
a cross-validation estimate. Furthermore the average error rate E is reported, which
equals the average percentage of erroneous class assignments if prediction is understood
as a decision problem with symmetric loss (thresholding the predictive uncertainty at
1/2).

In order to have a better impression of the absolute performance we also report the
results of Support Vector Machines (SVMs) (Schölkopf and Smola, 2002). We use the
LIBSVM implementation of the soft-margin C-SVM provided by Chang and Lin (2001),
with a radial basis function kernel which is equivalent to the covariance function (6.11)
up to the signal variance parameter. The values of the length scale parameter ` and the
regularization parameter C are found by an inner loop of 5-fold cross-validation on the
nine training folds respectively. We manually refine the parameter grids and repeat the
cross-validation procedure until the performance stabilises.

The Support Vector Machine is basically a geometric approach, but we use the tech-
nique described by Platt (2000) to estimate predictive probabilities. This is implemented
by fitting a sigmoidal mapping from the unthresholded output of the SVM to the unit
interval. Let

fSVM(x) =
∑
i∈SV

yi ai k(xi,x) + b (6.15)

denote the “unthresholded” output of an SVM, where the sum is over all support vectors.
Usually only the sign of fSVM(x) is used as a point estimate of y∗. Instead, here the idea
is to find a mapping of f(x) to the interval [0, 1] such that the information (6.12) of the

112

6.3. Experiments

Table 6.1.: Results for benchmark data sets. The first three columns give the name of the data
set, number of observation m and dimension of inputs n. For Laplace’s method
and EP the table reports the average error rate E, the average information I (6.12)
and the average length ‖m‖ of the mean vector of the Gaussian approximation. For
SVMs the error rate and the average information about the test targets are reported.

Laplace EP SVM
Data Set m n E I ‖m‖ E I ‖m‖ E I
Ionosphere 351 34 8.84% 0.649 49.96 7.99% 0.719 124.94 5.69% 0.739
Wisconsin 683 9 3.21% 0.870 62.62 3.21% 0.871 84.95 3.21% 0.861

Pima Indians 768 8 22.77% 0.319 29.05 22.63% 0.320 47.49 23.01% 0.299
Crabs 200 7 2.0% 0.682 112.34 2.0% 0.908 2552.97 2.0% 0.047
Sonar 208 60 15.36% 0.443 26.86 13.85% 0.541 15678.55 11.14% 0.571
USPS 1540 256 2.27% 0.852 163.05 2.21% 0.905 22011.70 2.01% 0.921

predictions is maximised. Platt (2000) proposes to use a logit model

p∗(x) =
1

1 + exp(αfSVM(x) + β)
(6.16)

and to estimate the parameters α and β by using eq. (6.12) as a likelihood, i.e. the
log likelihood of a Bernoulli distribution. Note that for the estimation of α and β a
separate data set has to be used, which has been left out from the training data. In
our experiments the mapping is estimated on the respective test set in the inner loop
of 5-fold cross-validation in which we seek for the parameters of the SVM.

Results are summarised in Table 6.1. Comparing Laplace’s method to EP the latter
shows to be more accurate both in terms of error rate and information. While the error
rates are relatively similar the predictive distribution obtained by EP shows to be more
informative about the test targets. As to be expected from previous discussions, the
length of the mean vector ‖m‖ shows much larger values for the EP approximations.
Comparing GPC with EP and SVMs the results are mixed. It could be speculated that
the SVM performs better if the input dimension n is large, but in fact the experiments
are too few and the results too close to draw any conclusions of this kind.

At first sight it may seem surprising that Laplace’s method gives relatively similar
error rates compared to EP. Note that for both methods the error rate only depends on
the sign of the latent mean function at the test locations, which in turn depend on m
only. Therefore the error rate is less sensitive to the accuracy of the approximation to
the posterior, but of course depends on the ML-II estimated hyper-parameters, which
differ between the methods. Also in Figure 6.5(b) it can be observed that the latent
mean functions differ but their sign matches very accurately.

For the Crabs data set all methods show the same error rate but the information
content of the predictive distributions differs dramatically. For some test cases the SVM
predicts the wrong class with large certainty. Because the mapping of the unthresholded
output of the SVM to the predictive probability is estimated from a left out set, the

113

6. Assessing Approximations for Binary Gaussian Process Classification

mapping can be poor if too few errors are observed on this, leading to over-confident
predictions.

6.3.6. Excursion on Label Regression

Among all Gaussian process models the regression model with normal noise stands out
since the evidence and the posterior process can be computed analytically, as described
in Section 3.2. Compared to the binary classification model this makes it a computa-
tionally attractive procedure and one could be tempted to misuse this model in the
classification setting.

Ignoring the discrete nature of the labels y ∈ {−1, 1} one could use a Gaussian
process regression model with normal noise and even use ML-II to make point estimates
of θ and ψ. This procedure will be referred to as label regression (LR) or least-squares
classification (Rifkin and Klautau, 2004). For predicting the class label of a test instance
y∗ a heuristic approach is to use the sign of the posterior mean function

y∗(x) = sign(m∗(x)) (6.17)

where m∗(x) is given by eq. (3.12a). Note that one could also use a similar method as
proposed by Platt (2000) for the Support Vector Machine to estimate a kind of predictive
uncertainty of y∗.

From a Bayesian perspective the assumption of normal noise is incomprehensible
since it does not constitute a reasonable generative model of the data. However, the
method often works surprisingly well in practice. Table 6.2 presents error rates obtained
by label regression on the previously described benchmark data sets, again using the
isotropic squared exponential covariance function (6.11). It can be observed that the
average error rate obtained by label regression is worse than for the probit model on the
Ionosphere and Wisconsin data sets, while for the Pima Indians and the Crabs data sets
the performance is similar. But for the (higher dimensional) Sonar problem we observe
a lower error rate and especially for the USPS digits it is almost a surprising reduction
of 50% compared to the probit model with EP approximation.

From a Bayesian point of view these results are surprising since the model—as a
generative model—seems by far less appropriate for the binary classification task. The
phenomenon could be explained as an effect of severe model mismatch, especially for
the USPS data. For this kind of data, using a covariance function based on pixel-wise
squared distance is probably very inappropriate for describing the similarity between
images. Moreover, using the squared exponential covariance function corresponds to a
strong prior belief about the smoothness of the latent function. Thereby it is reasonable
to assume that the GPC model as well as the label regression approach are both unsuited
for describing the data generating process, but label regression accidentally happens to
work better.

A more technical insight can be found by relating label regression to Fisher’s (1936)
linear discriminant analysis via minimum squared error procedures as described by Duda
and Hart (1973, ch. 5.8.2). Although leaving the Bayesian framework, these methods

114

6.4. Conclusions & Discussion

Table 6.2.: Further error rates for benchmark data sets. The first three columns give the
name of the data set, number of observation m and dimension of inputs n. All
error rates are estimates obtained by 10 fold cross-validation. The error rates for
Laplace’s approximation, EP and Support Vector Machines are taken from Table
6.1. Additionally the results of k-nearest neighbour classification (kNN) are shown,
where the number of neighbours is found using cross-validation on the training set
respectively. The last column shows the error rates obtained by label regression
(LR).

Laplace EP SVM kNN LR
Data Set m n E E E E E

Ionosphere 351 34 8.84% 7.99% 5.69% 12.63% 10.54%
Wisconsin 683 9 3.21% 3.21% 3.21% 3.21% 4.23%

Pima Indians 768 8 22.77% 22.63% 23.01% 24.69% 22.87%
Crabs 200 7 2.0% 2.0% 2.0% 5.0% 2.0%
Sonar 208 60 15.36% 13.85% 11.14% 13.93% 11.29%

USPS 3’s vs. 5’s 1540 256 2.27% 2.21% 2.01% 3.12% 1.23%

have a geometrical interpretation in the weight-space view, see Section 3.4.1. In the
context of kernel machines this approach is also known as kernel Fisher discriminant
analysis (Mika et al., 1999), least-squares Support Vector Machines (Suykens and Vande-
walle, 1999), and kernel ridge regression (Saunders et al., 1998). Note that the posterior
mean function in a Gaussian process regression model with normal noise (3.12a) has
exactly the same form as the kernel ridge regression estimate, which is derived from
ridge regression as proposed by Hoerl and Kennard (1970) by using the kernel trick.
For a detailed description of the relations between these methods see Kuss (2002, ch. 2).

6.4. Conclusions & Discussion

The presented experiments reveal serious differences between Laplace’s method and
Expectation Propagation when used in the Gaussian process model for binary classifi-
cation. The results corroborate the considerations about the two approximations based
on the structure of the posterior given in Section 6.2. Although only a handful of data
sets have been used in the study, we believe the conclusions to be well-founded and
generally valid.

From the structural properties of the posterior we described why Laplace’s method
systematically underestimates the mean m. The resulting approximate posterior f |D
over latent functions will have too small amplitude, although the sign of the mean
function will be mostly correct. As an effect Laplace’s method gives over-conservative
predictive probabilities, and diminished information about the test labels. This effect
has been shown empirically on several real world examples. Large resulting discrepancies
in the actual posterior probabilities were found, even at the training locations, which
renders the predictive class probabilities produced under this approximation grossly
inaccurate. Note, the difference becomes less dramatic if we only consider the classifi-

115

6. Assessing Approximations for Binary Gaussian Process Classification

cation error rates obtained by thresholding p∗ at 1/2. For this particular task, we have
seen that the sign of the latent function tends to be correct (at least at the training
locations). However, the performance on benchmark data sets also revealed the error
rates obtained by Laplace’s method to be inferior to EP results.

The EP approximation has shown to give results very close to MCMC both in terms
of predictive distributions and evidence estimates. We have shown and explained why
the marginal distributions of the posterior can be well approximated by Gaussians.

Further, the evidence values obtained by Laplace’s method and EP differ systemat-
ically which will lead to different results of ML-II hyper-parameter estimation. The
discrepancies are similar for different tasks. We were able to exemplify that the EP
approximation of the evidence is accurate. To show this we used Annealed Importance
Sampling to obtain unbiased estimates of the evidence for Gaussian process models.

For certain data sets numerical problems occurred when using the EP approxima-
tion for ML-II hyper-parameter estimation because the signal variance σ2

s can become
extremely large. The problem stems from the property that for large values of σ2

s the
evidence becomes very insensitive to changes in σ2

s and so the optimisation algorithm
may evaluate the approximate evidence for extreme values of σ2

s . At this point it is rec-
ommended to take another look at Figure 6.3(b). Intuitively, for large signal variances
the prior becomes more spread out such that the likelihood becomes more and more
similar to a hard truncation. The evidence equals the probability mass of the prior in
the orthant that is left after truncation. But the probability mass in any of the orthants
remains constant if only the signal variance is changed for fixed correlation structure.
The previous argument was based on the assumption that the likelihood implements a
hard truncation, which is only an approximation, but this approximation becomes bet-
ter the larger σ2

s is. Note that this insensitivity of the evidence with respect to changes
in the signal variance can already be observed in the upper parts of Figures 6.6(2a) and
6.8(2a). A possible solution to this problem is to introduce a hyper-prior on σ2

s which
ensures that the parameter stays in a reasonable range.

In the experiments above a stationary covariance function (6.11) was used. This cor-
responds to the belief that the latent function has stationary characteristics over the
whole input space. For certain data this might not be one’s true prior belief. If the
classes are well separated, one might expect the latent function f to be relatively con-
stant over the support of p(x|y) of the respective classes and to make a sharp transition
at the decision boundary. Another property of the isotropic zero-mean prior is that the
predictive probability goes towards 1/2 in parts of the input space where no observa-
tions have been made. This behaviour could be controlled by introducing a non-zero
mean function, for example by adding a linear term to the covariance function.

In the experiments summarised in Table 6.1 we compared the predictive accuracy
of GPC to Support Vector Machines. While the SVMs show a tendency to give lower
error rates, the information contained in predictive distributions seems comparable. An
obvious question is, why the SVMs often give lower error rates than Gaussian process
classification? Unfortunately we are not able to identify a single explanation for this.
One aspect of the answer might be that the Support Vector Machine directly aims at
minimising the error rate, while the GPC model aims at giving a full predictive distri-

116

6.4. Conclusions & Discussion

bution. Moreover, in the experiments we used a soft-margin variant of the SVM, which
tolerates the occasional misclassification of training examples, so called margin errors.
Thereby the soft-margin SVM solution is less sensitive to outliers—either outliers in x
or erroneous labels y—which could not be ignored in the GPC model. Another aspect
that complicates the interpretation of the results is that we used different strategies
for parameter estimation, i.e. model selection. Conceptually GPC comes with the ad-
vantage that Bayesian model selection can be used to set hyper-parameters by ML-II
estimation, while the parameters of an SVM usually have to be set by cross-validation
(gradient based methods exist, e.g. Chapelle et al. (2002)). We have not exploited
this feature in the above comparison, but the ability to handle multiple free parameters
should enable practitioners to use more complex covariance functions, that are designed
for particular applications. However, as described in Section 2.3.2, the maximum like-
lihood II approach can only be expected to work well, the more the model is capable
of approximating the data generating process. Otherwise ML-II estimation will give
parameters that make the data to appear as expected as possible, but the predictive
performance can be poor, see again Figure 5.1 (on page 58) for an example in the re-
gression context. Cross validation is less sensitive to this form of model mismatch, since
it directly optimises an approximate measure of the predictive performance we are in-
terested in. In fact, it would be interesting to use cross-validation for the GPC model
as well. If cross-validation shows to work better than ML-II estimation, this could be a
strong indication for model mismatch. It may also be insightful to test whether other
covariance functions could be used to reduce the model mismatch, e.g. by comparing
the corresponding evidences and predictive performances.

As mentioned above, in the GPC model we did not consider the possibility that some
observations are mislabelled. The likelihood can be modified such that label errors are
explicitly taken into account, giving a robust classification model, see Copas (1988) or
Wood and Kohn (1998) for related approaches. Let π denote the probability by which
an observation has an erroneous label. In this case the likelihood becomes a mixture

p(y|f(x), π) = (1− π) p(y|f(x)) + π (1− p(y|f(x))) (6.18a)
= π + (1− 2π) p(y|f(x)) (6.18b)

which can be seen as another instance of a “two-model-model” as described in Section 5.3
for robust regression. If p(y|f) is chosen to be the probit model Φ(fy), inference can
be approximated using Expectation Propagation, for which the necessary moments can
be derived from eqs. (6.10). Note that the mixture likelihood is not log-concave and
therefore the posterior can be multimodal. Minka (2001a) describes EP for classification
with label errors for the Bayes Point Machine of Herbrich et al. (2001), which is similar
to this model.

An extension to the classification setting is the semi-supervised scenario, in which
additional unlabelled inputs XUL are available. Semi-supervised variants of Gaussian
process classification can be constructed by incorporating XUL into the likelihood

p(y,XUL|f,X,θ) = p(y, |f ,θ) p(XUL, |fUL, θ) , (6.19)

117

6. Assessing Approximations for Binary Gaussian Process Classification

where p(XUL, |fUL, θ) can be chosen according to the assumed relation between the
latent function and the unlabelled observations. Lawrence and Jordan (2005) propose
such a model, by which a latent function f is more likely, if its value is away from
zero at the unlabelled inputs. Intuitively, this makes the latent function switch sign
in areas where no unlabelled inputs are available, if not encouraged by the labelled
observations. In other words, the latent function is encouraged to have a strong opinion
on each unlabelled observation, additionally to explaining the labelled instances. In
general, semi-supervised learning will often lead to multimodal posteriors, each mode
corresponding to a specific assignment of the unlabelled observations into classes, similar
to the posterior in the robust regression model with mixture noise.

In summary, we found that EP is the method of choice for approximate inference
in binary GPC models, when the computational cost of MCMC is prohibitive. Very
good agreement is achieved for both predictive probabilities and evidence estimates.
In contrast, the Laplace approximation is so inaccurate that we advise against its use,
especially when predictive probabilities are to be taken seriously.

6.5. Bibliographical Remarks

The Gaussian process model for binary classification can be seen as a non-parametric
treatment of Bayesian logistic regression as described by Albert and Chib (1993). The
probit likelihood is also common in frequentist generalised linear models, see e.g. Mc-
Cullagh and Nelder (1989) or Collet (1991).

Gaussian process classification has been described by Williams and Barber (1998) us-
ing Laplace’s approximation while Neal (1998a) proposed the use of Hybrid Monte Carlo
sampling. Sparse EP approximations for the classification model have been proposed for
example by Csató and Opper (2002), Seeger (2002), and Lawrence et al. (2003). Seeger
(2002) also described how the PAC-Bayesian framework of McAllester (1999) can be
applied to Gaussian process classification, giving highly non-trivial error bounds.

In this chapter we only considered binary classification. For polychotomous prob-
lems a common strategy is to decompose the problem into several one-against-all or
one-against-one classification problems, which can be handled using the binary classi-
fication model. Williams and Barber (1998) also describe a multi-class GP model in
which several latent functions are combined using a softmax type likelihood. Inference
can be approximated using Laplace’s method (Williams and Barber, 1998), (sparse)
EP approximations (Seeger and Jordan, 2004), or variational methods (Girolami and
Rogers, 2005). However, it is not clear which approach to multi-class problems works
best in practice, see e.g. Rifkin and Klautau (2004).

As discussed above model selection by maximum likelihood II estimation is based on
the assumption that the assumed model matches the underlying data generating process
well. Furthermore, the approach is prone to over-fitting especially if the number of
hyper-parameters is large. Based on the EP approximation Qi et al. (2004) describe an
alternative predictive approach for the Gaussian process model for classification, similar
to framework of Geisser and Eddy (1979) as described in Section 3.2.1 for regression.

118

6.5. Bibliographical Remarks

Above the performance of GPC was compared to Support Vector Machines, which at
present is probably the most successful and popular classification algorithm. The SVM
origins in the work of Vapnik on statistical learning theory, see Vapnik (1998, 1999) and
Schölkopf and Smola (2002, ch. 7) for further details. Several attempts have been made
to link Support Vector Machines to Gaussian process classification models, e.g. Seeger
(2000) and Sollich (2002). Sollich (2002) constructs a prior and a likelihood such that
the Support Vector Machine is equivalent to a maximum a posteriori estimate in this
model, which is not exactly a GP model as described in Chapter 3. The problem is that
the hinge loss, as used in Support Vector Machines, cannot be written as the negative
log of a sampling distribution p(y|f).

119

7. Gaussian Processes for Reinforcement
Learning

As soon as we admit the existence of a lack of completely accurate measure-
ment, or, as we shall say, uncertainty, in one part of the system, we must
allow for it in every part. — Bellman (1967, p. 7)

Reinforcement learning refers to the problem of how an agent can maximise its utility
in a sequential decision problem. The crucial question is how the agent should adapt
its behaviour as a result of its experience. An important aspect is the evaluation of
alternative actions in the light of uncertainty about future consequences of decisions.
The problem has been studied in various contexts, for example in statistical decision
theory, control engineering, artificial intelligence, and operations research. This chapter
presents some ideas for applications of Gaussian process regression models for reinforce-
ment learning in continuous state spaces and discrete time.

7.1. Reinforcement Learning

In the beginning some elementary concepts of reinforcement learning will be described,
which constitute the basis for the subsequent developments. The generic setting is that
an agent interacts with an environment in a sequence of actions and receives correspond-
ing reward signals. The aim of the agent is to optimise its strategy, i.e. the choice of
action in a given situation, in order to maximise a measure of utility. A formally simple
and yet powerful framework to represent the agent’s environment is the discrete-time
Markov decision process (MDP) as will be described in Section 7.1.1.

Characteristic to the problems studied in reinforcement learning is that actions can
have long-term effects in later stages of the decision process. Therefore, cause and (de-
layed) effect are difficult to relate, which is known as the temporal credit assignment
problem. The greedy myopic strategy to always choose the action that promises maxi-
mum immediate reward is typically sub-optimal and strategic planning of future actions
is crucial. This problem is explicitly recognised by the distinction between short-term
(reward) and long-term (value) desiderata. In contrast to the immediate reward, the
value describes the strategic validation of a situation. The consistency between re-
wards and values are expressed by the Bellman equation. Both value functions and the
Bellman equation will be described in Section 7.1.2.

