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1 - Introduction  

We perceive our own body and the world surrounding us via multiple sources 

of sensory information derived from several modalities, including vision, 

touch and audition. To enable interactions with the environment this 

information has to converge into a coherent and unambiguous multimodal 

percept of the body and the world. But how does the brain come up with such 

a unique percept? In this chapter I review a model that in the statistical sense 

describes an optimal integration mechanism. The benefit of integrating 

sensory information comes from a reduction in variance of the final perceptual 

estimate. Furthermore, I point out how this integration scheme can be 

incorporated in a larger framework using Bayesian decision theory (BDT). 

To illustrate the problem of sensory integration, imagine driving a nail 

into wood using a hammer. The position of the nail in space can be seen, but 

may also be derived from an estimate of the arm posture, while holding the 

nail in one hand. That is, vision and the estimate of body posture both provide 

information about the nails position in space. Slight discrepancies in the 

representation of information between the estimates naturally arise due to the 

fact that the process of sensory estimation is inherently noisy. This results in 

an interesting situation: the observer either has to decide which information to 

trust in a given situation (vision or the body sense) or it has to find a way to 

best combine the discrepant information and come up with an optimal decision 

(or action). 

However, having more than one (redundant) estimate available can be 

an advantage: the accuracy with which an environmental property can be 

judged increases with the number of individual perceptual estimates available. 
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In the hammer example, the position in space can be estimated more reliably 

using both estimates (vision and the sense of the body’s posture from 

somatosensory information) instead of only one. That is, to accurately hit the 

nail with the hammer it is best to integrate the position information from the 

two estimates into one common representation (for a more detailed discussion 

on the integration of sensory information into a body image see Maravita in 

this volume). One could speculate that this may be one reason it is better for 

you to hold the nail yourself, instead of having someone else hold it for you 

while hitting it with the hammer.  

Not all information derived from different sensory modalities is 

redundant. In the majority of cases information derived from the different 

modalities will be complementary in nature, such as when feeling an object’s 

weight while seeing its colour. Naturally, different combination rules have to 

be applied for combining such complementary information into a stable 

percept (for a recent review see Ernst & Bülthoff, 2004). Here, I concentrate 

on the integration mechanisms for redundant sensory information, such as the 

spatial position of the hand or the size of an object that can be seen and felt 

simultaneously. 

  

2 - The probabilistic nature of sensory estimation 

The problem of sensory combination can be understood using signal detection 

theory (Green & Swets, 1988). Perception is a probabilistic process. If one 

estimates an environmental property, such as an object’s size, the estimate will 

have some variance associated with it. As a result, if the same environmental 

property is estimated consecutively 100 times, all 100 perceptual estimates 
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may vary slightly. Figure 1 shows schematically the probability density 

distribution for estimating an object’s size s. In the simplest case this 

probability density distribution has a Gaussian shape and is unbiased. This 

distribution is then defined by its mean 

! 

S , which for an unbiased estimator 

corresponds to the objects size s, and its standard deviation 

! 

" :  

! 

ˆ S = N(S ," ) .       (1) 

If the reliability r is defined as the inverse of the variance 

! 

" 2 

    

! 

r = 1

" 2 ,       (2) 

then the larger the variance of the associated distribution the less reliable is the 

associated perceptual estimate.  
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Figure 1: A) Schematic illustration of the probability density function for the estimation of an 

object’s size s. The histogram indicates the distribution of answers derived from the size 

estimation process. The fitted curve has a Gaussian shape (with standard deviation σ and mean 

! 

S ) and indicates the probability density function. B) Schematic drawing of a psychometric 

function derived using a 2-interval forced-choice task given the probability density function for 

estimating the object’s size from A. The just noticeable difference (JND) derived at the 0.84 

point corresponds to 

! 

JND = 2 "# .  PSE is the point of subjective equality.   

 

For experimentally estimating the variance of a sensory signal classical 

psychophysical discrimination paradigms, such as a 2-interval forced-choice 

(2-IFC) task, can be used. Subjects performing this task must compare, for 

example, the sizes of two objects – Standard S0 with Comparison S – 

presented sequentially. If the difference in size between the two intervals (S-

S0) is large, subjects will have no problem discriminating them, and 

consequently they will make only few errors. With decreasing size differences 

however the error rate will rise. If the probability density functions for S and 

S0 are Gaussian with identical variance 

! 

" 2, the resulting psychometric 

function is a cumulative Gaussian (see Fig. 1). The “Just Noticeable 

Difference” (JND) defined at the 84% level (the difference between the 50% 

and the 84% points) provides an estimate  

! 

JND = 2"       (3) 

for the variability of the underlying Gaussian distribution.   

 

3 - Combining redundant signals 

“Redundant signals” may to some degree sound like a waste of information. 

But actually this is not necessarily so. There are two major advantages in 



  6 

 

having redundant information available: the first is that the system is more 

robust, because when one estimate is not available at a given time (or its 

information is degraded) the other estimate can substitute for it. The second 

advantage is that the final estimate becomes potentially more reliable 

compared with the reliability of the individual estimates feeding into the 

combined percept.    

What is the statistically optimal strategy for combining redundant 

sensory information? Figure 2 shows the probability density distributions (the 

likelihood functions) for two independent estimates each of which is derived 

from a stimulus in a different modality. In the example discussed here it is a 

size estimate that is derived from a visual and a haptic size stimulus (

! 

ˆ S 
V

 and 

! 

ˆ S 
H

). According to the “Maximum-Likelihood-Estimation” (MLE) scheme the 

integrated estimate 

! 

ˆ S 
VH

 is a weighted average across the individual sensory 

signals with weights wi that sum up to unity (the index i refers to the individual 

modalities i=1… j…N) (Cochran, 1937):  

! 

ˆ S = w
i

ˆ S 
i

i

"   where   

! 

w
i

i

" =1 .    (4) 

Optimally, weights are chosen to be proportional to the reliability of a 

given signal. That is, if the visual modality provides the more reliable 

information in a given situation, this signal is given higher weight.  

! 

w j =
rj

ri
i

"
 .        (5) 

In the example shown in Fig. 2 the variance associated with the visual 

size estimate is four times less than the variance associated with the haptic size 

estimate. That is, the visual information is four times more reliable. Therefore, 
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the combined estimate (the weighted sum) is closer to the visual than the 

haptic estimate (in the example here the visual weight is 0.8 according to Eq. 

