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INFINITE DIMENSIONAL EXPONENTIAL FAMILIES BY
REPRODUCING KERNEL HILBERT SPACES

KENJI FUKUMIZU

1. Introduction

The purpose of this paper is to propose a method of constructing exponential
families of Hilbert manifold, on which estimation theory can be built. Although
there have been works on infinite dimensional exponential families of Banach mani-
folds (Pistone and Sempi, 1995; Gibilisco and Pistone, 1998; Pistone and Rogantin,
1999), they are not appropriate to discuss statistical estimation with finite number
of samples; the likelihood function with finite samples is not continuous on the
manifold.

In this paper we use a reproducing kernel Hilbert space as a functional space for
constructing an exponential manifold. A reproducing kernel Hilbert space is defined
as a Hilbert space of functions such that evaluation of a function at an arbitrary
point is a continuous functional on the Hilbert space. Since we can discuss the
value of a function with this space, it is very natural to use a manifold associated
with a reproducing kernel Hilbert space as a basis of estimation theory.

We focus on the maximum likelihood estimation (MLE) with the exponential
manifold of a reproducing kernel Hilbert space. As in many non-parametric es-
timation methods, straightforward extension of MLE to an infinite dimensional
exponential manifold suffers the problem of ill-posedness caused by the fact that
the estimator should be chosen from the infinite dimensional space with only finite
number of constraints given by the data. To solve this problem, a pseudo-maximum
likelihood method is proposed by restricting the infinite dimensional manifold to
a series of finite dimensional submanifolds, which enlarge as the number of sam-
ples increases. Some asymptotic results in the limit of infinite samples are shown,
including the consistency of the pseudo-MLE.

2. Exponential family associated with a reproducing kernel Hilbert
space

2.1. Reproducing kernel Hilbert space. This subsection provides a brief review
of reproducing kernel Hilbert spaces. For the details, see Aronszajn (1950).

Let Ω be a set, and H be a Hilbert space included in the set of all functions on
Ω. The Hilbert space H is called reproducing kernel Hilbert space (RKHS) if the
evaluation mapping ex : H 3 f 7→ f(x) ∈ R is a continuous linear functional on H
for any x ∈ Ω.

A function k : Ω×Ω→ R is said to be positive definite if it is symmetric and for
any points x1, . . . , xn in Ω the matrix (k(xi, xj))i,j is positive semidefinite, i.e., for
any real numbers c1, . . . , cn the inequality

∑n
i,j=1 cicjk(xi, xj) ≥ 0 holds.

If H is a RKHS on Ω, by Riesz’s representation theorem, there exists φx ∈ H
such that ex(f) = f(x) = 〈f, φx〉H, where 〈 , 〉H is the inner product of H.
The function k(·, x) = φx ∈ H (x ∈ Ω) is called reproducing kernel, because it
satisfies the reproducing property 〈k(·, x), f〉H = f(x) for all f ∈ H. It is easy
to see that a symmetric function that satisfies the reproducing property is unique.
The function k(x, y) is a positive definite kernel, because it is symmetric from
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k(y, x) = φx(y) = 〈φx, φy〉H = 〈φy, φx〉H = φy(x) = k(x, y), and positive definite
from

∑
i,j cicjk(xi, xj) = ‖∑i ciφxi‖2H ≥ 0.

It is known that for a positive definite kernel k on Ω there uniquely exists a
Hilbert space Hk such that Hk consists of functions on Ω, the class of functions∑m
i=1 aik(·, xi) (m ∈ N, xi ∈ Ω, ai ∈ R) is dense in Hk, and 〈f, k(·, x)〉Hk = f(x)

holds for any f ∈ Hk and x ∈ Ω. The last property means that Hk is a RKHS
with a reproducing kernel k. Conversely, given RKHS H and its reproducing kernel
k(·, x) = φx, the Hilbert space Hk constructed by k coincides with H because of
the uniqueness of the reproducing kernel. Thus, a Hilbert space H of functions on
Ω is a RKHS if and only if H = Hk for some positive definite kernel k.