If the environment has finitely many states and the characteristics of the decision pro-
cess are known for certain, the optimal strategy and the corresponding value function
can be computed using dynamic programming techniques (Section 7.1.3). However, the

121

7. Gaussian Processes for Reinforcement Learning

more challenging and relevant question is how to act if the agent is uncertain about the
consequences of its actions. Temporal difference learning, as will be briefly described in
Section 7.1.4, refers to techniques that can be used to evaluate strategies while interact-
ing with an uncertain environment. The problems becomes more difficult if the decision
problems involve continuous variables. In this case function approximation techniques
have to be used, as will be described in Section 7.3.

In order to make decisions that anticipate future consequences, the agent needs a
model of the environment. Depending on the structure of the environment this model
can be of various forms. A key idea in later sections will be that Gaussian process
regression models can be used to describe the agent’s uncertainty in certain kinds of
environments. Having a probabilistic model allows the implementation of strategic
planing of future actions. Furthermore, using a GP to represent the value function, the
Bellman equations can be approximated in continuous MDPs (Section 7.3.1).

7.1.1. Markov Decision Processes

Let st ∈ S denote the state of the decision process at time t where t = 0, 1, 2, . . . indexes
discrete stages and S denotes the set of all possible states. The state is a description of

.

.

E
n
v
iro

n
m

en
t

A
g
en

t

Reward r

Perception of s

Action a

Figure 7.1.: The
reinforcement
learning setting.

the environment at a particular time, which, assuming that the state is fully observable,
captures all information available to the agent in order to make a decision on the action.
In each stage t the agent selects exactly one action at ∈ A(st) from a set of feasible
actions A(st) in the current state.

An action results in a state transition to a potentially different consecutive state s′.
The dynamics of the environment are described in terms of state transition probabilities
p(s′|s, a) which define a distribution over consecutive states s′ ∈ S for all possible
combinations of states s ∈ S and actions a ∈ A(s). A sequential decision process is
Markovian if the state transition probabilities only depend on the current state and
action, independent of the history of the decision process. Below it will always be
assumed that the environment is stationary, i.e. the state transition probabilities do
not change over time. If the sets of possible states S and actions A(s) are finite, the
sequential decision process is called a finite MDP. For finite MDPs the state transition
probabilities are multinomial distributions which can be represented in the form of
tables.

With each state transition (s, a, s′) the agent immediately receives a reward signal
r ∈ R. The reward can be stochastic p(r|s, a, s′) and the expected reward is denoted by

r(s, a, s′) = E
[
r|s, a, s′

]
(7.1)

which is assumed to be bounded.
A strategy or policy p specifies a distribution over actions pp(a|s) for each s ∈ S

where a ∈ A(s) respectively. A policy is called pure or deterministic if in each state
a particular action p(s) → a is selected with probability one, otherwise the policy is
called stochastic. If a policy is independent of the stage t of the decision process, it is
referred to as a stationary policy.

122

7.1. Reinforcement Learning

One also distinguishes according to the length, i.e. the number of stages, of a decision
process between tasks of finite and infinite length. If a process terminates after a finite
but unknown number of stages, this is also called an indefinite MDP.

7.1.2. Value Functions and Bellman Equations

As the decision process advances, the agent receives a sequence of reward signals. The
agent’s objective is to act as to maximise its utility. The utility characterises the valu-
ation of rewards over time and so expresses the agent’s inter-temporal preferences.

Various forms of utility functions can be found in the literature. For MDPs of finite
length any function monotonically increasing in the sum of rewards is a legitimate choice.
Let N denote the finite length of a decision process, the agent might be interested in
maximising the weighted sum of rewards

N∑
t=0

γtrt+1 (7.2)

where γ > 0 is a parameter describing inter-temporal preferences, which is also referred
to as discount rate. When assuming a utility function of this form in MDPs of infinite
length, N has to be interpreted as the time-horizon of the agent, i.e. the number of
future rewards that are relevant for the agent.

For tasks of potentially infinite length with an infinite horizon it must be assured that
the utility is finite. The most common model is the geometrically discounted sum

∞∑
t=0

γtrt+1 (7.3)

where the discount rate γ ∈ [0, 1) ensures finiteness. The smaller the discount rate γ
the more the agent prefers instant reward relative to rewards in the future. Although
discounting is natural in many economic decision problems, in other domains it is of-
ten difficult to justify this particular form of utility function. Another value function
which can be used in MDPs of infinite length is the average reward, see for example
Arapostathis et al. (1993). However, the infinite geometrically discounted sum (7.3) is
the most common utility function in the literature, because of its convenient analytical
properties.

Many of the problems analysed in reinforcement learning—and obviously in real life—
are actually decision problems of finite length. Decision problems of finite length are
more difficult in the sense that the optimal action for a given state can depend on the
remaining number of stages and therefore the optimal policy can be non-stationary.
Hence, the infinite discounted model (7.3) is often used for analytical convenience be-
cause the optimal policy is stationary. Often the infinite length MDP model must be
interpreted as an approximation to a finite but long decision process. A common remedy
is to introduce an absorbing goal state which can be reached in finite time and in which
the agent remains afterwards.

123

7. Gaussian Processes for Reinforcement Learning

From the utility of an infinite discounted sequence of rewards (7.3) we now derive the
notion of the value of a state under a given policy. The value of a state s under a given
policy p is defined as the sum of expected discounted future rewards starting in state s:

Vp(s) = E

[∞∑
t=0

γtrt+1|s0 = s

]
(7.4)

where the expectation is over future state transitions and associated rewards when
following p. We refer to Vp : S → R as the state-value function for policy p in an MDP
of infinite length.

Value functions define a partial ordering on the set of policies. A policy pA is weakly
dominated by another policy pB if VpA(s) ≤ VpB (s) for all s ∈ S.1 Using this ordering
we can characterise an optimal policy p? by

Vp?
(s) ≥ Vp(s) ∀ s ∈ S, ∀ p ∈ P (7.5)

where P denotes all possible policies. Note that the optimal policy p? is not necessarily
unique. However, the unique optimal value function corresponding to all optimal policies
will be denoted by V?.

Due to the Markov assumption the value function V can be written as a recursive
relation between states

Vp(s) = E

[∞∑
t=0

γtrt+1|s0 = s

]
= E

[
r1 +

∞∑
t=1

γtrt+1|s0 = s

]
(7.6a)

=
∑

a∈A(s)

pp(a|s)
∑
s′∈S

p(s′|s, a)
[
r(s, a, s′) + γVp(s′)

]
(7.6b)

which gives the Bellman equation (7.6b) for the state-value function (Bellman, 1972).
The Bellman equation reveals that the value of a state s under a fixed policy p equals the
expected immediate reward plus the discounted expected value of the consecutive state.
Furthermore, the Bellman equations for all states ensure consistency between values
of all states under a given policy p. Watkins (1989) introduced the state-action-value
function

Qp(s, a) = E

[∞∑
t=0

γtrt+1|s0 = s, a0 = a

]
(7.7a)

=
∑
s′∈S

p(s′|s, a)
[
r(s, a, s′) + γ Vp(s′)

]
(7.7b)

which is the discounted sum of expected rewards when choosing action a in state s and
following p afterwards. The state-value function and the state-action-value function are

1If for all s ∈ S the inequality VpA(s) < VpB (s) holds, the policy pB is said to be strictly dominant
and weakly dominant if only the non-strict ≤ holds.

124

7.1. Reinforcement Learning

related by
Vp(s) =

∑
a∈A(s)

pp(a|s)Qp(s, a) . (7.8)

In finite Markov decision processes the values of all states can be stored in a table. In
case the number of states becomes too large and especially for continuous S, function
approximation techniques have to be used, as will be described in Section 7.3.

7.1.3. Policy Iteration in Finite Markov Decision Processes

The problem of optimal sequential decision making is to find a policy that maximises the
expected utility. In case of finite S and perfect information about the state transition
probabilities and the reward structure, dynamic programming techniques can be used
to compute the optimal value function V? and so the optimal policy p? for all states.

In general we refer to the process of finding the value function corresponding to a
given policy as policy evaluation. For finite Markov decision processes and given policy
p we can compute the probabilities

p(s′|s) =
∑

a∈A(s)

p(s′|a, s) pp(a|s) (7.9)

by averaging over the probabilities of taking actions according to the policy p. Note
that p(s′|s) is a multinomial distribution for each s ∈ S. So we can define the [|S|× |S|]
state transition probability matrix T element-wise:

Tij = p(s′ = si|s = sj) , (7.10)

which gives a stochastic matrix, sometimes also called the Markov matrix, see for ex-
ample White (1993, ch. 1).

At first, it will be described how we can compute the [|S|×1] vector of values v, such
that vi = Vp(si). The Bellman equations (7.6b) for all |S| states constitute a system of
linear equations with v as a fixed point, as will be shown below.

Let r be the vector of expected rewards such that the ith entry corresponds to the
expected reward of state transitions starting in si averaged over the actions selected by
p and the corresponding state transition probabilities

ri =
∑

a∈A(si)

∑
s′∈S

r(si, a, s
′) pp(a|si) , (7.11)

where r(si, a, s
′) is given by eq. (7.1). So we can write the |S| Bellman equations in

matrix form
v = r + γTv (7.12)

and solve the system (I− γT)v = r for v. This can either be done directly v =
(I− γT)−1 r or by using fixed point iteration.

In order to use a fixed point iteration scheme we have to show that the Bellman

125

7. Gaussian Processes for Reinforcement Learning

equations (7.12) constitute a contraction mapping, i.e. the mapping has a Lipschitz
constant smaller than one. Let B(v) = r+γTv be a self-mapping B : R|S| → R|S| then
we have to show that ‖B(v1)−B(v2)‖ = λ ‖v1 − v2‖ with λ < 1 for all v1,v2 ∈ R|S|,
where ‖·‖ denotes the maximum norm in this case. By simply substituting the definition
of B we obtain

‖B(v1)−B(v2)‖ = ‖r + γTv1 − r− γTv2‖ (7.13a)
= ‖γT(v1 − v2)‖ = γ ‖T‖ ‖v1 − v2‖ (7.13b)

and since γ ∈ [0, 1) by definition and ‖T‖ ≤ 1 as a standard result for stochastic
matrices, we observe that B is contracting. So we can implement policy evaluation by
iteratively using vnew ← r + γTvold as an update rule which is guaranteed to converge.

Once the values of states under a policy are found, we can ask the question how the
policy might be modified to increase the value of each state and thereby to improve the
policy. This process is referred to as a policy improvement step. Given v for a policy
p we obtain a p+ which weakly dominates p by acting greedily with respect to v. The
policy p+ is a deterministic policy which in a given state s chooses the action a which
maximises the expected value:

p+(s) = argmax
a∈A(s)

∑
s′∈S

p(s′|s, a)
[
r(s, a, s′) + γVp(s′)

]
(7.14)

where ties can be broken arbitrarily. By construction Vp+ ≥ Vp with equality only for
V?, which is known as the policy improvement theorem. Note that as a consequence
of the policy improvement theorem, there always exists an optimal policy which is
deterministic by acting greedily w.r.t. the optimal value function.

We observe a certain duality between policies and value functions. For a given policy
we can use the policy evaluation scheme to find the corresponding values for all states,
and for a given value function we can use policy improvement to compute a weakly
dominant policy. Note that the optimal policy and the optimal value function map on
each other.

We can now state the policy iteration scheme which allows us to approach the optimal
policy sequentially. Policy iteration starts from an arbitrary policy p0 and alternates be-
tween policy evaluation and policy improvement until convergence to the optimal policy
and corresponding value function (see Algorithm 3). Since in each policy improvement
step the new policy is guaranteed to weakly dominate the previous policy, the scheme
converges to an optimal policy, which is the greedy policy with respect to the optimal
value function.

7.1.4. Temporal Difference Learning

We saw that perfect information about a (finite) MDP enables us to compute the optimal
policy and the corresponding value function. However, a more relevant and interesting
scenario is that the agent is uncertain about the characteristics of the MDP, i.e. p(s′|s, a)
and p(r|s, a, s′), such that exploration of the environment becomes an integral part of

126

7.1. Reinforcement Learning

Algorithm 3 Policy iteration scheme for finite MDPs
Given: γ, Initial policy p0, state transition probabilities, distribution of rewards,
convergence threshold ε
Initialise v arbitrarily (e.g. v← 0)
repeat

1. Policy Evaluation
Compute r and T from p

repeat
vold ← v
v← r + γTv

until ‖vold − v‖ < ε
2. Policy Improvement
for all s ∈ S do

p(s)← argmax
a∈A(s)

∑
s′∈S

p(s′|s, a) [r(s, a, s′) + γ V(s′)]

end for
until V and p converge to optimal V? and p?

finding an optimal policy. We will now turn to the questions how the value function
of a fixed policy can be evaluated under these circumstances and furthermore how the
agent can learn to improve its policy?

Sutton (1988) describes how temporal difference learning can be used to estimate the
value Vp(s) for all s ∈ S under a fixed policy p. The basic idea of temporal difference
(TD) learning is to adjust estimates of values if expectations and observations differ.
Assume the agent observes the state transition (st, at, st+1) and corresponding reward
rt+1.2 In temporal difference learning this observation is used to update the current
estimate of V(st). The expectation of the quantity rt+1 +γV(st+1) is by definition equal
to V(st) and if the observation disagrees with the agent’s estimate of V(st) the latter is
adjusted towards the observation by

V(st)← V(st) + αt [rt+1 + γV(st+1)− V(st)]︸ ︷︷ ︸
temporal difference error

(7.15)

where αt is a learning rate. This update rule can be interpreted as a stochastic ap-
proximation as described by Robbins and Monro (1951). For stochastic approximation
methods to converge the learning rate αt has to decrease over time satisfying

∞∑
t=1

αt = ∞ and
∞∑

t=1

α2
t < ∞ (7.16)

2Note that we index the observed reward of a state transition (st, at, st+1) by t+1, which corresponds
to the notion that the reward is received in the consecutive state st+1.

127

7. Gaussian Processes for Reinforcement Learning

such as αt = t−1. In the above update rule (7.15) the information contained in the
observed state transition is used to update of the value of V(st) only. The information
can be passed back to the states previously visited by keeping eligibility traces which
leads to the TD(λ) algorithm, see for example Sutton and Barto (1998, ch. 7).

Using the update rule (7.15) policy evaluation can be implemented, but it in general
it is not obvious how to improve the policy if the state transition probabilities are
unknown.

This problem can be overcome by using a state-action-value function Q as given by
eq. (7.7). The greedy policy with respect to Q is to choose the action according to

p+(s) = argmax
a∈A(s)

Q(s, a) (7.17)

where ties can be broken arbitrarily. However, always acting greedily would inhibit
exploratory behaviour. Several heuristics have been proposed to balance exploration
and exploitation, e.g. the ε-greedy policy is used which acts greedily with probability
(1− ε) and chooses a random action with probability ε.

The state-action-value function (7.7) gave its name to Q-Learning as described by
Watkins and Dayan (1992). The objective in Q-Learning is to use a state-action-value
function to learn the optimal p?. Each observed state transition is used for an update

Q(st, at)← Q(st, at) + αt

[
rt+1 + γ max

a∈A(st+1)
Q(st+1, a)−Q(st, at)

]
(7.18)

where the at+1 is taken greedily. As an effect of taking the maximum in the TD up-
date, Q-Learning is an off-policy method, which means that it learns the optimal value
function Q? even if a different policy p is used by the agent to generate the observed
state transitions (the on-policy).

In order for Q-Learning to converge, the only requirement on the on-policy is that it
should explore each state-action combination infinitely many times. Furthermore, the
learning rate αt has to decay as described by eq. (7.16) which is common to all stochastic
approximation methods.

Algorithm 4 Q-Learning for finite MDPs
Given: γ, learning rate scheme αt, initial state s0, on-policy p

Initialise: Q(s, a)← 0 for all s ∈ S and a ∈ A(s)
for t = 0, 1, 2, . . . do

Choose at from on-policy p, e.g. ε-greedy from Q(st, a)
Observe state transition to st+1 and reward rt+1

Q(st, at)← Q(st, at) + αt

[
rt+1 + γ max

a∈A(st+1)
Q(st+1, a)−Q(st, at)

]
end for

128

7.2. Model Identification and Propagation of Uncertainty

7.2. Model Identification and Propagation of Uncertainty

Temporal difference methods as described above aim at estimating value functions on-
line but do not build an explicit model of the state transition probabilities p(s′|s, a)
and the distribution of rewards p(r|s, a, s′). Each observed state transition is used only
once to update the current estimate of the value of a state but is forgotten afterwards.
Note that by keeping eligibility traces, e.g. as in TD(λ) and Q(λ), the information
contained in an observed state transition is also used to update the values of states visited
previously. However, the state transition itself is not remembered, in particular it is not
used to reduce the agent’s uncertainty about the dynamics of its environment. Such
methods are called model free or direct reinforcement learning. Model free approaches
are computationally simple, but usually do not exploit all information contained in the
observation relevant for optimal decision making.

Another approach is to build a model of the environment and the reward structure.
Such a probabilistic model of the environment, also called world model, can be used
to simulate consequences of actions and so planning can be implemented. Model based
methods are also referred to as indirect reinforcement learning.

For instance in the Dyna architecture proposed by Sutton (1990, 1991) a world model
of the state transition probabilities and the associated rewards is used. An observed
state transition and the corresponding reward are used for a temporal difference update
of the value function (either V or Q) and for updating the world model. Between
updates based on real experience, the world model is used to update the value function
by simulated state transitions. This way the information gained by real experience is
propagated and the value function is in part adjusted to agree with the world model.
Implementing Dyna architectures for finite MDPs using table based representations is a
simple extension of the methods described above. As to be expected, experiments show
that far fewer real observations of the environment are necessary to find the optimal
policy compared to model-free methods (Sutton and Barto, 1998, ch. 9).

From a Bayesian point of view reinforcement learning is a sequential decision prob-
lem in which each observed state transition reduces the agent’s uncertainty about its
environment. In each stage a Bayesian agent chooses an action given some notion of op-
timality, i.e. minimising some form of expected loss. An intuitively appealing criterion
is to minimise the regret, i.e. the number of sub-optimal decisions. Note that this mea-
sure is meaningful in MDPs of both finite and infinite length. When trying to minimise
the regret, the problem is that for choosing an action in an uncertain environment two
desiderata have to be balanced. The agent can exploit its experience and choose the
action which seems optimal in the present state of information. On the other hand, the
agent could also explore the environment by choosing an action which has an uncertain
effect. The observation could have greater novelty and could improve the quality of
later decisions. However, how to find the optimal trade-off between exploration and
exploitation which minimises the regret is an open problem for all but the simplest en-
vironments. To formalise a suitable loss function and computing its expectation over
the uncertainty in the environment is an unsolved problem for general MDPs, see for
example the early work by Martin (1967).

129

7. Gaussian Processes for Reinforcement Learning

Compared to the above decision problem, implementing Bayesian inference about the
environment is usually much simpler. For finite MDPs the state transition probabilities
p(s′|s, a) are multinomial distributions and the conjugate multinomial-Dirichlet model
can be used to describe the agent’s uncertainties (Gelman et al., 1995, ch. 3.5). However,
if the state space S is continuous, i.e. the representation of the state involves continuous
variables, this approach becomes inapplicable. Instead, in this case we propose to use
Gaussian process regression models to represent the agent’s beliefs about the dynamics
of its environment.