5). Under other circumstances where the haptic modality provides the more 

reliable estimate the situation is reversed.       

 

      

Figure 2: Schematic drawing of the likelihood functions of the individual visual and haptic 

size estimates and of the combined visual-haptic size estimate, which is a weighted average 

according to the MLE integration rule. The variance associated with the visual-haptic 

distribution is less than either of the two individual estimates. 

 

The variance of the combined estimate will be less then that of either 

of the individual estimates feeding into the combination process. That is, the 

reliability improves when information is combined. According to the MLE 

principle the reliability of the combined estimate is the sum of the reliabilities 

of the individual estimates:   

  

! 

r = r
i

i

"  .       (6) 

One can show that the MLE integration scheme is statistically optimal 

in that it provides the most reliable unbiased sensory estimate, given that the 
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individual estimates are Gaussian distributed and that these noise distributions 

are independent. However, even if the noise distributions of the individual 

estimates show a correlation one can still benefit from the combination of 

sensory information and the combined estimate will be more reliable than each 

individual estimate alone (Oruç, Maloney, & Landy, 2003).      

In a recent study we showed that humans integrate visual and haptic 

information in such a statistically optimal fashion (Ernst & Banks, 2002). 

Others have demonstrated that this finding of optimality holds not only for the 

integration across vision and touch, but also for the integration of information 

across and within other sensory modalities, such as vision and audition (Alais 

& Burr, 2003; Knill & Saunders, 2003; Hillis, Watt, Landy, & Banks, 2004). 

Further, the MLE scheme holds also for the integration of sources of sensory 

information that include the body sense. This was recently shown by van 

Beers, Sittig, and van der Gon (1998, 1999). They investigated how 

proprioceptive information about the position of the hand in space integrates 

with visual information and found the MLE model qualitatively confirmed. 

That is, perceptual information about one’s own body seems to be no different 

from information derived from the other sensory modalities as far as the 

integration mechanism is concerned. Thus, maximum-likelihood-estimation is 

an effective and widely used strategy utilized by the perceptual system. 

In the Ernst and Banks (2002) study, subjects had to discriminate the 

sizes of two objects presented sequentially in a 2-IFC task. The objects could 

either only be seen, only be felt, or both, seen and felt, simultaneously. The 

visual stimulus was a random-dot stereogram portraying a bar of given size. 

The haptic stimulus was generated using two haptic force-feedback devices 
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(Phantom™ from SensAble Inc.) (see Fig. 3 for details). To vary the reliability 

of the visual stimulus we added noise to the depth of the dots that formed the 

random-dot pattern (0%, 67%, 133% 200% depth noise relative to the depth 

the bar was raised from the background plane).   

 

      

Figure 3: In the visual-haptic setup, observers view the reflection of the visual stimulus 

binocularly in a mirror using stereo goggles. The haptic stimulus is presented using two 

PHANToM™ force-feedback devices, one each for the index finger and thumb. With this 

setup the visual and the haptic virtual scenes can be independently manipulated. *(Taken with 

permission from Ernst & Bülthoff, 2004) 

 

To determine the reliability of each sensory modality alone, we 

conducted within-modal visual-only and haptic-only discrimination 

experiments. The reliabilities can be deduced from the JND measurements 

using Eqs. 2 and 3. The within-modal reliabilities can then be used to come up 
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with predictions for cross-modal performance. Two kinds of predictions can 

be made that, if confirmed experimentally, would demonstrate optimal 

integration behaviour. On the one hand we can make predictions for the 

weights of the signals (using Eqs. 2, 3, and 5); experimentally we can derive 

the visual and haptic weights from measurements of the Point of Subjective 

Equality (PSE) in a cross-modal experiment. On the other hand we can make 

predictions for the variance of the combined percept (using Eqs. 2, 3, and 6). 

Combined variance can be determined experimentally from the cross-modal 

JNDs. It is important to note that these predictions have no free parameter and 

are merely based on the within-modal JNDs.   

To determine whether combined visual-haptic performance is 

statistically optimal according to the MLE model, we again used a 2-IFC 

discrimination task. In the standard interval we now introduced a small 

discrepancy between visual and haptic size information (Δ = ±3 mm and ±6 

mm). Using the comparison stimulus that was varied in size between 45 mm to 

65 mm and that contained no size discrepancy between visual and haptic 

information we determined the size that was perceived equally in comparison 

stimulus and standard stimulus (the PSE). This perceived size (and so the PSE) 

directly depends on the weights of the individual signals. Given the four 

different noise levels and the within-modal visual-only and haptic-only 

discrimination data (JNDV and JNDH) we can calculate the relative visual 

reliabilities to be 0.78 for 0% noise, 0.75 for 67% noise, 0.48 for 133% noise 

and 0.16 for 200% noise. These relative visual reliabilities are predictions for 

the visual weights. As can be seen in Fig. 4, predicted PSEs correspond well 

with the empirically determined PSEs (“perceived size” as determined by the 
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50% point of the psychometric functions). In the no noise condition the PSE is 

close to the visual standard demonstrating a high visual weight. In the 200% 

noise condition the PSE is close to the haptic standard demonstrating a low 

visual but a high haptic weight. With added noise to the visual display, there is 

a smooth transition from visual dominance to haptic dominance.          

 

 

Figure 4: Visual-haptic size-discrimination performance determined with a 2-interval forced-

choice task (Ernst & Banks, 2002). We manipulated the relative reliabilities of the individual 

signals by adding noise to the visual display (0%, 67%, 133%, and 200%). With these different 

relative reliabilities we measured four discrimination curves. When the relative visual 

reliability decreases with added noise the perceived size as indicated by the PSE is more and 

more determined by the haptic size estimate (haptic standard) and less by the visual size 

estimate (visual standard). This demonstrates the weighting behaviour adopted by the brain and 

the smooth change from visual dominance (red circles) to haptic dominance (orange triangles). 