2.2. Exponential manifold associated with a RKHS. Let (Ω,B, µ) be a prob-
ability space, and Mµ be the set of positive probability density functions with
respect to µ;

Mµ =
{
f : Ω→ R

∣∣∣∣ f is measurable, almost everywhere positive, and
∫

Ω

fdµ = 1
}
.

Hereafter, the probability given by the density f ∈M is denoted by fµ, and for a
measurable function u on Ω the expectation of u with respect to fµ is denoted by
Ef [u(X)].

Let k : Ω × Ω → R be a measurable positive definite kernel on Ω. Define a
subclass of Mµ by

Mµ(k) =
{
f ∈Mµ

∣∣∣∣ there exists δ > 0 such that
∫
eδ
√
k(x,x)f(x)dµ(x) <∞

}
.

If the kernel k is bounded, we have Mµ(k) =Mµ.
In this paper, it is assumed that constant functions are included in Hk. This is a

mild assumption, because if k̃(x, y) = k(x, y)+1 is used for a positive definite kernel,
the corresponding RKHS Hk̃ is equal to the sum Hk +R = {f + c | f ∈ Hk, c ∈ R}
(Aronszajn, 1950).

Note ‖k(·, x)‖Hk =
√
k(x, x) and |u(x)| = |〈u, k(·, x)〉Hk | ≤

√
k(x, x)‖u‖Hk

for an arbitrary u ∈ Hk. For any f ∈ Mµ(k), Ef [
√
k(X,X)] is finite, because

δEf [
√
k(X,X)] ≤ Ef [eδ

√
k(X,X)] < ∞. Thus, u 7→ Ef [u(X)] is a bounded func-

tional on Hk. We define a closed subspace Tf of Hk by

Tf := {u ∈ Hk | Ef [u(X)] = 0},
which works as a tangent space at f , as we will see later.

For f ∈Mµ(k), let Wf be a subset of Tf defined by

Wf = {u ∈ Tf | there exists δ > 0 such that Ef [eδ
√
k(X,X)+u(X)] <∞}.

Define the cumulant generating function Ψf on Wf by

Ψf (u) = logEf [eu(X)].

For any u ∈ Wf , the probability density function

eu−Ψf (u)f

belongs to Mµ(k). In fact, by the definition of Wf , we can take δ > 0 so that

Ef [eδ
√
k(X,X)+u(X)] <∞, which derives
∫
eδ
√
k(x,x)eu(x)−Ψf (u)f(x)dµ(x) ≤ e−Ψf (u)Ef

[
eδ
√
k(X,X)+u(X)

]
<∞.

Thus, the following mapping is well defined.

ξf :Wf →Mµ(k), u 7→ eu−Ψf (u)f.
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The map ξf is one-to-one, because ξf (u) = ξf (v) implies u − v is constant, which
is necessarily zero by Ef [u] = Ef [v] = 0. Let Sf = ξf (Wf ), and ϕf be the inverse
of ξf , that is,

ϕf : Sf →Wf , g 7→ log
g

f
−Ef

[
log

g

f

]
.

It will be shown that ϕf works as a local coordinate of a Hilbert manifold Mµ(k).
First, we see the following basic facts;

Lemma 1. Let f and g be arbitrary elements in Mµ(k).
(i) Wf is an open subset of Tf .
(ii) g ∈ Sf if and only if Sg = Sf .

Proof. (i). For an arbitrary u ∈ Wf , take δ > 0 so that Ef [eu(X)+δ
√
k(X,X)] <∞.

