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Abstract

Geometry plays an important role in modern statistical learning theory, and many
different aspects of geometry can be found in this fast developing field. This thesis
addresses some of these aspects. A large part of this work will be concerned with
so called manifold methods, which have recently attracted a lot of interest. The key
point is that for a lot of real-world data sets it is natural to assume that the data
lies on a low-dimensional submanifold of a potentially high-dimensional Euclidean
space. We develop a rigorous and quite general framework for the estimation and ap-
proximation of some geometric structures and other quantities of this submanifold,
using certain corresponding structures on neighborhood graphs built from random
samples of that submanifold. Another part of this thesis deals with the generalizati-
on of the maximal margin principle to arbitrary metric spaces. This generalization
follows quite naturally by changing the viewpoint on the well-known support vector
machines (SVM). It can be shown that the SVM can be seen as an algorithm which
applies the maximum margin principle to a subclass of metric spaces. The motivati-
on to consider the generalization to arbitrary metric spaces arose by the observation
that in practice the condition for the applicability of the SVM is rather difficult to
check for a given metric. Nevertheless one would like to apply the successful ma-
ximum margin principle even in cases where the SVM cannot be applied. The last
part deals with the specific construction of so called Hilbertian metrics and positive
definite kernels on probability measures. We consider several ways of building such
metrics and kernels. The emphasis lies on the incorporation of different desired pro-
perties of the metric and kernel. Such metrics and kernels have a wide applicability
in so called kernel methods since probability measures occur as inputs in various
situations.






Zusammenfassung

Geometrie spielt eine wichtige Rolle in der modernen statistischen Lerntheorie. Viele
Aspekte der Geometrie konnen in diesem sich schnell entwickelnden Feld gefunden
werden. Diese Dissertation beschéftigt sich mit einigen dieser Aspekte. Ein grofier
Teil dieser Arbeit befasst sich mit sogenannten Mannigfaltigkeits-Methoden. Die
Hauptmotivation liegt darin, daf§ es fiir Datensédtze in Anwendungen eine in vielen
Féllen zutreffende Annahme ist, dal die Daten auf einer niedrig-dimensionalen Un-
termannigfaltigkeit eines potentiell hoch-dimensionalen Euklidischen Raumes liegen.
In dieser Arbeit wird ein mathematisch strenger und allgemeiner Rahmen fiir die
Schétzung und Approximation von geometrischen Strukturen und anderen Gréflen
der Untermannigfaltigkeit entwickelt. Dazu werden korrespondierende Strukturen
auf einem durch eine Stichprobe von Punkten der Untermannigfaltigkeit erzeug-
ten Nachbarschaftsgraphen genutzt. Ein weiterer Teil dieser Dissertation behandelt
die Verallgemeinerung des sogenannten ,,maximum-margin“-Prinzips auf allgemeine
metrische Rdume. Durch eine neue Sichtweise auf die sogenannte ,support vector
machine“(SVM) folgt diese Verallgemeinerung auf natiirliche Weise. Es wird gezeigt,
daf} die SVM als ein Algorithmus gesehen werden kann, der das ,,maximum-margin*-
Prinzip auf eine Unterklasse von metrischen Rdumen anwendet. Die Motivation fiir
diese Verallgemeinerung entstand durch das in der Praxis haufig auftretende Pro-
blem, dafl die Bedingungen fiir die Verwendung einer bestimmten Metrik in der SVM
schwer zu iiberpriifen sind. Trotzdem wiirde man gerne selbst in Féllen in denen die
SVM nicht angewendet werden kann das erfolgreiche , maximum-margin“-Prinizp
verwenden. Der abschlielende Teil dieser Arbeit beschéftigt sich mit der speziel-
len Konstruktion von sogenannnten Hilbert’schen Metriken und positiv definiten
Kernen auf Wahrscheinlichkeitsmafien. Mehrere Moglichkeiten solche Metriken und
Kerne zu konstruieren werden untersucht. Der Schwerpunkt liegt dabei auf der Inte-
gration verschiedener gewiinschter Figenschaften in die Metrik bzw. den Kern. Sol-
che Metriken und Kerne haben vielfiltige Anwendungsmoglichkeiten in sogenannten
Kern-Methoden, da Wahrscheinlichkeitsmafle als Eingabeformate in verschiedensten
Situationen auftreten.
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Kapitel 1

Introduction

Geometry plays an important role in modern statistical learning theory, and many
different aspects of geometry can be found in this fast developing field. This thesis
addresses some of these aspects. A large part of this work will be concerned with
so called manifold methods, which have recently attracted a lot of interest. The key
point is that for a lot of real-world data sets it is natural to assume that the data
lies on a low-dimensional submanifold of a potentially high-dimensional Euclidean
space. We develop a rigorous and quite general framework for the estimation and ap-
proximation of some geometric structures and other quantities of this submanifold,
using certain corresponding structures on neighborhood graphs built from random
samples of that submanifold. Another part of this thesis deals with the generalizati-
on of the maximal margin principle to arbitrary metric spaces. This generalization
follows quite naturally by changing the viewpoint on the well-known support vector
machines (SVM). It can be shown that the SVM can be seen as an algorithm which
applies the maximum margin principle to a subclass of metric spaces. The motivati-
on to consider the generalization to arbitrary metric spaces arose by the observation
that in practice the condition for the applicability of the SVM is rather difficult to
check for a given metric. Nevertheless one would like to apply the successful ma-
ximum margin principle even in cases where the SVM cannot be applied. The last
part deals with the specific construction of so called Hilbertian metrics and positive
definite kernels on probability measures. We consider several ways of building such
metrics and kernels. The emphasis lies on the incorporation of different desired pro-
perties of the metric and kernel. Such metrics and kernels have a wide applicability
in so called kernel methods since probability measures occur as inputs in various
situations.

As a foundation for the following chapters we first introduce basic notions of statisti-
cal learning theory. Then we give a more detailed account of geometry in statistical
learning theory. We conclude this chapter with a summary of our contributions to
different aspects of this topic.

1.1 Introduction to statistical learning theory

Statistical learning theory is the mathematical theory of learning. Its foundations
were mainly laid by Vapnik and Chervonenkis. For a historical account see the
book of Vapnik [99]. Statistical learning theory puts the learning process into a
mathematical framework. The following should not be understood as a complete
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introduction to this field. It mainly serves as an introduction to the basic notions
and questions answered by the theory. In particular we will only study classification
in detail, where we mainly focus on the introduction of the so called Rademacher
averages as a capacity measure of a function class. The Rademacher averages will
then be used in Chapter 4. We mainly follow the two review articles of Bousquet,
Boucheron and Lugosi [16, 17].

The data is assumed to be from X x ), where X is the ‘input’ space and )Y is
the space of possible labels. For binary classification ) it is simply {—1, 1}, whereas
Y = R for regression. The key assumptions in statistical learning theory are twofold:

e There exists a data-generating probability measure P on X x ),

e The data (X;,Y;)i=1.._, is drawn independent! and identically distributed?(i.i.d.)
from P.

The main difference with respect to classical statistical inference problems, where
one works with a parametric model Fp, is that in statistical learning theory no
assumptions® are made on the probability measure P. A learning algorithm is then
simply a way to choose a function from a given hypothesis class of functions after
one has seen the data.

Definition 1.1 (Learning algorithm) A learning algorithm A is a mapping A :
(X x V)" — F which assigns to any sample (X;,Y;)i=1...n a function f, : X — Y
chosen from a given class of functions F C Y*. In classification the function f, is
called the classifier.

In order to assess the quality of a learning algorithm one needs a way to measure
its performance.

Definition 1.2 (Loss function) A loss function | : X x Y x Y — Ry measu-
res how errors in the prediction are penalized. The (expected) loss of a function
f is then defined as L(f) = EU(X, f(X),Y) In classification one usually chooses
(X, f(X),Y) = Lyx)zy. Then the loss of a function f is the probability of error
L(f) =Elyxyzy = P(f(X) #Y), which is also often called the risk of a function.

It is then straightforward to define the best possible loss. Before we do so, let us
introduce the useful concept of the regression function 7, defined as n(z) = E[Y|X =
z]. In the case of binary classification one has n(z) = 2P(Y = 1|X = z) — 1. For a
deterministic rule the regression function attains only the values {—1, 1}, whereas
if the rule is completely random, that is P(Y = 1| X =2) =P(Y = —1|X =2) = 4,
then n(x) = 0. For simplicity we will restrict ourselves in the following to the case
of binary classification with loss function I(z, f(),y) = 1 )2y

Definition 1.3 (Bayes classifier, Bayes loss) The minimal achievable loss is cal-
led the Bayes loss (Bayes risk) and is defined as

L* = inf{L(f) | f measurable}

A function f* which attains L* is called the Bayes classifier and one has

f(x) = sgnn(z).

IMore general settings allow also dependencies in the data.

2In the following big letters X will denote random variables and small letters z a point in X. If not indicated
otherwise expectations E are taken of all random quantities.

3Tsybakov has introduced recently so called noise conditions on P, however they are completely different from
assumptions made in classical statistics.
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For a given function class F the minimal loss in this class L} is defined* as

Ly = inf L(f)

A question that immediately arises is how the loss of the function f,, chosen by the
algorithm differs from the loss of the Bayes classifier, i.e. the best possible classifier.
Indeed one can write the difference of the loss L(f,,) of the function f,, € F to the
Bayes loss as:

L(fa) = L* = (L(fa) = L¥) + (LF— L")
The first term on the right hand side is called the estimation error. It is a random
quantity since f,, depends on the sample and measures how close the chosen function
is to the best possible function in F. The second term is called the approximation
error. It measures the difference between the loss of the best possible function in F
and the Bayes classifier. The richer the function class F, the lower the approximation
error.
The core problem now is that the probability measure P is in general unknown.
Therefore the loss L(f) = EI(X, f(X),Y) of a function f cannot be computed
and so the performance of a learning algorithm is not directly accessible. Given the
sample one can instead estimate the empirical loss (risk)

Lalf) = 37 10X, FX0),Y5) = B, 10X, £(X), V),

where P, = - 31" | 0x, is the empirical measure of P.
We have now defined all the basic notions in order to formulate the questions which
statistical learning theory tries to answer:

e How close is the empirical loss of the chosen classifier to its true loss ?

e Does the difference between true and empirical loss of the classifier converge to
zero as the sample size goes to infinity 7

e How fast does this convergence happen ?
e Does the approximation error approach® zero as n — oo ?

We will now study some of these questions for the most simple type of learning
algorithm: the empirical risk minimization. Afterwards we briefly discuss regulari-
zed empirical risk minimization, which is the basic principle behind many modern
learning algorithms.

1.1.1 Empirical risk minimization

Empirical risk minimization (ERM) is a very simple way to choose the classifier.
One simply takes the empirical risk minimizer from a predefined function class F .
That is, ERM is defined as

ERM - — inf L
R fn inf n(f)

4For technical simplicity we assume here that the minimal loss L’ can be achieved by some f in F.
5This question only makes sense if one allows that the function class used in the learning algorithm grows with
the sample size.
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Whereas it is simple to write down the principle of ERM, algorithmically ERM
is usually very complex and leads to N P-hard problems, even for simple function
classes F. Moreover it suffers in general from overfitting and instability, that is small
changes in the data can lead to large differences in the final classifier.

Nevertheless it is a valid algorithm, and as we will see for appropriately chosen
function classes it is consistent in the sense that as n — oo ERM finds a classifier
with the best risk attainable using classifiers in . Moreover the rather simple setting
allows one to introduce rather straightforwardly the basic methods used in statistical
learning theory.

In the following we will be interested in getting upper bounds for the probability
of uniform deviation of the empirical loss from the true loss. We have the following
trivial inequality:

L(fn) < Lu(fa) +sup (L(f) = Lu(f))-

fer

The quantity sup;cr (L( f) — La(f )) is random. In a first step towards an upper
bound we will show that it is close to its expectation using a concentration inequality;
more precisely, we employ the so called bounded differences inequality of McDiarmid.

Theorem 1.4 (see [63]) Let g : X" — R be a function such that for some nonne-
gative ci, ..., Cpn,

sup  |g(x1, ..., xn) —g(x1, .o mi, T i, )| <6y, 1<i<n,
and define C =37 | ci. Furthermore, let Xy, ..., X, be independent random varia-
bles. Then the random variable U = g(X, ..., X,) satisfies:
P(|U —EU| > t) < 2e2°/¢,

Now denote by L' (f) the loss of f where the i-th variable is modified. Using
1(XG, f(X5),Y:) = Lyx,)»y;, it follows that

sup (L) = Lu(f)) = sup (L) = L(F)| < sup L4 () = La(1) < -

This means the random variable sup .z (L(f) — L, (f)) satisfies the bounded diffe-
rences inequality with ¢; = % and therefore with probability 1 — 9,

sup (L(f) — La(f)) < Esup (L(f) — Lu(f)) +

feF feF 2n

One can bound now the expectation of the deviation using the symmetrization tech-
nique. Let (X7,Y!),...,(X],Y)) denote a ghost sample, independent of (X;,Y;) and
distributed identically, and denote by L/ (f) = 23" 1I(X], f(X]),Y/) the empiri-
cal loss with respect to the ghost sample. Then with L(f) = EL;( f) and Jensen’s

inequality, we get

Esup (L(f) — Lu(f)) = Esup (E L}, (f) — Lu(f)) < Esup (L;,(f) — La(f))-

fer fex feF
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Let us now introduce independent Rademacher variables®, o;, i = 1,...,n, in order
to rewrite the last expression as:

Esup (L;,(f) — Ln(f)) = Esup — Zdz (X5, f(X3),Ya) = WX, F(X)), Y))]

feF fe]-‘n

< 2Esup — Zaz (Xi, f(X3),Y5).

ferF

Let Z; be random variables in Z and G a function class Wlth domain Z. Then
Eos supyeg + >0 0ig(Z;) is called the Rademacher average R, (G) of G. Note that it
is conditioned on the data Z;. Let Z = X x ) and denote by G the function class
indexed by f € F, where

9(2) = Li@yzy
Given I(xz, f(2),y) = 1)y, One has

1
R =[E,su o; =[E, sup — o, U(X;, f(X;),Y:),
(9) gegnzg pZ(f())
since there is a one-to-one relationship between the set G and F.
Then using the derived upper bound, one gets with probability 1 — 4§,

~ log &
sup (L(f) = La(f) < 2ERu(G) + |/ 25,
feF n

One can also check that En(g) satisfies the bounded differences inequality with
c; = % Then one gets

2
sup (L(f) = L()) < 270(@) + |22,
fer n
Note that this is a data-dependent performance bound, which can be expected to be
tighter than the more classical distribution independent bounds. The Rademacher
average R, (G) can be seen as a capacity measure of the function class G respectively
F. An intuitive interpretation of the Rademacher average én(g ) is that it measures
the ability of G to fit random noise. In fact if G is very large then there will always
exist a function in G which fits the o;, that is ¢(Z;) = 1 if 0;, = 1 and ¢g(Z;) = 0
otherwise, and therefore ﬁn(g )= % Then there is no hope of uniform convergence of
the difference between empirical and true risk to zero. Furthermore it turns out that
one can upper bound the Rademacher average in terms of more classical capacity
terms like the distribution-independent shattering coefficients or the VC-dimension,
see [17] for more on this topic.
As a final remark let us note that bounding the probability of the deviation

0,(F) :=sup |Ep, L(f) — Ep L(f)|
feF

is known as the Glivenko-Cantelli problem. In particular a function class F where

lim §,,(F) =0 almost surely

n—oo

6 A Rademacher variable o is a random variable with P(c = 1) = P(c = —1) = 1
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is known as Glivenko-Cantelli class”. A uniform Glivenko-Cantelli class is a class of
functions F where this convergence takes even place uniformly over all probability
measures. The uniform Glivenko-Cantelli classes of binary-valued functions have
been characterized as follows:

Theorem 1.5 (Vapnik and Chervonenkis, see [65]) A class of binary-valued
functions is a uniform Glivenko-Cantelli class if and only if it has finite VC-dimension.

1.1.2 Regularized empirical risk minimization

There are several problems using empirical risk minimization as a learning algorithm
which we summarize now:

e in particular for small sample sizes, ERM leads in general to overfitting: that
is the data and the noise is fitted, which leads to poor generalization,

e ERM is unstable: small changes in the data can lead to large differences in the
classifier,

e since the function class F is fixed, the approximation error is also fixed and
is in general nonzero. However that means that even as the sample size goes
to infinity one cannot expect that one obtains a classifier with the smallest
possible loss, the Bayes loss.

All these three points motivate algorithms based on regularized empirical risk mini-
mization, which can be formulated for a given function class F as follows

fo = r];éingn(f) +AQ(F)

where 2 : F — R, is the so called regularization functional and A > 0 a parameter
controlling the trade-off between empirical risk and regularization. Note that even
for binary classification one uses in general as the output space ) either [—1,1] or
even the whole real line. The final classifier is then determined by the sign of the

function. Let us now discuss rather informally how the introduction of the regularizer
Q(f) addresses the three disadvantages of ERM:

e Usually Q(f) is a measure of smoothness of the function f, which in turn leads
to a trade-off between fit of the data and smoothness in the choice of the
classifier f,,. The idea is that smooth functions generalize better, having small
true loss. In other words the preference for smooth functions reflects the implicit
assumption that closeness in X implies in general closeness of the labels in ).
Note however that this is an assumption which need not be a priori valid. We
only think of it as a rather natural assumption since it is fortunately fulfilled
in most real-world data sets.

e The ERM principle is unstable: in other words, the problem of learning based on
ERM is ill-posed. Then it is a standard approach in the theory of regularization
to add a regularization term to transform the problem into a well-posed one.