As indicated in the figure, the PSEs predicted from the individual visual and haptic 

discrimination performance (symbols with black outline) correspond well with the empirically 
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determined PSEs in the combined visual-haptic discrimination task. Four naïve subjects 

participated. *(Figure adapted with permission from Ernst & Bülthoff, 2004) 

 

A correct prediction of weights (and PSEs) is a first hint that 

information is combined optimally. However, there are different strategies that 

would give the same result.  For example, this may be a switching strategy in 

which the observer bases his/her answers on the estimate of one or the other 

modality at a time but switches answers between the modalities in proportion 

to their relative reliabilities (Landy & Kojima, 2001; Ernst & Bülthoff, 2004). 

Even though such a strategy would provide the same weights as are predicted 

from the MLE model, using such a strategy the combined JNDs could never 

become lower than the JNDs for each individual estimate alone. Therefore, a 

stronger test of statistical optimality is to show that crossmodal visual-haptic 

estimates become more reliable when combined; that is, they have a lower 

JND. Predictions for combined visual-haptic JNDs can be derived from the 

within-modal JNDs using Eq. 6. Experimentally we determined the combined 

visual-haptic JNDs from the cross-modal psychometric functions. As can be 

seen in Fig. 5, the predicted and empirical JNDs correspond well. This 

demonstrates that humans actually combine visual and haptic size information 

in a fashion that is indistinguishable from statistical optimality (Ernst & 

Banks, 2002).          
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Figure 5: Size discrimination thresholds (JNDs) for visual-alone, haptic-alone and visual-

haptic combined comparisons. For the visual stimulus we used 4 different noise levels (see 

text). The reliability of the haptic stimulus was not altered. From the individual visual-alone 

and haptic-alone JNDs we derived predictions for the combined visual-haptic performance 

using Eq. 6 (dashed line). Predicted and empirically determined visual-haptic JNDs correspond 

well for all four visual noise levels (Ernst & Banks, 2002). Error bars denote the standard error 

of the mean across subjects (n=4). *(from Ernst & Banks, 2002; with permission) 

 

4 - Benefits and potential costs of integrating information  

As demonstrated above, integrating sensory information has the potential 

benefit of reducing the variance of the associated sensory estimate and 

increasing its reliability. However, integrating sensory information may also 

come at a “cost”. The brain potentially may lose access to the individual input 

signals feeding the integrated percept. That is, by jointly presenting visual and 

haptic information, as we have done in the experiment presented before, it 

may be impossible for the brain to independently access the individual sensory 
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information without it being influenced by the other signal. If the brain lost 

access to the individual estimates, we should be able to observe metameric 

behaviour. That is, there may be different physical stimuli that lead to exactly 

the same perceptual experience, indiscriminable from one another. Such 

metameric behaviour is demonstrated in Fig. 6, right panel.    

 Fig. 6 is a schematic diagram that shows the expected discrimination 

performance, first if the two cues are completely independent (left panel), and 

second if the two cues are fused into a single percept (right panel). With two 

independent cues, that is the percept of each cue is unbiased when presented in 

combination, the likelihood functions are radial symmetric in a JND 

normalized cue1&cue2-space (for simplicity we here assume that the noise 

distributions of the signals are Gaussian with constant σ, and that there is no 

correlation between the noise distributions of the cues; cf. Fig. 11). With that, 

there is no direction in the cue1&cue2-discrimination space that is particularly 

special. Given an optimal decision rule that takes both independent cues into 

account (statistical benefit; Graham, 1989), discrimination performance for 

discriminating a cue1&cue2-stimulus from the standard is equal in all 

directions. Therefore, in the independent-cue case discrimination thresholds 

around the standard object will form a circle in the cue1&cue2-space.  

The situation is different if two cues are not independent but instead 

are fused into a single percept (Hillis, Ernst, Banks, & Landy, 2002). To be 

optimal the fusion rule is to form the weighted average between the cues (Eq. 

4; cue12 = w1Δcue1+w2Δcue2). That is, if two cues are totally fused at the 

perceptual level, the same percept will result whether they both indicate a 

medium value, or if they differ radically from one another but average to a 
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medium value. Hence a high value on one cue can always be compensated for 

by a low value on the other cue. In other words, fusion is equivalent to 

averaging a two dimensional stimulus (cue1–dimension and cue2–dimension) 

onto a single, fused dimension. This fused dimension is the positive diagonal 

in Fig. 6, right panel, where the cue1 signal maps onto the cue2 signal. If, for 

example, cue1 and cue2 were visual and haptic sizes, respectively, the positive 

diagonal is the line where visual and haptic sizes are equal, i.e., it is the 

common size axis. 

If cues are fused it should be obvious that also discrimination 

performance will be affected. Along the fused dimension (e.g., along the 

common size axis in the visual-haptic example) discrimination will remain 

possible. However, for stimuli not being along this dimension discrimination 

performance will drop and it will be impossible to discriminate stimuli that 

were averaged to exactly the same value – i.e., that are perceptual metamers. 

Stimuli that form the same average fall along one particular direction 

(Δcue1/Δcue2) in this discrimination space. This direction is Δcue1/Δcue2 = –

w2/w1 (Hillis, et al., 2002). In Fig. 6 (right panel) where cues are plotted in 

JND units all objects lying on the negative diagonal have the same average 

and therefore form perceptual metamers with respect to the standard object. 

Objects lying on lines parallel to the negative diagonal form a different set of 

perceptual metamers. 
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Figure 6: Schematic drawing of predictions for discrimination performance for independent 

cues (left) and for completely fused cues (right). Plotted is the hypothetical discrimination 

performance of a two-cue stimulus (cue1, cue2) from the standard stimulus (white star; cue1,0, 

cue2,0). The cue1&cue2-discrimination space is shown in units of JND. The grey shading is 

coding for discrimination performance (dark being non-discriminable to white for perfect 

discriminability). As indicated, if the two cues (cue1 and cue2) are independent there is no 

explicit direction in this discrimination space and the discrimination contour is a circle around 

the standard object. If the cues are fused, however, using the weighted averaging rule (see 

MLE model), objects along the negative diagonal (dashed line in right panel) are not 

discriminable, i.e., they are perceptual metamers with respect to the standard object. 

 

With this in mind, one can now also imagine that discrimination 

performance may not fall in one of the two categories illustrated in Fig. 6, but 

actually may lie somewhere in-between. That is, discrimination performance 

may not be circular around the standard and it also may not be a single 

diagonal stripe in discrimination space. Instead, discrimination performance 
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might form an ellipse elongated in the direction that is determined by the 

weight of the signals (Δcue1/Δcue2 = –w2/w1) – the same direction that 

indicates metameric behaviour in the fused case. The magnitude of the 

elongation of the discrimination ellipse is a reflection of the degree to which 

the original information feeding into the combination process is accessible and 

so defines the “strength of coupling” between the signals.  