Define an open subset Vu of Tf by Vu = {v ∈ Tf | ‖v − u‖Hk < δ/2}. Then, Vu is
an open neighborhood included in Wf , because for arbitrary v ∈ Vu we have

Ef
[
e(δ/2)

√
k(X,X)+v(X)

]
= Ef

[
e(δ/2)

√
k(X,X)+〈v−u,k(·,X)〉Hk+u(X)

]

≤ Ef
[
e(δ/2)

√
k(X,X)+‖v−u‖Hk

√
k(X,X)+u(X)

]

≤ Ef
[
eδ
√
k(X,X)+u(X)

]
<∞.

(ii). ”If” part is obvious. For the ”only if” part, we first prove Sg ⊂ Sf on
condition g ∈ Sf . Let h be an arbitrary element in Sg, and take u ∈ Wf and v ∈ Wg

so that g = eu−Ψf (u)f and h = ev−Ψg(v)g. From the fact g ∈ Wf , there is δ > 0 such

that Eg[ev(X)+δ
√
k(X,X)] < ∞. We have

∫
ev(x)+u(x)+δ

√
k(x,x)−Ψf (u)f(x)dµ(x) <

∞, which means v + u−Ef [v] ∈ Wf . From h = e(v+u−Ef [v])−(Ψf (u)+Ψg(v)−Ef [v])f ,
we have Ψf (v+u−Ef [v]) = Ψf (u)+Ψg(v)−Ef [v] and h = ξf (v+u−Ef [v]) ∈ Sf .

For the opposite inclusion, it suffices to show f ∈ Sg. Let γ > 0 be a constant so

that Ef [eγ
√
k(X,X)] <∞. From e−ug = e−Ψf (u)f , we see

∫
eγ
√
k(x,x)−u(x)g(x)dµ(x) <

∞, which means −u + Eg[u] ∈ Wg. Thus, the equality f = e−u+Ψf (u)g =
e(−u+Eg [u])−(−Ψf (u)+Eg [u])g shows f = ξg(−u+ Eg[u]) ∈ Sg. �

The map ϕf defines a structure of Hilbert Manifold on Mµ(k), which we call
reproducing kernel exponential manifold.

Theorem 1. The system {(Sf , ϕf )}f∈Mµ(k) is a C∞-atlas of Mµ(k), that is,
(i) If Sf ∩ Sg 6= ∅, then ϕf (Sf ∩ Sg) is an open set in Tf .
(ii) If Sf ∩ Sg 6= ∅, then

ϕg ◦ ϕ−1
f |ϕf (Sf∩Sg) : ϕf (Sf ∩ Sg)→ ϕg(Sf ∩ Sg)

is a C∞ map.
Thus, Mµ(k) admits a structure of C∞-Hilbert manifold.

Proof. The assertion (i) is obvious, because Sf ∩ Sg 6= ∅ means Sf = Sg from
Lemma 1. Suppose Sf ∩ Sg 6= ∅, that is, Sf = Sg. For any u ∈ Wf , we have

ϕg ◦ ϕ−1
f (u) = ϕg

(
eu−Ψf (u)f

)
= log

eu−Ψf (u)f

g
− Eg

[
log

eu−Ψf (u)f

g

]

= u+ log(f/g)− Eg
[
u+ log(f/g)

]
,

from which the assertion (ii) is obtained, because u 7→ Eg[u] is of C∞.
It is known that with the assertions (i) and (ii) a topology is introduced onMµ(k)

so that all Sf are open, and Mµ(k) is equipped with the structure of C∞-Hilbert
manifold (see Lang, 1985). �



4 K. FUKUMIZU

The open set Sf is regarded as a local maximal exponential family in Mµ(k).
In fact, we can prove

(1) Sf = {g ∈Mµ(k) | there exists u ∈ Tf such that g = eu−Ψf (u)f}.
To see this, it suffices to show that the right hand side is included in the left hand
side, as the opposite inclusion is obvious. Let g = eu−Ψf (u)f be in the set of the
right hand side. From g ∈Mµ(k), there exists δ > 0 such that Eg[eδ

√
k(X,X)] <∞,

which means Ef [eδ
√
k(X,X)+u(X)] <∞. Therefore, u ∈ Wf and g = ξf (u) ∈ Sf .