7.2.1. Prediction for Uncertain Inputs

In the following we will study the use of Gaussian process regression models for reinforce-
ment learning. At various places we will make use of an approximation of the predictive
distribution when the input itself is uncertain, as will be described in this—unfortunately
rather technical—section. Approximations of this kind have been described previously,
e.g. by Haylock and O’Hagan (1996), Girard et al. (2003), and Quiñonero-Candela et al.
(2003).

In the conjugate Gaussian process regression model, as described in Section 3.2, the
predictive distribution of the latent function value at a given test input x∗ is univariate
normal

p(f∗|D,θ,ψ,x∗) = N (f∗|m∗(x∗), k∗(x∗,x∗)) (7.19)

with mean and variance given by the mean and covariance function eqs. (3.12) of the
posterior Gaussian process. As in Section 3.2, ψ denotes the hyper-parameters of the
GP prior and θ are the likelihood parameters, i.e. the noise variance σ2

n in this case. If
the test input itself is a random variable following a multivariate normal distribution
N (x∗|µ,Σ), the predictive distribution averaged over the uncertainty in x∗ is:

p(f∗|D,θ,ψ,µ,Σ) =
∫
p(f∗|D,θ,ψ,x∗) N (x∗|µ,Σ) dx∗ (7.20a)

≈ q(f∗|D,θ,ψ,µ,Σ) = N (f∗|m1,m2) (7.20b)

which can be approximated analytically, see Figure 7.2 for an illustration. The approxi-
mation is found by computing the first and second moment of the predictive distribution
(7.20a). In order to compute these moments analytically the prior covariance function
is required to be a squared exponential (3.36) of the form

k(x,x′,ψ) = σ2
s exp

(
−1

2

(
x− x′

)>W−1
(
x− x′

))
, (7.21)

or a polynomial covariance function (3.39), of which the latter will not be considered in
the following. Note that mixtures of these covariance functions could be handled too.

The first moment of p(f∗|D,θ,ψ,µ,Σ) as given by eq. (7.20a) can be computed by

130

7.2. Model Identification and Propagation of Uncertainty

−1

−0.5

0

0.5

1

1.5

f *

p(f
*
)

−1 −0.5 0 0.5 1
x

*

p(
x *)

Figure 7.2.: Illustration of prediction for uncertain inputs in Gaussian process regression models
with normal noise. The large panel shows a posterior Gaussian process inferred from
the observations shown as points. The dashed line describes the mean function
and the grey area depicts ±2 standard deviations. The lower panel shows the
distribution of the uncertain input N (x∗|µ∗, σ2

∗). From this distribution 10000
samples were generated and the corresponding predictive distributions of function
values f∗ were computed. The left hand panel shows a histogram of samples from
these predictive distributions, i.e. samples of p(f∗|D,ψ, µ∗, σ2

∗), and the Gaussian
approximation N (f∗|m1,m2), which matches the first two moments. The dashed
line in the left panel illustrates the predictive distribution for a certain input x∗ = µ∗
(and σ2

∗ = 0).

taking the expectation

m1 =
∫
f∗ p(f∗|D,θ,ψ,µ,Σ) df∗ (7.22a)

=
∫ [∫

f∗ p(f∗|D,θ,ψ,x∗) df∗
]
N (x∗|µ,Σ) dx∗ (7.22b)

=
∫
m∗(x∗)N (x∗|µ,Σ) dx∗ (7.22c)

over the posterior mean functionm∗(x∗) as given by (3.12a). Writingm∗(x∗) = β>k(x∗)
such that β = (K + σ2

nI)
−1y and using the integral identities given in Appendix B.2.3

131

7. Gaussian Processes for Reinforcement Learning

we get the expression:

m1 =
∫

(β>k(x∗))N (x∗|µ,Σ) dx∗ (7.23a)

=
m∑

i=1

∫
βi k(x∗,xi)N (x∗|µ,Σ) dx∗ (7.23b)

=
m∑

i=1

βi σ
2
s

∣∣ΣW−1 + I
∣∣− 1

2 exp
(
−1

2 (xi − µ)> (Σ + W)
−1

(xi − µ)
)

which can be written in the form m1 = β>l. Intuitively the ith element of l is an
expectation of k(xi,x∗) over x∗.

The second central moment, i.e. the variance, of p(f∗|D,θ,ψ,µ,Σ) as given by
eq. (7.20a) can be decomposed into three expectations:

m2 =
∫

(f∗ −m1)2 p(f∗|D,θ,ψ,µ,Σ) df∗ (7.24a)

= E[m2
∗(x∗)] + E[σ2

∗(x∗)]− E[m∗(x∗)]2 (7.24b)

which will be computed separately. The first expectation results in a quadratic form

E[m2
∗(x∗)] =

∫
(β>k(x∗))2N (x∗|µ,Σ) dx∗ = β>Lβ (7.25)

where the elements of the [m×m] matrix L are given by

Lij =
k(xi,µ)k(xj ,µ)√
|2ΣW−1 + I|

exp
(
(zij − µ)>

(
1
2W + Σ

)−1 ΣW−1 (zij − µ)
)

(7.26)

and zij = 1
2(xi + xj) is an arithmetic average of the ith and jth input. The second

expectation in eq. (7.24b) comes in the form of

E[σ2
∗(x∗)] =

∫
σ2
∗(x∗)N (x∗|µ,Σ) dx∗ (7.27a)

= σ2
s −
∫

k(x∗)>(K + σ2
nI)

−1k(x∗)N (x∗|µ,Σ) dx∗ (7.27b)

= σ2
s − tr

(
(K + σ2

nI)
−1L

)
(7.27c)

which also depends on the matrix L as given by eq. (7.26). The third term in eq. (7.24b)
is simply the squared value of the first moment (7.23). Putting everything together we
get an analytic expression for the variance:

m2 = β>Lβ + σ2
s − tr

(
(K + σ2

nI)
−1L

)
−m2

1 . (7.28)

Furthermore, the predictive distributions of two independent Gaussian process mod-
els can become correlated for a random x∗. Let A and B denote two Gaussian pro-

132

7.2. Model Identification and Propagation of Uncertainty

−0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

p(fA
*
)

p(
fB *

)

−1

0

1

fA

−2

−1

0

1

fB
−1 −0.5 0 0.5 1

0

1

2

x
p(

x)

Figure 7.3.: Illustration of the covariance of predictions of two Gaussian process regression
models A and B for an uncertain input x∗. On the right hand side the upper
two panels show posterior Gaussian processes fA|DA and fB |DB inferred from the
observations shown as points. The dashed lines describe the mean function and
the grey area depicts ±2 standard deviations respectively. The lower panel shows
N (x∗|µ∗, σ2

∗). From this distribution 1000 samples where generated and the corre-
sponding predictive distribution of function values f∗ were computed. The left hand
panel shows a scatter-plot of samples from the predictive distributions, i.e. sam-
ples of p(fA

∗ , f
B
∗ |D,ψ, µ∗, σ2

∗), and the bivariate normal approximation centred at
[mA

1 ,m
B
1]>, which shows that the covariance is well matched by the Gaussian ap-

proximation (7.30).

cess regression models with corresponding predictive distributions p(fA
∗ |DA,θA,ψA,x∗)

and p(fB
∗ |DB,θB,ψB,x∗), for which we will use the shorthand notations p(fA

∗ |x∗) and
p(fB

∗ |x∗) below.

The predictive distributions are assumed to be conditionally independent given x∗:

p(fA
∗ , f

B
∗ |DA,θA,ψA,DB,θB,ψB,x∗) = p(fA

∗ |x∗) p(fB
∗ |x∗) (7.29)

However, if we take the expectation over an uncertain input x∗, the predictive distri-
butions become dependent as illustrated in Figure 7.3. The covariance of predictions
is

cov(fA
∗ , f

B
∗) =

∫
(fA
∗ −mA

1)(fB
∗ −mB

1) p(fA
∗ |x∗) p(fB

∗ |x∗)N (x∗|µ,Σ) dx∗ dfA
∗ df

B
∗

= β>AL̃βB −mA
1 m

B
1 (7.30)

133

7. Gaussian Processes for Reinforcement Learning

where mA
1 and mB

1 are the respective expectations of fA
∗ and fB

∗ computed by eq. (7.23).
The entries of L̃ are given element-wise by

L̃ij =
σ2

Aσ
2
B√∣∣(W−1

A +W−1
B)Σ+I

∣∣ exp
(
−1

2(xB
j −xA

i)> (WA+WB)−1 (xB
j − xA

i)
)

× exp
(
−1

2(zij − µ)>
((

W−1
A + W−1

B

)−1 + Σ
)−1

(zij − µ)
)

(7.31)

where zij = (W−1
A + W−1

B)−1(W−1
A xi + W−1

B xj).
In later sections it will be of great importance that the expressions for the mean

(7.23), the variance (7.28), and the covariance (7.30) can be differentiated with respect
to the elements of µ and Σ. Note that the prediction with uncertain inputs can also be
implemented for a GP model with a linear mean function. The expressions are omitted
here, but can be derived analogously.

7.2.2. Model Identification & Simulation

We now turn towards the application of Gaussian process regression for model identi-
fication in reinforcement learning problems. Thereby we restrict ourselves to problems
with continuous state spaces S ⊆ Rn, continuous actions A ⊆ R, and discrete time. Re-
inforcement learning problems with continuous state spaces are often similar to systems
studied in control engineering. Therefore we will also use the terms control strategy and
control signal synonymously to policy and action below.

Let again st ∈ S denote the state of a system at time t, at ∈ A(st) the action or control
signal applied at this time, and st+1 the resulting consecutive state. The time interval
between two stages will be referred to as ∆t. The objective of model identification
is to build a model which predicts st+1 given st and at based on previously observed
state transitions. In this setting model identification becomes a regression problem
[st, at] → st+1 which we approach by using probabilistic GP regression models. These
provide a predictive distribution p(st+1|st, at) which we will interpret as the agent’s
uncertainty about its environment.

Assuming S = Rn we make use of n separate Gaussian process regression models, the
dynamics GPs, each for predicting a distribution over a single variable of the consecutive
state. Based on observed or generated state transitions (st, at, st+1) we find values for
the hyper-parameters ψ and the noise variance σ2

n by ML-II estimation as described in
Section 3.2.

.

s
(1)
t

...

s
(n)
t

at

GP(1)

...

GP(n)

s
(1)
t+1 ∼ N (µ

(1)
t+1, σ

2 (1)
t+1)

...

s
(n)
t+1 ∼ N (µ

(n)
t+1, σ

2 (n)
t+1)

134

7.3. Approximate Policy Iteration in Continuous Domains

Combining the predictive distributions of the n separate GP models the joint predictive
distribution comes in the form of a multivariate normal

p(st+1|st, at) = N (st+1|µt+1,St+1) (7.32)

where µt+1 = [µ(1)
t+1, . . . , µ

(n)
t+1]

> and St+1 = diag(σ2(1)
t+1 , . . . , σ

2(n)
t+1) is a diagonal covariance

matrix. The use of separate regression models for each dimension is a simplification
which does not exploit dependencies between state variables.

Using the dynamics GPs we can also simulate multiple steps into the future prop-
agating the uncertainty. From an initial state st and given action at we compute a
distribution over st+1 (7.32). Now given an action at+1 the problem is to predict the
distribution of st+2 if already st+1 is a multivariate normal random vector. This is
where the prediction for uncertain inputs can be used, which has been described in the
previous section. The predictive distribution p(st+2|µt+1St+1, at+1) is approximated by
a multivariate normal distribution N (st+2|µt+2,St+2) by computing its first two mo-
ments analytically. The mean is computed using eq. (7.23), the diagonal elements of the
covariance are given by eq. (7.28), and the off-diagonal elements are covariances of the
form of eq. (7.30). Approximating the distribution by a multivariate Gaussian allows
us to iterate this procedure such that we can obtain a sequence of distributions over
states.

.

st

at

GPs

at+1

GPs

at+2

. . .

at+N−1

GPs µt+N ,St+N

µt+1,St+1 µt+2,St+2

In general, let N (st+i−1|µt+i−1,St+i−1) describe our uncertainty in the state of the
system at time t+ i− 1 if we apply a control signal at+i−1 then the distribution of st+i

is approximated by N (st+i|µt+i,St+i). Note that if st is certain, then St+1 is diagonal
and from t + 2 onwards St+i may have nonzero off-diagonal entries. This technique to
simulate several steps into the future will be used in Section 7.4.

7.3. Approximate Policy Iteration in Continuous Domains

Most common reinforcement learning methods aim at estimating some form of value
function. In Section 7.1 we assumed finite MDPs which allowed a table based represen-
tation of the state transition probabilities, the policy, and the values. The table based
representation is limited to relatively small problems and becomes impractical for large
discrete domains, e.g. backgammon (Tesauro, 2002), as well as for continuous domains.
In this case there are basically two different approaches: coding methods and function
approximation. Unfortunately, almost all theoretical results on convergence based on
exact (table) representations become invalid for these methods.

The idea of coding methods is that states which are similar with respect to their
dynamical properties are grouped together, see for example Moore and Atkeson (1995).

135

7. Gaussian Processes for Reinforcement Learning

Thereby the system is mapped to a lower dimensional or even discrete representation
on which learning can be performed easier.

Function approximation techniques use a function f(s,φ) to represent the value func-
tion V(s), where φ are free parameters. Common choices for f are linear models (in
some fixed set of basis functions) and neural networks. By choosing a certain class of
functions we cannot hope to have the true optimal value function in this class such that
an approximation error (bias) is inevitable. Temporal difference learning algorithms can
be modified to be used with function approximation (Tsitsiklis and Van Roy, 1997). A
temporal difference correction can be used to update the parameters φ:

φ← φ+ αt [rt+1 + γf(st+1,φ)− f(st,φ)]∇φf(st,φ) (7.33)

given an observed state transition (st, a,t , st+1) and corresponding reward rt+1. The
update rule can be interpreted as a stochastic gradient descent on the temporal difference
error. Note that the TD update rule (7.15) for table based representations can be
interpreted as a special case of eq. (7.33) in which the number of parameters equals
the number of states. For approximating the Q-value the function approximator needs
to be of the form f(s, a,φ). Under certain conditions asymptotic convergence results
for function-approximation based temporal difference learning have been derived, see
for example Bradtke and Barto (1996) and Tsitsiklis and Van Roy (1997). However,
there are simple counter examples in which function approximation leads to oscillating
or even divergent behaviour (Sutton and Barto, 1998, ch. 8.5). In general, making
function-approximation based reinforcement-learning work is often a complicated task
including a good deal of fine-tuning and trial-and-error experiments.

7.3.1. Gaussian Process Approximate Policy Iteration

In the following we make use of a Gaussian process regression model to represent the
value function V and derive an approximate policy iteration scheme for continuous do-
mains. Therefore we will derive approximate policy evaluation and policy improvement
methods based on Gaussian process approximations of both the value and the state
transition probabilities.

Policy evaluation makes use of the Bellman equations which for continuous state
spaces can be straight-forwardly generalised from the discrete version (7.6b) by substi-
tuting sums with integrals:

Vp(s) =
∫
p(s′|s, p(s))

[
r(s′) + γVp(s′)

]
ds′ (7.34a)

=
∫

r(s′) p(s′|s, p(s)) ds′ + γ

∫
Vp(s′) p(s′|s, p(s)) ds′ , (7.34b)

where we assume for simplicity of exposition that the policy is a deterministic function
p(s)→ a of the state and the expected reward r only depends on the consecutive state.

Below, GP regression models will be used for two distinct purposes: the dynamics
GPs to approximate p(s′|s, a) and the value GP for representing the value function

136

7.3. Approximate Policy Iteration in Continuous Domains

V. The key idea of this section is that using Gaussian process models to represent
the dynamics and the value function allows us to approximate the expectations in the
continuous Bellman equation (7.34b) analytically.

7.3.1.1. Approximate Policy Evaluation

We now turn to the problem of approximating the value function V(s) for a given
policy p over a continuous state space. We need access to the value function at every
point in the continuous state space, but we only explicitly represent values at a finite
number of support points S = {s1, . . . , sm} and let the Gaussian process generalise to
the entire space. Let v be an [m × 1] vector representing the value function at the
support points, such that vi = E[V(si)] for all si ∈ S and let σ2

V = [σ2
1, . . . , σ

2
m]> denote

the corresponding uncertainties. The value GP is given by the mean and covariance
function:

mV(s) = k(s)>Q−1
V v (7.35a)

kV(s, s̃) = k(s, s̃)− k(s)>Q−1
V k(s̃) (7.35b)

where QV = K + diag(σ2
V), K denotes the [m ×m] prior covariance matrix computed

from the support points, and s, s̃ ∈ S. In order to evaluate (7.34b) analytically, the
prior covariance function k(s, s̃) has to be a squared exponential as given by eq. (7.21).

In policy evaluation, as described in Section 7.1.3, the Bellman equation is used as an
update rule. Analogously, we now use the continuous Bellman equation for updating
the value v at the support points.

Evaluating the continuous Bellman equation (7.34) for a given combination of state
s and action a involves two steps. First the distribution p(s′|s, p(s)) ≈ N (s′|µ,S) is
computed using the dynamics GPs. Secondly the value is estimated by computing the
two expectations in eq. (7.34b). The first integral gives the expected reward

ri =
∫

r(s′)N (s′|µ,S) ds′ (7.36)

where the expectation is taken with respect to the uncertainty in the consecutive state.
For simple (e.g. polynomial or Gaussian) reward functions the expectation can be com-
puted directly, for instance using the integrals (B.26) or (B.24). For more complex
reward functions we may approximate it using, e.g., a Taylor expansion as will be ex-
emplified in Section 7.4.2. For simplicity we have assumed that the reward function is
deterministic and known, but it is also possible to use a Gaussian process regression
model for the rewards in which case the integral (7.36) can be solved using eq. (7.23).

The second integral of eq. (7.34b) involves an expectation over the value GP, which
can be done in closed form as described in Section 7.2.1. So we obtain the update for
the value at support point si:

vi ← ri + γ

∫
V(s′)N (s′|µ,S) ds′ = ri + γl>Q−1

V v (7.37)

137

7. Gaussian Processes for Reinforcement Learning

where l is implicitly defined by eq. (7.23). Equation (7.37) could be used for iterative
policy evaluation, updating one value at a time. However, note that eq. (7.37) gives rise
to a set of |S| linear simultaneous equations in v, which we can solve explicitly:

v = r + γWQ−1
V v =⇒ v =

(
I− γWQ−1

V

)−1r (7.38)

where W is a matrix such that its ith row is equal to the l vector corresponding to the
ith support point as in eq. (7.37). Note the similarity of eq. (7.38) to the table based
eq. (7.12).

It should be stressed that—unfortunately—we are unable to perform proper Bayesian
inference about the value function, because we cannot state a corresponding likelihood.
However, the uncertainty about v can be modelled by σ2

V. One approach is to interpret
the rôle of the value GP as a noise free interpolation of the values v, as illustrated
in Figure 3.1 on page 18, and therefore to set its noise parameter σ2

V to a fixed small
positive value (to avoid numerical problems). Otherwise one can compute the variance
of vi by approximating the variance of (7.37), which can be computed by eq. (7.28).
This will be further discussed at the end of this chapter.

7.3.1.2. Policy Improvement

Above we described how to estimate the value function for a given policy p, i.e. approx-
imate policy evaluation using Gaussian process models. Now given a GP representation
of the value function and the dynamics GPs we can implement policy improvement by
acting greedily, thereby defining an implicit policy:

p+(s)← argmax
a∈A(s)

∫
p(s′|s, a)

[
r(s′) + γVp(s′)

]
ds′ . (7.39)

In a policy improvement step we have to compute the greedy action for all support states
which gives rise to |S| one-dimensional optimisation problems (when the possible actions
a are scalar). As we were able to compute the right hand side integral analytically, see
eq. (7.37), we can also compute the gradient of this quantity w.r.t. the action. Hence,
we can implement the optimisation problem eq. (7.39) using gradient based methods.
In the examples below we will see that application-specific constraints can often be
reformulated as constraints in the above optimisation problem, for example constraints
on a being in certain limits.