We investigated such discrimination performance for two different sets 

of stimuli using a 3-interval oddity task (Hillis, et al., 2002). In a cross-modal 

experiment we investigated visual-haptic discrimination performance for 

object size (Fig. 7, left panel). In a within-modal experiment we investigated 

slant discrimination performance (Fig. 7, right panel). The slant was defined 

by two visual cues, one being binocular disparity, the other being texture. 

Depending on the set of signals used we found different strengths of coupling 

between the signals, i.e., we found strong coupling for signals derived from 

within the visual modality (disparity and texture signals to slant) and weaker 

coupling for visual and haptic signals to size. This can be seen in Fig. 7: in 

both cases the discrimination thresholds form an elliptical shape – even though 

in the disparity-texture condition this ellipse is somewhat distorted. This is due 

to the fact that the reliability of disparity-defined and texture-defined slant 

changes with slant rather than remaining constant. The MLE model for 

complete fusion predicts the deformation in the data as can be seen from the 

green prediction lines (for details see Hillis, et al., 2002). The single cue JNDs 

(red lines), the predicted constraint lines for fused performance (green linens) 

and the discrimination data can be seen in Fig. 7. The elongation of the 

discrimination “ellipse” is clearly more pronounced in the disparity-texture 
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experiment than in the visual-haptic experiment. That is, we clearly observed 

metameric behaviour in the disparity-texture condition, where discrimination 

performance for the combined stimuli in the upper left and the lower right 

quadrant of the figure is worse than single cue discrimination performance 

(single cue JNDs are indicated by the red lines). Metameric behaviour is less 

pronounced in the visual-haptic condition. However, in both conditions 

performance is not truly metameric over a wide range. In conclusion there 

seems to be a stronger coupling (interaction) between the within-modal 

disparity-texture signals than between the cross-modal visual-haptic signals.  

 

 

Figure 7: Discrimination performance for visual and haptic size discrimination (left panel) and 

for binocular disparity and texture slant discrimination (right panel). In red are the single-cue 

JNDs for discriminating each individual cue from the standard (green circle). The pairs of red 

horizontal constraint lines correspond to the JNDs for haptic size discrimination and texture 

slant discrimination, respectively. The pairs of red vertical constraint lines correspond to the 

JNDs for visual size discrimination and disparity slant discrimination, respectively. In green we 

plot the discrimination predictions (JNDs for discrimination from standard) when assuming the 

MLE model for integration (i.e., complete fusion of the signals). Discrimination performance 
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in the direction of the green constraint lines indicates metameric behaviour. In purple plotted 

are the discrimination thresholds in the different directions for combined cue performance 

(Hillis et al., 2002).  

 

How can the different levels of interaction that determine the strength 

of coupling between the two sets of cues be understood? As described above, 

in case of complete fusion the system loses access to the individual estimates. 

If for some reason, however, the system needs to retain access to the 

individual estimates, it makes sense that the system does not fuse the signals 

completely. One obvious candidate for when it is necessary to retain access to 

the individual estimates is if the mapping between signals is not fixed, but 

changes in response to a constant conflict between signals. Without some 

degree of access to the individual estimates it would be impossible to detect 

conflicts between signals and so it would be impossible for the system to 

change the mapping between signals in order to overcome the conflict.  

Starting with von Helmholtz (1867), there is a huge literature on 

visuomotor and visual-haptic adaptation, demonstrating the enormously rapid 

and flexible plasticity of the human visuomotor system (for a review see 

Welch, 1978; compare also chapter by Holms and Spence in this volume). 

This clearly indicates that there are often situations in which the mapping 

between the visual and haptic cues changes. Therefore, in the visual-haptic 

case it makes sense that the system by and large maintains access to the 

individual signals. 

There is also adaptation for signals within vision. Adams, Banks and 

van Ee (2001) for example observed an adaptation effect after wearing special 

magnifying glasses for a number of days and they demonstrated that this 
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adaptation effect is the consequence of recalibration of the relationship 

between disparity and perceived slant (i.e., a change in mapping). This is 

reasonable because certainly during growth the relationship between binocular 

signals, which depend on the interocular distance, and other monocular signals 

changes and the system needs to adjust for that. However, compared with 

crossmodal visual-haptic adaptation, which can happen within seconds and a 

few exposures to the conflict, within visual adaptation seems to be much 

slower, sometimes taking days or weeks.  

The mapping between the different signals can fluctuate on different 

time-scales. For adapting the mapping between signals quickly, a reliable 

estimate of the conflict is needed; for adapting slowly, each estimate of the 

conflict does not need to be very precise – only the average over many 

observations must yield a reliable conflict estimate. Strong coupling between 

signals that introduces a strong perceptual bias yields a less reliable estimate 

of possible conflicts than does weak coupling between signals. If the 

relationship between signals derived from the same object or event is never 

changing (the mapping is constant), the system does not need to retain access 

to the individual estimates and the signals can be completely fused. Because 

the mapping between the disparity and texture signals does not change quickly 

(Adams, Banks, & van Ee, 2001), we can infer that for disparity and texture 

cues to slant it is not so critical to retain reliable access to the individual 

estimates and therefore there can be strong coupling between the disparity-

texture signals. The reverse is true for visual-haptic size signals.  

In conclusion, it seems that the necessity for changes in the mapping 

and how quickly they should occur determines the strength of coupling. In the 
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following section I aim to explain this strength of coupling using a Bayesian 

prior.  

 

5 - The “Strength of Coupling” and Bayesian Decision Theory  

In the previous sections I have demonstrated that humans integrate visual and 

haptic information in a statistically optimal fashion. I have also shown that 

complete fusion between visual and haptic signals does not occur; rather there 

seemed to be only some weaker coupling between the signals. Is that a 

contradiction or is there a common explanation? I will try to answer this 

question using Bayesian Decision Theory (BDT).  