From Lemma 1 (ii), we can define an equivalence relation such that f and g are
equivalent if and only if they are in the same local maximal exponential family,
that is, if and only if Sf ∩ Sg 6= ∅. Let {S(λ)}λ∈Λ be the equivalence class. Then,
they are equal to the set of connected components.

Theorem 2. Let {S(λ)}λ∈Λ be the equivalence class of the maximum local exponen-
tial families. Then, {S(λ)}λ∈Λ are the connected components of Mµ(k). Moreover,
each component S(λ) is simply connected.

Proof. From Lemma 1 and Theorem 1, {S(λ)}λ∈Λ are disjoint open covering of
Mµ(k). The proof is completed if everyWf is shown to be convex. Let u0 and u1 be

arbitrary elements inWf . Then, there exists δ > 0 such that Ef
[
eδ
√
k(X,X)+u0(X)

]
<

∞ and Ef
[
eδ
√
k(X,X)+u1(X)

]
< ∞. For ut = tu1 + (1 − t)u0 ∈ Tf (t ∈ [0, 1]), we

have eut(x) ≤ teu1(x) + (1− t)eu0(x) by the convexity of z 7→ ez. It leads

Ef

[
eδ
√
k(X,X)+ut(X)

]
≤ tEf

[
eδ
√
k(X,X)+u1(X)

]
+ (1− t)Ef

[
eδ
√
k(X,X)+u0(X)

]
<∞,

which means ut ∈ Wf . �

The Hilbert space Hk, which is used for giving manifold structure to Mµ(k),
has stronger topology than the Orlicz space used for the exponential manifold by
Pistone and Sempi (1995). Recall that a function u is an element of the Orlicz
space Lcosh−1(f) if and only if there is α > 0 such that

Ef

[
cosh

(u
α

)
− 1
]
<∞.

The space u ∈ Lcosh−1(f) is a Banach space with the norm

‖u‖Lcosh−1(f) = inf
{
α > 0

∣∣∣ Ef
[
cosh

(u
α

)
− 1
]
≤ 1

}
.

For the detail of this space, see Pistone and Sempi (1995).

Proposition 1. For any f ∈ Mµ(k), the RKHS Hk is continuously included in
Lcosh−1(f). Moreover, if a positive number Af is defined by

Af = inf
{
α > 0

∣∣∣∣
∫
e

√
k(x,x)
α f(x)dµ(x) ≤ 2

}
,

then for any u ∈ Hk
‖u‖Lcosh−1(f) ≤ Af‖u‖Hk .

Proof. The inequality

Ef
[
cosh(u(X)/α)− 1

]
=

1
2
Ef [eu(X)/α + e−u(X)/α]− 1

≤ Ef
[
e|u(X)|/α]− 1

≤ Ef
[
e

1
α‖u‖Hk

√
k(X,X)

]
− 1

shows that if ‖u‖Hk/α < 1/Af then Ef [cosh(u/α) − 1] ≤ 1. Thus, Af‖u‖Hk ≥
‖u‖Lcosh−1(f). �
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Proposition 1 tells that the manifold Mµ(k) is a subset of the maximum ex-
ponential manifold. However, the former is not necessarily a submanifold of the
latter, because Hk is not a closed subspace of Lcosh−1(f) in general.

Note also that Lcosh−1(f) is continuously embedded in Lp(f) for all p ≥ 1. Thus,
Ef |u|p is finite for any f ∈Mµ(k), u ∈ Hk, and p ≥ 1.

The reproducing kernel exponential manifold depends on the underlying RKHS.
It may be either finite or infinite dimensional. A different choice of the positive
definite kernel results in a different exponential manifold.