"Equivalently: for a Glivenko-Cantelli class the strong law of large numbers holds uniformly over the function
class F
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e The introduction of the regularizer leads to an effective reduction of the function
class F, since in general only functions with small penalization term Q(f) will
be chosen as the classifier. This in turn allows one to choose a rather large F,
so that the approximation error is small or even zero.

A large part of this thesis is concerned with algorithms known as kernel methods.
Many of them, the support vector machine (SVM) in particular, can be formulated
as regularized empirical risk minimization. The function class F is in this case a
reproducing kernel Hilbert space H;, (RKHS) associated to a positive definite ker-
nel k, and the regularizer Q(f) is taken to be the squared norm in that RKHS:
Qf) = |l fH?{k We will introduce in Chapter 3 positive definite kernels and asso-
ciated structures and their properties. For a detailed account of kernel methods we
refer to the book of Scholkopf and Smola, see [81]. The consistency of the regulari-
zed empirical risk minimization for kernel methods, and in particular the universal
consistency of SVM’s, has been studied by Steinwart in [89, 90].

1.2 Geometry in statistical learning theory

Until now geometrical aspects in statistical learning theory have not been stressed.
In this section we try to emphasize several explicit but also some more implicit
occurrences of geometry in statistical learning.

e ‘Input spaces X as metric spaces’: Traditionally learning algorithms are based
on a feature representation of the data in R?. However in the learning algorithm
itself a metric® is used for the data either implicitly or explicitly . Therefore in
our opinion it is in most cases equivalent to start initially with (X, d), that is a
set X with metric d. The clear advantage of such a setting is that one can deal
with much more general structures than RY. However a disadvantage is that
many algorithms use the linear structure of R? which is in general not available
in a metric space. Therefore some algorithms cannot be directly transferred to
this setting. In Chapter 4 we will discuss how one can transfer the maximal
margin principle to arbitrary metric spaces.

e ‘Smoothness regularizer’: Smoothness of a function means that closeness in the
inputs in X implies closeness in the outputs in Y. Now what closeness means
in either X or ) is usually determined by a metric in these spaces, so that the
underlying metric structure defines which functions we consider to be smooth.
As a more explicit example take the Lipschitz constant Lip(f) of a function f,

defined as @) — f)]
. _ z)— fly
Lp(f) = sup =75

as smoothness regularizer on the metric space X. Here it is very obvious that
the underlying metric structure of X determines what we consider as smooth
functions. In Chapter 4 we will show that the Rademacher averages for the
maximal margin classifier for arbitrary metric spaces can be upper bounded in
terms of the covering numbers of the metric space (X, d); that is, the geometry
of X directly determines the capacity of the classifier.

8Note here that one can always express an inner product in terms of distances.
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e ‘Regularizers which are adaptive to submanifold structure in the data’: If one
has a large number of features, that is the data lives in a high-dimensional
space RY, it is often observed that the features are not independent of each
other. This in turn can lead to the effect that the data lies either on or close to
a low-dimensional submanifold in R?. It is then much more natural to penalize
functions with respect to the geometry of this submanifold. However since the
submanifold structure is a priori unknown, one cannot directly define a regu-
larizer which is adapted to the geometry of the submanifold. Instead one can
construct regularizers which are only defined on the data and implicitly appro-
ximate a geometric regularizer of the submanifold. In that sense the regularizer
adapts to the underlying structure as one gets more samples. In Chapter 2 we
will consider and identify the limit of smoothness functionals defined on an
approximating neighborhood graph built from random samples as the number
of samples goes to infinity.

e ‘Metrics and kernels specifically designed for a given structure’: The metric
resp. the kernel encode the dissimilarity and similarity in a space. In turn this
notion of similarity should encode our prior knowledge about the problem. As
an example take a metric between color histograms of images. If we only want to
compare the mass assigned to different colors and we have no preference among
the color spaces employed the choice of the color space should not influence the
metric. More formally the metric should be covariant, meaning it should be
invariant with respect to coordinate transformations. In Chapter 5 we develop
metrics and kernels of this kind and also kernels which capture other properties
of histograms resp. probability measures.

The study of such geometrical properties is not at the core of traditional statistical
learning theory, since usually only feature representations in R? are considered.
However in recent years the need to deal with more complex data structures in all
sorts of fields like computer vision, bioinformatics or information retrieval has shown
that such questions should also attract more interest in theory. We think that in
particular the study of adaptive regularization and the specific design of metrics and
kernels will become even more important in the future.

1.3 Summary of Contributions of this thesis

In the following we would like to summarize the main achievements in this thesis.

Chapter IT This chapter considers the continuum limit of structures of certain
neighborhood graphs built from random samples in R?. Of particular interest is the
case when the data generating probability measure has support on a low-dimensional
submanifold. One can roughly see the discrete (random) graph structure as an ap-
proximation of the corresponding continuous quantities. Our setting will be quite
general:

e The submanifold M is allowed to have a boundary and is in general non-
compact. The curvature of M is assumed to be bounded and there are some
more technical conditions,
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e The data generating probability measure P is only required to have a density
with respect to the natural volume element of the submanifold M, which has
a certain smoothness.

All these requirements should not exclude any interesting scenario occurring in prac-
tice.
We consider in particular the limit of the following structures on the graph:

e The degree function: We show that in general the degree function of the graph
converges pointwise towards a function of the density. In the simplest case
where one has no data-dependent edge weights it turns out that the extended
degree function is nothing else than a kernel density estimator on the subma-
nifold (however using the Euclidean (extrinsic) distance instead of the intrinsic
distance).

e The normalized as well as the unnormalized graph Laplacian: We show that the
normalized graph Laplacian converges pointwise towards the weighted Laplace-
Beltrami operator of the submanifold, whereas the unnormalized graph Laplaci-
an converges only up to a function of the density towards the weighted Laplace-
Beltrami operator. It is quite interesting that the influence of the probability
measure can be controlled by the way one defines the generally data-dependent
edge-weights. One can even eliminate the influence of the probability measure
completely so that one gets the standard Laplace-Beltrami operator.

e The smoothness functional: The normalized as well as the unnormalized graph
Laplacian induce a smoothness functional for functions on the vertices of the
graph. Both smoothness functionals coincide. We then establish that their com-
mon limit corresponds to a penalization of the integrated squared norm of the
gradient of the function along the submanifold weighted by some function of
the density. Also for the smoothness functional one can control the influence of
the probability measure by choosing different data-dependent edge weights.

Finally as an application of the framework we develop for the estimation of subma-
nifold structure, we propose a new scheme for intrinsic dimensionality estimation of
submanifolds in R

Chapter III The goal of this chapter is to survey some of the results relevant for
machine learning on positive definite kernels and associated structures scattered
in the mathematical literature. In particular we briefly discuss the relationship to
Gaussian processes, positive kernel operators and reproducing kernel Hilbert spaces
(RKHS). Moreover we answer some interesting questions about RKHS like: When
is a RKHS separable 7 When does it contain only continuous functions ? What are
feature maps ?

We present some new results on the integral operator and covariance operator as-
sociated to a class of kernels. We then discuss three ways of generalizing positive
definite kernels resp. their associated RKHS. It turns out that two ways, which are
positive definite operator-valued kernel functions and the so called framework of
Hilbertian subspaces mainly developed by Schwartz, can actually be seen as special
cases of the standard framework. The only true generalization is that of positive
definite kernels to kernels with negative squares. This type of kernel still induces a
reproducing kernel space but with an inner product which is indefinite.
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Chapter IV In this chapter we develop a general framework for applying the ma-
ximum margin principle to arbitrary metric spaces. The motivation for doing this
arises by moving to a new point of view on support vector machines (SVM), in par-
ticular on the use of kernels in the SVM. The usual argument is that the kernel is
used to map the input space into the RKHS and then maximum margin separation
is done there. However one can also use the interpretation that the kernel defines
a (semi)-metric on the input space and then this (semi)-metric space is mapped
isometrically into the RKHS. However not all metric spaces can be embedded iso-
metrically into a Hilbert space, and thus the SVM can not be applied to all metric
spaces. However every metric space can be embedded isometrically into a Banach
space. We hence formulate the general framework of maximum margin separation
in this Banach space. Unfortunately the problem in a Banach space lacks some of
the appealing properties of the maximal margin problem when it is formulated in
a Hilbert space. In particular there is no representer theorem. However an approxi-
mative solution can be developed which is even exact if one considers the data only
as a finite metric space. We show further that for the SVM only the induced metric
matters and not the kernel. Indeed the optimization problem as well as the solution
of the SVM can be equivalently formulated with a metric.

Chapter V. The last chapter deals with the construction of Hilbertian metrics? and
positive definite kernels on probability measures. At first we consider v-homogeneous
Hilbertian metrics on R, which were recently characterized by Fuglede. We ex-
tend the parameter range of a two-parameter family of 1/2-homogeneous Hilberti-
an metrics on R, introduced by Fuglede and Topsge. Then we present using 1/2-
homogeneous Hilbertian metrics resp. one-homogeneous positive definite kernels on
R, the general principle of building Hilbertian metrics and positive definite kernels
on probability measures which are covariant. Covariance means that the metric resp.
the kernel is invariant under coordinate transformations. Applying this principle to
the two-parameter family of Hilbertian metrics on R, we get several well-known
measures as special cases of an effectively one parameter family of Hilbertian me-
trics on probability measures (either directly or the square roots of them): The
x2-measure, the Hellinger distance, the Jensen-Shannon divergence and the total
variation. These covariant metrics have the problem that disjoint measures are at
maximum distance, so that learning with disjoint measures is not possible with these
kind of metrics. Therefore we consider two ways of building so called structural ker-
nels which incorporate a similarity function into the kernel, so that disjoint measures
have different distances according to the ’similarity’ of their support. We compare
all these new kernels in four experiments using SVM’s which show that these new
kernels perform often better or at least comparable to standard kernels on histogram
data.

9A Hilbertian metric is a metric which can be isometrically embedded into a Hilbert space.
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Consistent Continuum Limit for
Graph Structure on Point Clouds

In recent years the interest in graph based methods in machine learning has increased
rapidly. In particular in semi-supervised resp. transductive learning [110, 107, 18, 9],
dimensionality reduction [8, 25] and clustering (see [102] for references) graph based
methods have been very successful. There are several reasons for this. First graph
based methods can be used with all kind of data. The only requirement is that one
has a function of two variables which assigns to every pair of points its similarity
respectively dissimilarity, second, there is a large amount of theory in mathematics
and theoretical computer science on which one can build on, and third, and that is
the topic of this chapter, graphs approximate an underlying continuous structure if
they are built in a certain way.

Naturally graphs are inherently discrete objects. However if one has as an underly-
ing continuous structure certain neighborhood graphs and the associated geometric
operators can be seen as approximations of the underlying continuous structure
respectively of the corresponding continuous operators. The main goal of this chap-
ter is to show how certain structures on neighborhood graphs built from random
samples can be defined such that their continuum limit models a desired continuous
quantity. In particular we are interested in the limit of the graph Laplacian, its as-
sociated smoothness functional, and the graph structure from which it is derived,
the Hilbert spaces Hy and Hpg of functions on the vertices V' and the edges E and
the derivative operator d.

These limits are well-understood for lattices. For example the second-order approxi-
mation of the Laplacian on an equidistant lattice can be seen as the graph Laplacian
of a certain nearest neighbor graph on the lattice, see [85]. An already much more
complicated setting is when one considers graphs generated by a discretization of a
Riemannian manifold!. For this type of regular graph several interesting connections
have been shown between properties of the graph and the corresponding properties
of the approximated Riemannian manifold, see [100] and in particular the chapter
4.4 in the book of Chavel [22]. Although this regular setting has been studied quite
intensively in the last twenty years, the bridge to the random setting usually en-
countered in machine learning applications has only partially been addressed yet.
This is somehow surprising since often algorithms in machine learning are motivated

LChavel defines a discretization of a complete Riemannian manifold as an e-separated subset S of M which is an
R-covering of M. The neighborhood N (z) of « € S is then defined as N(z) := {S N B(z,2R)}\{z}.
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by properties of the continuous Laplacian.
The Figure 2.1 illustrates the setting we are working in. In general we assume that

Abbildung 2.1: Random samples X; of a probability measure of a two-dimensional submanifold in
R3 and the associated neighborhood graph.

we are given random samples X; from a probability measure P which has support
on a submanifold? M in R¢. This assumption is motivated by the observation that
data in R? where d is rather large has often only a small number m of intrinsic
parameters, e.g. image sequences of a smoothly varying object, so that it is reaso-
nable to assume that effectively the data lies on a low-dimensional submanifold. We
then consider these random samples X; as vertices of a graph. An edge between two
vertices X; and X is defined if they are close with respect to the Euclidean distance
in R, resulting in a neighborhood graph. This neighborhood graph can be seen as
an approximation of the submanifold M. The random graph setting is considerably
more difficult than the regular setting emerging from the discretization of a Rieman-
nian manifold. In the latter one has much more control on the distances of points of
the discretization and the number of points of the discretization in a certain neigh-
borhood which one has not in the random setting. Additionally we have only access
to the Euclidean distance in R? between two sample points but not to the intrinsic
distance in M. However neighborhoods in the Euclidean distance do in general not
correspond to the corresponding neighborhoods of the manifold M measured in the
intrinsic distance dy/(x,y) since one has always dy(z,y) > ||z — yl/ga-

The goal of this chapter is to compute the limits of the following structures on a
neighborhood graph as the sample size n goes to infinity and the neighborhood size
h shrinks to zero:

e The degree function dj, corresponding to fixed weights,

e The general degree function d) 5, corresponding to data-dependent weights,
e The normalized graph Laplacian Ay ,,

e The unnormalized graph Laplacian A},

e The inner product (f, g>H(VdA .y of functions f, g on the vertices V,

e The smoothness functional S(f) = (f, Af) induced by the normalized and the
unnormalized graph Laplacian.

2However it includes as a special case the setting where P has full support on R<.
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Particular emphasis is laid on the control of the influence of the density p of P which
can be done with the parameter A. One could ask why this is interesting for machine
learning. The answer is that, as we will point out later, there is a lot of freedom
to build structure on the graph and it is not clear a priori which kind of structure
on the graph is suited for phrasing the problem at hand in an optimal way. From
a regularization point of view it might be interesting to look for functions which
are smooth in high density regions on the submanifold or for a diffusion process
(label propagation in semi-supervised learning) which is mainly directed towards
high-density regions on the submanifold M. However it is not known which kind
of smoothness functional respectively graph Laplacian models this. The main goal
of this chapter is to provide a toolbox for building algorithms on graphs by reverse
engineering. By reverse engineering we mean that one first defines the objectives of
the algorithm in the continuous case where one has usually more intuition than in
the discrete case. Then in a second 'reverse’ step one chooses on the graph the struc-
tures which will approximate in the large sample limit (as the neighborhood shrinks
to zero) the chosen continuous structure by the dictionary of limits we provide in
this chapter.

Another goal of this chapter is to fix a certain ambiguity on the graph. Namely in
order to define the graph Laplacian one has to introduce three structures on the
graph. The Hilbert spaces Hy, Hg of functions on the vertices V' resp. edges F and
the difference operator d. Then the graph Laplacian A is defined as A = d*d. As
we will show, the choice of a specific graph Laplacian does not fix these structures
and even more surprising the induced smoothness functional S(f) = (f, Af),, is
independent of the choice of Hy . Nevertheless by requiring mutual consistency in
the continuum limit one can at least fix the Hilbert space Hy .

The proofs usually work in the following way. First one establishes the convergence
of the discrete graph structure to a continuous counterpart (“variance term”) as the
sample size n — 00, and in a second step the convergence of this continuous operator
to the desired continuous operator (“bias term”) is shown as the neighborhood size
h — 0. Merging both limit processes, one considers both limits simultaneously.
The second step has already been studied by Belkin [11] for Gaussian weights for
the unnormalized graph Laplacian in the case of compact submanifolds without
boundary in R? and the uniform measure (as a byproduct the same result has also
been derived earlier in the work of Smolyanov, Weizsdcker and Wittich in [86]), and
was then generalized by Lafon [58] to compact submanifolds with boundary, general
isotropic weights, and general densities. We will also use the data-dependent weights
introduced by Coifman and Lafon in [25], but further generalize their setting to non-
compact manifolds with boundary of bounded geometry. Belkin and Lafon show that
the bias term converges pointwise for h — 0, where h controls the neighborhood of
the graph. However, the convergence of the variance term was left open in [11] and
[58].