To better understand the integration mechanisms it is useful to examine 

more closely the strength of coupling between the sensory signals. Therefore, I 

present next an experiment that directly analyses the extent to which the 

individual signals are accessible when provided with a combined visual-haptic 

stimulus. Determining the accessibility of the individual signals in 

combination can be done using a mixed design in which a combined visual-

haptic stimulus is compared to either a visual-only or a haptic-only stimulus. 

When the comparison stimulus is visual-only subjects are instructed to ignore 

the haptic component of the combined stimulus and vice versa. Visual-only 

and haptic-only trials were randomly intermixed. By introducing a small 

discrepancy between the visual and haptic information in the combined 

stimulus, one can estimate which signal has the higher weight. If the brain 

retains access to the individual visual and haptic information then when 

compared to the visual–only stimulus there should be no influence of the 

haptic modality (i.e., a visual weight of one) and vice versa (i.e., a visual 
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weight of zero when the combined stimulus is compared to the haptic-only 

stimulus). On the other hand if in combination visual and haptic information is 

completely fused (i.e., not accessible independently), comparing the combined 

stimulus to either the visual-only or the haptic-only stimulus should provide 

identical results (i.e., the relative weight of the signals should be identical in 

both conditions).  

The results of such an experiment can be seen in Fig. 8 (Ernst & 

Banks, 2000). For this experiment we used a 2-IFC task to measure 

discrimination performance. Subjects compared a combined visual-haptic 

stimulus to either a visual-only stimulus (solid line) or a haptic-only stimulus 

(dashed line). We determined the relative visual weights from the PSEs of 

these psychometric functions (for details of the methods see Ernst & Banks, 

2002). For each of the two conditions we derived weights for four different 

reliability levels. As in the previous experiment (Fig. 4) we varied the 

reliability of the signals by adding noise to the random-dot pattern that 

constitutes the visual display (0%, 67%, 133%, and 200% visual noise). The 

stimulus was exactly the same as described above and by Ernst and Banks 

(2002).  

Independence of signals predicts a visual weight of zero if compared to 

the haptic-only (H) stimulus and a visual weight of one when compared to the 

visual-only (V) stimulus. Complete fusion of signals predicts that the visual 

weights in the two conditions should be identical. Neither prediction was 

confirmed. Instead we found relative visual weights that were in-between 

these two predictions. The relative visual weights differed between the two 

conditions. Vision was weighted more heavily when the combined stimulus 



  23 

 

was compared to the visual modality and the haptic modality was weighted 

more heavily when the combined stimulus was compared to the haptic 

modality. Such a result was obtained across all four noise-levels (Fig. 8). That 

is, it seems that we have no direct access to the original haptic or visual 

information feeding into the combination process, but instead this information 

is altered (biased) by the accompanying modality. In other words, subject 

cannot ignore the task-irrelevant stimulus even when they are instructed to 

fully attend to only one of the two sensory signals and to ignore the other. It is 

probably worth noting that there are several studies now showing that this 

form of sensory integration is not modulated by attention (e.g., Bertelson, 

Vroomen, De Gelder, & Driver, 2000; Vroomen, Bertelson, & De  Gelder, 

2001).   
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Figure 8: Cross-modal to uni-modal comparisons. The weights are determined using a 2-IFC 

size-discrimination task with a stimulus similar to Ernst and Banks (2002). The solid line 

indicates visual weights that were determined from a condition where the combined visual-

haptic stimulus (VH) was compared to a visual-only stimulus (V). The dashed line indicates 

visual weights that were obtained from a condition where the combined visual-haptic stimulus 

(VH) was compared to a haptic-only stimulus (H). Trials from both conditions were randomly 

intermixed. We determined weights in both conditions for four different noise levels to alter 

the relative reliability of the signals. The noise was added to the visual display only. Error bars 

denote the standard error of the mean across subjects (n=4). 

 

If the visual-haptic signals are not completely fused into a unified 

percept and they are also not independent, in which case the percept would be 

unbiased, what is the percept that is associated with the visual-haptic stimulus? 

From the VH-to-V experiment we can conclude how much the visual size 
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percept is biased by the presence of the haptic component in the combined 

visual-haptic stimulus. Conversely, from the VH-to-H experiment we can 

conclude how much the haptic size percept is biased by the presence of the 

visual component in the combined visual-haptic stimulus. The visual and 

haptic biases correspond to the weights (PSEs) determined in the VH-to-V and 

VH-to-H experiments, respectively. No visual bias would mean that visual 

weight is wV=1 in the VH-to-V experiment; no haptic bias would mean that 

visual weight is wV=0 in the VH-to-H experiment (independence). As 

indicated previously, a bias in the percept that would indicate complete fusion 

would result in identical weights in the two experiments (VH-to-V and VH-to-

H).  

To illustrate the percept associated with a visual-haptic stimulus the 

results from Fig. 8 are re-plotted in Fig. 9 in a 2-dimensional visual-haptic 

space. Haptic size is plotted on the ordinate, visual size on the abscissa. In 

general, a visual-haptic stimulus (unfilled circle) results in a size percept 

(filled circle) that is biased in vision and in touch relative to the physical size 

stimulus (SV,0, SH,0). Quantifying these biases (weights) requires a visual-haptic 

stimulus that is off the identity line. The identity line for which the visual and 

haptic sizes are equal is the positive diagonal in Fig. 9.  

The bias corresponds to a relative size shift between stimulus and 

percept ΔS and depends on the weights. The visual size shift with weights 

determined in the VH-to-V experiment corresponds to  

! 
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the haptic size shift with weights determined in the VH-to-H experiment 

corresponds to 
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In Fig. 9 I plot these biases for the four visual noise conditions: on the 

abscissa there is the visual size shift, on the ordinate the haptic size shift. The 

dashed arrow indicates the overall bias from physical to perceived size of the 

visual-haptic stimulus. The length of this arrow (in relation to the distance 

between stimulus and identity line) is an indication for the strength of coupling 

between the visual and haptic signals. The more pronounced the bias, the 

longer the arrow, the stronger the coupling. If the estimates were independent, 

perceived size would be identical to physical size and so the length of the 

arrow would be zero. If the visual and haptic signals are fused completely the 

percept will lie on the identity line (positive diagonal) corresponding to a 

maximal bias and the maximal possible length of the arrow. As now can also 

be seen in Fig. 9, the actual results fall in-between independence and complete 

fusion.  