2.3. Properties of reproducing kernel exponential manifolds. As in the
case of finite dimensional exponential families and the exponential manifold by
Pistone and Sempi (1995), the derivatives of cumulant generating function provide
the cumulant or moments of the random variables given by tangent vectors. Let
f ∈ Mµ(k) and v1, . . . , vd ∈ Tf . The d-th derivative of Ψf in the directions
v1, . . . , vd at fu = eu−Ψf (u)f is denoted by Dd

uΨf (v1, . . . , vd). We have

DuΨf (v) = Efu [v], D2
uΨf (v1, v2) = Covfu [v1(X), v2(X)],

where Covg[v1, v2] = Eg[v1(X)v2(X)]−Eg[v1(X)]Eg[v2(X)] is the covariance of v1

and v2 under the probability gµ.
The first and second moments are expressed also by an element and an operator

of the Hilbert space. Let P be a probability on Ω such that EP [
√
k(X,X)] < ∞.

Because the functional Hk 3 u 7→ EP [u(X)] is bounded, there exists mP ∈ Hk such
that

EP [u(X)] = 〈u,mP 〉Hk
for all u ∈ Hk. We call mP mean element for P . Noticing that the mapping
Hk ×Hk 3 (v1, v2) 7→ CovP [v1(X), v2(X)] is a bounded bilinear form, we see that
there exists a bounded operator ΣP on Hk such that

CovP [v1(X), v2(X)] = 〈v1,ΣP v2〉Hk
holds for all v1, v2 ∈ Hk. The operator ΣP is called covariance operator for P . For
the detail of covariance operator on a RKHS, see (Fukumizu et al., 2005).

When a local coordinate (ϕf0 ,Sf0) in a reproducing kernel exponential manifold
Mµ(k) is assumed, we use also the notations mu and Σu for the mean element
and covariance operator, respectively, with respect to the probability density fu =
eu−Ψf0 (u)f0. The mapping Wf 3 u 7→ mu ∈ Hk is locally one-to-one, because
the derivative Σu|Tf0 is injective given that µ is non-degenerate. We call mu mean
parameter for the density fu. We have

DuΨf (v) = 〈mu, v〉Hk , D2
uΨf (v1, v2) = 〈v1,Σuv2〉Hk .

Let f0 ∈Mµ(k) and u, v ∈ Wf0 . With the local coordinate (ϕf0 ,Sf0), it is easy to
see that the Kullback-Leibler divergence from fu = eu−Ψf0 (u)f0 to fv = ev−Ψf0 (v)f0

is given by

(2) KL(fu||fv) = Ψf0(v)−Ψf0(u)− 〈v − u,mu〉Hk .
Let fu, fv, and fw be points in Sf0 . It is straightforward to see

KL(fu||fw) = KL(fu||fv) +KL(fv||fw)− 〈w − v,mu −mv〉Hk .
Let U be a closed subspace of Tf0 , and V = U ∩Wf0 . The subset N = ϕ−1

f0
(V)

is a submanifold of Sf0 , which is also an exponential family. Let f∗ = eu∗−Ψf0 (u∗)

be a point in Sf0 , and consider the minimizer of the KL divergence from f∗ to a
point in N ;

uopt = arg min
u∈V

KL(f∗||fu).
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Then, the standard argument derives the orthogonal relation

(3) 〈u− uopt,mu∗ −muopt〉Hk = 0.

Using the above relations, the Pythagorean equation

(4) KL(f∗||fu) = KL(f∗||fuopt) +KL(fuopt ||fu)

holds for any u ∈ V.

3. Pseudo maximum likelihood estimation with Mµ(k)

3.1. Likelihood equation on a reproducing kernel exponential manifold.
Let S be a connected component of Mµ(k). We assume that the true probability
density function f∗ is an element of S, and i.i.d. samples X1, X2, . . . , Xn are gener-
ated by f∗µ. We consider the problem of estimating f∗ with the statistical model
S given the finite sample.