The first work where, in a slightly different setting, both limit processes have been
studied together is the work of Bousquet, Chapelle and Hein [18]. Using the law of
large numbers for U-statistics, the authors studied the convergence of the regularizer
Qn(f) = (f, L,f) for sample size n — oo (where f € RV and L, is the unnormali-
zed graph Laplacian on n sample points). Then taking the limit for the bandwidth
h — 0, they arrived at a weighted Laplace operator in R¢. The drawback of this
approach is that the limits in n and A are not taken simultaneously.
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In contrast to this work von Luxburg, Belkin and Bousquet considered in [102] the
setting where the bandwidth h was kept fixed while the large sample limit n — oo of
the graph Laplacian (normalized and unnormalized) was considered. In this setting,
the authors show strong convergence results of graph Laplacians to certain limit
integral operators which then even imply the convergence of the eigenvalues and
eigenfunctions of the graph Laplacian.

The goal of this chapter is to surpass the limitations of previous approaches. We
study the convergence of both bias and variance term, where the limits n — oo and
h — 0 are taken simultaneously. Moreover, we study in general non-compact sub-
manifolds with boundary of bounded geometry. We think that this setting probably
includes all interesting cases occurring in machine learning. It is actually not easy
to imagine a submanifold which is not in this class. Also the assumptions on the
kernel function used to define the weights for the graph as well as the assumptions
on the density p(z) of the data-generating measure P are rather weak and should
not exclude interesting cases which occur in practice.

Recently Belkin and Niyogi have independently shown in [10] the pointwise conver-
gence of the unnormalized graph Laplacian for a compact submanifold M without
boundary and the uniform measure on M using Gaussian weights. This corresponds
to a special case of our Theorem 2.37 for non-data-dependent weights.

This chapter is organized as follows. In Section 2.1 we introduce first directed graphs
and the structures defined on them: Hy, Hg the Hilbert spaces of functions on the
vertices V resp. edges E and the difference operator d. Then we specialize the con-
struction to undirected graphs which we will use throughout the chapter. Finally we
introduce the smoothness functional S(f) on the graph and its higher order varia-
tions and discuss how to build general regularizing functionals on the graph. Then
in Section 2.2 we introduce some basic notions from differential geometry which we
use repeatedly in the rest of the chapter: submanifolds, normal coordinates, and,
a rather non-standard topic in Riemannian geometry, the so called manifolds with
boundary of bounded geometry. Then we discuss how the intrinsic geometry of M
is connected to the extrinsic geometry of R?. This is especially important in the
following since we can only compute the Euclidean distances between two points
but not the intrinsic geodesic distance on M. Finally we introduce the weighted
Laplacian on a Riemannian manifold with measure P and the associated smooth-
ness functional on M. In Section 2.3 we introduce the neighborhood graphs with
generally data-dependent weights and state our assumptions on the submanifold M,
the kernel function k, and the probability measure P. Then after some preliminary
work on the asymptotics of convolutions with the Euclidean distance on M we prove
our first result: the limit of the normal degree function. It turns out that one can
see the degree function as a kernel density estimator on M. This result can be seen
as a generalization of the recent work of Pelletier [72] on kernel density estimation
for compact Riemannian manifolds without boundary. However, apart from that,
we work in the more general setting of manifolds with bounded geometry the main
difference is that in [72] it is assumed that one knows the intrinsic distance function
dy(z,y) on M. We cannot make such an assumption since we do not know the sub-
manifold M beforehand, instead we use the Euclidean distance in the ambient space
R?. As a next result we then derive the limit of the general data-dependent degree
function dy j, . The second main result is the pointwise consistency of both the nor-
malized and the unnormalized graph Laplacian. It turns out that in general only the
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normalized graph Laplacian has as its limit a weighted Laplace-Beltrami operator
on M, whereas the unnormalized graph Laplacian only converges up to a function
of the density to the weighted Laplace-Beltrami operator. Our third main result is
the limit of the inner product on the vertices and in particular the limit of the smoo-
thness functional S(f) induced by the graph Laplacian (both the normalized and
the unnormalized graph Laplacian induce the same smoothness functional S(f)).
Finally we fix the freedom in the choice of Hy for both Laplacians by requiring
mutual consistency of the limits of Hy and the limits of the graph Laplacians.

2.1 Abstract Definition of the Graph Structure

In this section we define the abstract structure on a graph which is required in order
to define the graph Laplacian. To this end one has to introduce Hilbert spaces Hy
and Hg of functions on the vertices V' and the edges F, define a difference operator
d, and then set the graph Laplacian as A = d*d. We first do this in full generality
for directed graphs and then specialize it to undirected graphs. This approach is
well-known for undirected graphs in discrete potential theory, see e.g. [106, 64], and
was generalized to directed graphs by Zhou, Scholkopf, and Hofmann in [108] for a
special choice of Hy, Hg and d. To our knowledge the very general setting introdu-
ced here has not been discussed elsewhere.

In many articles graph Laplacians are used without explicitly mentioning d, Hy and
Hpg. This can be misleading since, as we will show, there always exists a whole family
of choices for d, Hy and Hg which all yield the same graph Laplacian. Since we are
interested in finding a consistent continuum limit of the randomly sampled graph,
one has to be careful how to define this structure.

2.1.1 Hilbert Spaces of Functions on the vertices VV and the edges F

Let (V,W) be a graph where V' denotes the set of vertices with |V| =n and W a
positive n X n similarity matrix, that is w;; > 0, 4,7 = 1,...,n. W need not to be
symmetric that means we consider here the case of a directed graph. The special case
of an undirected graph will be discussed in a following section. We put a directed
edge e;; from the vertex ¢ to the vertex j if w;; > 0. Moreover we define the outgoing
and ingoing sum of weights of a vertex i as

1< N
t
7j=1 7j=1
We assume that d?% 4+ d® > 0, i = 1,...,n, meaning that each vertex has at least

one in- or outgoing edge.
The inner product on the function space RV is defined as

(f.9)v = %Z i 9i X
i=1

where x; = (Xout (A7) + Xin(di)) With xou : RYL — R% and x;, : RE — R% and
R = {z € R|z > 0}.
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We also define an inner product on the space of functions R” on the edges:

(F,G)p ng Z Fij Gij ¢(wij),

3,j=1

where ¢ : R} — R%. Together with the above assumptions this guarantees us
that both inner product are well-defined. We denote by H(V, x) = Ry, (-, -),,) and
H(E,¢) = (RF,(-,-),) the corresponding Hilbert spaces. As a last remark let us
clarify the roles of RV and R¥. The first one is the space of functions on the vertices
and can therefore be seen as a normal function space. However elements of R¥
can be interpreted as a flow on the edges so that the function value on a edge e;;
corresponds to the massflowing from one vertex i to the vertex j (per unit time).

2.1.2 The difference operator d and its adjoint d*

Definition 2.1 (Difference operator) The difference operator d : H(V,x) —
H(E, ) is defined as follows:

Ve € B, (df)(ei;) = v(wig) (f () — (1)), (2.2)
where v : R}, — R7.

Note that d is zero on the constant functions as one would expect it from a derivative.
In [107] a different operator d is used:

f() f (@)
d eij = = — : s .
(dh)(es) ( = m) 2:3)

which is in general not zero on the constant functions. This in turn leads also to
the effect that the associated Laplacian is not zero on the constant functions. For
general graphs without any geometric interpretation this is just a matter of choice.
However the choice of d matters if one wants a consistent continuum limit of the
graph. Since one cannot expect convergence of the graph Laplacian associated to
the difference operator d of Equation (2.3) towards a Laplacian. Since each of the
graph Laplacians in the sequence is not zero on the constant functions, also the limit
operator will share this property unless lim,, .., d(X;) = ¢,Vi = 1,...,n, where c is
a constant. Since this is in general not the case, as we will show in Section 2.3.3, the
limit operator cannot be a Laplacian.

Obviously in the finite case d is always a bounded operator. The adjoint operator
d* : H(E,¢) — H(V, x) is defined by

(df u)p = (f,d"u)y,, VfeH(V,x), ueH(E, ).

Using the indicator function f(j) = 1, it is straightforward to derive:

n

1 1

—xi (du)(l) = (dln=iyu) g = 55 ) (dlj=)ijus d(wis)

ij=1

2 5.2 Z’Y wzl uzl¢(wzl m 5.2 ZW wlz ulz¢(wlz>
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In total

i=1

(d*u)(l) = 2, ( ZW wy) uy ¢(wy) — = Z’Y(Qljli)uli gb(wh-)) ) (2.4)

The left term of the last equation can be interpreted as the outgoing flow, whereas the
right term can be seen as the ingoing flow. The corresponding continuous counterpart
of d is the gradient of a function and for d* it is the divergence of a vector-field,
measuring the infinitesimal difference between in- and outgoing flow.

2.1.3 The general graph Laplacian

Definition 2.2 (graph Laplacian for a directed graph) Given Hilbert spaces H(V, x)
and H(E, ¢) and the difference operator d : H(V, x) — H(E, ¢) the graph Laplacian
A:H(V, x) — H(V, x) is defined as

A = d*d.

Explicitly

|
I
—
=
—~
=
g
o
=
g
+
=
g
=
g
=

(2.5)

The explicit expression A can be easily derived by plugging the expression of d* and
d together:

(@d) QXZ( Zszl —f(i)]cb(wu)—%Zv(wu)2[f(i)—f(l)]gb(wn))

[fm; > (Hwa)é(wa) +5(wn) o ws))

2Xl
_ = Z 1) (v(wq)?d(wy) + ’Y(wli)2¢<wli)) }

Proposition 2.3 A is self-adjoint and positive semi-definite.

Proof: This follows directly from the definition since

{(f:Ag)y = (df dg)g = (Af,9)v, ([, Af)y = {df,df)p =0

2.1.4 The special case of an undirected graph

In the case of an undirected graph we have w;; = w;; that is whenever we have an
edge from 7 to j there is an edge with the same value from 7 to 7. In this case also,
d?" = d'™, so that we will denote the degree function by d with d; = %Z?:l W5

1 )
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The same for the weights in Hy, Xoutr = Xin, so that we have only one function
x. If one likes to interpret functions on E as flows, it is reasonable to restrict the
space Hp to antisymmetric functions since symmetric functions are associated to
flows which transport the same mass from vertex ¢ to vertex 5 and back. Therefore,
as a net effect, no mass is transported at all so that from a physical point of view
these functions cannot be observed at all. However we will not do this restriction
explicitly since in our case we consider anyway only functions on the edges of the
form df (where f is in Hy ) which are by construction antisymmetric.

The adjoint d* simplifies to

(du)(l) = . Z’Y(wu)ﬁb(wiz)(uil — ui),

2x(d)) n 4
and the general graph Laplacian on an undirected graph has the following form:

Definition 2.4 (graph Laplacian for an undirected graph) Given Hilbert spaces
H(V,x) and H(E, $) and the difference operator d : H(V,x) — H(E, ¢) the graph
Laplacian A : H(V, x) — H(V,x) is defined as

A=dd
Explicitly

n

(Af) (1) = (ddf)(1) = X(ldl) f@% > wa)d(wa) = — > F(i)y* (wa)d(wn)

i=1 i=1

(2.6)

In the literature one finds the following special cases of the general graph Laplacian.
The first one is called the 'normalized’ graph Laplacian:

n

Zlm]f(])a Anormf = (]1 - P)fa (27)

(Buan D) = 1) = 5

where the matrix P is defined as P = D™'W with D;; = d; d;;. Note that P is a
stochastic matrix and therefore can be used to define a Markov random walk on V/,
see e.g. [106] for more on this connection. The 'unnormalized’ graph Laplacian is
defined as

Ao )0) = dDVF0) =+ 3w (), Awnornf = (D=W)f. (28

We have the following conditions on y,~ and ¢ in order to get these Laplacians:

11 ) . VA (wiy)p(wig)  wy
norm : =Y Y (wy)p(wi;) =1, Vi, and ——F——— = —
1 1 ) . 7 (wij)p(wiy)
unnorm : =Y Y (wij)p(wy) = d;, Vi, and —————= = wy;.
x(d;) n ; v x(ds) ’

We observe that there exist several choices of x,y and ¢ which result in Ao, or
Aunnorm- Therefore it can cause confusion if one speaks of the 'normalized’ or "un-
normalized’ graph Laplacian without explicitly defining the corresponding Hilbert
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spaces and the difference operator. If one fixes ¢ and v to be only functions of wj;,
then it is easy to see that x(d;) = d; and x(d;) = 1 are the only possible choices for
x for the normalized respectively unnormalized graph Laplacian. In general there is
no natural way to fix all the structure. However for the special setting we consider
where the points are sampled from a probability measure on a submanifold in R¢,
we will show in Section 2.3.6 that the choices of x(d;) = d; for the normalized and
x(d;) = 1 for the unnormalized graph Laplacian are the only choices for Hy which
will lead in general to mutual consistency of the limits of Hy and A.

2.1.5 Smoothness functionals for regularization on undirected graphs

The Laplacian can be used to define a smoothness functional S : RV — R, by

S(f) = {df df )y, = (. Ay, -

Note that the same smoothness functional can be defined also for directed graphs.
Using our general definition of the graph Laplacian for undirected graphs we arrive
at:

S() =+ D2 F0) | FO 1 S o) — - 3 F@nwa)otu)

n

LOST ) — 1) (wa) ). (2.9)

2n?2 -
i,l=1

From the explicit expression of S(f) we deduce the following result:

Proposition 2.5 The smoothness functional S(f) = (df,df),,, = (f, Af)y, indu-
ced by the graph Laplacian A is independent of the choice of the inner product in
Hy . Moreover S(f) depends only on the product v(w;)*d(wy).

This implies that in a learning algorithm where one uses as the loss function l(y, f) =
ly — f||3{V and S(f) as the regularizer:

. 2
min |[f =yl +AS(),  A>0

one can choose the norm used to measure the loss of f independent from the smoo-
thness functional S(f).

The smoothness functional S(f) penalizes a discrete version of the first derivative of
f. Similarly to regularization in Euclidean space one can extend this to higher-order
derivatives by considering powers of the Laplacian A. That is for all £ € N. We
define

SE(f) = (AR, .

Then one has similar to the Euclidean case for k € N,
SH(f) = (AMf,AMf),, o and SPF(f) = (dAFf dARF),

Note however that for these higher-order derivatives Proposition 2.5 no longer holds.
The most general form of such a regularizer is then given by

Qf) =D arSe(f) =D _ar ([ A )y,
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where > "/7 |ax| < co. Such regularizers have been studied by Kondor, Lafferty and
Smola in [55, 85]. There a slightly different point of view was developed for the special
case of the unnormalized Laplacian. Namely they used the spectral decomposition
of Avnnorm = D — W. It is straightforward to do the same analysis for general graph
Laplacians A. Since A is self-adjoint in H(V, x) and |V| = n < oo, there exists
an orthonormal basis for H(V, x) consisting of eigenvectors of A. We denote by

Ai, © =1,...,n the eigenvalues in increasing order and by u;, ¢ = 1, ..., n the set of
normalized? eigenvectors of the graph Laplacian A, that is

Note that A is positive semi-definite and therefore \; > 0. Then the spectral de-
composition of A is as follows

i=1

One could get here the wrong impression that A is a symmetric matrix, however
the spectral decomposition has always to be understood with respect to the inner
product in Hy, so that

Af = Z Ai (i, fy i
i=1
The general smoothness functional Si(f) can then be written as
Sk(f) = (£ A8y, = X (ui, £}
i=1
and the general regularizer Q(f) becomes

Q) =D ah (us, f)} = ZM) (ui, )Y,

k=0 =1

where we have introduced the function p(A) = >~ axA*F. One can see the spectral
decomposition of functions in Hy as a discrete analogue to the Fourier spectral de-
composition of functions in R? where also the eigenfunctions of the Laplacian are
used.

In the last part of this section we want to clarify the difference between the 'nor-
malized’ graph Laplacian introduced in spectral graph theory and what we call
'normalized’ graph Laplacian which has its origin in discrete potential theory. In
spectral graph theory [24] the following matrix is introduced as 'normalized’ graph
Laplacian

A =1 — D—1/2WD71/2

This matrix has the advantage over the normalized graph Laplacian A, = 1 —
D~'W that it is symmetric with respect to the standard inner product, that is
x(d;) = 1. In [107] it was shown that it can be derived as the graph Laplacian
A" = d*d with H(V,1) and H(E,1) and the difference operator d described in
Equation 2.3. It is easy to see that

A = Dl/ZAnormD_l/Qa

3<ui7 ui)H(V,x) =1
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from which one can deduce that A” and A, have the same eigenvalues. Moreover
if A"v = Av, then

D1/2An0rmD71/2U = A\v - AnormD71/2U = Dil/QU;

so that v = D~'/2y is a right eigenvector of A,om. Therefore from the point of
view of spectral theory they are equivalent. Nevertheless since the eigenvectors are
different the induced smoothness functional will also be different. Furthermore, as
discussed before, A” is not zero on the constant functions on the graph and therefore
its limit will not be a variant of a continuous Laplacian. The last point is the main
reason why we will not consider the limit of A”.

2.2 Submanifolds in R? and associated operators

In this section we introduce the basics of the differential geometry of submanifolds
in R?. In particular we treat Riemannian manifolds with measure. In standard Rie-
mannian geometry one usually considers only the standard measure called volume
element* which is induced from the Lebesgue measure. Effects of a non-uniform mea-
sure, in our case the probability measure generating the data, are rarely considered.
Only in the last years in the framework of the so-called metric-measure spaces, that
are metric spaces with a measure, also interest arose in Riemannian manifolds with
measure.