7.3.1.3. Approximate Gaussian Process Policy Iteration

We now combine policy evaluation and policy improvement into policy iteration in which
both steps alternate until a stable configuration is reached, see Algorithm 5. Thus given
observed state transitions and a reward function (or observations of rewards) we can
compute an estimate of the continuous value function and thereby an implicitly defined
greedy policy.

A practical problem of the approach is that function approximation errors can occur,

138

7.3. Approximate Policy Iteration in Continuous Domains

which then can propagate over the whole function and in the worst case lead to divergent
behaviour. Since the value function is updated based on evaluations of itself, errors
can be distributed, which is a common problem of function approximation methods in
reinforcement learning, see also eq. (7.33). If the value of a state s′ is overestimated,
this will lead to an overestimation of the values of all states s that project to it s→ s′

given the current policy. Unfortunately these kinds of errors are difficult to detect. In
practice it is therefore advisable to monitor the maximum value of v in every iteration.
An upper bound for the maximum value of v is given by the discounted sum of the
maximum reward given the number of iterations. Note that the effect is down-weighted
by the discount rate. It has been observed empirically that smaller values of the discount
rate γ help to limit the effects of this problem. Furthermore, the policy improvement
step involves non-convex optimisation problems (7.39). If only a sub-optimal action is
found, this can also lead to an erroneous update.

Algorithm 5 Gaussian process approximate policy iteration, batch version
1. Given: Observations of system dynamics of the form (s, a, s′) for a fixed time
interval ∆t, discount factor γ and reward function r
2. Model Identification: ML-II estimation of the parameters of the dynamics GPs
in order to obtain p(s′|s, a) ≈ N (s′|µ,S).
3. Initialise Value Function: Choose a set S = {s1, . . . , sm} of m support points
and initialise vi ← r(si). Estimate Gaussian process hyper-parameters ψ for repre-
senting V(s) using ML-II.
4. Policy Iteration:
repeat

for all si ∈ S do
Find action ai according to implicit policy by solving equation (7.39) subject to
problem specific constraints.
Compute N (s′i|si, ai) using the dynamics Gaussian processes.
Solve equation (7.36) in order to obtain ri.
Compute ith row of W as in equation (7.37).

end for
v← (I− γWQ−1

V)−1r
Update Gaussian process hyper-parameters for representing V(s) to fit the new v
by ML-II.

until stabilisation of v

The selection of the support points remains to be determined. In principle, the sup-
port states should be placed such that the true value function—and the intermediate
ones during policy iteration—can be approximated by the value GP as well as possible.
However, it is not obvious how to find these optimal locations a priori. In the experi-
ments described in the following sections, we simply use a regular grid of support points
in the relevant region of the state space.

139

7. Gaussian Processes for Reinforcement Learning

7.3.2. Estimating the Q-Value Function

In the policy iteration scheme we exploited that if both the dynamics of the environment
and the state-value function V are represented by Gaussian process models, we can
compute the expected value of the consecutive state. A variation of this setting is to
estimate the state-action value function Q : S × A → R as defined by eq. (7.7). The
continuous version of the Q-function comes in the form

Qp(s, a) =
∫
p(s′|s, a)

[
r(s′) + γVp(s′)

]
ds′ (7.40)

where again we made the assumption that the reward depends on the consecutive state
only. Using the greedy policy p+ and the relation (7.8) between the V and Q function
we obtain:

Q(s, a) =
∫
p(s′|s, a)

[
r(s′) + γ max

a′∈A(s′)
Q(s′, a′)

]
ds′ (7.41)

which defines a self-consistency equation for the optimal Q-function.

In the following we use a Gaussian process regression model to represent Q(s, a) and
eq. (7.41) will be used iteratively as an update rule for estimating the optimal Q-values
at the support points. In this setting the support points come in the form of state-action
pairs S = {(s, a)i|i = 1, . . . ,m} and let q denote the [m × 1] vector of corresponding
Q-values. The algorithm iteratively updates the estimated Q-values at the support
states

qi ← ri + γ max
a′∈A(s′)

∫
Q(s′, a′)N (s′|µi,Si) ds′ (7.42)

where ri is the expected immediate reward for the ith state-action pair in the support
set.

For each support point (s, a)i we first compute the predictive distribution over the
consecutive state p(s′|si, ai) = N (s′|µi,Si) using the dynamics GPs. Note that these
predictive distributions have to be computed only once for each support point. Then
the expectation over the reward function can be computed

ri =
∫

r(s′)N (s′|µi,Si) ds′ , (7.43)

which also do not change during the learning process. We then have to solve for the
value of the consecutive state under the greedy policy. For each support point we have
to find the value of

max
a′∈A(s′)

∫
Q(s′, a′)N (s′|µi,Si) ds′ , (7.44)

which is an expectation of a Gaussian process prediction for an uncertain input as
described in Section 7.2.1. Technically, we solve the integral∫

Q(s′, a′)N
([

s′

a′

]∣∣∣∣ [µi

a′

]
,

[
Si 0
0 0

])
ds′ da′ (7.45)

140

7.3. Approximate Policy Iteration in Continuous Domains

by using eq. (7.23) and compute the gradient with respect to a′. Note that the singular
covariance matrix in eq. (7.45) has not to be inverted directly in eq. (7.23), so we get
away with this trick. Thereby we can use a conjugate gradient optimisation routine
to solve the individual problems (7.44). The procedure of approximating the optimal
Q-function by a Gaussian process is summarised in Algorithm 6.

Algorithm 6 Gaussian process approximate Q-Learning, batch version
1. Given: Observations of system dynamics of the form (s, a, s′) for a fixed time
interval ∆t, discount factor γ and reward function r.
2. Model Identification: ML-II estimation of the parameters of the dynamics GPs
in order to obtain p(s′|s, a) ≈ N (s′|µ,S).
3. Initialise Q-value GP: Choose a set of support points S = {(s, a)i|i = 1, . . . ,m},
compute predictive distributions N (s′i|µi,Si) for all support points using the dynam-
ics GPs and store parameters. Compute r according to (7.43) and initialise q← r.
4. Estimation of Q-function:
repeat

for all (s, a)i ∈ S do

qi ← ri + γ max
a′∈A(s′)

∫
Q(s′, a′)N (s′|µi,Si) ds′

end for
Update GP hyper-parameters for representing Q(s, a) to fit the new q

until stabilisation of q

7.3.3. The Mountain Car Problem

For the first experiments the well-known mountain car problem, as described by Moore
and Atkeson (1995), will be used where the state-space S is only two-dimensional. The
setting consists of a friction-less, point-like, unit mass car in a valley. The state of
the system s = [x, ẋ]> is described by the position of the car and its speed which are
constrained to −1 ≤ x ≤ 1 and −2 ≤ ẋ ≤ 2 respectively.

For control a horizontal force F in the range

x-1 10.6-0.5

.

Figure 7.4.: Illustration of the moun-
tain car problem.

−4 ≤ F ≤ 4 can be applied in order to drive the
car up into the target region which in the formu-
lation of Moore and Atkeson (1995) is a rectan-
gle in state space such that 0.5 ≤ x ≤ 0.7 and
−0.1 ≤ ẋ ≤ 0.1. Note that the admissible range of
forces is not sufficient to drive up the car greedily
from the initial state s0 = [−0.5, 0]>. Therefore,
a strategy has to be found which utilises the land-
scape in order to accelerate up the slope, which
gives the problem its non-minimum phase charac-
ter, i.e. the problem cannot be solved by greedily maximising the immediate reward.

141

7. Gaussian Processes for Reinforcement Learning

For more details about the dynamics of the system see Appendix C.1.
At first we demonstrate how the approximate policy iteration scheme can be used to

estimate the optimal state-value function V. For model identification 50 state transitions
(s, a, s′) are simulated for ∆t = 0.2sec. After ML-II estimation of parameters the
dynamics GPs approximate the dynamics of the system within root mean squared errors
of 0.02 for predicting x and 0.2 for predicting ẋ.

Having a model of the system dynamics, the other necessary element we need to
specify is a reward function. In the formulation by Moore and Atkeson (1995) the
reward is equal to 1 if the car is in the target region and 0 elsewhere. For convenience we
approximate this cube by a Gaussian proportional to N ([0.6, 0]>, 0.052I) with maximum
reward 1 as sketched in Figure 7.4. We now can solve the update equation (7.37) and
also evaluate its gradient with respect to F . This enables us to efficiently solve the
optimisation problem eq. (7.39) subject to the constraint −4 ≤ F ≤ 4. States outside
the feasible region −1 ≤ x ≤ 1 and −2 ≤ ẋ ≤ 2 are assigned zero value and reward.

As support points S for the state-value function V we simply put a regular [19× 19]
grid onto the state-space and initialise the value function with the immediate rewards
for these states, see Figure 7.5(a). The standard deviation of the noise of the value
GP representing V(s) is set to σV = 0.01, and the discount factor to γ = 0.9. Follow-
ing the policy iteration scheme as given by Algorithm 5, we estimate the value of all
support points following the implicit policy (7.39) w.r.t. the initial value function, see
Figure 7.5(a). We then evaluate this policy and obtain an updated value GP shown in
Figure 7.5(b) where all points which can expect to reach the reward region in one time
step gain value. If we iterate this procedure two times, we obtain a value function as
shown in Figure 7.5(c) in which the state space is already well organised. After six pol-
icy iteration steps the value function and therefore the implicit policy becomes stable,
see Figure 7.5(d).

In Figure 7.6(a) a GP based state-transition diagram is shown, in which each support
point si is connected to its predicted (mean) consecutive state s′i when following the
approximate optimal policy. For some of the support points the model correctly predicts
that the car will leave the feasible region, no matter what force |F |≤4 is applied, which
corresponds to areas with zero value in Figure 7.5(d).

If we control the car from s0 = [−0.5, 0]> according to the greedy policy, the car
gathers momentum by first accelerating left before driving up into the target region
where it is balanced as illustrated in Figure 7.6(b). It shows that the 50 random examples
of the system dynamics are sufficient for this task. The control policy found is probably
very close to the optimally achievable one. Note that in the experiment shown in
Rasmussen and Kuss (2004) the time interval was ∆t = 0.3 and γ = 0.8 was used which
gives similar results.

We also estimated the Q-value function as described in Section 7.3.2 for the mountain
car system. The support points S were placed on a regular [13×13×10] grid of x× ẋ×F
values. The discount rate γ was set to 0.9 and we used the same dynamics GPs as
in the previous experiment. After approximately 20 iterations the q values stabilised
and the estimated Q-function is illustrated in Figure 7.7. The value function for the
greedy policy with respect to the Q-value GP is similar to the value function found by

142

7.3. Approximate Policy Iteration in Continuous Domains

−1

−0.5

0

0.5

1 −2

−1

0

1

2

0

0.2

0.4

0.6

dx

x

V

−1

−0.5

0

0.5

1 −2

−1

0

1

2

0

2

4

dx

x

V

(a) (b)

−1

−0.5

0

0.5

1 −2

−1

0

1

2

0

2

4

6

8

dx

x

V

−1

−0.5

0

0.5

1 −2

−1

0

1

2

0

2

4

6

8

dx

x

V

(c) (d)

Figure 7.5.: Illustration of GP approximation to the value function V for the mountain car
problem using the policy iteration scheme. Shown are the mean of the value GP
for the mountain car example after initialisation by the reward (a), after the first
iteration over S (b), and a nearly stabilised value function after 3 iterations (c).
Panel (d) shows the final value function after 6 policy improvements over S where
V has stabilised. Compare to Sutton and Barto (1998, Figure 8.10).

143

7. Gaussian Processes for Reinforcement Learning

−1 −0.5 0 0.5 1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

dx

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

x

(a) (b)

Figure 7.6.: Illustration of the greedy policy with respect to the value function shown in Fig-
ure 7.5(d). Panel (a) shows a state transition diagram illustrating the implicit
policy on a grid of states. The black lines connects states s and the respective
E[s′] estimated by the dynamics GPs when following the greedy policy. The bold
trajectory describes the state of the system when controlled according to the im-
plicit policy (7.39). Note that the temporary violation of the constraint ẋ < 2
remains unnoticed using time intervals of ∆t = 0.2. Panel (b) shows the position
x of the car when controlled according to the greedy policy where the circles mark
the ∆t = 0.2 second time steps.

−1

0

1 −2

−1

0

1

2

2
4
6
8

dx

x

V

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

dx

(a) (b)

Figure 7.7.: Gaussian process approximateQ-Learning for the mountain car problem. Panel (a)
shows the state-value function of the greedy policy V(s) = maxaQ(s, a) after 20 iter-
ations of Algorithm 6. Panel (b) illustrates the greedy policy p(s) = argmaxaQ(s, a)
where the gray-scale encodes the strength and direction of the control signal F from
4N (white) to −4N (dark).

144

7.3. Approximate Policy Iteration in Continuous Domains

.

.

�

|

d

F

|

0 x

θ

Figure 7.8.: Illustration of the inverted pendulum problem. The state of the system at time t
is described by its horizontal position x, its velocity ẋ, the angle of the pendulum θ
and its angular velocity θ̇. The aim is to stand at x = 0 with the pendulum upright
θ = π.

approximate policy iteration. Using the greedy policy (7.17) shown in Figure 7.7(b) the
car can be driven up the hill and balanced in the target area.

7.3.4. The Inverted Pendulum

Another frequently studied system in reinforcement learning is the inverted pendulum
which consists of a pendulum attached to a cart which can only be accelerated horizon-
tally. The state of the system is a quadruple s = [x, ẋ, θ, θ̇]> of the cart’s position x,
its velocity ẋ, the angle of the pendulum θ relative to pointing exactly downwards, and
the angular velocity θ̇, see Figure 7.8. The control signal is a horizontal force F which
can be chosen every ∆t = 0.2sec for which the force is applied constantly. Learning
to balance the pendulum in an upright position is a nontrivial reinforcement learning
problem, if the agent does not know the dynamics. An even more challenging task is to
start with the pendulum hanging downwards, such that it has to be swung up first.

For model identification we sampled m = 300 states uniformly from a constrained
region of the state space where the cart’s position is in the range −1 ≤ x ≤ 1, its
velocity is −3 ≤ ẋ ≤ 3, the angle of the pendulum is 0 ≤ θ ≤ 2π, and the angular
velocity is −8 ≤ θ̇ ≤ 8. For each of these states we drew a force from a uniform
distributions on −4 ≤ F ≤ 4 and used a simplified model of the system dynamics (see
Appendix C.1 for the ODE) to simulate the system ∆t = 0.2sec forward in time to
obtain samples of the form (s, a, s′)i for i = 1, . . . , 300.

Using the inverted pendulum system we experimented with two tasks of different dif-
ficulty. The first task is to swing up the pendulum and balance it at x = 0. Accordingly
the reward function was a Gaussian centred on θ = π and x = 0 scaled such that the
maximum reward is 1. We tried to make the approximate Gaussian process policy it-

145

7. Gaussian Processes for Reinforcement Learning

eration algorithm work as described by Algorithm 5. Unfortunately we were unable to
estimate a value function such that the corresponding policy could be used to swing up
and balance the pendulum at the desired position x = 0. We tried to understand the
reasons for this shortcoming by conducting several experiments.

For the inverted pendulum the state space is four dimensional and the optimal value
function is a complex object which is non-stationary, i.e. it has different local properties
in different parts of the state space, in particular it has discontinuities. Only in a
tiny sub-region of the state space the pendulum can be balanced. At the edges of
this region the value function will be discontinuous because a whole “swing” would be
necessary before the pole can be balanced again. Outside the balancing region forces
must be applied that push the cart towards its target position and swing it up. Once
the pendulum reaches a state in the balancing region it must then be controlled very
accurately. While the dynamics of the system can be approximated well, representing
this non-stationary value function is difficult and a Gaussian process regression model
with a covariance of the form (7.21) seems to be unsuited.

It might be that the optimal value function of the inverted pendulum problem could
be approximated sufficiently well if the set of support points was large enough and the
points were placed well. However, even using a regular grid of 10 values per dimension we
did not obtain a value function that could swing up the pendulum, although balancing
was possible if the support points were placed in the balancing region. As will be
shown in Section 7.4.2 swinging up the pendulum and balancing it at x = 0 can be
implemented, but using a different approach.

We then simplified the task by ignoring the position x of the cart. The task becomes
to swing up the pole and balance it independent of the position and the speed of the
cart. Accordingly the reward function was chosen to be a Gaussian centred on θ = π
but which is independent of all other components of the state. Furthermore, larger
forces −8 ≤ F ≤ 8 were allowed such that the task can be solved in less time steps.
The discount factor was set to γ = 0.9 and as support points a regular [5× 9× 9] grid
in the now three-dimensional state space was used, where the speed was −3 ≤ ẋ ≤ 3,
the angle 0 ≤ θ < 2π, and the angular speed −8 ≤ θ̇ ≤ 8.

We then used Algorithm 5 to approximate the optimal state-value function. In mul-
tiple simulations we obtained some solutions for which the greedy policy was able to
swing up the pendulum, e.g. the one shown in Figure 7.9, but we also observed estimates
that failed.

7.4. Finite Horizon Planning under Uncertainty

In every stage of the decision process the agent faces the problem of choosing an action
given its current state of information. The approaches described above aimed at solving
this problem by estimating value functions in Markov decision processes of infinite length
for an infinite planning horizon. But estimating an optimal value function involves
solving this problem for all states, not just for the states that are actually relevant for
the agent.

146

7.4. Finite Horizon Planning under Uncertainty

0 5 10 15

0

2

4

6

8

t

x

0 5 10 15

−2

0

2

4

6

t

dx

(a) (b)

0 5 10 15
0

1

2

3

4

5

6

7

t

θ

0 5 10 15
−10

−5

0

5

10

t

dθ

(c) (d)

0 5 10 15

−5

0

5

t

F

0 5 10 15
0

0.2

0.4

0.6

0.8

1

t

R
ew

ar
d

(e) (f)

Figure 7.9.: Controlling the simplified inverted pendulum system following the greedy policy.
Panels (a–d) display the state variables st = [xt, ẋt, θt, θ̇t]> over time when applying
control signals according to the greedy policy. The dashed lines mark the regions
in which the training samples were generated from. Panel (e) shows the applied
forces which were constrained to −8 ≤ Ft ≤ 8 (dashed lines) and Panel (f) shows
the corresponding Rewards.

147

7. Gaussian Processes for Reinforcement Learning

In this section we follow a different approach which is motivated by direct application
of Bayesian decision theory as described in Section 2.2. The idea is that given a model
of the environment, the agent can simulate the effects of actions several steps into the
future. Given a (simple) loss function the agent can estimate the effects of a sequence
of actions and choose the action that minimises the expected risk. Note that we do not
aim at solving the exploration vs. exploitation problem but only to exploit the current
understanding of the environment.

According to Bayesian decision theory an action is chosen which minimises the ex-
pected loss, i.e. the risk. We therefore use a loss function instead of a reward function
below, but by setting the loss to be the negative reward the two views are equivalent.
Let L(st, tt) denote the loss associated with a discrepancy of the state st and a target
state tt ∈ S.

Given a probabilistic model of the state transition probabilities, a greedy approach
would be to minimise the expected loss (risk) in each time step:

at = argmin
a∈A(st)

R(tt+1, st, a) = argmin
a∈A(st)

∫
L(st+1, tt+1) p(st+1|st, a) dst+i (7.46)

averaged over the uncertainty p(st+1|st, a) in the consecutive state. However, the kind of
problems studied in reinforcement learning can typically not be solved without accepting
an increase in losses before getting the system close to the target state. Therefore, a
one-step greedy approach (7.46) will fail and instead one has to consider a longer planing
horizon. Again we will follow the idea of minimising the expected loss, but now we use
the model to simulate several steps forward in time and optimise over a sequence of
future actions.