From Lemma 1 and Eq. (1), for arbitrary f0 ∈ S the component can be expressed
by

S = {f ∈Mµ(k) | f = eu−Ψ0(u)f0 for some u ∈ Tf0},
where Ψ0 is an abbreviation of Ψf0 . For notational simplicity, we use W0 = Wf0

and fu = eu−Ψ0(u)f0 for u ∈ W0.
Consider the maximum likelihood estimation (MLE) with S;

sup
u∈W0

1
n

n∑

i=1

u(Xi)−Ψ0(u).

By introducing the empirical mean element

m̂(n) :=
1
n

n∑

i=1

k(·, Xi),

the problem of MLE is rewritten by

sup
u∈W0

〈m̂(n), u〉Hk −Ψ0(u).

Taking the partial derivative of the log likelihood function, we have the following
likelihood equation;

(5) 〈m̂(n), v〉Hk = 〈mu, v〉Hk (∀v ∈ Hk),

where mu is the mean parameter corresponding to the density fu. Note that Eq. (5)
holds not only for v ∈ Tf0 but for all v ∈ Hk, since 〈m̂(n)−mu, 1〉Hk always vanishes.

From Eq. (5), the empirical mean element m̂(n) is regarded as the mean pa-
rameter for the maximum likelihood estimation. We call m̂(n) maximum likelihood
mean parameter.

3.2.
√
n-consistency of maximum likelihood mean parameter. We establish

the
√
n-consistency of the maximal likelihood mean parameter in a general form.

Theorem 3. Let (Ω,B, P ) be a probability space, k : Ω × Ω → R be a positive
definite kernel so that EP [k(X,X)] <∞, and mP ∈ Hk be the mean element with
respect to P . Suppose X1, . . . , Xn are i.i.d. sample from P , and define the empirical
mean element m̂(n) by m̂(n) = 1

n

∑n
i=1 k(·, Xi). Then, we have

‖m̂(n) −mP ‖Hk = Op
(
1/
√
n
)

(n→∞).
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Proof. Let EX [·] denote the expectation with respect to the random variable X
which follows P . Suppose X, X̃,X1, . . . , Xn are i.i.d. We have

E‖m̂(n) −mP ‖2Hk =
1
n2

n∑

i=1

n∑

j=1

EXiEXj [k(Xi, Xj)]

− 2
n

n∑

i=1

EXiEX [k(Xi, X)] + EXEX̃ [k(X, X̃)]

=
1
n2

n∑

i=1

∑

j 6=i
E[k(Xi, Xj)] +

1
n
EX [k(X,X)]−EXEX̃ [k(X, X̃)]

=
1
n
{EX [k(X,X)]−EXEX̃ [k(X, X̃)]}

= O(1/n).

The assertion is obtained by Chebyshev’s inequality. �

Unlike the finite dimensional exponential family, the likelihood equation Eq. (5)
does not necessarily have a solution in the canonical parameter u. The empirical
expectation element m̂(n) works as a mean parameter as in the finite dimensional
case. However, as Pistone and Rogantin (1999) point out for their exponential
manifold, the inverse mapping from the mean parameter to the canonical parameter
u is not bounded in general. In fact, the derivative of the map u 7→ mu is the
covariance operator Σu, which has infinitely small eigenvalues under mild conditions
(Fukumizu et al., 2005), if the RKHS is infinite dimensional. Thus, the mean
parameter does not give a coordinate system for infinite dimensional manifolds.

Another explanation for the fact that the likelihood equation does not have a
solution is given by regarding the equation as moment matching. Given that the
positive definite kernel k is continuous, the likelihood equation requires that the
empirical distribution 1

n

∑n
i=1 δXi and the continuous density function eu−Ψ0(u)f0

have the same expectation or moment for all functions w ∈ Hk. If the RKHS Hk
is so large that almost all the moments can be evaluated by the form E[w(X)] for
w ∈ Hk, the probability must be uniquely determined by those moments. Thus, S
cannot include a probability which gives the same moment structure as the empirical
distribution.