Remark: In the rest of this chapter we use the Einstein summation convention that
is over indices occurring twice has to be summed. We use the conventions regarding
the definitions of curvature etc. of Lee in [60].

2.2.1 Basics of submanifolds

Submanifolds
We first give the general definition of a submanifold taken from [23].

Definition 2.6 (Submanifold) A subset M of an n-dimensional manifold X is
an m-dimensional submanifold M if every point x € M is in the domain of a chart

(U,¢) of X such that
¢p:UNM—R"xa, ¢x)= (. . . 2"a, . . . ad"™
where a 1s a fived element in R,

Note that this definition excludes irregular cases like intersecting submanifolds or
self-approaching submanifolds. In the following it is more appropriate to take the
following point of view. Let M be an m-dimensional manifold. The mapping ¢ :
M — X is said to be an immersion if ¢ is differentiable and the differential of ¢
has rank m everywhere. An injective immersion is called embedding. Then (M) is
a manifold. A regular embedding is an embedding where the manifold structure of
i(M) is equivalent to the submanifold structure in X. This is not the case e.g. if
i(M) is self-approaching.

Let i : M — X be a regular embedding so that M is a submanifold of X. Now

4Sometime_s it is also called volume form since it is an m-form where m is the dimension of the manifold M. In
coordinates x? it is explicitly given as dV (z) = \/detgda® A ... A dz™.
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let X be a Riemannian manifold, that is X has a Riemannian metric h. Then
one can induce a metric ¢ on M using the mapping i, namely g = *h, where
7 Ti*x)X — T*M is the pull-back® of the differentiable mapping 7. In this case ¢
trivialﬁy is an isometric embedding.

In our setting we will study the case X = R? and we will always assume that the
submanifold M is equipped with the metric induced from R¢. Often this natural

assumption is made implicit in machine learning papers.

Normal coordinates

In the proofs we often use normal coordinates. Therefore we give here a very short
description, what normal coordinates are. Intuitively normal coordinates around a
point p of an m-dimensional Riemannian manifold M are coordinates chosen such
that M looks around p like R™ in the best possible way. This is achieved by adapting
the coordinate lines to geodesics through the point p. The reference for the following
material is [52].

First we define the exponential map of M at p. For that reason denote by ¢, the
unique geodesic starting at ¢(0) = x with tangent vector ¢(0) = v (¢, depends
smoothly on p and v).

Definition 2.7 (Exponential Map) Let M be a Riemannian manifold, p € M,
V, ={v e T,M, ¢, defined on [0, 1]}, then

exp,: Vp — M, v —c,(1),
is called the exponential map of M at p.

It can be shown that exp, maps a neighborhood of 0 € T, M diffeomorphically onto
a neighborhood U of p € M. This justifies the definition of normal coordinates.

Definition 2.8 (Normal coordinates) Let U be a neighborhood of p in M such
that exp,, 1s a diffeomorphism. The local coordinates defined by the chart (U, exp;l)
are called normal coordinates with center p.

Note that in R™ D exp,'(U) we use always an orthonormal basis. The following
concept called injectivity radius describes the largest ball around a point p such
that normal coordinates can be introduced.

Definition 2.9 (Injectivity radius) Let M be a Riemannian manifold, p € M.
Then the injectivity radius of p is

inj(p) = sup{r > 0, exp, is defined on Bgm (0, p) and injective}.

It can be shown that inj(p) > 0,Vp € M\OM. Moreover for compact manifolds wi-
thout boundary there exists a lower bound inj,;, > 0 such that inj(p) > inj,;,, Vp €
M. However for manifolds with boundary one has inj(p,) — 0 for any sequence of
points p,, with limit on the boundary.

The motivation for introducing normal coordinates is that the geometry is especially
simple in these coordinates. The following Theorem makes this more precise.

5T*M is the dual of the tangent space T, M. Every differentiable mapping i : M — X induces a pull-back
it Ti*(x)X — TxM. Let w € T, M, w € T X and denote by i’ the differential of i. Then * is defined by

i(x)
(*w)(u) = w(i'u).
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Theorem 2.10 In normal coordinates around p one has for the Riemannian metric
g and the Christoffel symbols I j,0f = d)V,0¢ at p = exp~"(0),

9i7(0) =055, gij(0) =0, T?;,(0) = 0.

The second derivative of the metric cannot be made to vanish in general. There
curvature effects come into play which cannot be deleted by a coordinate transfor-
mation. To summarize, normal coordinates with center p achieve that up to first
order the geometry of M at point p looks like that of R™.

The second fundamental form

Let M be an isometrically embedded submanifold of a manifold X. At each point
p € M one can decompose the tangent space T,X into a subspace T),M, which is
the tangent space to M, and the orthogonal normal space N,M. In the same way
one can split the covariant derivative of X at p, ViV into a component tangent

(Vy V)T and normal (Vi V)t to M.

Definition 2.11 The second fundamental form 11 of an isometrically embedded sub-
manifold M of X is defined as

II:T,M ®T,M — N,M, TI(UV)=(VyV)*
The following theorem, see [60], then shows that the covariant derivative of M at p
is nothing else than the projection of the covariant derivative of X at p onto T, M.

Theorem 2.12 (Gauss Formula) Let U,V be vector fields on M which are arbi-
trarily extended to X, then the following holds along M

VoV =VyV +11(U,V)
where V is the covariant derivative of X and V the covariant deriwative of M.

The second fundamental form provides also a connection between the curvature
tensors of X and M.

Theorem 2.13 (The Gauss equation) For any U,V,W,Z € T,M the following
equation holds

where R is the Riemann curvaturé® tensor of X and R the curvature tensor of M.

Later on we are interested to connect distances in M to the corresponding distances
in X. Since Riemannian manifolds are length spaces and therefore the distance is
induced by minimizing curves (locally the geodesics), it is of special interest to
connect properties of curves of M with respect to X. Applying the Gauss Formula
to a curve ¢(t) : (a,b) — M yields the following

DV = D,V +11(V,¢),

6The Riemann curvature tensor of a Riemannian manifold M is defined as R: T,M ® T,M ® Ty M — T, M,

R(X,Y)Z=VxVyZ—-VyVxZ—-VxyZ.

In local coordinates x?, Rijk Ly, = R(0;,05)0k and Ryjxm = gim Rijik L
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where D, = ¢*V, and ¢ is the tangent vector field to the curve ¢(t). Now let ¢(t)
be a geodesic parameterized by arc-length, that is with unit-speed, then its acce-
leration fulfills D;¢ = ¢¢V,¢® = 0 (however that is only true locally in the interior
of M, globally if M has boundary length minimizing curves may behave differently
especially if a length minimizing curve goes along the boundary its acceleration can
be non-zero), and one gets for the acceleration in the ambient space

Dyé = T1(¢, ¢).

In our setting where X = R? the term D;¢ is just the ordinary acceleration ¢ in RY.
Remember that the norm of the acceleration vector is inverse to the curvature of
the curve at that point (if ¢ is parameterized by arc-length”). Due to this connection
it becomes more apparent why the second fundamental form is often called the
extrinsic curvature (with respect to X).

The following Lemma gives an explicit expression of the second fundamental form II
in normal coordinates in the case where M is an isometrically embedded submanifold
of R?. It turns out that in normal coordinates II is just given by the Hessian of 1.

Lemma 2.14 Let ey, = 1,...,d denote an orthonormal basis of Ti(x)]Rd then the
second fundamental form of M in normal coordinates y is given as:

0%

0o Oytoy’

I(0yi, Oy)

€a

Proof: Let V be the flat connection of R? and V the connection of M. Then by
Theorem 2.12,

6067

~ . o 0%
(i, 0yi) = Vi*ayi(z Oyi) — Vayiayj = Oy ( ) o=

En Oyt oyd

yJ

= 0 in normal
0
coordinates. O

where the second equality follows from the flatness of V and F"jk

Manifolds with boundary of bounded geometry

We will consider in general non-compact submanifolds with boundary. In textbooks
on Riemannian geometry one usually only finds material for the case where the
manifold has no boundary. Also the analysis e.g. definition of Sobolev spaces on
non-compact Riemannian manifolds seems to be non-standard. We profit here very
much from the thesis and an accompanying paper of Schick [77, 78] which introdu-
ces manifolds with boundary of bounded geometry. All material of this section is
taken from these articles. Naturally this plus of generality leads also to a slightly
larger technical overload. Nevertheless we think that it is worth this effort since the
class of manifolds with boundary of bounded geometry includes almost any kind of
submanifold one could have in mind. Moreover, to our knowledge, it is the most
general setting where one can still introduce a notion of Sobolev spaces with the
usual properties.

Note here that the boundary M is an isometric submanifold of M. As introduced

"Note that if ¢ is parameterized by arc-length ¢ is tangent to M, that is in particular lelr, x = lellr, ar
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in the last section, it therefore has a second fundamental form II which should not
be mixed up with the second fundamental form Il of M which is with respect to the
ambient space R?. We denote by V the connection and by R the curvature of OM.
Moreover let v be the normal inward vector field at 9M and let K be the normal
geodesic flow defined as K : OM x [0,00) — M : (2/,t) — expM(tv,). Then the
collar set N(s) is defined as N(s) := K(OM x [0, s]) for s > 0.

Definition 2.15 (Manifold with boundary of bounded geometry) Suppose M
is a manifold with boundary OM (possibly empty). It is of bounded geometry if the
following holds:

e (N) Normal Collar: there exists rc > 0 so that the geodesic collar
OM x [0,7¢) — M : (t,x) — exp,(tv,)
is a diffeomorphism onto its image (v, is the inward normal vector).
o (IC) The injectivity radius rin;(OM) of OM is positive.

o (1) Injectivity radius of M: There is r; > 0 so that if r < r; then for x €
M\N(r) the exponential map is a diffeomorphism on By/(0,r) C T, M so that
normal coordinates are defined on every ball By (x,r) for x € M\N(r).

e (B) Curvature bounds: For every k € N there is Cy so that IV'R| < Cy and
vlﬁng for0<i<k.

Note that (B) imposes bounds on all orders of the derivatives of the curvatures. One
could also restrict the definition to the order of derivatives needed for the goals one
pursues. But this would require even more notational effort, therefore we skip this.
In particular in [77] it is argued that boundedness of all derivatives of the curvature
is very close to the boundedness of the curvature alone.

The lower bound on the injectivity radius of M and the bound on the curvature
are standard to define manifolds of bounded geometry without boundary. Now the
problem of the injectivity radius of M is that at the boundary it somehow makes
only partially sense since inj(z) — 0 as d(x,0M) — 0. Therefore one replaces next
to the boundary standard normal coordinates with normal collar coordinates.

Definition 2.16 (normal collar coordinates) Let M be a Riemannian manifold
with boundary OM. Fiz x' € OM and an orthonormal basis of T OM to identify
Ty OM with R™™1. For ri,ro > 0 sufficiently small (such that the following map is
injective) define normal collar coordinates,

Ny @ Brm-1(0,71) X [0,73] — M : (v,t) — expé‘ipalM(v)(ty).

The tuple (r1,72) is called the width of the normal collar chart ng:.

The following proposition shows why manifolds of bounded geometry are especially
interesting.

Proposition 2.17 Assume that conditions (N), (IC), (I) of Definition 2.15 hold.

e (B1) There exist 0 < Ry < 1yyj(0M), 0 < Ry < r¢ and 0 < Rz < r; and
constants Cx > 0 for each K € N such that whenever we have normal boundary
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coordinates of with (ry,rs) with riy < Ry and ro < Ry or normal coordinates of
radius r3 < r; then in these coordinates

|D%gi;| < Cx  and |D%¢"| < Ck forall |a| < K.

The condition (B) in Definition 2.15 holds if and only if (B1) holds. The constants
Ck can be chosen to depend only on 1;,r¢, rini(OM) and Cy.

Note that due to g“ g, = J;. one gets upper and lower bounds on g;; resp. g which
result in upper and lower bounds for v/det g. This implies that we have upper and
lower bounds on the volume form dV(z) = y/det gdz which will be used in the

following lemma.

Lemma 2.18 Let (M, g) be a Riemannian manifold with boundary of bounded geo-
metry of dimension m. Then there exists Ry > 0 and constants S; > 0 and Sy such
that for all x € M and r < Ry one has

Sir™ < vol(By(x,r)) < Sor™

Another important tool for analysis on manifolds are appropriate function spaces. In
order to define a Sobolev norm one first has to fix a family of charts U; with M C U,;U;
and then define the Sobolev norm with respect to these charts. The resulting norm
will depend on the choice of the charts U;. Since in differential geometry the choice
of the charts should not matter, the natural question arises how the Sobolev norm
corresponding to a different choice of charts V; is related to that for the choice
U;. In general, the Sobolev norms will not be the same but if one assumes that
the transition maps are smooth and the manifold M is compact then the resulting
norms will be equivalent and therefore define the same topology. Now if one has
a non-compact manifold this argumentation does not work anymore. This problem
is solved by Schick in [77] by defining a partition of unity on M based on normal
coordinate charts. Then it can be shown that the change of coordinates between
these normal coordinate charts is well-behaved due to the bounded geometry of M.
In that way it is possible to establish a well-defined notion of Sobolev spaces on
manifolds with boundary of bounded geometry. In particular due to the uniform
bounds on the transition maps between normal coordinate charts derived in [77] the
following norm on C*(M) makes sense®:

5zl
”fHCk(M) = sup a(irjl)ll o a(xm)lm f('x) )

S i<k, @eM

where z! are coordinate functions with respect to some normal chart. In the following
we will denote with C*(M) the space of C*-functions on M together with the norm

ll o ary-

Intrinsic versus extrinsic properties

Most of the proofs for the continuous part will work with Taylor expansions in nor-
mal coordinates. It is then of special interest to have a connection between intrinsic
and extrinsic distances. Since the distance on M is induced from R, it is obvious

8 Any other norm with respect to a different choice of normal coordinate charts will be equivalent.



CONTINUUM LIMIT OF GRAPHS 39

that one has ||z — y||ga ~ dup(z,y) for all z,y € M which are sufficiently close. The
next proposition proven by Smolyanov, Weizsicker and Wittich in [86] provides an
asymptotic expression of geometric quantities of the submanifold M in the neigh-
borhood of a point x € M. Particularly it gives a third-order approximation of the
intrinsic distance dps(z,y) in M in terms of the extrinsic distance in the ambient
space X which is in our case just the Euclidean distance in R

Proposition 2.19 Let i : M — R? be an isometric embedding of the smooth m-
dimensional Riemannian manifold M into R?. Let x € M and V be a neighborhood
of 0 in R™ and let ¥ : V — U provide normal coordinates of a neighborhood U of
x, that is W(0) = x. Then for ally € V:

lyllzn = dis (e, U (y)) = (i 0 U)(y) —i(x)ga + 1—12 111G, )7y e + Ol

where 11 is the second fundamental form of M and v the unique geodesic from x to
U(y) such that % = y'9,.
The volume form dV = \/det g;;(y)dy of M satisfies in normal coordinates,

1
e (1 L Ry + o<||y||‘;§m>) dy,

i particular
1
(Ay/det g;5)(0) = =3 R,

where R is the scalar curvature (i.e., R = g*¢"' Rijp; ).

We would like to note that in [87] this proposition was formulated for general ambient
spaces X, that is arbitrary Riemannian manifolds X. Using the more general form of
this proposition one could extend the whole setting to submanifolds of other ambient
spaces X. However in order to use the scheme, one needs an explicit expression of
the distances in X which is usually not available for general Riemannian manifolds.
Nevertheless for some special cases, like the sphere, one knows the geodesic distance.
Submanifolds of the sphere could be of interest e.g. in geophysics or astronomy.
The previous proposition is very helpful since it gives an asymptotic expression of the
geodesic distance dys(z,y) on M in terms of the extrinsic Euclidean distance. The
following lemma is a non-asymptotic statement taken from [15] which we present
in a slightly different form. However we will first establish a connection between
what they call the 'minimum radius of curvature” and upper bounds on the extrinsic
curvatures of M and OM. Let

1_Imax = sup sup HH(U7 U)H )
xeM veTy M,||v||=1

and let

Hpax = sup sup Hﬁ(’U, U)” ’

r€OM veT M, ||v||=1
where II is the second fundamental form of M as a submanifold of M. We set
TLyax = 0 if the boundary OM is empty.
Using the relation between the acceleration in the ambient space and the second
fundamental form for unit-speed curves v with no acceleration in M (D;¢ = 0)
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established in section 2.2.1, we get for the Euclidean acceleration of the curve v in
R4
1511 = [ITIC, )

Now if one has a non-empty boundary 0M it can happen that one has a length-
minimizing curve which goes (partially) along the boundary (imagine R? with a ball
at the origin cut out). Then the segment ¢ along the boundary will be a geodesic of
the submanifold OM, see [2], that is D;¢ = Ve¢ = 0 where V is the connection of
OM induced by M. However ¢ will not be a geodesic in M (in the sense of a curve
with no acceleration) since by the Gauss-Formula 2.12

Dyé = Dy + T0(¢,¢) = (¢, ¢).
In general therefore the upper bound on the Euclidean acceleration of a length-
minimizing curve v in M is given by

151 = ||ITL(, 4) + T, ) || < inax + Minax.