The direction of the bias (orientation of the arrow) should correspond 

to the relative reliabilities of the visual and haptic signals, i.e., the optimal 

combined visual-haptic weights. If the visual information is more reliable than 

the haptic information there is a stronger haptic than visual bias, so that the 

orientation of the arrow is closer to horizontal (Fig. 9 upper two panels). 

Conversely, if the haptic information is more reliable than the visual 

information there is a stronger visual than haptic bias, so that the orientation of 

the arrow is closer to vertical (Fig. 9, lower right panel). Equal reliabilities of 

the signals should correspond to a bias along the negative diagonal (Fig. 9, 

lower left panel). As can be seen in Fig. 9 the directions of the biases for all 

different noise levels correspond well to the relative reliabilities of the visual 
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and haptic signals (cf. Fig. 5); that is, the direction of bias corresponds well to 

the optimal combined visual–haptic weights.  

 

Figure 9: Visual-haptic percept (filled circles) in relation to the stimulus (unfilled circles) that 

gave rise to it. The four panels show the results for four different noise levels. The abscissa 

indicates the visual size, the ordinate the haptic size of the object. Visual sizes were compared 

in the VH-to-V condition, haptic sizes in the VH-to-H condition. Form this the visually and 

haptically perceived sizes were determined using PSEs (weights). The difference between 

physical and perceived size (the visual-haptic bias; dashed arrow) directly depends on the 

weights of the signals (Eqs. 8 and 9; see text). 
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To bring all the findings discussed above together Bayesian Decision 

Theory (BDT) seems to be an appropriate common framework (Fig. 10). 

Bayesian Inference provides a formal way to model uncertainty about the 

world by combining prior knowledge (the prior) with observational, sensory 

evidence (the likelihood function) to infer the most probable interpretation of 

the environment (the posterior) (Yuille & Bülthoff, 1996; Knill & Richards, 

1996; Mamassian, Landy, & Maloney, 2002; Kersten & Yuille, 2003). Bayes’ 

Rule states that the posterior probability 

! 

p(W | I) is proportional to the product 

of the likelihood function 

! 

p(I |W ) and prior probability distribution 

! 

p(W ) : 

! 

p(W | I)" p(I |W ) # p(W ) . In general, the Bayesian Framework can be used to 

construct ‘ideal observer’ models as a standard for comparison with human 

performance. This framework has recently seen much success in describing 

observers’ perception and performance in a variety of visual (Knill, 1998; 

Saunders & Knill, 2001; Weiss, Simoncelli & Adelson, 2002; Adams & 

Mamassian, 2004), visual-haptic (Ernst & Banks, 2002, Hillis, et al., 2002, 

Adams, Graf, & Ernst, 2004) visual-auditory (Alais, & Burr, 2004), and 

visuomotor coordination tasks (Körding, & Wolpert, 2004). 

The first step in BDT is to construct the posterior. After combining the 

prior and the likelihood function into the posterior distribution using Bayes 

Rule, to perform an action or to come to a decision, the second step is to 

define the goal for the task using gain/loss functions (Fig. 10) (Schrater & 

Kersten, 2000; Mamassian, et al., 2002). That humans can behave very close 

to optimal when making decisions or actions was recently demonstrated by 

Trommershäuser, Maloney, and Landy (2003). They showed that statistical 
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decision theory can be used to accurately explain pointing behaviour under 

risk using different cost functions. A complete Bayesian model has to consider 

all three parts that make up Bayesian’ Decision Theory: sensory estimation, 

prior knowledge, and a decision-making process (e.g., Kersten, 1999; 

Mamassian, et al., 2002; Ernst & Bülthoff, 2004). 

 

 

Figure 10: Perception/Action-Loop including Bayesian Decision Theory (BDT). See text for 

details. *(taken with permission from Ernst & Bülthoff, 2004) 

 

To model multimodal cue integration using a Bayesian approach, a 

prior is necessary describing the interactions between the signals. A robust 

system that behaves plastically to body changes or to modifications in the 

environment often has to adapt the mapping between its signals. As suggested 

above, the ease for adapting the mapping depends on the strength of coupling 
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between the signals (i.e., their interaction): weak coupling allows for more 

vigorous changes than does strong coupling. However, not all mappings 

between two signals are equally likely. For example, if the signals are visual 

and haptic sizes the changes in the mapping that naturally occur are in the 

order of a few millimetres only. As a result there is a probability distribution 

representing the mappings naturally occurring. In the following I will show 

that a Bayesian prior that corresponds to the probability distribution for the 

different mappings between two signals can be used to model the observed 

sensory interactions.    

Such a prior that codes for the mapping between two signals is aligned 

along the identity line. In the simplest case spread of the prior will be Gaussian 

distributed (see Fig. 11, middle column). The standard deviation of this 

distribution determines the influence of the prior. That is, the sensory signal 

(the likelihood function) is biased more if the prior is represented by a narrow 

(Fig. 11, C-G) than a wide (Fig. 11, B) distribution. If the prior is completely 

flat, that is, the standard deviation approaches infinity, the posterior is equal to 

the likelihood distribution and the bias is negligible (Fig. 11, A).  

The likelihood function associated with a sensory signal represents the 

sensory information available to the system. It is determined by a mean and its 

variance (Fig. 11, left column). The smaller the variance associated with a 

sensory signal the more reliable is the sensory information. The posterior, 

which is proportional to the product of likelihood and prior, determines the 

percept (the Maximum a Posteriori or MAP estimate). That is, both the 

likelihood and the prior affect the percept. The strength of the bias depends on 

the relation between the two distributions. If the likelihood is very reliable it 
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can be less biased by a prior. Vice versa, if the prior is given by a narrowly 

tuned distribution it will bias the likelihood more. If the prior is reduced to a 

delta-function (variance approaches zero) the Bayesian scheme discussed here 

corresponds to the MLE model discussed earlier in this chapter. 