3.3. Pseudo maximum likelihood estimation. To solve the problem described
in the above subsection, we propose a pseudo maximum likelihood estimation us-
ing a series of finite dimensional subspaces in Hk to make the inversion from the
mean parameter to the canonical parameter possible. The use of finite dimensional
subspaces is a kind of regularization. With an infinite dimensional reproducing ker-
nel exponential manifold, the estimation of the true density with finite number of
samples can be considered to be an ill-posed problem, because it attempts to find a
function from the infinite dimensional space with only finite number of constraints
made by the samples. The regularization, which reduces the degree of freedom, is
a popular method of solving the ill-posed problem.

Let {H(`)}∞`=1 be a series of subspaces of Hk such that H(`) ⊂ H(`+1) for all
` ∈ N. For any f ∈ Mµ(k), a subspace T (`)

f of Tf is defined by T
(`)
f = Tf ∩ H(`),

and an open set W(`)
f of T (`)

f is defined by Wf ∩H(`). Also, the notations W(`) and

S(`) are used for W(`)
f0

and {fu ∈ S | u ∈ W(`)}, respectively.
For each ` ∈ N, the pseudo maximum likelihood estimator û(`) in S(`) is defined

by
û(`) = arg max

u∈W(`)
〈m̂(n), u〉Hk −Ψ0(u).
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We assume that the maximizer û(`) exists in W(`), and further make the following
two assumptions;

(A-1) For all u ∈ W0, let u(`)
∗ ∈ W(`) (` ∈ N) be the minimizer of

min
u(`)∈W(`)

KL(fu||fu(`)).

Then ‖u− u(`)
∗ ‖Hk → 0 (`→∞).

(A-2) For u ∈ W0, let λ(`)(u) be the least eigenvalue of the covariance operator
Σu restricted on T

(`)
fu

, that is,

λ(`)(u) := inf
v∈T (`)

fu
, ‖v‖Hk=1

〈v,Σuv〉Hk .

Then, there exists a subsequence (`n)∞n=1 of N such that for all u ∈ W0 we
can find δ > 0 for which

λ̃(`)
u := inf

u′∈W0, ‖u′−u‖Hk≤δ
λ(`)(u′)

satisfies
lim
n→∞

√
nλ̃(`n)

u = +∞.

The assumption (A-1) means S(`) can approximate a function in S at any pre-
cision as ` goes to infinity. The assumption (A-2) provides a stable MLE in the
submodel S(`) by lower-bounding the lest eigenvalue of the derivative of the map
u 7→ mu.

Theorem 4. Under the assumptions (A-1) and (A-2),

KL(f∗||fbu(`n))→ 0 (n→∞)

in probability.
Moreover, let u∗ ∈ W0 be the element which gives fu∗ = f∗, and u

(`)
∗ be the

element in (A-1) with respect to u∗. If positive constants γn and εn satisfy

‖u∗ − u(`)
∗ ‖Hk = o(γn) (n→∞)

and
1

√
nλ̃

(`n)
u∗

= o(εn) (n→∞),

then we have

KL(f∗||fbu(`n)) = op(max{γn, εn}) (n→∞).

Proof. Let m∗ and m
(`)
∗ be the mean parameter corresponding to u∗ and u

(`)
∗ ,

respectively. From Eqs. (3) and (4), we have

(6) 〈u− u(`)
∗ ,m

(`)
∗ 〉Hk = 〈u− u(`)

∗ ,m∗〉Hk
for all u ∈ W(`), and

KL(f∗||fbu(`n)) = KL(f∗||fu(`n)
∗

) +KL(f
u

(`n)
∗
||fbu(`n)).