Using this inequality, one can derive a lower bound on the 'minimum radius of
curvature’ p defined in [15] as p = inf{1/ ||§||g«} where the infimum is taken over
all unit-speed geodesics y of M (in the sense of length-minimizing curves):

1
ﬁmax + Hmax '

Finally we can formulate the Lemma from [15].

p>

Lemma 2.20 Let x,y € M with dy(x,y) < wp then

2psin(dy (2, y)/(2p)) < |2 = yllga < due(, ).
Noting that sin(x) > x/2 for 0 <z < 7/2, we get as an easier to handle corollary:
Corollary 2.21 Let z,y € M with dy(x,y) < mp then

1
§dM(xay) S ||I _yHRd S dM(ZE,y)

This corollary is nice however quite useless for our purposes since we will have only
the Euclidean distances between points and therefore we have no possibility to check
the condition dys(x,y) < mp. In general small Euclidean distance does not imply
small intrinsic distance. Imagine a circle where one has cut out a very small segment
and consider now a point near to one end. Then the Euclidean distance between the
two ends is very small however the geodesic distance is very large. We will now show
that under an additional assumption one can transform the above corollary so that
one can use it when one has only knowledge about Euclidean distances.

Lemma 2.22 Let M have a finite radius of curvature p > 0. We further assume
that

K := inf inf |z — vyl
€M ye M\ B (z,7p)

is non-zero. Then Bga(z,k/2) "M C By(z, k) C By(x, wp). Particularly, if x,y €
M and ||z —y|| < k/2,

1
§dM(w,y) <z — yllga < dur(,y) < k.
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Proof: By definition  is at most the infimum of ||z — y|| where y satisfies dy;(z,y) =
7p. Therefore the set Bra(z, k/2) N M is a subset of By (z, mp). The rest of the lem-
ma follows then by Corollary 2.21. U

The Figure 2.2 illustrates this construction:

M ' ~

Abbildung 2.2: k is the Euclidean distance of x € M to M\ B (x, mp).

2.2.2 The weighted Laplacian and the continuous smoothness functional

The Laplacian is one of the most prominent operators in mathematics. The following
general properties are taken from the books of Rosenberg [74] and Bérard [13]. It
occurs in many partial differential equations governing physics. Mainly because it is
in Euclidean space the only second-order differential operator which is translation
and rotation invariant. In Euclidean space R? it is defined as

d
Apaf = div(grad f) = Y 02 f.
=1

Moreover for any domain  C R? it is a negative-semidefinite symmetric operator
on C2°(2) which is a dense subset of Ly(€2) (formally self-adjoint),

/Qngdx:—/Q(Vf,Vg>dm,

and can be extended to a self-adjoint operator on Ly(€2) in several ways depending
on the choice of boundary conditions. For any compact domain {2 (with suitable
boundary conditions) it can be shown that A has a pure point spectrum and the
eigenfunctions are smooth and form a complete orthonormal basis of L (£2), see e.g.
[13].

The Laplace-Beltrami operator on a manifold M is the natural equivalent of the
Laplacian in R?, defined as

Ay f =div(grad f) = VOV, f
However the more natural definition is the following. Let f,g € C°(M) then

| 1agdv) = [ (v1.vgavia),



42 CHAPTER 2

where dV = y/det gdx is the natural volume element of M. This definition allows
easily an extension to the case where we have a Riemannian manifold M with a
measure PP where P will be in our case the probability measure generating the data.
We assume in the following that P is absolutely continuous wrt the natural volume
element dV of the manifold and its density” is denoted by p. The notion of weighted
Laplacians seems not to be standard in differential geometry. Only quite recently
with the emerging interest in metric-measure spaces also interest in Riemannian
manifolds equipped with a measure arose.

Definition 2.23 (Weighted Laplacian) Let (M, ga) be a Riemannian manifold
with measure P where P has a differentiable density p with respect to the natural
volume element dV = +/det gdx, and let Ay; be the Laplace-Beltrami operator on
M. Then we define the s-th weighted Laplacian A, as

1 1
Ag = Ay + gg“b(vap)vb = Egabva(psvb) = div(p® grad). (2.10)
This definition is motivated by the following equality

/ F(Dag) pdV = / F(Ag+ 5 (Vp, V) )phdV = — / (VF.Vg) AV, (2.11)
M M p M

where f,g € C°(M). The family of weighted Laplacians contains two cases which
are particularly interesting. The first one, s = 0, corresponds to the standard
Laplace-Beltrami operator. This case is interesting if one only wants to use pro-
perties of the geometry of the manifold but not of the data generating probability
measure. The second case, s = 1, corresponds to the standard weighted Laplacian
Al = %V“(pva).

In the next section it will turn out that through a data-dependent change of the
weights of the graph we can get a subfamily of the just defined weighted Laplacians
as the limit operators of the graph Laplacian. The rest of this section will be used to
motivate the importance of the understanding of this limit in different applications.
Three different however very much connected properties of the Laplacian are used
in machine learning

e The Laplacian generates the diffusion process. In semi-supervised learning al-
gorithms with a small number of labeled points one would like to propagate the
labels along regions of high-density. The limit operator A shows the influence
of a non-uniform density p. The second term i (Vp, V f) leads to an anisotropy
in the diffusion. If s < 0 this term enforces diffusion in the direction of the ma-
ximum of the density wheras diffusion in the direction away from the maximum
of the density is weakenend. If s > 0 this is just the other way round.

e The smoothness functional induced by the weighted Laplacian Ay, see equation
2.11, is given by

S(f) = /M (V £,V ) phdV.

This smoothness functional prefers for s > 0 functions which are smooth in
high-density regions whereas unsmooth behavior in low-density is penalized

9Note that the case when the probability measure is absolutely continuous wrt the Lebesgue measure on R? is a
special case of our setting.
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less. This property can also be interesting in semi-supervised learning where
one assumes especially if only a few labeled points are known that the classifier
should be constant in high-density regions whereas changes of the classifier
are allowed in low-density regions, see [18] for some discussion of this point.
In Figure 2.3 this is illustrated by mapping a density profile in R? onto a
two-dimensional manifold. However also the case s < 0 can be interesting.

WOW R @

Abbildung 2.3: A density profile mapped onto a 2-dimensional submanifold in R? with two clusters.

Minimizing then the smoothness functional S(f), implies that one enforces
smoothness of the function f where one has little data, and one allows the
function to vary a lot where one has sampled a lot of data points. Such a
penalization is more appropriate for regression and has been considered by
Canu and Elisseeff in [20].

e The eigenfunctions of the Laplacian Ay can be seen as the limit partioning
of spectral clustering for the normalized graph Laplacian (however a rigorous
mathematical proof has not been given yet). If s = 0 one gets just a geometric
clustering in the sense that irrespectively of the probability measure generating
the data the clustering is determined by the geometry of the submanifold. If
s > 0 the eigenfunction correponding to the first non-zero eigenvalue is likely to
change its sign in a low-density region. This argument follows from the previous
discussion on the smoothness functional S(f) and the Rayleigh-Ritz principle.
Let us assume for a moment that M is compact without boundary and that
p(z) > 0,Vx € M, then the eigenspace corresponding to the first eigenvalue
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Ao = 0 is given by the constant functions. The first non-zero eigenvalue can
then be determined by the Rayleigh-Ritz variational principle

: o IVl
Al:ueégoﬁm{ffM; )p ‘ / iz ):O}'

Since the first eigenfunction has to be orthogonal to the constant functions, it
has to change its sign. However since ||Vu||* is weighted by the power of the
density p°® it is obvious that for s > 0 the function will change its sign in a
region of low density.

2.3 Continuum limit of the graph structure

In this section we will treat the continuum limit of certain neighborhood graphs
built from random samples of a probability measure P. In particular the case where
P has support on a submanifold M will be considered. This is especially interesting
if one is given data X where the dimension d of the feature space R? is much higher
than the number m of intrinsic parameters resp. degrees of freedom of the data.
Let us now introduce the setting more precisely. We assume to have points X;, i =
1,...,n drawn i.i.d. from the probability measure P which has support on a sub-
manifold M. We see the points X; as vertices of a graph. We further assume that
we are given a kernel function k£ : Ry — Ry (see 2.3.1 for the assumptions on this
function) and the neighborhood parameter h € R’ . As proposed by Coifman and
Lafon in [58, 25], we use this kernel function k to define the following family of
data-dependent kernel functions l;;)Mh parameterized by A\ as:

1 k(| X; — X;|% /h?)

Ay 70

foan (X, X;) =

where d(X;) = 130  Lk(|X; — X517 /h?) is the degree function introduced in

Section 2.1 with respect to edge-weights +Lk(]|X; — X;||? /h?). Finally we use k to
define the weight w;; = w(X;, X;) of the edge between the points X; and X; as

w)\,h<Xi7Xj) = ];)\,h(XhXj)-

Note that the case A = 0 corresponds to weights with no data-dependent modifica-
tions. The parameter h € R determines the neighborhood of a point since we will
assume that k is decreasing or even has compact support. The goal of this section is
to study the limits of several graph structures especially of the graph Laplacian as
the sample size n goes to infinity and the neighborhood parameter h goes to zero.
The limit respectively the pointwise consistency of the normalized graph Laplacian
has been published in [40].

The setting and the assumptions on the submanifold M are described in Section
2.3.1. In the proofs we often use convolutions of functions on the submanifold M
with respect to the extrinsic Euclidean distance. The asymptotic limit of such con-
volutions is discussed in Section 2.3.2. Then in Section 2.3.3 we study the limit
of the degree function. As a byproduct we get results for kernel density estimati-
on on submanifolds of R?. In Section 2.3.4 we derive the pointwise limit of the so
called normalized and unnormalized graph Laplacians with general data-dependent
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edge-weights l;:,\h. Finally in Section 2.3.5 we show the limit of the inner product in
H(V,x) for x(d) = d and the limit of the smoothness functional S(f) = (f, Af).
In Section 2.3.6 we summarize the results and show that one can partially fix the
graph structure by requiring mutual consistency of the limits of Hy and A.

2.3.1 Notations and assumptions

In general we work on complete non-compact manifolds with boundary. Compared
to a setting where one considers only compact manifolds one needs a slightly larger
technical overhead. However we will indicate how the technical assumptions simplify
if one has a compact submanifold with boundary or even only a compact manifold
without boundary.

We impose the following assumptions on the submanifold M:

Assumption 2.24 e i: M — R? is a smooth, isometric embedding,

e M is a smooth manifold with boundary of bounded geometry (the boundary OM
can be empty),

e M has bounded second fundamental form,

o 1= infyenrinfyenn By (arp) [|1(2) — i(y)|| > 0, where p is the radius of curvature
defined in Section 2.2.1. It holds p > 0 since the second fundamental form of
M as well as of OM are bounded,

e for any x € M\OM,

o(x) = inf li(z) = i(y)llga >0,
yEM\ By (z,5 min{inj(z),7p})

where inj(z) is the injectivity radius'® at x and p > 0 is the radius of curvature.

The first condition ensures that M is a smooth isometric submanifold of R? as intro-
duced in Section 2.2.1. As discussed in section 2.2.1, manifolds of bounded geometry
are in general non-compact, complete Riemannian manifolds with boundary where
one has uniform control over all intrinsic curvatures. The uniform control allows
one to still do reasonable analysis in this general setting. Compact Riemannian sub-
manifolds (with or without boundary) are always of bounded geometry. The third
condition ensures that M also has well-behaved extrinsic geometry. This condition
together with the fourth condition enables us to get global upper and lower bounds
of the intrinsic distance on M in terms of the extrinsic distance in R? and vice versa,
see Lemma 2.22. The fourth condition is only necessary in the case of non-compact
submanifolds. It prevents the manifold from self-approaching. More precisely it en-
sures that if parts of M are far away from x in the geometry of M they do not
come too close to z in the geometry of R?. Assuming a regular submanifold, this
assumption is already included implicitly. However for non-compact submanifolds
the self-approaching could happen at infinity. Therefore we exclude it explicitly. Mo-
reover note that for submanifolds with boundary one has inj(x) — 0 as x approaches
the boundary dM*!. Therefore also d(z) — 0 as d(x, M) — 0. However for point-
wise convergence proofs in the interior of M this behavior of §(z) at the boundary

10Note that the injectivity radius inj(z) is always positive.
11 This is the reason why one replaces normal coordinates in the neighborhood of the boundary with normal collar
coordinates.
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does not matter.

In order to emphasize the distinction between extrinsic and intrinsic properties of
the manifold we always use the slightly cumbersome notations = € M (intrinsic)
and i(z) € R? (extrinsic). The reader who is not familiar with Riemannian geome-
try should keep in mind that locally, a submanifold of dimension m looks like R™.
This becomes apparent if one uses normal coordinates. Also the following dictionary
between terms of the manifold M and the case when one has only an open set in R?
(7 is then the identity mapping) might be useful.

Manifold M open set in R?
9ij » Vdetg dij , 1
natural volume element Lebesgue measure
ap 9
As Aszzzla(z)2+ Zzlaga_zfz

The kernel functions which are used to define the weights of the graph are always
functions of the squared norm in R¢. Furthermore, we make the following assump-
tions on the kernel function k:

Assumption 2.25 e k:R% — R is measurable, non-negative and non-increasing,
o k€ C*(R%), that is in particular k, g—]; and 8 55 are bounded,

ok, |gk| and | 2| have exponential decay: 3c, a, A € Ry such that for anyt > A,
f(t) < cem®, where f(t) = max{k(t),|3|(t). |a2'“|( )}
e k(0) =

e Jry > 0 such that k(x) > % for x €]0,ry].

The third condition implies that the graph will have no loops!?. In particular the
kernel is not continuous at the origin. One could prove all statements also without
this condition. The advantage of this condition is that some estimators become
unbiased by imposing this condition. Also let us introduce the helpful notation®?
kn(t) = 1 =k (hQ) where we call h the bandwidth of the kernel. Moreover we define
the follovvlng two constants related to the kernel function k,

C = / E(lylP)dy < o0, Co = / klylPdy < 0o (2.12)

We also have some assumptions on the probability measure P.

Assumption 2.26 e P is absolutely continuous with respect to the natural volu-
me element dV on M,

e the density p fulfills: p € C3(M) and p(x) >0,V z € M,
o the sample X;,v=1,...,n is drawn i.i.d. from P.

We will call Assumptions 2.24 on the submanifold, Assumptions 2.25 on the ker-
nel function, and the Assumptions 2.26 on the probability measure P together the
standard assumptions.

12 An edge from a vertex to itself is called a loop.
131n order to avoid problems with differentiation the argument of the kernel function will be the squared norm.
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2.3.2 Asymptotics of Euclidean convolutions on the submanifold M

The following proposition describes the asymptotic expression of the convolution
of a function f on M with a kernel function depending on the Euclidean distance
||z — y|| on the submanifold M with respect to the probability measure P on M. This
result is interesting since it shows how the use of the Euclidean distance introduces
a curvature effect if one averages a function locally. A similar result was presented
by Lafon in [58]. However the analysis there is only correct if the submanifold is a
hypersurface (a submanifold of codimension 1). Moreover in [58] the density p is not
invariantly defined with respect to the natural volume element. Since we integrate
with respect to the natural volume element we therefore get an additional factor.
Our proof is similar to that of Smolyanov, Weizsécker and Wittich in [87] where
under stronger conditions a similar result was proven for the Gaussian kernel. The
more general setting and the use of general kernel functions makes the proof a little
bit more complicated.

Proposition 2.27 Let M and k satisfy Assumptions 2.24 and 2.25. Furthermore
let P have a density p with respect to the natural volume element and p € C*(M).
Then for any x € M\OM, there exists an ho(z) > 0 such that for all h < ho(z) and
any f € C°(M),

[ ) = i) ol Vet dy

:qmwm+%@@mmwm+@MWMM+mm,

where

S(z) = %{— R| + % I3 m., ) i

T(z)RY } ’
and O(h?) is a function depending on x, || f|| o and ||p|os-
The following lemmas are needed in the proof.

Lemma 2.28 [f the kernel k : R — R satisfies the assumptions in Assumption 2.25,
ok

5 (||| uFuldu = —%C’g (676K 4 5% 57 + 67 57%] . (2.13)
rm 0T

Proof: Note first that for a function f(||u|?*) one has a|(|9f|\ = 86 fQ The rest follows

from partial integration.