The influence of the prior therefore determines the strength of coupling 

between the signals and the degree to which the signals interact. Hence, we 

call this prior the “Coupling Prior” and it relates to the probability for 

knowing the mapping between sensory signals. If the mapping is known for 

sure, signals can be fused; contrary, if the mapping is unknown, signals should 

be kept separate.  
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Figure 11: Schematic illustration of several examples demonstrating sensory combination 

with a Bayesian Prior. In the left column there are the likelihood distributions indicating the 

sensory information available. In the middle column are the priors that relate to the probability 

distributions for the mappings between the sensory signals. The multimodal percept is based 

on the posterior (right column). According to Bayes’ rule the posterior is proportional to the 

product of likelihood and prior. The relationship between likelihood and prior, therefore, 

determines the degree of coupling between the signals. A) The prior is flat so that the 

likelihood equals the posterior. This indicates independence between the signals. B) The prior 

is aligned along the identity line and is moderately spread. The cues therefore show some 

moderate interaction (coupling). C) Prior is tuned very sharply (delta-function). This situation 

corresponds to complete fusion. D) and E) Only the relative variances of the two signal 

estimates determine the direction of bias. This corresponds to the weighting of the signals. (C, 

D, and E correspond to the MLE model discussed earlier in this chapter). F) In all cases 

discussed previously it was assumed that the noise distributions of the two signals are 

independent. If they are correlated the likelihood ellipse is rotated in the cue1&cue2-space. 

This slightly changes the weighting between the signals (see Oruç, et al., 2003). G) If there is 

a positive correlation (

! 

"
12

) between the noise distributions of the cues and the reliabilities 

differ substantially so that 

! 

"
12

> r
1
r
2

, the weight for cue1 will become negative and the 

weight for cue2 bigger than 1 (the sum of the weights must be 1) (see Oruç, et al., 2003). In 

this example the direction of bias is therefore above vertical. 

 

Given the priors used in the examples shown in Fig. 11 (all aligned 

along the identity line), the direction of the bias is only determined by the 

relative reliabilities between the two sensory signals (cues). The relative 

reliabilities of the signals therefore define the direction in which the perceptual 

estimate is biased by the Coupling Prior (Fig. 11, C-E). In the visual-haptic 

example discussed above, if the visual estimate is more reliable than the haptic 

estimate the bias is closer to the visual modality and vice versa. This 
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corresponds to the weighting of the sensory signals. Thus, both the weighting 

of the signals, i.e. the direction in which the percept is biased by the prior, as 

well as and the strength of coupling between the signals can be explained 

using this Bayesian approach.    

In the experiment shown in Fig. 9, the strength of coupling increased 

slightly with added visual noise in the four noise conditions (i.e., the more 

noise is added the closer the combined percept is to the identity line). This 

effect can also be explained with the Bayesian framework introduced. The 

variance of the associated sensory estimate (likelihood function) increases 

with added noise. Therefore, with a likelihood function that is less salient the 

Coupling Prior can become more influential.  

Introducing the Coupling Prior can thus explain the results of the last 

two experiments that were presented in Figs. 7 and 8. These experiments 

demonstrated that there is no complete fusion but some weaker coupling 

between the sensory signals. In the first experiment (Figs. 4 and 5), however, 

we found that subjects integrate information in a statistically optimal fashion. 

Does this mean there was complete fusion in this first experiment? The 

combined visual-haptic stimulus was identical in all these three experiments. 

Therefore, it can be assumed that the percept of this stimulus was so as well. 

The only difference between these experiments was the decision that had to be 

made with respect to the combined stimulus. In Experiment 1 we used a 2-IFC 

task in which the combined visual-haptic stimulus was compared to different 

versions of the same visual-haptic stimulus and the subjects’ task was to 

discriminate size. In Experiment 2 we used a 3-interval oddity task, in which 

each interval contained a visual-haptic stimulus. Two of the intervals were 
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identical and the stimulus in the odd interval differed in either visual and/or 

haptic size. The subjects’ task was to discriminate the odd visual-haptic 

stimulus. Experiment 3 was virtually identical to Experiment 1 using again a 

2-IFC task. The only difference was that subjects were to do size 

discrimination between a visual-haptic stimulus and a visual-only or haptic-

only comparison stimulus. The difference between the experiments is the task 

– i.e., the decision or action to be taken upon the identical visual-haptic 

percept. Therefore, the apparent different experimental results (optimal 

integration vs. incomplete fusion) seem to be related to differences in the task 

at the decisional level and not to the differences in the percept of the visual-

haptic stimulus per se.  

Exploiting BDT these differences in experimental results can be 

subsumed in the gain/loss functions (cf. Fig. 10, second step). If the goal of the 

perceptual system is to come up with the optimal (most reliable) decision, it is 

not necessary that the signals have to be completely fused. In contrast, the 

system may perform optimal because the decision process is optimal and takes 

the reliability of the individual sensory estimates into account (not implying 

that the decisions or actions have to be conscious). Using BDT the decision 

(action) process can be modelled using gain/loss functions. Gain/loss functions 

define the goal of the task and thus are task dependent.  

Using a 2-IFC task as in the first experiment it cannot be distinguished 

whether the sensory signals are optimally integrated into a fused percept or 

whether subjects come up with an optimal decision that integrates the 

information available taking the reliabilities of the individual sensory signals 

into account. In both cases subjects’ answers would have the lowest variance 
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possible. Integration of signals (meaning optimal use of sensory information) 

could be performed on either of these two levels – the perceptual level 

describing the coupling between the signals (task independent) and the 

decisional level comprising the goal of the task (task dependent). If the signals 

were completely (mandatorily) fused the percept should not be separable any 

more by using another task. Residuals of the individual visual and haptic 

signals, however, were found in Exp. 2 and 3. Here we found incomplete 

fusion. Thus, to combine the findings of all three experiments, I here assume 

that multisensory cue combination is a two-step process: In the fist step, the 

signals are perceptually coupled. This coupling is task independent and can be 

described with the Coupling Prior. In the second step the goal of the task is 

defined. This goal is defined using gain/loss functions. This second step may 

also be optimal. That is, even holding a weak Coupling Prior performance can 

still be optimal. Therefore, BDT with an optimal decision stage together with a 

Coupling Prior unites all of the experimental findings presented. Thus, 

Bayesian decision theory constitutes a comprehensive framework for 

characterizing sensory integration.     

 

6 - Concluding remarks 

Multiple sensory signals derived from several modalities can provide 

redundant sensory information about one’s own body and the environment. 