The assumption (A-1) means the convergence

KL(f∗||fu(`n)
∗

)→ 0 (n→∞),

since KL(f∗||fu) is an continuous function on u. Thus, it suffices to show the
convergence

(7) Pr
(‖û(`n) − u(`n)

∗ ‖Hk ≥ εn
)→ 0,
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because we have KL(f
u

(`n)
∗
||fbu(`n)) = Ψ0(û(`n))−Ψ0(u(`n)

∗ )− 〈m∗, û(`n) − u(`n)
∗ 〉Hk

from Eqs. (2) and (6), which implies KL(f
u

(`n)
∗
||fbu(`n)) is also of op(εn).

Let δ > 0 be the constant in the assumption (A-2). If the event of the probability
in Eq. (7) holds, we have

sup
u∈W(`)

‖u−u(`)
∗ ‖Hk≥εn

{〈u, m̂(n)〉Hk −Ψ0(u)
}− {〈u(`n)

∗ , m̂(n)〉Hk −Ψ0(u(`n)
∗ )

} ≥ 0.

On the other hand, using Eq. (6), the relation

〈u, m̂(n)〉Hk −Ψ0(u)− 〈u(`n)
∗ , m̂(n)〉Hk + Ψ0(u(`n)

∗ )

= 〈u− u(`n)
∗ , m̂(n) −m∗〉Hk −

{
Ψ0(u)−Ψ0(u(`n)

∗ )− 〈u− u(`n)
∗ ,m

(`n)
∗ 〉Hk

}

is obtained for any u ∈ W(`). By the definition of λ̃(`), for sufficiently large n so
that ‖u(`n)

∗ − u∗‖Hk ≤ δ holds, we obtain

sup
u∈W(`)

‖u−u(`)
∗ ‖Hk≥εn

〈u, m̂(n)〉Hk −Ψ0(u)− 〈u(`n)
∗ , m̂(n)〉Hk + Ψ0(u(`n)

∗ )

≤ sup
u∈W(`)

‖u−u(`)
∗ ‖Hk≥εn

‖u− u(`n)
∗ ‖Hk‖m̂(n) −m∗‖Hk −

1
2
λ̃(`n)‖u− u(`n)

∗ ‖2Hk

≤ sup
u∈W(`)

‖u−u(`)
∗ ‖Hk≥εn

‖u− u(`)
∗ ‖Hk

{
‖m̂(n) −m∗‖Hk −

1
2
λ̃(`n)εn

}
.

Thus, the probability in Eq. (7) is upper bounded by

Pr
(‖m̂(n) −m∗‖Hk ≥ 1

2 λ̃
(`n)εn

)
,

which converges to zero by Theorem 3 and the condition of εn. �

4. Concluding Remarks

This paper has proposed a new family of statistical models, reproducing kernel
exponential manifold, which includes infinite dimensional exponential models. The
most significant property of this exponential manifold is that the empirical mean
parameter is included in the Hilbert space. Thus, estimation of the density function
with finite samples can be discussed based on this exponential manifold, while many
other formulation of exponential manifold cannot provide basis for estimation with
finite samples. Using the reproducing kernel exponential manifold, a method of
pseudo maximum likelihood estimation has been proposed with a series of finite
dimensional submanifolds, and consistency of the estimator has been shown.

As this paper is the first proposal of estimation theory based on infinite dimen-
sional exponential manifolds, many problems remain unsolved. One of them is
a practical method for constructing a sequence of subspaces used for the pseudo
maximum likelihood estimation. A possible way of defining the sequence is to use
the subspace spanned by k(·, X1), . . . , k(·, X`). However, with this construction
the subspaces are also random, and the results in this paper should be extended
to the case of random subspaces to guarantee the consistency. Another practical
issue is how to choose the subsequence `n so that the assumption (A-2) is satisfied.
We need to elucidate the properties of least eigenvalue of the covariance operator
restricted on finite dimensional subspaces, which is not necessarily obvious. Also,
providing examples of the estimator for specific kernels is practically important.
Investigation of these problems will be among our future works.
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