7m%(u)u du = i %(v)\/zdv— [k:(v)\/ﬂo —/0 k(v) 2\/6dv
1 [ 9
:—§/Ook:(u )du,

where [k(v) \/v];” = 0 due to the boundedness and exponential decay of k.
In the same way one can derive

a@k;( )u4du:—g/ k(u®)u? du
u _

[e.9]
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With these results and the fact that since k is an even function only integration over
even powers of coordinates will be non-zero the proof is finished. 0

Lemma 2.29 Let k satisfy Assumption 2.25 and let Viji be a given tensor. Assume
now ||z||> > ||z|]° + Vijuz'27252 + B(2) ||2° > i||z||2 on B(0,rmm) C R™, where
B(z) is continuous and (3(z) ~ O(1) as z — 0. Then there exists a constant C' and
a ho > 0 such that for all h < hg and all f € C3(B(0, rmin)),

2 gkl 5
[ (B S0
B(0,rmin) h

— <01f( ) + Czh—2 [(Af)(()) — f(0) i Viikk + Vikir + ‘/Hckz:|>‘ < Ch’.

where C is a constant depending on k, rwin, Vij and || f|| s

Proof: As a first step we do a Taylor expansion of the kernel around ||z||* /h2:

121> +n 2|l Okn(z) n . 0ky(x)
kh( 2 ) (h2>+ Oz

L= 2 Ox?
where in the last term 0 < #(z) < 1. We then decompose the integral:

2 ot d kol 5
[ (Y SO
B(0,rmin) h

n?

2(1-0)40n 14
K (h2) nh

HZH2 8kh($) ‘/;jkl ZiZ]Zkzl
= K + )
m h2 8x %L h2
o*f

(ﬂm

where we define the five error terms «; as:

B Okn|  B2) |21
OCO—/B(D7Tmin) o ”h22 B2 ( ) Z,

0%k, (Vijmz'2d 2520 + B(2) 121%)°
ap = o2 f
Ormm) x

[E a-0)+on h (2)dz,
i, k1 5
/’ CMI+%Wzﬂzz+6@HMI>1 Pf i
B(0,7min)

4
z zj> dz + Zai
i=0

>+2azaa

h? 6 02102702k

R™\B(0 rmm) h2 0’ 2021027 lo ’

Vi 229 2% 2

/ akh gk 2
RO\ B(O,ri) O 15 12

1P|,
(f(O) +(Vf|,2)+ 355057 ‘Oz P ) dz,
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where in oy, 7 = Viju2'2? 2520 + B8(2) || 2]
With me (2l*) 2 dz = 0, Vi, fpn k(||2]|*) 2 25dz = 0 if i # j, and Lemma 2.28

the main term simplifies to:
2|2 Okp,(x) Vi 212922 1 0%f i
/m (kh< )T T T g JO) + 55007 1,77 ) 4
U uj> du

81{3 . h2 62
:/m (k(HuH )+ 1 8(95)‘” 2V uzugu}cw) <f(0) +76z2(§z]
(n)

h2 1j Skl ik $jl il Sjk h < aZf
:c*lf()——cgf()”k,[é oM+ 567 + 65 }+ —Cy IWO

where the O(h*) term is finite due to the exponential decay of k and depends on k,
Tmin, Vijk and || f||os. Now we can upper bound the remaining error terms o, ¢ =
0,...,4. For the argument of the kernel in a; and as we have by our assumptions

on B(0, rmin):

2 2 i 5 2
207 o N2l + Viguz'27 282+ B(2) 1217 Iz
h? — h? — 4h?’

Note that this inequality implies that g is uniformly bounded on B(0, 7y, ) in terms
of rmin and Vjjx. Moreover for small enough h we have =2 > VA (see Assumptions
2.25 for the definition of A) so that we can use the exponential decay of k for ag
and ay.

ok
a0l < B 11l / On) 18 (hr)| ul® du

B(O’Ttr’;in) 8.1' HuH2

Since %i; is bounded and has exponential decay, one has |ag| < Ky h? where K

depends on k, ruyi and || f|| .

. 2
| </ Ok, <||Z||2(1—9)+977>| (Viguz'2 252+ B(2) |121I°) ;
N B(0,7min)

02 02 X (2)dz
<l [ | Gl (0= 000) + 60

r

B(()’ r‘;‘:n )

2
4 5
(1 s Wil + 31 )

First suppose i < 2v/A then the integral is bounded since the integrands are
bounded on B(O Tm‘“) Now suppose =i > 2y/A and decompose B(0, =) as
B(0, i) = B(0, 2v/A) U B(0, min )\ B(0, 2v/A). On B(0,2v/A) the integral is fi-

nite since ‘%’ is bounded and on the complement the integral is also finite since

Jul® (1 = (k) + 6 () > § ol > A
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Therefore there exists a constant K such that |a;| < K h*.
Iz[I*\ 1 &°f ik
< k - 02)2'272"d
|a2| N /B(Oﬂ“min) ' ( 45 682182]62k( Z)Z o

m?/? u
< Wl [ k(” ” )H P du < Ko B,
]Rm

ey TN (50) + (95,2 + 1.2
= Rm\B(O,rmin) h2 0’ 2021027 lo
allz)* 9112
<c|fllgs exp | ——5— | (L+mh™|z]")dz
R™\ B(0,7min)
Tiqin 277 2
< cexp —agy o (1+mh a)
Ok ( |lz]I*
or h?2
r2.
< cKyh? ||f||c3 exp (—QQLh’;) / e—aHuH2 ||u||4 (1+ h2 ||u||2)du
R'm

where K4 in the error term oy is a constant depending on max; ;5 |Viji|. Now one
2

hasld: ¢~ #2 < Z— for h < &/s. In particular it holds h® > exp< ‘2mn> for h <

2l > dz

El
AL 44 e)yaz

ay| < ||f||(;3 K4/

R™\ B(0,7min)

Ap2
%\/grmm, so that for h < min{%\/grmin, ’""‘TX} = hg all error terms a5, i = 0,...,4
are smaller than a constant times h® where the constant depends on k, rmin, Vijki
and || f||os. This finishes the proof. O

Now we are ready to prove Proposition 2.27,

Proof: Let ¢ = 3 min{inj(z), 7p}'® where € is positive by the assumptions on M.
Then we decompose M as M = B(x,e)U(M\B(x,¢)) and integrate separately. The
integral over M\ B(x,€) can be upper bounded by using the definition of §(x) (see
Assumption 2.24) and the fact that k is non-increasing:

[ (i) = 1) Fo)p) Vst gdy = [ b (lte) = i) ) (o) Vet g dy

M B(z,e€)
n / B (li(2) — i(0)I12) F@)p(y)v/det g dy
M\B(z,¢)

(2.14)

Since k is non-increasing, we have the following inequality for the second term in
(2.14):

i(x . 1 (o)
/M o i) = i) ) £0)pl) ety dyghmk( )HfH

14This inequality can be deduced from e® > z™ for all z > 4n?2.
15The factor 1/3 is needed in Theorem 2.35
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Since §(x) is positive by the assumptions on M and k decays exponentially, we can
make the upper bound smaller than h? for small enough h. Now we deal with the
integral over B(z,¢). Since € is smaller than the injectivity radius inj(z), we can
introduce normal coordinates z = exp~!(y) with origin 0 = exp~!(z) on B(z,¢€), so
that we can write the integral over B(z,¢€) using Proposition 2.19 as:

21 — & Sy o o222 + O(|12I1°)
/ k( L2 Senm) Bt B2y p(2)f(2)/det g dz

B(0,¢)

Using our assumptions, we see that pf/det g is in C3(B(0, ¢)). Moreover, by Corol-
lary 2.21 one has for dy(x,y) < mp, 3dun(x,y) < ||z — y|| < du(x,y). Therefore we
can apply Lemma 2.29 and compute the integral in (2.3.2) which results in:

h2 82 Qv 82 oY
azaazb 0z¢0z4 [

[p( )1 (0 )<C1 + Cg gabged 4 gacgdd 6ad6bc] )

+02—AM (pf+/det g) ( +o(n)], (2.15)

where we have used that in normal coordinates z* at 0 the Laplace-Beltrami operator

AM is given as AMf‘ = Z;nl 3?2)

be evaluated using the Gauss equations, see [87, Proposition 6].

. The second term in the above equation can
0o

m d 62 o 82 o
Z Z a9 5o |:6ab(scd + 5a06bd + 5ad5bc:|

a,b=1 a=1

Zm: d @2 o4 62 6% s 822'04 822'04

i 0(2%)% 0(2*)? 029020 0z202°

m d . . . m d
62201 82211 82104 82 e ana 82 46

= ;; <8z“3zb 020020 9(2%)2 D(2")? ) 3a21; 9(29)2 9(zb)?
=2 ) ((0ee,0.0), T(Deo, 0.)) — (T(Dze, D), T(D.0, 0.0))

a,b=1

2 2

+3 = 2R +3

Y

Tj(z)R?

il‘[(@za, aza) iﬂ(azj7 azj)
a=1 j=1

where R is the scalar curvature. Plugging this result into (2.15) and using from
Proposition 2.19, A/+/det g|0 = —%R, the proof is finished. O

The following Lemma is an application of Bernstein’s inequality. Together with the
previous proposition it will be the main ingredient for proving consistency statements
for the graph structure.

Ti(z)Rd

Lemma 2.30 Let Xi,..., X, ben i.i.d. random vectors in R? with law P which is
absolutely continuous with respect to the natural volume element dV' of a submanifold
M C R? satisfying Assumption 2.24. Let p denote its density which is bounded,
continuous, and positive p(x) > 0, for any x € M. Furthermore, let k be a kernel
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with compact support on [0, RZ] satisfying Assumption 2.25. Let x € M\OM and
define by = ||k|| . || fll., b2 = K ||f]|%, where K is a constant depending on ||p||.,
k||, and Ry. Then for any bounded function f,

p(|; Zkh Jite) — i) ~ Ed(lile) — (2D F(2)] > o)

<9 nhme?

exp| —————|.
= 2P\ 7o, 1 on,/3
Proof: Since by assumption x > 0, we have by Lemma 2.22 for any =,y € M with
e =yl < k/2, dy(z,y) < 2||i(x) —i(y)||. This implies Va < k/2, Bra(x,a) "M C
By(z,2a).
Let W; := kn(||i(x) — i(X)||*) f(X;). We have

15l [k H

W] < T sup fly)| < == HfH

h yGBRd (z,h Ry )NM

bl

For the variance of W we distinguish two cases. First let hRy, < s := min{x/2, Ry/2}
then we get

Var W < B K(i(x) — 2 £(2) < o, 1y (i) — i(2)])£2(2)

k

B ”hﬂfo/ kn(li(z) — i) 1)) f* (y)p(y)y/det g dy

By (z,hRi)NM

Il -

= hm /BM(thRk)k (QdM<my det dy
_ IR

<= W el | Rm(owxﬁdetgdz

(L] ——— ||oo
< T 12 Pl o h™RE2™ < O il 1112

where we have used Lemma 2.18 and C' is given as C = 2™ S, R}’ Now consider
hR) > s, then

k|| R ||k
Varw < We e < B IRl e
Therefore we define by = K || f]|%, with K = max{C || |lpll.. , =} By Bern-
stein’s inequality we finally get
P11, Wi—EW|>¢) < 2 BT
Both constants by and b; are independent of x. OJ
Note that Ez kn([li(x) —i(2)| fk:h li(z) = i(y)|*) f (v)p(y) /et g dy.

2.3.3 Pointwise consistency of the degree function d or kernel density
estimation on a submanifold in R?

In this section we will establish the asymptotic limit of the degree functions dj
corresponding to the weights w, 5. We will consider first the case A = 0 which follows



CONTINUUM LIMIT OF GRAPHS 53

easily from the results in the previous section. As a first step we extend the degree
function from the graph to all points x € M using the kernel function by

dunlt) = 5 3~ ki) — (X))

It turns out that dj,(x) is nothing else than a kernel density estimator on the
submanifold M. For any fixed h it converges towards the h-averaged density

(@) = Ez kn(|li(z) — i(2)|°) = / Fa(lli(x) = i(y)|*)p(y) v/ det g dy.
M
However in the following n and h are varied at the same time. This corresponds more
to what is done in practice: as one gets more points, one shrinks the neighborhood.

Proposition 2.31 (Pointwise consistency of dj, ,(x)) Suppose the standard as-
sumptions hold. Furthermore let k be a kernel with compact support on [0, Ry]. Let
x € M/OM, then if h — 0 and nh™ — oo,

lim dy,(z) = Cyp(x) in probability.

If nh™/logn — oo, then almost sure convergence holds.

Proof: Using Proposition 2.27, we have for z € M/OM and h < hy(z),

]

Ti(z)RY

2

pn(x) = Cip(x) + hZ Cy (p(g;) [ R+ %

> (80 8a)

+2(Awp)(@)) + O(h?).

so that lim,_o pp(x) = Cip(z). Using Lemma 2.30, we get,

P(ld <9 nh™e?

(nn(a) = ()] > ) < 20 (-2

where b; and by are constants only depending on the kernel k. Therefore convergence
in probability for h — 0 follows under the condition nh™ — oco. Complete conver-
gence follows if >~ | P(|dp(z) — pr(z)] > €) < oo which holds if nh™/logn — oc.
Since complete convergence implies almost sure convergence the proof is complete.
O

Another result on density estimation on submanifolds in R? has been derived by
Hendricks, Janssen and Ruymgaart in [47]. They construct a density estimator for
compact submanifolds in R? of the form

co 1 Lyi(z)—i(X:)I<pn
In@) = 0D o el ) A1)

i=1

using also the Euclidean distance for the balls. However they need the volume func-
tion of M for the normalization which is in general not available since we have no
other information about M than the sample points X;. In [47] then uniform strong
convergence is shown where the conditions on the sequence p,, are very similar to
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the conditions on A in Proposition 2.31. One could extend the strong pointwise con-
vergence in our result to strong uniform convergence for a compact submanifold.
However since our main concern is the more general structure of the continuum
limit, we will not prove the more general result for d, ,(z). Related to our result is
also the the recent work of Pelletier [72] on kernel density estimation for compact
Riemannian manifolds without boundary. However apart from that we work in the
more general setting of manifolds with bounded geometry, the main difference is
that in [72] it is assumed that one knows the intrinsic distance function dy;(z,y) on
M. We cannot make such an assumption since we do not know the submanifold M
beforehand. Instead we use the Euclidean distance of the ambient space RY. Using
a normalization of the standard kernel density estimator in RY, Pelletier proves
the appealing feature that his proposed kernel density estimator indeed produces a
density even in the non-asymptotic regime. However the knowledge of this norma-
lization factor requires full knowledge of the geometry of M which we do not have
beforehand. In [72] then convergence in Ly(M) is shown, whereas we show pointwise
convergence.

We now give the limit of the general degree function dj j, extended to all x € M,

ka(lli(z) — i(X)|°)
uante) = e X = 15 BB,

In correspondence to the averaged density pj(z) where the convolution was done
with the kernel k£ we can introduce a function dy ;(z) where the convolution is done

with the kernel k:
Fn([[i() — i(y)||” )

K = )P

This yields
dxn :/ k/\h (z,y)p(y)\/det g dy
_ 1 / kallite) — i) LY detgdy
7 o)) |

(pn(z

The following lemma will be helpful in the rest of this chapter.

Lemma 2.32 Let k have compact support on [0, Rz] and let 0 < h < hpayx. Then
for any x € M there exist constants Dy, Dy > 0 independent of h such that for any
y € Bgra(z,hRy) N M one has

0 < Dy < puly) < Ds.

Proof: Suppose first that hRj < s := min{k/2, Ry/2}. Since ||y — z|| < hRy < k/2
we have by Lemma 2.22: 1dy(y, 2) < |ly — z|| < du(y, 2). Moreover since p(z) > 0
on M and p is bounded and continuous, there exist lower and upper bounds pyin
and ppax on the density on By/(z,4hRy). That implies

k
Pr (y) < Hhﬂl pmax/ vV detgdZ < ||k||oopmax SQ QWR?,
B (y,2hRy,)
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where the last inequality follows from Lemma 2.18. Note further that dy(x,y) <
2h Ry, and dy(y, z) < 2hRy, implies dy(x, z) < 4hRj. Using the assumption on the
kernel function that k(x) > ||k|| /2 for 0 < & < 7y, we get

k
pn(y) > %/B e Mp(z)\/detgdz > H H o7 o Prmin VOlar (Bar (@, hry))
rA (TN TE

k
Z %pmin Sl TZL-

Now suppose s < hRy and h < hpax. Then pp(y) < u < ||kl (?’“) For the
lower bound we get

pr(y) = / kn(da(y, 2))p(2)+/det g dz >/ kn(das(y, 2 )\/det g dz
M

B (y,hry)
Ll Il

— 2hm 2hm

”P(BM@JHM>_. 2= P (Buly.s 7))

max Rk

Since p is continuous and p > 0, the function y — P (B v(y, s ;—Z)) is continuous and

positive and therefore has a lower bound greater zero on the ball Bra(x, hRy)NM. O

Proposition 2.33 (Pointwise consistency of d ) Suppose the standard assump-
tions hold. Furthermore let k be a kernel with compact support on [0, Ri]. Let x €

M/OM and X\ > 0. Then there exists a constant C such that for any ”k”"" <e<

—nhMe 2

1/C, 0 < h < hpax with probability at least 1 — C'ne™ ¢,

’d)\yh,n(.iﬁ) — d,\,h(x)| S €.