Consider the sum of discounted expected losses accumulated over N consecutive time
steps given a sequence of actions at, . . . , at+N−1, an initial state st, and target states
tt+1, . . . , tt+N . The greedy approach (7.46) can be seen as a special case where N = 1.
Let R denote the discounted sum of expected losses over N steps

R(at, . . . , at+N−1, st) =
N∑

i=1

γi

∫
S

L(st+i, tt+i) p(st+i|at, . . . , at+i−1, st) dst+i

=
N∑

i=1

γiRt+i (7.47)

where γ > 0 is a discount factor and R is the risk, i.e. the expected loss.

In Section 7.2.2 it has been described how a Gaussian process model of the agent’s
environment can be used to simulate the effect of a sequence of actions. Thereby the
distribution p(st+i|at, . . . , at+i−1, st) can be approximated by N (st+i|µt+i,St+i) for i =
1, . . . , N . Note that the discounted sum of expected losses (7.47) is equivalent to the
utility function (7.2), by setting the reward to be the negative loss.

In order to find the action in a given state, we now minimise R over the sequence of N

148

7.4. Finite Horizon Planning under Uncertainty

future actions. So at each time step t we face an N dimensional optimisation problem

at = argmin
at

min
at+1,...,at+N−1

R(at, . . . at+N−1, st) (7.48)

subject to problem specific constraints. Having found a sequence of actions that min-
imises R we apply the first action at, observe st+1, and repeat the procedure, which is
known as a receding horizon strategy, see Algorithm 7.

Algorithm 7 Receding Finite Horizon Planning
Given: Initial state s0, target trajectory tt, discount factor γ, horizon N , examples
of system dynamics (st, at, st+1)i i = 1, . . . ,m for fixed ∆t, loss function L(st, tt)
1. Model Identification Find ML-II parameters for dynamics GPs.
2. Control
Set t← 0
loop

Find at by solving at = argmin
at

min
at+1,...,at+N−1

R(at, . . . , at+N−1, st)

Apply at for ∆t and observe st+1

t← t+ 1
end loop

The discount factor can be a used to influence the strategy and has to be chosen
with respect to the planing horizon N . Small values γ � 1 favour strategies which
bring the system into states associated with low losses quickly but may neglect future
consequences thereof. Too small values of γ may also bar the agent from accepting an
increase in losses before reaching states associated with relatively low losses. The choice
of γ must also be related to the uncertainty of the model’s prediction as it grows with
N . When predicting into the future, the uncertainty typically grows with the number
of steps and likewise the expected losses. In order to emphasise that it is important to
achieve low losses in later stages a value γ > 1 can be used to anticipate the increase in
uncertainty when predicting several stages into the future. Although a discount rate is
usually defined as 0 < γ < 1, for a finite horizon utility function as given by eq. (7.2)
also γ > 1 is a legitimate choice.

The remainder of this section will be used to describe how the gradients of R with
respect to the control signals at, . . . , at+N−1 can be computed. This is technical but
important because it will enable us to use gradient based optimisation methods to solve
eq. (7.48). Let

Rt(µt,St, tt) = E
st

[L(st, tt)] =
∫
S

L(st, tt) N (st|µt,St) dst (7.49)

denote the expected loss at time t where N (st|µt,St) is given by the dynamics GPs.
Assuming Rt(µt,St, tt) to be differentiable in µt and St, the gradient of the cumulated

149

7. Gaussian Processes for Reinforcement Learning

discounted loss (7.47) is given by

∂R

∂at+j
=

N∑
i=1

γi∂Rt+i

∂at+j
=
∑
i>j

γi

(
∂Rt+i

∂µ>t+i

µt+i

∂at+j
+
∂Rt+i

∂St+i

St+i

∂at+j

)
(7.50)

where 0 ≤ j < N .3 We will compute this gradient for i = j + 1 and then propose an
algorithm for iteratively computing the gradient over multiple time steps i− j > 1. By
differentiating the mean (7.23), the variances (7.28), and the covariances (7.30) with
respect to the parameters of the input distributions we can compute the terms

∂µt+1

∂at
,
∂µt+1

∂st
,
∂µt+1

∂St
,
∂St+1

∂at
,
∂St+1

∂st
,
∂St+1

∂St
, (7.51)

which is all we need in order to compute the gradient of the expected cumulative loss
R with respect to all control signals at, . . . at+N−1. When i = j − 1 we can directly
compute

∂Rj

∂ai
=

∂Rj

∂µ>j

∂µj

∂ai
+
∂Rj

∂Sj

∂Sj

∂ai
(7.52)

by simply plugging in the derivatives. But in case i < j − 1 we have to compute

∂Rj

∂ai
=

∂Rj

∂µ>j

(
∂µj

∂µ>j−1

∂µj−1

∂ai
+

∂µj

∂Sj−1

∂Sj−1

∂ai

)

+
∂Rj

∂Sj

(
∂Sj

∂µ>j−1

∂µj−1

∂ai
+

∂Sj

∂Sj−1

∂Sj−1

∂ai

)
(7.53)

for which we need to know the dependencies between actions and distributions over
states for multiple time steps. Fortunately, we can state an algorithm in which we
only need the first order derivatives (7.51). While iteratively predicting the N con-
secutive states we keep track of the partial derivatives of the respective state means
and covariance matrices with respect to all previous control signals. In order to avoid
further technicalities a schematic description of the gradient computation is given by
Algorithm 8.

In the experiments presented below the optimal action is computed by minimising the
discounted cumulated risk R using a conjugate gradient based optimiser. In general,
the optimisation problem (7.48) is not convex, so local minima problems can occur.

7.4.1. The Mountain Car Problem

The first experiment considers the mountain car problem which has already been de-
scribed in Section 7.3.3. For model identification we generated 50 state transitions for

3Note that for notational simplicity we write ∂a
∂A

∂A
∂b

instead of ∂a
vec(A)>

vec(A)
∂b

. Furthermore, terms of

the form ∂A
∂B

are handled like tensors and all operations are to be understood such that the chain
rule holds.

150

7.4. Finite Horizon Planning under Uncertainty

Algorithm 8 Computation of the gradient of R w.r.t. at, . . . at+N−1.
Given: State s0, sequence of actions a0, . . . , aN−1

Initialise µ0 = s0, S0 = diag(0), t← 0
for time step i = 1, . . . , N do

Compute µt+1 and St+1

Compute partial derivatives of the predictive mean and covariance

∂µt+1

∂at
,
∂µt+1

∂µ>t
,
∂µt+1

∂St
,
∂St+1

∂at
,
∂St+1

∂µt

,
∂St+1

∂St

Compute and store partial derivative of the expected loss at time t+ 1

∂Rt+1

∂at
=

∂Rt+1

∂µ>t+1

∂µt+1

∂at
+
∂Rt+1

∂St+1

∂St+1

∂at

for all previous time steps j = i− 1, . . . , 0 do
Update and store the partial derivatives

∂µt+1

∂aj
=

∂µt+1

∂µ>t

∂µt

∂aj
+
∂µt+1

∂St

∂St

∂aj

∂St+1

∂aj
=

∂St+1

∂µ>t

∂µt

∂aj
+
∂St+1

∂St

∂St

∂aj

∂Rt+1

∂aj
=

∂Rt+1

µ>t+1

µt+1

∂aj
+
∂Rt+1

St+1

St+1

∂aj

end for
t← t+ 1

end for
Finally compute the gradient vector element-wise
for j = 0, . . . , N − 1 do

∂R

∂at+j
=
∑
j<i

γi ∂Rt+i

∂at+j

end for
Return gradient

(
∂R
∂a0

, . . . , ∂R
∂aN−1

)>

151

7. Gaussian Processes for Reinforcement Learning

∆t = 0.3 to build the dynamics GPs. Note that ∆t = 0.3 seconds seems to be an order
of magnitude slower than the time scale usually considered in the literature.

Having a model of the system dynamics, the other necessary element of the proposed
algorithm is a loss function. We choose the target state to be t = [0.6, 0]> and use a
weighted quadratic loss function

L(st, t) = (st − t)>
(

1 0
0 0.1

)
(st − t) (7.54)

which emphasises that the main goal is to bring the car to the target x-position rather
than not wanting the car to gain speed. Given a bivariate normal distributionN (st|µt,St)
the expected loss at time t can be computed using the integral (B.26). In the experiment
we used a five step horizon (N = 5) and thereby simulating the system behaviour over
the next 1.5 seconds.

For the simulation illustrated in Figure 7.10 we initially placed the car at the deepest
point of the valley s0 = [−0.5, 0]>. Then we applied control signals found by solving
eq. (7.48) subject to the constraint −4 ≤ Ft ≤ 4. The strategy found is to first apply a
force of−4 away from the target position to drive up the left hand slope from where again
a force of 4 is used to speed up the car towards the target state utilising the landscape
properties. Reaching the target state, the car is balanced around the target position with
forces of approximately 2. Here it shows that bringing the car up to the target region
can be solved using bang-bang like control strategies (only using maximum/minimum
forces), but for balancing, more accurate forces have to be applied.

7.4.2. The Inverted Pendulum

We now turn to the inverted pendulum system that has been described in Section 7.3.4.
For model identification we simulate 200 state transitions for ∆t = 0.2 seconds and use
ML-II to estimate the parameters of the dynamics GPs. The objective is to swing up the
pendulum and balance it while the cart’s position is at x = 0. Note that this is the task
we could not solve using the approximate policy iteration algorithm in Section 7.3.4.

As loss function we use the squared distance

L(s) = d2(s) = (x+ 2l sin θ)2 + 4 (l + l cos θ)2 (7.55)

between the pendulum tip in its actual position and its target position standing upright
at x = 0, see again Figure 7.8. Note that the loss is a function of the position x and the
angle θ only and is independent of the respective speeds.

We now approximate the expected loss R over the predictive distribution of the state
N (s|µ,S) given by the dynamics GPs. Therefore we use a second order Taylor series
approximation of the loss function (7.55) around ŝ:

d2(s) ≈ d2(ŝ) + (s− ŝ)>∇d2(ŝ) + 1
2(s− ŝ)>∇∇d2(ŝ)(s− ŝ) (7.56)

where the nonzero elements corresponding to x and θ of the gradient and the Hessian

152

7.4. Finite Horizon Planning under Uncertainty

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

t

x

0 1 2 3 4 5

−2

−1

0

1

2

t

dx

(a) (b)

0 1 2 3 4 5

−4

−2

0

2

4

t

F

0 1 2 3 4 5
0

2

4

6

8

10

t

E
xp

ec
te

d
cu

m
ul

at
iv

e
lo

ss

(c) (d)

Figure 7.10.: Finite horizon planning for the mountain car problem. Panel (a) shows the x
position and Panel (b) the speed ẋ during a simulation of 5 seconds. Panel (c)
shows the applied forces at. Note that the force has a negative sign, accelerating
the car away from the target position. Panel (d) shows the value of the expected
cumulative loss R.

are

∇d2(s) =
(

2x+4l sin θ

4xl cos θ−8l2 sin θ

)
and ∇∇d2(s) =

(
2 4l cos θ

4l cos θ −4xl sin θ−8l2 cos θ

)
.

When the Hessian becomes non-positive definite we add the absolute value of the small-
est eigenvalue to the diagonal elements in order to ensure that the expected loss is
positive. Let N (s|µ,S) and ŝ = µ, then the expected loss can be approximated by
taking the expectation over the Taylor approximation (7.56):

R(s) = E[d2(s)] ≈ d2(µ) + 1
2 tr(∇∇d2(µ)S) (7.57)

using the integral (B.26).

Initially the cart stands at x = 0 with the pendulum hanging downwards (θ = 0).
For control we apply forces minimising the expected cumulative error R over N = 5

153

7. Gaussian Processes for Reinforcement Learning

0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

1.5

t

x

0 2 4 6 8 10 12

−3

−2

−1

0

1

2

3

t

dx

(a) (b)

0 2 4 6 8 10 12

0

1

2

3

4

5

6

t

θ

0 2 4 6 8 10 12

−5

0

5

t

dθ

(c) (d)

0 2 4 6 8 10 12

−4

−2

0

2

4

t

F

0 2 4 6 8 10 12
0

1

2

3

4

t

E
xp

ec
te

d
C

um
ul

at
iv

e
Lo

ss

(e) (f)

Figure 7.11.: Controlling the inverted pendulum system. Panels (a–d) display the state vari-
ables st = [xt, ẋt, θt, θ̇t]> over time when applying control signals that minimise
the expected cumulative loss over N = 5 time steps each ∆t = 0.2sec in length.
After about 4sec the pendulum is swung up and balanced for the remaining 8sec.
The dashed lines mark the regions in which the training samples were generated
from. Panel (e) shows the applied forces which were constrained to −4 ≤ Ft ≤ 4
(dashed lines) and Panel (f) shows the corresponding expected cumulative losses
Rt (discount factor γ = 1).

154

7.5. Conclusions & Discussion

future time steps for γ = 1. We made the problem more difficult by constraining the
control signal to be in the range −4 ≤ F ≤ 4. As shown in Figure 7.11, after about
4 seconds the pendulum can be brought into an upright position and is subsequently
balanced with x positions close to the target value x = 0. For balancing the system it is
evident from the system dynamics that the angle θ is by far the most sensitive variable.
Hence the control policy has to focus on holding the pendulum upright, allowing only
small deviations in θ while deviations in x are less critical. Note that ∆t = 0.2sec is a
rather long time interval for controlling the system which might be the reason for not
being able to stabilise the pendulum completely. Local controllers may be better suited
to balance the system around its optimum. We also sampled the state space around its
optimum and found that a linear function is sufficient to balance the system well.

7.5. Conclusions & Discussion

In the course of this chapter several ideas were presented showing how Gaussian process
models could be used in model-based reinforcement learning problems. The focus was
how to implement planning in problems with continuous state spaces, as it appears in
model based reinforcement learning. Gaussian process regression models have proven
to be well suited to capture the non-linear dynamics of common benchmark problems
based on a relatively small number of samples and relatively long time intervals.

In Section 7.3 we studied different approaches using a Gaussian process model to
represent and estimate value functions. The approach constitutes an alternative to con-
ventional function approximation methods based on temporal difference learning. Even
if we are unable to implement Bayesian inference about the value functions—because
it is unclear what the likelihood might be—the setting is interesting since it allows us
to approximately solve a continuous equivalent to the Bellman equations. Despite this
conceptual attractiveness, we have to emphasise that the proposed methods rely on the
assumption that we can adequately capture the system dynamics and the value function
using GP models given the set of support points. This implies potential difficulties in
handling problems which exhibit discontinuous value functions, particularly in higher
dimensions. Two drawbacks of GP models for representing the value function, either V
or Q, are the necessity to use a particular form of covariance function and the explicit
representation of values at the support points.

In general it must be questioned whether a Gaussian process, especially with the
stationary squared exponential covariance function (7.21), is well suited for representing
the value function, which is often not stationary, i.e. its local properties vary over the
state space. Another problem is that the Gaussian process model relies on a set of
support points which need to lie dense enough to represent the value function accurately.
If the state space is high dimensional, the placement and necessary number of support
points becomes a difficult problem. Furthermore for each support point a non-convex
optimisation problem has to be solved in order to update the corresponding estimate of
the value.

Approximating value functions in continuous domains using non-linear function ap-

155

7. Gaussian Processes for Reinforcement Learning

proximation, also using neural networks for instance, is always a difficult task. However,
despite the problems mentioned above, the probabilistic approach studied in this chap-
ter also comes with certain interesting aspects. Commonly the value function is defined
to be the sum of expected (discounted) future rewards. Conceptually however, there
is more to values than their expectations. The distribution over future reward could
have small or large variance and identical means, two fairly different situations, that are
treated identically when only the value expectation is considered. It is clear however,
that a principled approach to the exploitation vs. exploration trade-off requires a more
faithful representation of value, as was recently proposed in Bayesian Q-Learning for
finite MDPs (Dearden et al., 1998). For example, the large variance case it may be more
attractive for exploration than the small variance case.

The GP representation of value functions proposed here lends itself naturally to this
more elaborate concept of value. The GP model represents a full distribution over values,
although in the experiments above we have only used its expectation. Implementation
of this would require a second set of Bellman-like equations for the second moment of
the values at the support points. These equations would simply express consistency of
uncertainty: the uncertainty of a value should be consistent with the uncertainty when
following the policy.

Whereas only a batch version of the algorithm has been described, it would obviously
be interesting to explore its capabilities in an online setting, starting from scratch. This
will require that we abandon the use of a greedy policy, to avoid risking to get stuck in
a local minima caused by an incomplete model of the dynamics. Instead, a stochastic
policy should be used, which should not cause further computational problems as long as
it is represented by a Gaussian (or perhaps more appropriately a mixture of Gaussians).
A good policy should actively explore regions where we may gain a lot of information,
requiring the notion of the value of information (Howard, 1966). Since the information
gain would come from a better dynamics GP model, it may not be an easy task in
practice to optimise jointly information and value.

We have demonstrated that the algorithm gives a reasonable approximation to the
value function for the mountain car problem. However for the inverted pendulum system
we could not succeed when using a reward function that included the location of the
cart.

In practical problems it seems more relevant to find the optimal actions for partic-
ular states than it is to find the optimal strategy for all possible states. At first sight
the finite horizon planning approach proposed in Section 7.4 might not appear very
elegant, but it has shown to be able to swing-up and balance the inverted pendulum
system only using observed examples of the dynamics. The approach could be used in
control problems—maybe in conjunction with classical control techniques—where the
differential equations describing the dynamics of the system are unknown, see Suykens
et al. (2001) for a related approach. A major drawback of the proposed approach are
computational costs related to the optimisations that are necessary at each time step.
Although we derived the necessary gradients for the minimisation of the expected cu-
mulative loss, the time necessary for optimisation in the Gaussian process models may
take longer than the ∆t interval such that online control would not be possible. The

156

7.6. Bibliographical Remarks

computations could be speed up for example by using sparse approximations to Gaus-
sian process models as for example proposed by Lawrence et al. (2003). These sparse
approximation could drastically reduce the computational cost for function evaluations
as well as for computing the gradients. Another approach to do control online can be
seen in pre-computing the control signal at relevant states and to make this accessible
during actual control.

In summary, Gaussian process regression models come with certain attractive prop-
erties for model-based reinforcement learning. In this chapter several ideas have been
studied for learning in MDPs with continuous state spaces in both the finite and infinite
horizon settings. We have encountered practical problems that need to be worked on,
but we have also demonstrated that the use of GP models opens new possibilities to
study in the future.

7.6. Bibliographical Remarks

The term reinforcement learning has been introduced in the artificial intelligence com-
munity by Minsky (1961) and in control engineering by Waltz and Fu (1965). Very
recommendable introductory texts on reinforcement learning were written by Kaelbling
et al. (1996), Bertsekas and Tsitsiklis (1996), and Sutton and Barto (1998). The liter-
ature on Markov decision processes is large and many variations and extensions have
been proposed. Recommendable introductions are to be found in White (1993) and
Filar and Vrieze (1996). In the engineering literature the Markov decision process is
referred to as controlled Markov chains (Kesten and Spitzer, 1975).

Sutton (1988) reviews previous uses of temporal difference learning and describes the
TD(λ) algorithm. An early reference to the core concept of temporal difference learning
is Samuel (1959). The convergence of temporal difference learning in finite MDPs has
been proven by Dayan (1992) and Dayan and Sejnowski (1994). Q-Learning has been
developed by Watkins (1989), see also Watkins and Dayan (1992).

Bayesian approaches to the reinforcement learning problem are rare, mostly because
the necessary computations are intractable and difficult to approximate. An early ref-
erence is the work of Martin (1967) in which Markov processes are approached from a
Bayesian decision theoretic point of view. For finite MDPs the conjugate multinomial-
Dirichlet model is proposed to learn the state transition probabilities, although it was
named matrix beta distribution by the time. Strens (2000) proposed an interesting
sampling approximation to the exploration vs. exploitation problem in finite MDPs,
by sampling worlds from a probabilistic model of the environment. For many sampled
worlds the optimal decision is computed using dynamic programming, which gives an
approximate distribution over the optimal action.