This chapter has been a review of mechanisms that may be exploited by the 

perceptual system to integrate such redundant sensory information into a 

coherent percept in order to come to an optimal decision or action.  
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Three experiments on visual-haptic combination of size information 

were discussed. The first experiment demonstrated that humans integrate 

visual and haptic size information in a statistically optimal fashion by 

maximally reducing the variance of the final perceptual decision. However, as 

demonstrated by the results of the second experiment, this does not necessarily 

imply that the sensory size signals are mandatory fused into a unified percept. 

Instead, we found a weaker form of interaction between the size information 

from vision and touch. The degree of interaction between the sensory signals 

was taken as a definition for the strength of coupling between the signals. We 

indirectly determined the actually perceived visual and haptic sizes associated 

with the visual-haptic stimulus in the third experiment. The perceived size of 

the visual-haptic stimulus was in fact in-between the sizes predicted from 

either complete fusion or independence of the signals.  

Bayesian Decision Theory offers an excellent basis for modelling these 

findings using a common framework. To account for the sensory interactions, 

i.e. the coupling between the signals, a Bayesian prior was introduced. This 

Coupling Prior represents the probability distribution of naturally occurring 

mappings between the sensory signals, i.e. it codes for the certainty of 

knowing the mapping between signals. If the mapping almost never changes 

the prior is represented by a very narrow distribution and signals can be fused 

completely. If the mapping constantly changes, however, the distribution is 

more spread and signals are fused less vigorously, but may still interact. If 

there is no mapping between signals (they carry no redundant information), 

the Coupling Prior will be flat and the signals do not interact; i.e., the signals 

will be independent.     
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Why does the mapping between signals change? In order to be robust 

against changes in the environment or changes occurring to the body our 

perceptual and perceptual-motor system has to be very flexible. The system 

can compensate for such changes through the process of adaptation, which 

corresponds to a change in mapping between signals. For example, human 

beings are very skilled at using tools. Using a tool often requires a mapping 

from visual coordinates to the coordinates of the tools end-effector. Thus, 

using tools can be seen as an extension of the body that requires adaptation 

(see chapter by Làdavas & Famè in this volume). Fusing signals mandatory so 

that the system loses access to the incoming information would prevent such 

adaptation from happening, because the discrepancy between the signals could 

not be detected. Without the discrepancy being detected, the error signal 

necessary for adaptation (the remapping of signals) is missing. A reliable error 

signal allows for quick adaptation; adaptation to an unreliable error signal 

should be slow. Therefore, whenever quick adaptation is necessary (e.g., for 

remapping of vision to body sense during tool use – plasticity of peripersonal 

space) signals should not be tightly coupled maintaining the chance to reliably 

detect an error signal; contrary, when adaptation can be on a longer time frame 

(as argued for the disparity-texture example from Exp. 2) coupling can be 

stronger and so the signals are fused more completely.    

Integration of signals is only reasonable if they are derived from the 

same object or event; unrelated signals should be kept separate. For example, 

we have recently shown that sensory integration breaks with signals that are 

not in temporal synchrony (Bresciani, Ernst, Drewing, Bouyer, Maury, & 

Kheddar, 2004) or that come from largely different locations in space 
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(Gepshtein, Burge, Banks, & Ernst, 2004). In order to know which signals 

derived from the different modalities belong together the correspondence 

problem has to be solved. Signals are likely to originate from the same object 

or event if they are derived roughly at the same time, from roughly the same 

location in space. The likelihood of correspondence increases with the number 

of concordant attributes, where each attribute is one dimension in a hyper-

dimensional multimodal space. The Coupling Prior that is responsible for 

integration to occur is maximally tuned at the origin when all multisensory 

attributes agree. If one or more attributes contain a discrepancy between the 

sensory signals, e.g., when signals are derived at different locations but at the 

same time, the Coupling Prior should become more flat. With a completely 

flat prior there is no interaction and the signals are independent. This concept 

of correspondence would therefore predict that integration of sensory signals 

only occurs when the conflict between sensory attributes is small. As an 

example consider the integration of visual and somatosensory information. 

Such signals concerning the spatial position of the body should only be 

integrated if not in conflict. That is, visual-somatosensory interactions should 

decrease (integration should break) outside the peripersonal space when 

visual-somatosensory spatial conflicts become large. Experiments conducted 

by Làdavas and Famè confirm this prediction (cf. chapter by Làdavas & Famè 

in this volume).  

In the beginning of this chapter I introduced an integration model 

based on the Maximum-Likelihood-Estimate (MLE).  Later I then switched to 

a Bayesian model that combines the likelihood with a prior. How do those two 

models relate? The MLE model was formulated in a one-dimensional space 



  40 

 

(e.g. the space of physical size) and it can describe sensory integration in this 

one-dimensional space. Once we realized that the visual and haptic signals are 

not completely fused, the problem of sensory integration became two-

dimensional (e.g., visual-size being one, haptic-size the other dimension). For 

describing such a two dimensional situation the MLE model was not 

appropriate anymore. I therefore switched to the Bayesian model in which the 

prior is responsible for the interactions occurring between the sensory signals. 

Independence could be modelled with a flat prior (the standard deviation 

! 

"  of 

the Gaussian prior approaches infinity), complete fusion with a prior that 

corresponds to a delta function (the standard deviation 

! 

"  of the Gaussian prior 

approaches zero). Complete fusion corresponds to a reduction from two to one 

dimensions and can be described with a prior representing a delta function. 

Therefore, the MLE model corresponds to the Bayesian model with a 

Coupling Prior that is a delta function (Fig. 11, C-E). In general, compared to 

the MLE model, the Bayesian model is more comprehensive because using a 

prior with an intermediate standard deviation 

! 

"  it can also describe 

interactions that are in-between complete fusion and independence.  

We have shown that sensory signals are not necessarily completely 

fused into a unified percept, yet subjects can perform in an close to optimal 

fashion when asked to report the combined percept (Experiment 1). In order to 

perform optimally under such conditions the nervous system has to know the 

reliability of the sensory signals and take them into account when making 

decisions or actions. Using BDT this implies that both stages – the sensory 

combination stage exploiting the Bayesian prior, as well as the decision stage 
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has to be optimal. Naturally, this does not necessarily imply that the actor is 

consciously aware of his/her decisions or actions. 

As a conclusion, I have proposed that a Bayesian model that uses a 

Coupling Prior for describing sensory interactions is a convenient theoretical 

framework for understanding multimodal cue integration as a continuous 

process between independence and complete fusion. 
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