In particular if h — 0 and nh™/logn — oo,

lim dyan(z) = O p(x)™*  almost surely.

n—0o0

Proof: The idea of this proof is to show that several empirical quantities which
can be expressed as a sum of i.i.d. random variables are close to their expectation.
Then one can deduce that also d) ;, will be close to dy ;. Consider the event &£ for
which one has

for any j € {L,....n}, |dun(X;) = pu(X;)| <

‘dhn —ph(iﬂ)
k 7 X

%g;i%;—i——— [ (i) = i) ) 524 Vet g dy| < =

<e

We will now prove that for sufficiently large C' the event £ holds with probability

n m52
at least 1 — Cne=""@" . For the second assertion defining £, we use Lemma 2.30

P(|dpn(x) — pr(x)] > €) < 2ex et
h ) =S\ T2, v 2he/3)
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where b, and b, are constants depending on the kernel k£ and p. For the first term
in the event £ remember that £(0) = 0. We get for H H‘X’ <g/2and 1< j<n,

(|2 S i) — 1C0)1P) — )] > €] X,) < 2exp (~ i)
This follows by

o S RG) = HXI%) = pr(35)] € |y SO (iC) = (X))
g S i00) — 51 - ()

i#]

llkll

where the first term is upper bounded by -—==. First integrating wrt to the law of
X (the right hand side of the bound is 1ndependent of X;) and then using a union
bound, we get

P(for any j € {1,...,n}, |dpn(X;) — pu(X;)

(n—1)h™me2
< E> >1-— 2nexp <_m> .
Noting that ( is bounded for y € Bga(z, hRy) N M for 0 < h < hyax by Lemma
2.32, we get by Lemma 2.30 a Bernstein type bound for the probability of the
third event in £. Finally, combining all these results, we obtain that there exists a
constant C' such that for % < e < 1, the event!® £ holds with probability at

nhMe2

least 1 — Cne~" @ . Let us define

B = [y ka(lli(x) = i)l lpa(y)] p(y)/det gdy
B = L5 ka(lli(x) — (X)) [dha(X,)]

then dy pn(x) = % and dy(z) = pBQ((?)- Let us now work only on the event £.

By Lemma 2.32 for any y € Bga(x, hRy) N M there exist constants Dy, Do such that
0 < Dy < pu(y) < D,. Using the first order Taylor formula of [z — z7%], we obtain
that for any A > 0 and a,b > 8, |[a™ — b7*| < AB7*"'|a — b|. So we can write for
€< D1/2,

B - B|

LY k(i) — (X )H)([dhn( >}‘A—[ph<Xj>1—A)\
LSSy hnli(e) = i(5) 1) pn(X5)] > - 5]

< |dpn(@)|A (D1 —e) et
< (Dy+e)A(Dy—e) Mlete:=Ck.

Using that for A > 0, |a—b[* < Amax{|al, [b|}}t|a—b|] we get |(dn.n (@) —(on(@)*| < .
with C” = XDy +¢)*"'. Let ¢ := $D7. We have py(z)* > 2(. Let us introduce
further ¢ := min{%, 1}. For % < & < g9, we have also dj, ,(z) > ¢. Combining
the last three results, we obtain that there exists C”” > 0 such that

B B |B-B] |d}, . (@)—pp (z)] <

N Dy~ e
.o el S a.w T oo = C"e.

T oo

16The upper bound on ¢ is here not necessary but allows to write the bound more compactly.
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2|[Flloo

e < e <

We have proven that there exists a constant C' > 1 such that for any

1/C,
Ay nn(z) — dyp(x)] < C"e,

n m52
with probability at least 1 — C'ne™ ‘e
To prove the second assertion of the proposition, we employ again Proposition 2.27

for

dxn(r) = /Mk?m z,y)p(y)/det g dy
= L i) —i 2 p(y) e
o /M bl o) — i) ) L et gy

B pu(x

Due to the compact support of k£ we only have to control the expansion of p;, on the
set Bga(z,2hRy,) N M. For sufficiently small h we have Bga(z,2hRx) N M NOM = (.
Moreover it can be directly seen from the proof of Proposition 2.27 that the upper
bound of the interval [0, hg(y)] for which the expansion holds depends continuously
on §(x) and €e(y), where e(y) = 3 min{mp,inj(y)}. Now ho(z) is continuous since
inj(x) is continuous on compact subsets, see [54][Prop. 2.1.10], and 6(z) is continuous
since the injectivity radius is continuous. Therefore we conclude that since hg(y) is
continuous on B(z,2hRy) N M and hy(y) > 0, hy(z) = infyeW ho(y) > 0.

Then for the interval (0, hy(x)) the expansion of pp,(y) holds uniformly over the whole

set B(x,2hRy) N M. Using @ +h2b) =5 - )‘% + O(h*), we get for h € (0, hy(z)),
1 . . 9
hale) = 2 / i) i)
[ )\ézﬁlc(z()f Y)S + Ap) + O(hg)] v/ det g dy
= (x) [C’ll’Azo(x)l’A + Zg’} (( —A) Sp(x)' 7+ Ap' ™ - p’AAp)
+O(h").

where we have introduced the abbreviation S = i[—-R + 1 Hzan(aa,aa)u;( )Rd]'
Now using again Proposition 2.27, we finally arrive at

Cop(x)' A

dyp(z) = (Crp(x))' = + h? 2023

((1=2%8 =20 = Np(@) 2 V9

+(1- 3/\)p(x)_1Ap> +O(R).

From this asymptotic expression we derive limy, o dy ,(z) = (Cy p(z))1=2*. Using the
exponential inequality, one can derive almost sure convergence by the same argu-
ment as in Proposition 2.31. ([l
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2.3.4 Pointwise consistency of the normalized and unnormalized graph
Laplacian

In Section 2.1.4 we introduced the normalized graph Laplacian:
(Anorm f) (i) = f(i wa )y Dpopmf = (1 —D7'W)f,  (2.16)
as well as the unnormalized graph Laplacian
. L L .
(Aunnormf) <Z> = d(z)f(z) o 5 Z wijf(])a Aunormf = (D - W)f (2~17)
j=1

Note that Avnorm = DAnorm. We extend the graph Laplacians to all x € M as it
was done in the last section using the data-dependent kernel &y j,.

(Axpnf)(x) = % <f - A,\hnf> (x), normalized

d)\hn

= % (f(@ - ;% ki ,h(:c,Xj)ﬂXj))

d,\hn(ﬂf) =

(A f)(x) = 72 (d)\ hof — Axn nf) (), unnormalized

;2 (dm 3 ]>> (2.18)

The factor 1/h? arises by introducing a 1/h-factor in the weights ~y of the derivative
operator d of the graph. The introduction of this factor is necessary since d appro-
ximates a derivative.

We would like to note that for the normalized graph Laplacian A, j, the norma-
lization with 1/h™ in the weights cancels out, whereas it does not cancel for the
unnormalized graph Laplacian A , . except in the case A = 1/2. The problem here
is that in general the intrinsic dimension m of the manifold is unknown. Therefore a
normalization with the correct factor ,%m is not possible, and in the limit h — 0 the
estimate A ;, , will generally either vanish or blow up. The easy way to circumvent
this is just to rescale the whole estimate such that %Z?:l dann(X;) equals a fixed
constant for every n. The disadvantage is that this method of rescaling introduces a
global factor in the limit. A more elegant way might be to estimate simultaneously
the dimension m of the submanifold and use the dimension estimate to calculate the
correct normalization factor. In Section 2.4.1 a scheme to estimate the intrinsic di-
mension of a submanifold from random samples is suggested. However in this work
we assume for simplicity for the unnormalized graph Laplacian that the intrinsic
dimension m of the submanifold is known. It might be interesting to consider both
estimates simultaneously, but we leave this as an open problem.

The rest of this section is organized as follows. First we introduce the continuous
operators Ay, resp. A}, corresponding to the extended graph Laplacians Ay,
and A) ;. We then derive the limit of Ay} and A, as h — 0. Second we show
that with high probability Ay ;, and Ai\,hm are close to A 5, resp. Al)\,h' Combining
both results we finally arrive at the desired consistency results.

3

3|>—‘
)’
;
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The following continuous approximation Ay j; was similarly introduced by Coifman
and Lafon [58, 25]. Continuous approximations of the unnormalized Laplacian Al)\,h
were considered by Belkin for the uniform probability measure on a compact mani-
fold without boundary in his thesis [11].

Definition 2.34 (Kernel-based approximation of the Laplacian) We introdu-
ce the following kernel-based averaging operator Ay p:

(Ansf)(x) = / Fan(, )£ (9)p(y) /et g dy, (2.19)

M

and the following operator Ay, corresponding to the normalized graph Laplacian

1 1
Aynf = 72 (f — mAx,hf> ;

and Al }, corresponding to the unnormalized graph Laplacian

, 1
= 72 (d,\,hf - A,\Jlf) = dxnAxp-

At least the definition of the normalized approximation Ay j can be justified by the
alternative definition of the Laplacian in R? sometimes made in physics textbooks:

. 1 1
AN =t (160~ gy [ 1)

where C; is a constant depending on the dimension d.

Approximations of the Laplace-Beltrami operator based on averaging with the Gaus-
sian kernel have been studied in the special case of the uniform measure on a compact
submanifold without boundary by Smolyanov, Weizsécker and Wittich in [86, 87]
and Belkin [11]. Belkin’s result was then generalized by Lafon [58] to general densities
and to a wider class of isotropic, positive definite kernels for compact submanifolds
with boundary. However the proof given in [58] is only correct for compact hypersur-
faces'” in R?, a proof for the general case of compact submanifolds with boundary
using boundary conditions is announced in [25]. In this section we will prove the
pointwise convergence of the continuous approximation for general submanifolds M
with boundary of bounded geometry with the additional Assumptions 2.24. This
includes the case where M is not compact. Moreover, no assumptions of positive
definiteness of the kernel are made nor any boundary condition on the function f
is imposed. Almost any submanifold occuring in practice should be covered in this
very general setting.

For pointwise convergence boundary conditions on f are not necessary. However for
uniform convergence there is no way around them. Then the problem lies not in
the proof that the continuous approximation still converges in the right way but
in the transfer of the boundary condition to the discrete graph. The main problem
is that since we have no information about M apart from the random samples the
boundary will be hard to locate. Moreover since the boundary is a set of measure
zero, we will actually almost surely never sample any point from the boundary. The
rigorous treatment of the approximation of the boundary respectively the boundary

17 A hypersurface is a submanifold of codimension 1.
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conditions of a function on a randomly sampled graph remains as an open problem.
Especially for dimensionality reduction the case of low-dimensional submanifolds in
R? is important. Notably, the analysis below also includes the case where due to
noise the data is only concentrated around a submanifold. Now we are ready to
formulate the asymptotic result for the operator A ; which extends the result of
Lafon mentioned before.

Theorem 2.35 Suppose the standard assumptions hold. Furthermore let k be a ker-
nel with compact support on [0, RY]. Let A > 0, and x € M\OM, then there erists
an hi(x) > 0 such that for all h < hy(x) and any f € C3(M),

Banfle) == 5 ((Afox) b
Cs

= ~5¢, (Ah)@) + O(h), (2.20)

V. Vf>T1M) Lo

where Ay is the Laplace-Beltrami operator of M and s = 2(1 — \).

Proof: The need for compactness of the kernel k comes from the fact that the
modified kernel k& depends on py(y). Now for a non-compact manifold it is not
possible to have a lower bound on p(z). Therefore also an upper bound of the
truncated version of the integral with respect to an exponentially decaying kernel
function is not possible without additional assumptions on p.

Moreover the Taylor expansion of Proposition 2.27 for py(y) can only be used for h
in the interval (0, ho(y)). Obviously it can happen that ho(y) — 0 when we approach
the boundary. Therefore, when we have to control hy(y) over the whole space M,
the infimum could be zero, so that the estimate holds for no h. As argued in the
proof of Proposition 2.33 for sufficiently small h, Bga(z,2hRy) M NOM = 0.
Then hg is continuous and positive on Bga(x,2hRy;) N M and therefore has a lower
bound hy(z) = infyeW ho(y) > 0. Then for the interval (0,h;(z)) the

asymptotic expansion of py(y) holds uniformly over the set Bra(z,2hRy) N M. That
is, using the definition of k as well as Proposition 2.27 and the expansion (

a—&-iizb))‘
1 AL L O(h*), we get for h € (0, (z)) that

/M s (i) — i@)IP) Fw)ply)y/det g dy
1 . . 2
pi() /Bw,th)mM b (li(z) — i@)IP) £ ()

pr(z)
Cip(y) — A/2C3h*(p(y)S + Ap) N s
{ it p(y) o )} detody

where the O(h?)-term is continuous on Bga(z, hR;) and we have introduced the
abbreviation S = 1[—-R + 1 |3, II(0,, 8a)||2T,( )Rd]‘ Using f(y) =1 we get,

1 . . 2
(o) = s /B LA LRy

Cip(y) — A/2C:h* (p(y)S + Ap) w| A
[ Ctp(y)* o ﬂ detody
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as an estimate for dy ,(x). Now using Proposition 2.27 again, we arrive at:

Agnf = (f_Am)ZLM

h? dxn
Ch 21— \)

- (AMf

(V. Vf>) o).

where all O(h)-terms are finite on Bga(x, hRy) N M since p is strictly positive. O

Note that the limit of Ay} has the opposite sign of A,. This is due to the fact that
the Laplace-Beltrami operator on manifolds is usually defined as a negative definite
operator (in analogy to the Laplace operator in RY), whereas the graph Laplacian
is positive definite. But this varies through the literature, thus the reader should be
aware of the sign convention. With the relation (A) , | f)(z) = dx pn(2)(Axpnf)(®)
one can easily adapt the last lines of the previous proof to derive the following
corollary.

Corollary 2.36 Under the assumptions of Theorem 2.35. Let X > 0 and z €
M\OM. Then there exists an hi(x) > 0 such that for all h < hi(x) and any
fe M),

(A’/\hf)(:c) = —p(z)~ 2222)\ (Asf)(z)+O(h), where s=2(1—-2X). (2.21)
1

Before we state the results for the general case with data-dependent weights we
now treat the case A = 0, that is we have non-data-dependent weights. There the
proof is considerably simpler and much easier to follow. Moreover opposite to the
general case here we get convergence in probability under slightly weaker conditions.
Belkin and Niyogi have proven independently in [10] the weak consistency of the un-
normalized graph Laplacian for compact submanifolds with the uniform probability
measure using the Gaussian kernel for the weights. However their convergence rate is
nh?™*t* — oo which is suboptimal compared to our rate nh™*t* — oo. The difference
arises since they use Hoeffding’s inequality instead of Bernstein’s inequality which
results in a suboptimal behaviour in the constants. We prove here both the limit
of the unnormalized and normalized graph Laplacian for general submanifolds with
boundary of bounded geometry, with general probability measures P, and general
kernel functions k as stated in our standard assumptions.

Theorem 2.37 (Weak and strong pointwise consistency for A = 0) Suppose
the standard assumptions hold. Furthermore let k be a kernel with compact support
on [0, RZ]. Let x € M/OM and f € C*(M). Then if h — 0 and nh™™ — oo,

lim (Agpnf)(z) = —%(Agf)(l‘) in probability,
n—oo 1
and
&

Tim (Ag /) (@) = —plw )201

If even nh™* /logn — oo, then almost sure convergence holds.

(Agf)(z) in probability.

Proof: We give the proof for Agy,, since the proof for Aj, . can be directly
derived using Proposition 2.33 and Lemma 2.30 for the variance term together with
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Corollary 2.36 for the bias term. Similar to the proof for the Nadaraya-Watson
regression estimate of Greblicki et al. in [39], we rewrite the estimator Ag, f in the
following form

Bonaf o) = 75 | o) - LoD E B (2.22)
where
o, ey — Bznllite) =2 (2)

Ez ku(lli(z) —i(2)|)
w2 ka(lli(z) = i(X)IP) F (X)) = Bz ka(lli(e) — i(2)I1) £ (2)
Ez kn(lli(z) —i(2)]) ’

w2 k(i) = i(X)I) = Ez ka(llix) — i(2)])

By, = 2 ’
Ez kn(|li(z) —i(Z)]]%)

In Theorem 2.35 we have shown that
1 Cy

lim(805)(2) = lim 75 /(@) — (Ao N@)] = —5 - (Baf)(a). (223

Bln =

Using the lower bound of py(z) = Ez kx(||i(z) — i(Z)||?) derived in Lemma 2.32, we
can directly apply Lemma 2.30. There exist constants d; and ds such that

nhm+4 t2
St )

P(|Byn| > h2t) < exp (

The same analysis can be done for By, where we do not have to deal with the 1/ h2-
factor. This shows convergence in probability. Complete convergence (which implies
almost sure convergence) can be shown by proving for all ¢ > 0 the convergence of the
series Y>> (P (|By,| > h*t) < co. A sufficient condition for that is nh™*/logn —
00 as n — 00. U

Now we will show that with high probability the continuous approximations Ay,
resp. A\, are pointwise close to the extended graph Laplacians Ay, resp. A),
when applied to a function f € C*(M). The following proposition will be helpful.

Proposition 2.38 Suppose the standard assumptions hold. Furthermore let k be a

kernel with compact support on [0, RZ]. Let v € M/OM, f € C3(M) and X\ > 0.

Then there exists a constant C' such that for any % <e<1/C,0<h < hpax,

Y

with probability at least 1 — Cne™ ¢

)

[(Axnnf)(@) = (Asnf)(@)| < e

Proof: Note that dyp, = (Axnnl). Using the boundedness of f, the proof of
Proposition 2.33 can be adapted in a straightforward way. 0

This leads us to our main theorem for the normalized graph Laplacian.