Bandit processes are MDPs which have only one state and a choice of n possible
actions (Berry and Fristedt, 1985). Gittins (1979, 1989) has shown that the optimal
Bayesian strategy minimising the regret in Bandit problems can be computed, giving
a non-approximate answer to the exploration vs. exploitation problem. Unfortunately,
generalising this approach to MDPs with more than one state has shown to be very

157

7. Gaussian Processes for Reinforcement Learning

difficult (Duff, 2002).
Ormoneit and Sen (2002) proposed a kernel-based approach to reinforcement learning

which asymptotically converges to a Gaussian process. Engel et al. (2003, 2005) pro-
posed a Gaussian process based algorithm for model free reinforcement learning. The
propagation of uncertainty in Gaussian process models for time series has been described
by Girard et al. (2003) and Quiñonero-Candela et al. (2003). The idea of doing dynamic
programming in continuous spaces using Gaussian process models has been described
by Rasmussen and Kuss (2004).

158

A. Algorithms and Implementations

In fact, I ask you to remember only two points:

1. The tool that is so dull that you cannot cut yourself on it is not likely
to be sharp enough to be either useful or helpful.

2. Most uses of the classical tools of statistics have been, are, and will be,
made by those who know not what they do.

— Tukey (1965)

A.1. Implementing Gaussian Process Regression with Normal
Noise

This appendix describes the implementation of Gaussian process regression with normal
noise as described in Section 3.2. Hybrid Monte Carlo and ML-II estimation both
require to evaluate the log evidence and to compute its gradient with respect to the
hyper-parameters ψ and the likelihood parameters θ, which in this case refers to the
noise variance σ2

n only. ML-II estimation is usually implemented by minimising the
negative log evidence using a gradient based minimisation algorithm, e.g. a conjugate
gradient method. In the regression setting with normal noise the negative log evidence
comes in the form

− ln p(D|θ,ψ) = m
2 ln(2π) + 1

2 ln
∣∣K + σ2

nI
∣∣+ 1

2y
>(K + σ2

nI)
−1y (A.1)

where θ = σ2
n. The optimisation algorithm in ML-II estimation or the Hybrid MCMC

scheme repeatedly evaluates eq. (A.1) for various values of θ and ψ. Each time the
inverse and the determinant of K have to be re-computed which unfortunately scales
cubic O(m3) in time. A numerically stable approach to evaluating eq. (A.1) is to
compute the Cholesky factorisation of Q = K+ σ2

nI such that Q = LL> (see Appendix
B.1.5). Since L is triangular the inverse L−1 can be computed efficiently by back-
substitution (Press et al., 2002, ch. 2.9). The log determinant of Q can be computed
from L using relation (B.13).

Additionally the gradient of (A.1) has to be computed. By using the relations (B.10)
one obtains (here for an element of ψ but likewise for σ2

n):

−∂ ln p(D|θ,ψ)
∂ψi

=
1
2

tr
(
Q−1 ∂Q

∂ψi

)
− 1

2
y>Q−1 ∂Q

∂ψi
Q−1y (A.2a)

=
1
2

tr
(
∂Q
∂ψi

(
Q−1 −Q−1yy>Q−1

))
(A.2b)

159

A. Algorithms and Implementations

where the second term in the trace is the same for all ψi. Note that for computing the
trace of the product of two matrices the relation tr(AB) =

∑
i,j(A�B>) can be used,

where � denotes the elementwise (Hadamard) product.
The predictive distribution for test cases is computed according to equations (3.12)

where the inverse L−1 can be reused. Alternatively Gibbs and MacKay (1997) describe
an iterative approximate procedure which is basically O(im2) where i is the number of
iterations.

A.2. Implementation of Laplace’s Method

In Section 4.1 Laplace’s method was described for approximate inference in Gaussian
process models. This appendix describes details of our implementation, see also the
appendices of Williams and Barber (1998).

Computing Laplace’s approximation N (f |m,A) for given θ and ψ the main com-
putational effort is involved in finding the maximum of the unnormalised log posterior
lnQ as given by eq. (4.2a). Finding the (or a local) mode can be implemented using a
conjugate gradient optimisation scheme, but if the posterior is unimodal it is computa-
tionally advantageous to use Newton’s method. In this case the vector f0 is initialised
randomly and in each Newton step it is updated according to:

f t+1 = f t − (∇∇f lnQ(f t)−1∇f lnQ(f) (A.3a)
= (K−1 + W)−1(Wf t +∇f lnL(f t)) (A.3b)

until convergence of f to the mode m. To ensure convergence the update is accepted
only if the value of the target function increases, otherwise the step size is shortened
until lnQ(f t+1) ≥ lnQ(f t).

Computationally Newton’s method is dominated by the repeated inversion of the
Hessian. Since K can be poorly conditioned we use the identity

(K−1 + W)−1 = K−KW
1
2 (I + W

1
2 KW

1
2)−1W

1
2 K (A.4)

such that only the well conditioned, positive definite matrix (I+W1/2KW1/2) has to be
inverted. In our implementation the inverse is computed from a Cholesky decomposition
of this matrix. If the likelihood is log-concave, W is a diagonal matrix with positive
entries, hence computing W1/2 is trivial.

Note that implementing the Newton updates (A.3) only requires the product of the
inverse Hessian times the gradient which could be computed more efficiently using an
iterative conjugate gradient method, as for example described by Golub and Van Loan
(1989, ch. 10).

Having found the mode m the approximation of the evidence (4.12) and its derivatives
can be computed. The approximate evidence takes the form

ln p(D|θ,ψ) ≈ ln q(D|θ,ψ) = lnQ(m) + m
2 ln(2π) + 1

2 ln |A| (A.5a)

= lnL(m)− 1
2m

>K−1m− 1
2 ln |I + KW| . (A.5b)

160

A.2. Implementation of Laplace’s Method

To avoid the direct inversion of K in the second term of (A.5b) we use the recurrence
relation (A.3b). Let a = K−1m then by substituting (A.4) into (A.3b) we obtain:

a = (I−W
1
2 (I + W

1
2 KW

1
2)−1W

1
2 K)(Wm +∇f lnL(m)) (A.6)

such that m>K−1m = m>a. The determinant in eq. (A.5b) can be rewritten

ln |I + KW| = ln
∣∣I + W

1
2 KW

1
2

∣∣ (A.7)

and computed from the Cholesky decomposition, that was used to calculate the in-
verse in eq. (A.4). Note that if M = LL> is a Cholesky decomposition then ln |M| =
2
∑

lnLii, see Appendix B.1.5.

During ML-II estimation the approximate log evidence (A.5b) is maximised as a
function of θ and ψ. Our implementation is based on a conjugate gradient optimisation
routine such that we also need to compute the derivatives of (A.5b). The dependency
of the approximate evidence on ψ is two-fold:

∂ ln q(D|θ,ψ)
∂ψi

=
∑
k,l

∂ ln q(D|θ,ψ)
∂Kkl

∂Kkl

∂ψi
+
∂ ln q(D|θ,ψ)

∂m>
∂m
∂ψi

. (A.8)

There is a direct dependency via the terms involving K and an implicit dependency
through the effect on the mode m (see also Williams (1998, Appendix B)).

The explicit derivative of eq. (A.5b) due to the direct dependency of the covariance
matrix is∑

k,l

∂ ln q(D|θ,ψ)
∂Kkl

∂Kkl

∂ψi
=

1
2
m>K−1 ∂K

∂ψi
K−1m− 1

2
tr
(

(I + KW)−1 ∂K
∂ψi

W
)

where the first term is computed using a (A.6) and the inverse in the second term can
be rewritten as

(I + KW)−1 = I− (K−1 + W)−1W (A.9)

where the inverse (A.4) is already known.

The implicit derivative accounts for the dependency of eq. (A.5b) on ψ due to change
in the mode m. Differentiating eq. (A.5a) with respect to m reduces to ∂ ln |A|/∂m
since m is the maximum of lnQ and therefore ∂ lnQ/∂m vanishes.

∂ ln q(D|θ,ψ)
∂m>

∂m
∂ψi

= −1
2
∂|K−1 + W|

∂m>
∂m
∂ψi

(A.10a)

= −1
2
(K−1 + W)−1 ∂W

∂m>
∂m
∂ψi

(A.10b)

The dependency of m on ψ is obtained by differentiating (4.8a) at m:

0 = ∇f lnL(m)−K−1m =⇒ m = K∇f lnL(m) (A.11)

161

A. Algorithms and Implementations

such that

∂m
∂ψi

=
∂K
∂ψi
∇f lnL(m) + K∇∇f lnL(m)

∂m
∂ψi

(A.12)

= (I + KW)−1 ∂K
∂ψi
∇f lnL(m) (A.13)

and we have both terms necessary to compute the gradient (A.8).
For computing the derivatives of the approximate evidence (A.5b) with respect to θ

one has to account for a direct dependency through lnL and W and again an indirect
dependency through the effect on the mode

∂q(D|θ,ψ)
∂θi

=
∂ lnL
∂θi

− ∂ ln |I + KW|
2∂θi

+
∂q(D|θ,ψ)
∂m>

∂m
∂θi

(A.14)

where the last term is obtained by differentiating the right hand side of eq. (A.11).
The approximate posterior Gaussian process (4.3) has mean and covariance function

m∗(x) = k(x)>K−1m = k(x)>a (A.15a)

k∗(x,x′) = k(x,x′)− k(x)>W
1
2 (I + W

1
2 KW

1
2)−1W

1
2 k(x′) (A.15b)

where a is given by eq. (A.6) and the inverse (A.4) can be reused.

Algorithm 9 Laplace’s approximation using Newton’s method for GP models
Given: θ, ψ, D, x∗
Initialise f (e.g. f ← 0 or randomly), compute K from ψ and X
repeat

f ← f − (∇∇f lnQ(f))−1∇f lnQ(f)
until convergence of f
m← f
A← (K−1 −∇∇f lnQ(m))−1

Compute approximate log evidence ln q(D|θ,ψ) by (A.5), and predictions
q(f∗|D,θ,ψ,x∗) using (A.15).

Since each evaluation of lnQ as given by eq. (4.2a) requires a Cholesky decomposi-
tion of the covariance matrix, computing Laplace’s approximation is cubic O(m3) in
time. However, following the implementation described in this section, the Cholesky
decomposition has to be computed once per Newton step and all other quantities can
be computed from it in at most O(m2). The number of Newton steps necessary depends
on the convergence criterion, the initialisation of f , the values of θ and ψ, etc., but in
our experiments the algorithm usually converged after a few (typically less than ten)
iterations. Finding the mode using a conjugate gradient method requires significantly
more evaluations of eq. (4.2a) and is therefore unfavourable. If the posterior is not uni-
modal we typically used a conjugate gradient method to find a local mode and repeated
the procedure for several initial values.

162

A.3. Implementation of Expectation Propagation

A.3. Implementation of Expectation Propagation

In this appendix we describe details of our implementation of Expectation Propagation
as described in Section 4.2 and summarised in Algorithm 10. See also the appendices of
Seeger (2003) and Kuss and Rasmussen (2005), the latter especially for the probit GP
model for binary classification described in Chapter 6.

In our implementation the site functions (4.14) are parameterised in terms of natural
parameters σ−2

i and σ−2
i µi (Schervish, 1997, ch. 2.2). For given ψ the algorithm starts

by initialising A = K, σ−2
i = 0, and σ−2

i µi = 0 for all i = 1, . . . ,m. The algorithm
proceeds by updating the site parameters in random order. In each sweep every site
function is updated following equations (4.20) and (4.25). After each update of a site
function the effect on m and A has to be computed according to eq. (4.15). The change
of A can be computed using a rank-one update. Let δ be the change in σ−2

i due to the
update and ei the [m× 1] vector whose ith entry is 1 and all other 0. The relation

(K−1 + Σ−1 + δeie>i)−1 = A−Aei(Aii + δ−1)−1e>i A (A.16)

can be used to update A. Each single update is O(m2) and repeated m times per sweep,
such that the EP algorithm scales O(m3) in time. Because of accumulating numerical
errors, after a complete sweep over all site functions we recompute the matrix A from
scratch. For numerical stability we rewrite

A = (K−1 + Σ−1)−1 = K−KΣ− 1
2 (I + Σ− 1

2 KΣ− 1
2)−1Σ− 1

2 K (A.17)

and compute the inverse from the Cholesky decomposition of (I + Σ− 1
2 KΣ− 1

2).

Algorithm 10 EP approximation for Gaussian process models
Given: θ, ψ, D, x∗
Initialise: A← K and site parameters σ2

i and µi

repeat
for i=1,. . . ,m do

Compute parameters (4.20) of approximate cavity
Compute moments according to the likelihood model
Update the site parameters using (4.25)
Update m and A according to (4.15)

end for
until The site parameters converged
Compute approximate log evidence ln q(D|θ,ψ) by (4.26), and predictions
q(f∗|D,θ,ψ,x∗) using (A.21).

After convergence the approximate log evidence (4.26) can be computed and the
partial derivatives with respect to the hyper-parameters are:

∂ ln q(D|θ,ψ)
∂ψi

= −1
2

tr
(
∂K
∂ψi

(
(K + Σ)−1 − (K + Σ)−1µµ>(K + Σ)−1

))
.

163

A. Algorithms and Implementations

The inverse of K + Σ can be computed from the inverse in eq. (A.17):

(K + Σ)−1 = Σ− 1
2 (I + Σ− 1

2 KΣ− 1
2)−1Σ− 1

2 . (A.18)

For computing the log evidence (4.26) also the determinant |K+Σ| has to be computed.
By rewriting

ln |K + Σ| = ln(|Σ||I + Σ−1K|) = ln |Σ|+ ln |I + Σ− 1
2 KΣ− 1

2 | (A.19)

we obtain an expression in which the first term is a determinant of a diagonal matrix
and the second term can be computed from the Cholesky decomposition that was used
to compute the inverse in eq. (A.17).

The derivative of the approximate log evidence (4.26) with respect to the likelihood
parameters θ is simply

∂ ln q(D|θ,ψ)
∂θi

=
m∑

j=1

∂ lnZj

∂θi
=

m∑
j=1

∂ lnmj
0

∂θi
(A.20)

where mj
0 is the zeroth moment (4.24) corresponding to the jth observation.

To compute the mean and covariance function of the GP approximation to the pos-
terior process we have:

m∗(x) = k(x)>(K + Σ)−1µ (A.21a)
k∗(x,x′) = k(x,x′)− k(x)>(K + Σ)−1k(x′) . (A.21b)

where we can reuse the inverse (A.18).
Like Laplace’s method, the EP algorithm is of computational complexityO(m3) due to

the computations for updating A. However, per sweep the computation of A (A.17) and
the m rank-one updates typically result in longer running times compared to Laplace’s
method.

164

A.4. Implementation of MCMC Sampling

A.4. Implementation of MCMC Sampling

A.4.1. Hybrid Monte Carlo

The Hybrid Monte Carlo method of Duane et al. (1987) has been described in Sec-
tion 4.3.4. This appendix provides pseudo-code for implementing the algorithm, see
also MacKay (2003, ch. 30) (in which the method is called Hamiltonian Monte Carlo).
An implementation for the R environment for statistical computing is contained in the
“PsychoFun” package accompanying Kuss et al. (2005a).

Algorithm 11 Hybrid MCMC Sampling
Given: Initial state φ0, length of simulation T , number of leapfrog steps l, vector of
leapfrog step sizes ε, potential energy function E(φ) = − lnQ(φ|D)
Initialise e← E(φ0) and g← ∇E(φ0)
for t = 0, . . . , T do

Sample initial momentum q from N (0, I)
H ← q>q

2 + e

Set φ̃← φt and g̃← g
for all leapfrog steps do

q← q− 1
2ε� g̃ {where � denotes the element-wise product}

φ̃← φ̃+ ε� q
g̃← ∇E(φ̃)
q← q− 1

2ε� g̃
end for
ẽ← E(φ̃)
H̃ ← q>q

2 + ẽ
Draw u from a uniform distribution on [0, 1]
if lnu > H̃ −H then {Proposed state is accepted}
φt+1 ← φ̃
g← g̃
e← E(φt+1)

else {Proposed state is rejected}
φt+1 ← φt

end if
Store φt+1 and E(φt+1)

end for
Return: φt and E(φt) for t = 1, . . . , T

165

A. Algorithms and Implementations

A.4.2. Annealed Importance Sampling

Section 4.3.5 described Annealed Importance Sampling for estimating the log evidence
p(D|θ,ψ) in Gaussian process models. Note that in principle one could also integrate
over the parameters θ and ψ. Algorithm 12 describes the implementation that was used
for the example in Section 4.3.6.2 and the experiments in Section 6.3.

Algorithm 12 Annealed Importance Sampling for Gaussian process models
Given: Temperature schedule τ
for r = 1, . . . , R do

Sample f0 from the prior N (f |0,K)

for t = 1, . . . , T do
Sample ft from q(f |D, τ(t),θ,ψ) as given by eq. (4.43) using Hybrid Monte Carlo
(initial state is set to ft−1)
Compute ln(Zt/Zt−1) using (4.45)

end for

Compute approximate Zr using (4.46)
end for
Return lnZ = ln

(
1
R

∑R
r=1 Zr

)

166

B. Mathematical Appendix

When you choose how much postage to use,
When you know what’s the chance it will snow,
When you bet and you end up in debt,
Oh try as you may, you just can’t get away
From mathematics! — Tom Lehrer

B.1. Matrix Analysis

The stated results can be found in Lütkepohl (1996), Harville (1997), Golub and Van
Loan (1989), or Press et al. (2002).

B.1.1. Identities Involving Inverses

Let A and B be non-singular square [m ×m] matrices. The inverse of the product of
the two matrices can be written in terms of the individual inverses

(AB)−1 = B−1A−1 (B.1)

and for the product with a scalar c holds (cA)−1 = c−1A−1. For the sum of two matrices
the following identities are valid:

A−1 + B−1 = A−1(A + B)B−1 (B.2)
(A−1 + B−1)−1 = A(A + B)−1B = B(A + B)−1A . (B.3)

The matrix inversion lemma, also known as the Sherman-Morrison-Woodbury formula
states the identity:

(A−CB−1D)−1 = A−1 + A−1C(B + DA−1C)−1DA−1 (B.4)

if all the inverses exit. The inverse of a partitioned matrix can be described in terms of
its sub-matrices[

A B

C D

]−1

=
[

A−1+A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]
(B.5)

if the inverses A−1 and (D−CA−1B)−1 exist.

167

B. Mathematical Appendix

B.1.2. The Pseudoinverse

Let A be an [m × m′] matrix of rank r ≤ min(m,m′). The generalised inverse is an
extension of the concept of a matrix inverse to singular and general rectangular matrices.
A generalised inverse A− of A is any [m′ ×m] matrix that holds

AA−A = A (B.6)

The pseudo-inverse, also known as Moore-Penrose inverse, A+ is a unique generalised
inverse that has the additional properties

AA+A = A (B.7a)
A+AA+ = A+ (B.7b)
(A+A)> = A+A (B.7c)
(AA+)> = (AA+) (B.7d)

Penrose conditions (Penrose, 1955). If A is square and non-singular, the pseudo-inverse
coincides with the common inverse A+ = A−1. If A is square, symmetric, but singular
with rank r < m, the generalised inverse can be computed from the eigen-decomposition
A = UΛU> as A+ = UΛ−1U> where Λ is a diagonal [r × r] matrix of nonzero
eigenvalues.

B.1.3. Identities Involving Determinants

Let A and B be arbitrary [m×m] matrices. The following identities are helpful:

|A| =
∣∣∣A>

∣∣∣ (B.8a)

|cA| = cn |A| (B.8b)
|A|c = |Ac| (B.8c)
|AB| = |A| |B| (B.8d)

B.1.4. Matrix Derivatives

The derivative of a matrix A with respect to a scalar ∂A/∂x is defined element-wise
such that (

∂A
∂x

)
ij

=
∂Aij

∂x
. (B.9)

When differentiating traces, inverses and determinants the following relations are help-
ful:

168

B.1. Matrix Analysis

∂ tr(A)
∂x

= tr
(
∂A
∂x

)
(B.10a)

∂A−1

∂x
= −A−1∂A

∂x
A−1 (B.10b)

∂ |A|
∂x

= |A| tr
(
A−1∂A

∂x

)
(B.10c)

∂ ln |A|
∂x

= tr
(
A−1∂A

∂x

)
(B.10d)

For differentiating a scalar valued function with respect to a matrix argument:

∂ tr(AB)
A

= B> and
∂ ln |A|

A
= (A>)−1 . (B.11)

For more details on matrix differential calculus see Lütkepohl (1996, ch. 10), Harville
(1997, ch. 15), and Magnus and Neudecker (1988).

B.1.5. The Cholesky Decomposition

Let A be an [m×m] symmetric, strictly positive definite matrix, then A can be decom-
posed as

A = LL> (B.12)

where the so called Cholesky factor L is a lower triangular matrix . The Cholesky
factorisation of A can be used to compute the inverse of A−1 and its determinant |A|.
The inverse is A−1 = (L−1)>L−1 where L−1 can be computed in time quadratic in m
due to the triangular structure by back-substitution (Press et al., 2002, ch. 2.9). The
determinant and the log determinant can be computed according to

|A| =
m∏

i=1

L2
ii and ln |A| = 2

m∑
i=1

lnLii (B.13)

which is linear in time.

B.1.6. Quadratic Forms

When handling products of Gaussian variables the following relation is frequently used

(a− b)>A−1(a− b) + (a− c)>B−1(a− c)

= (a− z)>(A−1 + B−1)(a− z) + (b− c)>(A + B)−1(b− c) (B.14)

where z = (A−1 + B−1)−1(A−1b + B−1c). See Box and Tiao (1973, Appendix A7.1)
for a proof.

169

B. Mathematical Appendix

B.2. The Multivariate Normal Distribution

The multivariate normal distribution is covered by almost all textbooks on multivariate
statistics and probability theory. A recommendable summary is given by Mardia et al.
(1979, ch. 3).

B.2.1. Probability Density Function

Let x be an m-dimensional multivariate normal random variable, then its probability
density function is given by

p(x|µ,Σ) = N (x|µ,Σ) (B.15a)

= (2π)−m/2 |Σ|−1/2 exp
(
−1

2(x− µ)>Σ−1(x− µ)
)

(B.15b)

where µ ∈ Rm denotes the mean and Σ is a symmetric, positive definite [m × m]
covariance matrix.

B.2.2. Gaussian Identities

B.2.2.1. Products of Two Gaussians

Let x, a and b be of size [m × 1] and A and B be [m ×m] covariance matrices. The
product of two multivariate normal distributions is proportional to another multivariate
normal distribution

N (x|a,A)N (x|b,B) = ZN (x|c,C) (B.16)

with covariance and mean

C =
(
A−1 + B−1

)−1 and c = C
(
A−1a + B−1b

)
. (B.17)

The normalising constant Z is Gaussian in either a or b

zc = (2π)−
m
2

∣∣ABC−1
∣∣− 1

2 exp
(
−1

2

(
a>A−1a + b>B−1b− c>C−1c

))
(B.18)

Let y be an [m′ × 1] Gaussian random variable whose mean depends linearly on x
where D is of size [m′ ×m], and B is [m′ ×m′] . Then the product

N (x|a,A)N (y|Dx,B) ∝ N (x|c,C) (B.19)

is again proportional to a multivariate normal density with mean and covariance

c = C
(
A−1a + D>B−1y

)
and C =

(
A−1 + D>B−1D

)−1
. (B.20)

170

B.2. The Multivariate Normal Distribution

B.2.2.2. Marginal and Conditional Distributions

Let x ∼ N (x|µ,Σ) be partitioned x = [x1,x2]> such that[
x1

x2

]
∼ N

([
x1

x2

]∣∣∣∣ [µ1

µ2

] [
Σ11 Σ12

Σ21 Σ22

])
(B.21)

then the marginal distributions are x1 ∼ N (x1|µ1,Σ11) and x2 ∼ N (x2|µ2,Σ22). The
conditional distributions are:

x1|x2 ∼ N (x1|µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 −Σ12Σ−1

22 Σ21) (B.22a)
x2|x1 ∼ N (x2|µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22 −Σ21Σ−1
11 Σ12) . (B.22b)

B.2.2.3. Linear Forms

Let x ∼ N (x|µ,Σ) and y = Ax + c then y ∼ N (y|Aµ+ c,AΣA>).

B.2.3. Gaussian Integrals

By definition the probability density function integrates to one∫
Rm

N (x|µ,Σ) dx = 1 . (B.23)

B.2.3.1. Two Gaussians∫
Rm

N (x|a,A)N (a|b,B) da = N (x|b,A + B) (B.24)

B.2.3.2. Linear forms ∫
Rn

(c>x)N (x|µ,Σ) dx = c>µ (B.25)

B.2.3.3. Quadratic forms∫
Rn

(x− c)>A(x− c)N (x|µ,Σ) dx = (µ− c)>A(µ− c) + tr(AΣ) (B.26)

B.2.3.4. Outer products∫
Rn

xx>N (x|µ,Σ) dx = Σ + µµ> (B.27)

B.2.3.5. Entropy

The entropy of a probability distribution p(x) is defined as

H(p) = −
∫
p(x) log p(x) dx (B.28)

171

B. Mathematical Appendix

see for example (Cover and Thomas, 1991, ch. 2.1). If the logarithm is taken to the base
2, the entropy is said to be measured in bits and in nats if base e is used. The entropy
of a Gaussian random variable x ∼ N (x|µ,Σ) in nats is:

HN (µ,Σ) = −
∫
N (x|µ,Σ) lnN (x|µ,Σ) dx (B.29a)

= m
2 ln(2π) + 1

2 ln |Σ|+ m
2 = 1

2 ln |2πeΣ| (B.29b)

where eq. (B.8b) is used for rewriting eq. (B.29b).

B.2.3.6. Kullback-Leibler Divergence

The relative entropy or Kullback-Leibler (KL) divergence between two distributions
p(x) and q(x) is defined as

KL(p || q) =
∫
p(x) log

p(x)
q(x)

dx (B.30)

which is always non-negative and zero only if p = q (Cover and Thomas, 1991, ch. 2.3).
Note the asymmetry in the definition. The Kullback-Leibler divergence between two
Gaussian distributions N (x|µ1,Σ1) and N (x|µ2,Σ2) in nats is:

KL(N (µ1,Σ1) || N (µ2,Σ2)) =
∫
N (µ1,Σ1) ln

N (µ1,Σ1)
N (µ2,Σ2)

dx

= (µ1 − µ2)
>Σ−1

2 (µ1 − µ2)− 1
2 ln

∣∣Σ1Σ−1
2

∣∣+ 1
2 tr(Σ1Σ−1

2 − I) . (B.31)

B.2.4. Generating Samples of a Multivariate Normal Distribution

Generating samples from a multivariate normal distribution N (x|µ,Σ) can be imple-
mented if a source of univariate standard normal samples N (y|0, 1) is available, as pro-
vided by many common programming environments. Let y denote a sample of N (y|0, I)
then by using a linear transformation:

x = Σ1/2y + µ (B.32)

we obtain a random sample distributed according to N (x|µ,Σ) (see Appendix B.2.2.3).
In case the Σ is full rank Σ1/2 = L where Σ = LL> is a Cholesky decomposition (see
Appendix B.1.5). For the singular multivariate normal distribution (3.22) Σ is only of
rank r < n. In this case Σ1/2 = UΛ1/2 where Σ = UΛU> is the eigendecomposition
and Λ is an [r × r] matrix of nonzero eigenvalues. For details on generating random
samples of standard distributions see for example Devroye (1986) or Hörmann et al.
(2004).

172

C. Dynamical Systems

C.1. Mountain Car

The mountain car problem as described by Moore and Atkeson (1995) is to control a
car in a frictionless landscape described by

H(x) =

{
x2 + x for x < 0

x√
1+5x2

for x ≥ 0 . (C.1)

The car has point mass M = 1. The state s = [x, ẋ] of the car is characterised by its
position x and its velocity ẋ, which are constrained to −1 ≤ x ≤ 1 and −2 ≤ ẋ ≤ 2
respectively, see Figure 7.4 on page 141. The control action is a horizontal force F in
the range −4 ≤ F ≤ 4. Let H ′(x) = d

dxH(x) and likewise H ′′(x) = d2

dx2H(x), then
Moore and Atkeson (1995) give the expression:

ẍ =
F

M
√

1 + (H ′(x))2
− gH ′(x)

1 + (H ′(x))2
(C.2)

to describe the dynamics where g = 9.81 is the gravity constant. In our experiments we
use a corrected version thereof:

ẍ =
F

M
√

1 + (H ′(x))2
− gH ′(x)

1 + (H ′(x))2
− ẋ2H ′(x)H ′′(x)

(1 + (H ′(x))2)
(C.3)

which takes centripetal forces into account. In the experiments the force is applied
constantly for a fixed time interval ∆t.

C.2. Inverted Pendulum

The state of the system is a quadruple s = [x, ẋ, θ, θ̇] of the cart’s position x, its speed
ẋ, the angle of the pendulum θ relative to pointing exactly downwards, and the angular
speed θ̇, see Figure 7.8 on page 145. In the above experiments we parameterised the cart
to have a mass of M = 0.5kg and the mass of the pendulum was set to be m = 0.5kg.
The length of the pendulum is l = 0.3m and the inertia was set to I = 0.06kg · m2.
The friction between the cart and the ground was set to 0.1N/m/sec while the joint
has been assumed frictionless. The control signal is a horizontal force F which can be
chosen every ∆t = 0.2sec for which it is applied constantly. Given the two equations of

173

C. Dynamical Systems

motion

(M +m) ẍ+ b ẋ+ml θ̈ cos θ −ml θ̇2 sin θ = F (C.4a)(
I +ml2

)
θ̈ +mg l sin θ = −ml ẍ cos θ (C.4b)

the dynamics were simulated by solving the system of differential equations

ẍ =
„

F−bẋ+m2l2g sin θ cos θ

(I+ml2)
+mlθ̇2 sin θ

« (I+ml2)
(M+m)(I+ml2)−m2l2 cos2 θ

!
(C.5a)

θ̈ = (ml cos θ[−F+bẋ−mlθ̇2 sin θ]−mgl sin θ)
„

1
(M+m)(I+ml2)−m2l2 cos2 θ

«
(C.5b)

using the MATLAB implementation of the Runge-Kutta method.

174

Bibliography

P. Abrahamsen. A review of Gaussian random fields and correlation functions. Technical
Report 917, Norwegian Computing Center, Oslo, 1997.

M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover, New York,
1965.

R. J. Adler. The Geometry of Random Fields. John Wiley & Sons, Chichester, 1981.

J. H. Albert and S. Chib. Bayesian analysis of binary and polychotomous response data.
Journal of the American Statistical Association, 88(422):669–679, 1993.

D. F. Andrews and C. L. Mallows. Scale mixtures of normal distributions. Journal of
the Royal Statistical Society, Series B, 36(1):99–102, 1974.

A. Arapostathis, V. S. Borkar, E. Fernández-Gaucherand, M. K. Ghosh, and S. I. Mar-
cus. Discrete-time controlled Markov processes with average cost criterion: A survey.
SIAM Journal of Control and Optimization, 31(2):282–344, 1993.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathemat-
ical Society, 68:337–404, 1950.

G. A. Barnard. Studies in the history of probability and statistics: IX. Thomas Bayes’s
essay towards solving a problem in the doctrine of chances. Biometrika, 45(3/4):
293–315, 1958.

M. J. Beal. Variational Algorithms for Approximate Bayesian Inference. PhD thesis,
Gatsby Computational Neuroscience Unit, University College London, UK, 2003.

S. Becker, S. Thrun, and K. Obermayer, editors. Advances in Neural Information
Processing Systems 15, Cambridge, MA, 2003. The MIT Press.

R. E. Bellman. Introduction to the Mathematical Theory of Control Processes, volume 1.
Academic Press, New York, 1967.

R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, sixth
edition, 1972.

J. O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer, New York,
second edition, 1985.

J. O. Berger. An overview of robust Bayesian analysis. Technical Report #93-53C,
Department of Statistics, Purdue University, 1991.

175

Bibliography

J. M. Bernardo and A. F. M. Smith. Bayesian Theory. John Wiley & Sons, Chichester,
1994.

D. A. Berry and B. Fristedt. Bandit Problems. Chapman & Hall, New York, 1985.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA, 1996.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
Oxford, 1995.

C. M. Bishop, editor. Neural Networks and Machine Learning, volume 168 of NATO
ASI Series. Springer, Berlin, 1998.

B. J. N. Blight and L. Ott. A Bayesian approach to model inadequacy for polynomial
regression. Biometrika, 62(1):79–88, 1975.

G. E. P. Box. Robustness in the strategy of scientific model building. In R. L. Launer and
G. N. Wilkinson, editors, Robustness in Statistics, pages 201–236. Academic Press,
New York, 1979.

G. E. P. Box and G. C. Tiao. A further look at robustness via Bayes’s theorem.
Biometrika, 49(3/4):419–432, 1962.

G. E. P. Box and G. C. Tiao. A note on criterion robustness and inference robustness.
Biometrika, 51(1/2):169–173, 1964.

G. E. P. Box and G. C. Tiao. A Bayesian approach to some outlier problems. Biometrika,
55(1):119–129, 1968.

G. E. P. Box and G. C. Tiao. Bayesian Inference in Statistical Analysis. Addison-Wesley,
Reading, 1973.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, UK, 2004.

S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference
learning. Machine Learning, 22(1–3):33–57, 1996.

T. Briegel and V. Tresp. Robust neural network regression for offline and online learning.
In Solla et al. (2000).

C.-C. Chang and C.-J. Lin. LIBSVM: A library for Support Vector Machines, 2001.
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters
for support vector machines. Machine Learning, 46(1):131–159, 2002.

W. Chu and Z. Ghahramani. Gaussian processes for ordinal regression. Journal of
Machine Learning Research, 6:1019–1041, 2005.

176

Bibliography

W. Chu, S. S. Keerthi, and C. J. Ong. Bayesian support vector regression using a unified
loss function. IEEE Transactions on Neural Networks, 15(1):29–44, 2004.

P. Cipollini, G. Corsini, M. Diani, and R. Grasso. Retrival of sea water optically active
parameters from hyperspectral data by means of generalized radial basis function
neural networks. IEEE Transactions on Geoscience and Remote Sensing, 39(7):1508–
1524, 2001.

D. Collet. Modelling Binary Data. Chapman & Hall, Boca Raton, 1991.

J. B. Copas. Binary regression models for contaminated data. Journal of the Royal
Statistical Society, Series B, 50(2):225–265, 1988.

T. M. Cover and J. A. Thomas. Information Theory. John Wiley & Sons, New York,
1991.

M. K. Cowles and B. P. Carlin. Markov chain Monte Carlo convergence diagnostics:
A comparative review. Journal of the American Statistical Association, 91(434):883–
904, 1996.

R. T. Cox. Probability, frequency, and reasonable expectation. American Journal of
Physics, 14:1–13, 1946.

N. A. C. Cressie. Statistics for Spatial Data. John Wiley & Sons, New York, 1993.

L. Csató and M. Opper. Sparse online Gaussian processes. Neural Computation, 14(2):
641–669, 2002.

A. C. Davison and D. V. Hinkley. Bootstrap Methods and their Applications. Cambridge
University Press, Cambridge, UK, 1997.

P. Dayan. The convergence of TD(λ) for general λ. Machine Learning, 8(3–4):341–362,
1992.

P. Dayan and T. J. Sejnowski. TD(λ) converges with probability 1. Machine Learning,
14(3):295–301, 1994.

R. Dearden, N. Friedman, and S. Russell. Bayesian Q-learning. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence (AAAI-98), 1998.

M. H. DeGroot and M. J. Schervish. Probability and Statistics. Addison-Wesley, Boston,
third edition, 2002.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):
1–38, 1977.

L. Devroye. Non-Uniform Random Variate Generation. Springer, New York, 1986.

177

Bibliography

H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik. Support vector
regression machines. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances
in Neural Information Processing Systems 9, pages 155–161, Cambridge, MA, 1997.
The MIT Press.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Physics
Letters B, 195(2):216–222, 1987.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley &
Sons, New York, 1973.

M. O. Duff. Optimal Learning: Computational procedures for Bayes-adaptive Markov
decision processes. PhD thesis, University of Massachusetts, Amherst, MA, 2002.

S. Efromovich. Nonparametric Curve Estimation. Springer, New York, 1999.

Y. Engel, S. Mannor, and R. Meir. Bayes meets Bellman: The Gaussian process ap-
proach to temporal difference learning. In T. Fawcett and N. Mishra, editors, Proceed-
ings of the Twentieth International Conference on Machine Learning (ICML-2003).
AAAI Press, 2003.

Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with Gaussian processes. In
L. De Raedt anf S. Wrobel, editor, Proceedings of the 22nd International Conference
on Machine Learning, pages 201–208, ACM Press, 2005.

A. C. Faul and M. E. Tipping. A variational approach to robust regression. In
G. Dorffner, H. Bischof, and K. Hornik, editors, Proceedings of the International
Conference on Artificial Neural Networks, pages 95–102. Springer, 2001.

C. Fernandez and M. F. J. Steel. Multivariate Student-t regression models: Pitfalls and
inference. Biometrika, 86(1):153–167, 1999.

S. E. Fienberg. When did Bayesian inference become Bayesian? Bayesian Analysis, 1
(1):1–40, 2006.

J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, New York,
1996.

R. A. Fisher. On the mathematical foundations of theoretical statistics. Philosophical
Transactions of the Royal Society of London. Series A, 222:309–368, 1922.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7(2):179–188, 1936.

J. H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19
(1):1–67, 1991.

S. Geisser and W. F. Eddy. A predictive approach to model selection. Journal of the
American Statistical Association, 74(365):153–160, 1979.

178

Bibliography

A. Gelman. Inference and monitoring convergence. In Gilks et al. (1996), pages 131–143.

A. Gelman and X.-L. Meng. Simulating normalizing constants: From importance sam-
pling to bridge sampling to path sampling. Statistical Science, 13(2):163–185, 1998.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis.
Chapman & Hall, Boca Raton, 1995.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 6(6):721–741, 1984.

M. G. Genton. Classes of kernels for machine learning: A statistics perspective. Journal
of Machine Learning Research, 2:299–312, 2001.

J. Geweke. Bayesian treatment of the independent Student-t linear model. Journal of
Applied Econometrics, 8:S19–S40, 1993. Supplement: Special Issue on Econometric
Inference Using Simulation Techniques.

Z. Ghahramani and M. J. Beal. Graphical models and variational methods. In M. Opper
and D. Saad, editors, Advanced Mean Field Methods: Theory and Practice, pages 161–
178. The MIT Press, Cambridge, MA, 2000.

Z. Ghahramani and M. J. Beal. Propagation algorithms for variational Bayesian learn-
ing. In Leen et al. (2001), pages 507–513.

M. N. Gibbs and D. J. C. MacKay. Variational Gaussian process classifiers. IEEE
Transactions on Neural Networks, 11(6):1458–1464, 2000.

M. N. Gibbs and D. J. C. MacKay. Efficient implementation of Gaussian processes.
Technical report, Department of Physics, Cavendish Laboratory, Cambridge Univer-
sity, 1997.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte Carlo
in Practice. Chapman & Hall, Boca Raton, 1996.

A. Girard, C. Rasmussen, J. Quiñonero-Candela, and R. Murray-Smith. Multiple-step
ahead prediction for non linear dynamic systems - a Gaussian process treatment wih
propagation of the uncertainty. In Becker et al. (2003).

M. Girolami and S. Rogers. Variational Bayesian multinomial probit regression with
Gaussian process priors. Technical Report TR-2005-205, Department of Computing
Science, University of Glasgow, 2005.

J. C. Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal
Statistical Society, Series B, 41(2):148–177, 1979.

J. C. Gittins. Multi-armed Bandit Allocation Indices. John Wiley & Sons, Chichester,
1989.

179

Bibliography

G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University
Press, Baltimore, second edition, 1989.

G. H. Golub and J. H. Welsch. Calculation of Gauss quadrature rules. Mathematics of
Computation, 23(106):221–230, 1969.

I. J. Good. Significance tests in parallel and in series. Journal of the American Statistical
Association, 53(284):799–813, 1958.

R. F. Green. Outlier-prone and outlier-resistant distributions. Journal of the American
Statistical Association, 71(354):502–505, 1976.

L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A Distribution-Free Theory of Non-
parametric Regression. Springer, New York, 2002.

M. S. Handcock and M. L. Stein. A Bayesian analysis of kriging. Technometrics, 35(4):
403–410, 1993.

W. Härdle, M. Müller, S. Sperlich, and A. Werwatz. Nonparametric and Semiparametric
Models. Springer, Berlin, 2004.

D. Harrison and D. L. Rubinfeld. Hedonic housing prices and the demand for clean air.
Journal of Environmental Economics and Management, 5(1):81–102, 1978.

D. A. Harville. Matrix Algebra From a Statistican’s Perspective. Springer, New York,
1997.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer, New York, 2001.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their appli-
cations. Biometrika, 57(1):97–109, 1970.

R. G. Haylock and A. O’Hagan. On inference for outputs of computationally expensive
algorithms with uncertainty on the inputs. In J. M. Bernardo, J. O. Berger, A. P.
Dawid, and A. F. M. Smith, editors, Bayesian Statistics 5, pages 629–637. Oxford
University Press, Oxford, UK, 1996.

R. Herbrich. Learning Kernel Classifiers. The MIT Press, Cambridge, MA, 2002.

R. Herbrich, T. Graepel, and C. Campbell. Bayes point machines. Journal of Machine
Learning Research, 1:245–279, 2001.

S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine learning databases,
1998. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

180

Bibliography

W. Hörmann, J. Leydold, and G. Derflinger. Automatic Nonuniform Random Variate
Generation. Springer, Heidelberg, 2004.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2:359–366, 1989.

R. A. Howard. Information value theory. IEEE Transactions on System Science and
Cybernetics, 2(1):22–26, 1966.

P. J. Huber. Robust estimation of a location parameter. The Annals of Mathematical
Statistics, 35(1):73–101, 1964.

P. J. Huber. Robust Statistics. John Wiley & Sons, New York, 1981.

J. J. Hull. A database for handwritten text recognition research. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 16(5):550–554, 1994.

T. S. Jaakkola and M. I. Jordan. Bayesian parameter estimation via variational mehods.
Statistics and Computing, 10:25–37, 2000.

E. T. Jaynes. Probability Theory. Cambridge University Press, Cambridge, UK, 2003.

E. T. Jaynes. Bayesian methods: General background. In J. H. Justice, editor,
Maximum-Entropy and Bayesian Methods in Applied Statistics, pages 1–25. Cam-
bridge University Press, Cambridge, UK, 1986.

H. Jeffreys. An invariant form for the prior probability in estimation problems. Pro-
ceedings of the Royal Society of London. Series A, 186(1007):453–461, 1946.

W. H. Jeffreys and J. O. Berger. Ockham’s razor and Bayesian analysis. American
Scientist, 80:64–72, 1992.

M. I. Jordan, editor. Learning in Graphical Models. The MIT Press, Cambridge, MA,
1999.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to
variational methods for graphical models. In Jordan (1999), pages 105–161.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: a survey.
Journal of Artificial Intelligence Research, 4:237–285, 1996.

R. E. Kass and A. E. Raftery. Bayes factors. Journal of the American Statistical
Association, 90(430):773–795, 1995.

R. E. Kass, B. P. Carlin, A. Gelman, and R. M. Neal. Marov chain Monte Carlo in
practice: A roundtable discussion. The American Statistician, 52(2):93–100, 1998.

M. G. Kendall. The Advanced Theory of Statistics, volume I. Charles Griffin & Co.,
London, fifth edition, 1952.

181

Bibliography

H. Kesten and F. Spitzer. Controlled Markov chains. The Annals of Probability, 3(1):
32–40, 1975.

H.-C. Kim and Z. Ghahramani. The EM-EP algorithm for Gaussian process classifica-
tion. In Proceedings of the Workshop on Probabilistic Graphical Models for Classifi-
cation (at ECML), 2003.

G. S. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation on
stochastic processes and smoothing by splines. The Annals of Mathematical Statistics,
41(2):495–502, 1970.

I. Kononenko and I. Bratko. Information-based evaluation criterion for classifier’s per-
formance. Machine Learning, 6(1):67–80, 1991.

D. G. Krige. A statistical approach to some basic mine valuation problems on the
Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South
Africa, 52(6):119–139, 1951.

M. Kuss. Nonlinear multivariate analysis with geodesic kernels. Master’s thesis, Tech-
nische Universität Berlin, 2002.

M. Kuss and C. E. Rasmussen. Assessing approximate inference for binary Gaussian
process classification. Journal of Machine Learning Research, 6:1679–1704, 2005.

M. Kuss and C. E. Rasmussen. Assessing approximations for Gaussian process classifi-
cation. In Weiss et al. (2006).

M. Kuss, F. Jäkel, and F. A. Wichmann. Bayesian inference for psychometric functions.
Journal of Vision, 5(5):478–492, 2005a.

M. Kuss, T. Pfingsten, L. Csató, and C. E. Rasmussen. Approximate inference for
robust Gaussian process regression. Technical Report 136, Max Planck Institute for
Biological Cybernetics, Tübingen, 2005b.

K. L. Lange, R. J. A. Little, and J. M. G. Taylor. Robust statistical modelling using
the t-distribution. Journal of the American Statistical Association, 84(408):881–896,
1989.

G. M. Laslett. Kriging and splines: An empirical comparison of their predictive per-
formance in some applications. Journal of the American Statistical Association, 89
(426):391–409, 1994.

S. L. Lauritzen. Propagation of probabilities, means, and variances in mixed graphical
association models. Journal of the American Statistical Association, 87(420):1098–
1108, 1992.

N. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The
informative vector machine. In Becker et al. (2003), pages 609–616.

182

Bibliography

N. D. Lawrence and M. I. Jordan. Semi-supervised learning via Gaussian processes. In
Saul et al. (2005), pages 753–760.

T. K. Leen, T. G. Dietterich, and V. Tresp, editors. Advances in Neural Information
Processing Systems 13, Cambridge, MA, 2001. The MIT Press.

J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, New York, 2001.

H. Lütkepohl. Handbook of Matrices. John Wiley & Sons, Chichester, 1996.

D. J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge
University Press, Cambridge, UK, 2003.

D. J. C. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, California
Institute of Technology, Pasadena, 1992a.

D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447, 1992b.

D. J. C. MacKay. Introduction to Gaussian processes. In Bishop (1998), pages 133–165.

D. J. C. MacKay. Comparison of approximate methods for handling hyperparameters.
Neural Compuration, 11(5):1035–1068, 1999a.

D. J. C. MacKay. Introduction to Monte Carlo methods. In Jordan (1999), pages
175–204.

J. R. Magnus and H. Neudecker. Matrix Differential Calculus. John Wiley & Sons,
Chichester, 1988.

K. V. Mardia and R. J. Marshall. Maximum likelihood estimation of models for residual
covariance in spatial regression. Biometrika, 71(1):135–146, 1984.

K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Analysis. Academic Press,
London, 1979.

J. J. Martin. Bayesian Decision Problems and Markov Chains. John Wiley & Sons,
New York, 1967.

D. A. McAllester. PAC-Bayesian model averaging. In Proceedings of the 12th Annual
Conference on Computational Learning Theory, pages 164–170, New York, 1999. ACM
Press.

P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman & Hall, Boca
Raton, second edition, 1989.

T. Mercer. Functions of positive and negative type and their connection with the theory
of integral equations. Philosophical Transactions of the Royal Society of London,
Series A, 209:415–446, 1909.

183

Bibliography

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equa-
tion of state calculations by fast computing machines. The Journal of Chemical
Physics, 21(6):1087–1092, 1953.

S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant
analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors,
Proceedings of the 1999 IEEE Workshop on Neural Networks for Signal Processing,
pages 41–48, Piscataway, NJ, 1999. IEEE.

T. P. Minka. A Family of Algorithms for Approximate Bayesian Inference. PhD thesis,
Department of Electrical Engineering and Computer Science, MIT, 2001a.

T. P. Minka. Expectation propagation for approximate Bayesian inference. In J. S.
Breese and D. Koller, editors, Proceedings of the 17th Conference in Uncertainty in
Artificial Intelligence, pages 362–369. Morgan Kaufmann, 2001b.

M. L. Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30,
1961.

A. W. Moore and C. G. Atkeson. The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state-spaces. Machine Learning, 21(3):
199–233, 1995.

S. C. Narula and J. F. Wellington. The minimum sum of absolute errors regression: A
state of the art survey. International Statistical Review, 50(3):317–326, 1982.

R. M. Neal. Annealed importance sampling. Statistics and Computing, 11:125–139,
2001.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical
Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.

R. M. Neal. Bayesian Learning for Neural Networks. Springer, New York, 1996.

R. M. Neal. Monte Carlo implementation of Gaussian process models for Bayesian
regression and classification. Technical Report 9702, Department of Statistics, Uni-
versity of Toronto, 1997.

R. M. Neal. Regression and classification using Gaussian process priors. In J. M.
Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics
6, pages 475–501. Oxford University Press, 1998a.

R. M. Neal. Assessing relevance determination methods using DELVE. In Bishop (1998),
pages 97–129.

A. O’Hagan. Curve fitting and optimal design for prediction. Journal of the Royal
Statistical Society, Series B, 40(1):1–42, 1978.

184

Bibliography

A. O’Hagan. On outlier rejection phenomena in Bayes inference. Journal of the Royal
Statistical Society, Series B, 41(3):358–367, 1979.

A. O’Hagan. Bayesian Inference, volume 2B of Kendall’s Advanced Theory of Statistics.
Arnold, London, 1994.

M. Opper and O. Winther. Gaussian processes for classification: Mean-field algorithms.
Neural Computation, 12(11):2655–2684, 2000.

D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine Learning, 49
(2):161–178, 2002.

C. J. Paciorek and M. J. Schervish. Nonstationary covariance functions for Gaussian
process regression. In Thrun et al. (2004).

R. Penrose. A generalized inverse for matrices. Proceedings of the Cambridge Philo-
sophical Society, 51(3):406–413, 1955.

J. C. Platt. Probabilities for SV machines. In A. J. Smola, P. L. Bartlett, B. Schölkopf,
and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61–73. The
MIT Press, Cambridge, MA, 2000.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipies
in C++. Cambridge University Press, Cambridge, UK, second edition, 2002.

Y. Qi, T. P. Minka, R. W. Picard, and Z. Ghahramani. Predictive automatic relevance
determination by expectation propagation. In R. Greiner and D. Schuurmans, editors,
Proceedings of Twenty-first International Conference on Machine Learning, pages
671–678, 2004.

J. Quiñonero-Candela, A. Girard, J. Larsen, and C. E. Rasmussen. Propagation of
uncertainty in Bayesian kernel models - application to multiple-step ahead forecast-
ing. In Proceedings of the 2003 IEEE Conference on Acoustics, Speech, and Signal
Processing (ICASSP 03), 2003.

A. E. Raftery and S. M. Lewis. Implementing MCMC. In Gilks et al. (1996), pages
115–130.

C. E. Rasmussen. Evaluation of Gaussian Processes and other Methods for Non-linear
Regression. PhD thesis, Department of Computer Science, University of Toronto,
1996.

C. E. Rasmussen and Z. Ghahramani. Occam’s razor. In Leen et al. (2001), pages
294–300.

C. E. Rasmussen and M. Kuss. Gaussian processes in reinforcement learning. In Thrun
et al. (2004).

185

Bibliography

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The
MIT Press, Cambridge, MA, 2006.

R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of Machine
Learning Research, 5:101–141, 2004.

B. D. Ripley. Pattern Recognition and Neural Newtorks. Cambridge University Press,
Cambridge, UK, 1996.

B. D. Ripley. Statistical theories of model fitting. In Bishop (1998), pages 3–25.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathe-
matical Statistics, 22(3):400–407, 1951.

C. P. Robert. The Bayesian Choice. Springer, New York, 1994.

P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. John Wiley
& Sons, 1987.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer
experiments. Statistical Science, 4(4):409–435, 1989.

S. Saitoh. Theory of Reproducing Kernels and its Applications. Pitman Research Notes
in Mathematics. Longman, Essex, 1988.

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research, 3:211–229, 1959.

L. K. Saul, Y. Weiss, and L. Bottou, editors. Advances in Neural Information Processing
Systems 17, Cambridge, MA, 2005. The MIT Press.

G. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm in dual
variables. In Proceedings of the 15th International Conference on Machine Learning,
pages 515–521, San Francisco, 1998. Morgan Kaufmann.

M. J. Schervish. Theory of Statistics. Springer, New York, 1997.

A. M. Schmidt and A. O’Hagan. Bayesian inference for non-stationary spatial covariance
structure via spatial deformations. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 65(3):745–758, 2003.

I. J. Schoenberg. Metric spaces and positive definite functions. Transactions of the
American Mathematical Society, 44(3):522–536, 1938.

B. Schölkopf and A. J. Smola. Learning with Kernels. The MIT Press, Cambridge, MA,
2002.

M. Seeger. Bayesian model selection for support vector machines, Gaussian processes
and other kernel classifiers. In Solla et al. (2000), pages 603–609.

186

Bibliography

M. Seeger. PAC-Bayesian generalisation error bounds for Gaussian process classification.
Jounral of Machine Learning Research, 3:233–269, 2002.

M. Seeger. Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error
Bounds and Sparse Approximations. PhD thesis, Institute of Adaptive and Neural
Computation, University of Edinburgh, 2003.

M. Seeger. Gaussian processes for machine learning. International Journal of Neural
Systems, 14(2):69–106, 2004.

M. Seeger and M. I. Jordan. Sparse Gaussian process classification with multiple classes.
Technical Report TR 661, Department of Statistics, University of California at Berke-
ley, 2004.

V. G. Sigillito, S. P. Wing, L. V. Hutton, and K. B. Baker. Classification of radar
returns from the ionosphere using neural networks. Johns Hopkins APL Technical
Digest, 10(3):262–266, 1989.

E. Snelson, C. E. Rasmussen, and Z. Ghahramani. Warped Gaussian processes. In
Thrun et al. (2004).

S. A. Solla, T. K. Leen, and K.-R. Müller, editors. Advances in Neural Information
Processing Systems 12, Cambridge, MA, 2000. The MIT Press.

P. Sollich. Bayesian methods for support vector machines: Evidence and predictive class
probabilities. Machine Learning, 46(1–3):21–52, 2002.

M. L. Stein. Interpolation of Spatial Data. Springer, New York, 1999.

S. M. Stigler. Laplace’s 1774 memoir on inverse probability. Statistical Science, 1(3):
350–363, 1986.

S. M. Stigler. Statistics on the Table: The History of Statistical Concepts and Methods.
Harvard University Press, Cambridge, MA, 1999.

M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of
the Royal Statistical Society, Series B, 36(2):111–147, 1974.

M. Strens. A Bayesian framework for reinforcement learning. In P. Langley, editor,
Proceedings of the seventeenth international conference on machine learning (ICML-
2000), pages 943–950, San Francisco, CA, 2000. Morgan Kaufmann.

S. Sundararajan and S. S. Keerthi. Predictive approaches for choosing hyperparameters
in Gaussian processes. Neural Computation, 13:1103–1118, 2001.

R. S. Sutton. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Proceedings of the Seventh International
Conference on Machine Learning, pages 216–224. Morgan Kaufmann, 1990.

187

Bibliography

R. S. Sutton. Integrated modeling and control based on reinforcement learning and
dynamic programming. In D. S. Touretzky, editor, Advances in Neural Information
Processing Systems 3, pages 471–478, 1991.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3:9–44, 1988.

R. S. Sutton and A. G. Barto. Reinforcement Learning. The MIT Press, Cambridge,
MA, 1998.

J. A. K. Suykens and J. Vandewalle. Least squares support vector machine classifiers.
Neural Processing Letters, 9(3):293–300, 1999.

J. A. K. Suykens, J. Vandewalle, and B. De Moor. Optimal control by least squares
support vector machines. Neural Networks, 14:23–35, 2001.

G. Tesauro. Programming backgammon using self-teaching neural nets. Artificial In-
telligence, 134(1–2):181–199, 2002.

S. Thrun, L. Saul, and B. Schölkopf, editors. Advances in Neural Information Processing
Systems 16, Cambridge, MA, 2004. The MIT Press.

M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of
Machine Learning Research, 1:211–244, 2001.

M. E. Tipping and N. D. Lawrence. A variational approach to robust Bayesian interpo-
lation. In C. Molina, T. Adali, J. Larsen, M. V. Hulle, S. C. Douglas, and J. Rouat,
editors, Proceedings of the IEEE 2003 Neural Networks for Signal Processing Work-
shop, pages 229–238, Piscataway, New Jersey, 2003. IEEE Press.

M. E. Tipping and N. D. Lawrence. Variational inference for Student-t models: Robust
Bayesian interpolation and generalised component analysis. Neurocomputing, 69(1–3):
123–141, 2005.

D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors. Advances in Neural Infor-
mation Processing Systems 8, Cambridge, MA, 1996. The MIT Press.

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Transactions on Automatic Control, 42(5):674–690, 1997.

J. W. Tukey. Unsolved problems of experimental statistics. Journal of the American
Statistical Association, 49(268):706–731, 1954.

J. W. Tukey. The future of data analysis. The Annals of Mathematical Statistics, 33
(1):1–67, 1962.

J. W. Tukey. The technical tools of statistics. The American Statistician, 19(2):23–28,
1965.

188

Bibliography

V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, second
edition, 1999.

G. Wahba. Spline Models for Observational Data. Society for Industrial and Applied
Mathematics, Philadelphia, 1990.

M. D. Waltz and K. S. Fu. A heuristic approach to reinforcement learning control
systems. IEEE Transactions on Automatic Control, 10(4):390–398, 1965.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge, UK, 1989.

C. J. C. H. Watkins and P. Dayan. Q-Learning. Machine Learning, 8(3–4):279–292,
1992.

Y. Weiss, B. Schölkopf, and J. Platt, editors. Advances in Neural Information Processing
Systems 18, Cambridge, MA, 2006. The MIT Press.

M. West. Outlier models and prior distributions in Bayesian linear regression. Journal
of the Royal Statistical Society, Series B, 46(3):431–439, 1984.

M. West. On scale mixtures of normal distributions. Biometrika, 74(3):646–648, 1987.

D. J. White. Markov Decision Processes. John Wiley & Sons, Chichester, 1993.

C. K. I. Williams. Computation with infinite neural networks. Neural Computation, 10:
1203–1216, 1998.

C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear
prediction and beyond. In Jordan (1999), pages 599–621.

C. K. I. Williams and D. Barber. Bayesian classification with Gaussian processes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–1351, 1998.

C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In Touretzky
et al. (1996), pages 514–520.

S. Wood and R. Kohn. A Bayesian approach to robust binary nonparametric regression.
Journal of the American Statistical Association, 93(441):203–213, 1998.

A. M. Yaglom. Stationary Random Functions. Prentice-Hall, Englewood Cliffs, NJ.,
1962.

189