Theorem 2.39 (Pointwise consistency of A, ;) Suppose the standard assump-
tions hold. Furthermore let k be a kernel with compact support on [0, Ri]. Let x €
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M/OM, X\ > 0. Then there exists for any f € C3(M) a constant C' such that for
2kl STNALE

any s < €< 1/C, 0 < h < hpax with probability at least 1 — Cne~ ¢ |

[(Axnnf) (@) = (Banf)(@)] < e.
Define s = 2(1 — \) then if h — 0 and nh™**/logn — oo,

lim (A pnf)(x) = 2% (Asf)(x) almost surely.
n—oo 1
Proof: First we note that
(Aannf)(x) — (Anf)(2)

1
‘_2

‘(A)\,h,nf)( (Axnf)(@ dynn(@) dyn(@)

1 ((Aspnf) (@) = (Asaf)(@)] | Dna() = drn(2)]
= ( dxnn () (A )e) dnn(@)drn(7) )

Using Lemma 2.32 we get the following upper and lower bounds for d, ,(y):

D
—ox S danly) < D;)" Vy € Bga(z, hRy) N M.
Morcover (Aynf)(x) < |l dun(e) < 1f]l0 2 Now set € = 2. then dy, > 2.

Let us introduce &y := min{(, 1}. For (2”k|;°° < ¢ < gy we have by Proposition 2.33,

—nh™Me2

dapn(x) > ¢, with probability 1 — Cne~ ¢ . Combining Proposition 2.33 and
Proposition 2.38, we see that there exists a constant C' such that with probability

1 — Cne™&
1 D
mmdm»%Amwﬂsﬁ(awﬁ%kigga%

This proves the first statement of the theorem. By Theorem 2.35 we know further
that limp,_o(Axnf)(z) = 201 2 (Asf)(x) with s = 2(1 — \). Combining this with the
first statement and using the argument we made in Proposition 2.31, we are done.
O

Since the unnormalized graph Laplacian A ;, | is just a multiplication operator times
the normalized graph Laplacian, we can d1rectly formulate the following pointwise
consistency result for the unnormalized graph Laplacian.

Corollary 2.40 (Pointwise consistency of A, ) Suppose the standard assump-

tions hold. Furthermore let k be a kernel with compact support on [0, R2]. Let x €
M/OM, X\ > 0. Then there exists for any f € C3(M) a constant C' such that for

201kl —nh 2

any ~rmes < € < 1/C, 0 < h < hiyayx with probability at least 1 —Cne™ o,
(A\pnf)(@) = (A uf) ()] < e
Define s = 2(1 — \) then if h — 0 and nh™**/logn — oo,

, C
JLHC}O(A,\hnf)(SU) = 9 022,\
1

p(2) 72 (A f)(x)  almost surely.
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Proof: We have
(A ) (@) = (A4, (@)
< o (171 [drsn @) = daa@)| + [ (Ann @) = (Ara )| ]

Using Propositions 2.33 and 2.38, we get the first statement. The limit for A, j for
h — 0 has been derived in Corollary 2.36. Again using the arguments for almost
sure convergence provided in the proof of Proposition 2.31, we are done. 0

This result is quite interesting. We observe that in the case of a uniform density
it does not make a difference whether we use the unnormalized or the normalized
approximation of the Laplacian. However, as soon as we have a non-uniform density,
the unnormalized one will converge only up to a function to the Laplacian, except
in the case A = % where both the normalized and unnormalized approximation lead
to the same result.

On the other hand in semi-supervised learning we not only want to have an ani-
sotropic diffusion process which prefers directions along high-density regions but a
second desired property is that one would like to have a faster diffusion where one
has high-density and slower diffusion where one has low-density. So that labels in
high density regions have a larger influence than labels in low-density regions. We
think that labels of rarely occuring events can be misleading whereas it seems more
reasonable to follow the labels of often occuring events. The limit operator of the
unnormalized graph Laplacian has this kind of non-uniform diffusion constant which
for A < % leads to the desired effect that diffusion in high-density regions is faster
than diffusion in low-density regions. If A > 1/2 the direction is reversed. Then
diffusion in low-density regions is faster than diffusion in high-density regions.
This shows that the choice of the graph Laplacian depends on what kind of pro-
blem one wants to solve. In our opinion therefore from a machine learning point
of view there is no universal best choice between the normalized and unnormalized
graph Laplacian. However from a mathematical point of view the normalized graph
Laplacian has the correct pointwise limit to the weighted Laplace-Beltrami operator.

2.3.5 Weak consistency of Hy and the smoothness functional S(f)

So far we have dealt with the asymptotic limit of the degree function and the graph
Laplacian. Many semi-supervised and supervised learning algorithms use a regula-
rization scheme which means that the algorithm makes a trade off between fit of
the function measured in a norm on the function space RY versus smoothness of f
measured by the smoothness functional Q(f):

: 2
foin [ly = fll, +AQ(F), A>0.
In Proposition 2.5 we derived that the norm in Hy and the smoothness functional
S(f) = (f,Af), can be chosen independently from each other. From this perspec-
tive it would be interesting to consider both limits in their general form. However
sacrificing clarity we do not prove the more general results (which can be derived
rather straightforwardly) but instead stick to a simple case that is we consider as
weight function x in the inner product in Hy, x(d) = d. By weak consistency we
mean that we will consider the asymptotic limit of (f, g),, of two functions f, g in
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C3(M) discretized to the vertices V' via the random sample. The results on the
asymptotic behaviour of Hy should make it easier to design norms on Ry which
have the desired properties for the learning problem at hand. In particular they
should help to achieve the desired influence of the density p.

Remark: In this section we add to the standard assumptions the assumption that
M is compact. That implies in particular global upper and lower bounds on p(z),
since p(z) > 0 and p is continuous which in turn implies global upper and lower
bounds on py,.

Proposition 2.41 Suppose the standard assumptions hold. Furthermore let k be a
kernel with compact support on [0, RZ]. We choose the weighting function in H(V, x)

as x(d(X;)) = d(X;). Let f,g be bounded functions on M, then as h — 0 and
nh™/logn — oo

lim (f, )y, = 011_2)‘/ f(z) g(z) p(x)>~**/det gda  almost surely.
M

n—oo

Proof: We note

(fs 902, —Ez f(Z)g(Z)dA,h(Z)‘ < ‘% > F(X)g(Xi)|dynm(X:) — dx,h(Xi)}’

i=1
1 n
23 X)X )dan(X0) — Bz H(Z)9(2)drn(Z)|
i=1
In Proposition 2.33 we derived for ”:,'J&" < e < 1/C that with probability 1 —
m_2
Cne="'c" ,

‘dx,h,n@?) - dx,h(l’)| <e.

Since M is compact, we have global upper and lower bounds on pp(x). Therefore
it is not hard to see from the proof of Proposition 2.33 that in this case C' can be
chosen independent of x. Therefore a union bound is easily possible so that with

nhMe2

probability 1 — Cn®e™" ¢ |

max [dpn(X;) — din(Xi)| < e

i=1,..., n

Now for the second part we know that the function f(x)g(z)dyn(x) is bounded.
Therefore we can apply Hoeffding’s inequality

’ (‘% D (X)g(X0)dra(X0) = By (2)g(Z)dsn(2)] 2 ) <20,

where K = ||f gdy|”,. Putting both results together, we know that there exists a

nh™e2

constant C' such that with probability 1 — Cn“e™" ¢ ,

(.90, ~ B2 J(2)9(2)drn(Z)] <

Now d) j, is uniformly bounded since M is compact and converges pointwise

}Ziﬁ(l) dyn(z) = (Cip(x))' =
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Therefore by the dominated convergence theorem it follows that
lim B f(2)g(Z)dy(2) = C} / f(@) g(2) pla)**/det g da.
- M
O
In Section 2.1.5 we introduced the smoothness functional S(f) associated to the

Laplacian A as S(f) = (f, Af)y,, - Explicitly it is given by

LW FOP (). (2.2

il=1

S(f) =

It should be again stressed that the smoothness functional only depends on the pro-
duct 42 ¢. In particular, it is independent of y. Now for both the unnormalized and
normalized graph Laplacian the product (wy)?@(wy) = w; is the same. Therefore
both graph Laplacians induce the same smoothness functional.

We will restrict ourselves also to this case, that is y(wy )¢ (wy) = wy/h* (The factor
1/h comes from ~y(w;)). If we want to use the normalized graph Laplacian Ay,
this amounts to fixing x in H(V, x) as x(d;) = d; and for the unnormalized graph
Laplacian Al , . this implies x(d;) = 1. (Note that this does not contradict Propo-
sition 2.5 since the graph Laplacian depends on the choice of Hy ). With this choice
and w(z,y) = l;',\ﬁ(a:, y) the smoothness functional S(f) simplifies to

n

S (F(XG) = F(X0) Ean (X0, X5).

ij=1

SA,h,n(f) =

2(nh)?

There are two ways to derive the limit of Sy, (f). Since we know the limits of
Apnf and dy g, we could directly work with (f, A/\,h,nf>HV- However the proof
becomes a little bit lengthy. In particular the generalization to uniform convergence
of S,,(f) over a function class F which is very important in the theoretical analysis of
learning algorithms is less transparent. Therefore we use here a more direct approach
based on (one-sample) U-statistics, see the Appendix 2.5.1 for the definition. In the
following proposition we prove the essential part of the consistency result which
follows afterwards.

Proposition 2.42 Suppose the standard assumptions hold. Furthermore let k be a
kernel with compact support on [0, RZ]. Let f € C3(M) and define

~ 2 Fn([|i(X) = i(X5)1D)
S)\,h,n(f) = n _ 1 h? Z J)) h[ph(Xi)ph(Xj)])\ .

i,5=1

Then there exist constants Ky, Ko such that

[n/2]h™ 2

P (’SA,h,n(f> - Eg}\,h,n( )’ > 6) < 2e aFBRze,

In particular, if h — 0 and nh™ — oo. Then

TA}LI{.IOS’\’h’”(f) 26(1“/ (VENV O p bl )222\/det gdz, in probability.

If nh™/logn — oo almost sure convergence holds.
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Proof: We first derive an upper bound for Sy ;,(f). By assumption |f(z) — f(y)| <
L(f)da(z,y) where L(f) is the Lipschitz constant of f. We distinguish two cases.
First let hRy < k/2 then by Lemma 2.22 dp(x,y) < 2 ||z — y|| < 2hRj. In this case
using p, > K > 0 since M is compact, we get:

2 Fon([]1(X5) — (X)) ‘ < 200 BE NIl o
[on (Xi)pn (X)) 1 hm K2\

| (X0 = £(X;)

Now let hRy > k/2 then

2 ki ([11(X3) _i<Xj)||>‘ < 8BNS lloo 1F o
[on (Xo)pn (X)) 1~ hmi2 K2A

One can derive in the same way bounds for |E SA,h,n| using Lemma 2.18. For the va-
riance we also distinguish two cases. First let hRy < min{x/2, Ry/2}, then dps(z,y) <
2h Ry, resp. dy(z,y) < Ry so that we can apply Lemma 2.18:

3 (X)) = £(X5))

Var S)\hn = 4h4 / / )4]€h(||l(l’> - Z<y>||)p<x>p(y> dV(J?) dV(y)
4R

[ (z)pn(y)]**
AL 1Rl 12l ma pmpm
D - /M 2" Syl RYp(z) dV ()
427 S, RO KIS 2]
o KA pm

The second case is easy since we have a lower bound on h. Having derived these
upper bounds we deduce that there exist two constants K; and K, independent of
h such that with Theorem 2.53,

[n/2]R™ 2

P (1S3nn(f) = ESuan(f)] > €) < 26 Hirerma, (2.25)

For the last statement in the theorem we first derive the limit of E S \hn as h— 0.
Define

1

2 2 9f(y (1) — i p(y)
W/M(f(x) + f(y)” = 2f (@) f(y)kn([li(z) (y)||)—(ph(x)ph(y))AdV(y)-

Note that ]Eg,\m = fM By n(z)p(x)dV(x). Then with Proposition 2.27 for any
x € M\OM there exists ho(z) > 0 such that for any 0 < h < hy(z):

Cy
203

B)\’h(l’) =

Byn(z) = (VENV ) p(@) 2+ O(h).

In particular we have pointwise convergence on M\0OM,

i Baa(w) = 2(]A

with P(M\OM) = 1. Moreover B, is bounded since for hR;, < min{x/2, Ry/2}:

(Vf vf)T Mp( )1 2/\7

2L(f)* B3 |1kl llpl

[Balo)] < L

20 9m Sy R
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A similar bound for hR) > min{x/2, Ry/2} can be easily derived. This constant lies
in L;(M, P) so that by the dominated convergence theorem we get

Qccyu/ (VI V) p(2) 72 pz) dV ().

The rest of the theorem follows using the exponential inequality and the standard
argument used in Proposition 2.31. U

lim E Sypn = lim /M Byj(x) p(z)dV (z) =

Basically the last proposition was one part of the proof of the following theorem
which states the strong consistency of the graph smoothness functional Sy . (f).

Theorem 2.43 (Strong consistency of the smoothness functional S} )
Suppose the standard assumptions hold. Furthermore let k be a kernel with compact
support on [O RZ) and let f € C*(M) Then there exist constants C,C" > 0 such that

nh™e2

Jor all = <e < 1/C and 0 < h < hyax with probability at least 1 — Cne™" @ |

‘S/\,h,n(f) — EgA,h,n(f)‘ <e.

In particular, if h — 0 and nh™/logn — oco. Then

nlggos’\’h’”g) Zg)‘/ (VY f)parp(@)> 2 /det g dz,  almost surely.

Proof: From Proposition 2.31 one can deduce there exists a constant C' such that

1122; |dhn(Xi) — pu(Xi)| < e

n m€2
holds with probability 1 — Cne™ "o Let us define

Unn = sz 5 > ki) i)

z]l

then one can deduce from Equation 2.25 in the proof of Proposition 2.42, that there
exist constants K, K5 independent of h such that with probability greater than

__[n/21n™é?
1 — 2¢ 2K1+2/3¢Ky ,

|Un,h - IEJ]n,h| S €
Note that for hRy < min{x/2, Ry/2} we have
EUnn < 822" B Pl 1K o

Since M is compact, we have Vo € M, 0 < Dy < py(z) < D,. Working on the event
where the union bound for dj, and the bound for U, hold and using a Taylor
expansion of x — = with

B3 = min{dp (X)) dnn(X;), pr(Xi)pn(X;)} 7 < (Dy — €) 2D,
we get for € < Dy/2,
1 1
(A (X) (X)) (o0 (X3)pi (X))
< A B dpn(Xi)dnn(X5) — pr(Xi)pa(X;)]
<A B (|dnn(Xs) = pr(Xa)|dnn (X5) + pi(Xi)|din (X5) — (X))
< AB(Dy+ €)e + Dye] < C'e.
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Note that C’ is independent of X; and X,. For hR), < min{x/2, Ry/2} and € <
%E Un.n we get

Sual) = S (D] < |5z gy 20 U100 = £ PR )

ij=1

S 3 %) = FPR(C0) — 0D

2,j=1
4 4 REL(f)* ||k o
~ nh™ D
In the same way as shown in the proof of Proposition 2.42 a similar bound can be
derived for hRy > min{x/2, Ry/2}. Now applying Proposition 2.42 we are done. [

+C'e

+ C'L(f)? S5 2™ RE™ |Ip|| o 1Kl €

This proof applies only to one function. However uniform convergence for a suitable
set of bounded functions with finite L..-covering numbers (this requires a certain
smoothness of the considered set of functions) can either proven by a standard
covering number approach, or one uses the more sophisticated uniform convergence
bounds for U-statistics developed by Nolan and Pollard in [69].

2.3.6 Summary and fixation of Hy by mutual consistency requirement

When we introduced graph Laplacians for undirected graphs in Section 2.1.4, we
noted that for both the normalized and unnormalized graph Laplacians there exists
a whole family of choices of the graph structure Hy, Hgp and d which yield the same
normalized resp. unnormalized graph Laplacian. We will show in this section that
one can at least fix the weighting function x in Hy (which then in turn implies that
also the product y(w;;)*¢(w;;) is fixed). However fixing also the weights ¢ in Hp
and 7 in the difference operator d apart from the assumptions we imposed in 2.1.4,
remains an open problem.

In Table 2.1 the results of the previous sections are summarized. Now we fix Hy, for
both the normalized and the unnormalized graph Laplacians by requiring mutual
consistency of the limits. By construction every graph Laplacian A = d*d is a
self-adjoint operator in H(V, x). Now as we will show the limit operators of the
normalized and unnormalized graph Laplacian are symmetric in some weighted Lo-
space on M. Mutual consistency means now that we require that also (f, g)H(VO{)
converges towards the corresponding weighted Lo-space.

Let us first consider the normalized graph Laplacian. In Theorem 2.39 it was shown
(up to constants) that lim, oo (Axpnf)(z) ~ (Asf)(z) almost surely as h — 0 and
nh™ /logn — oo with s = 2 — 2\. Now in Equation 2.11 it was shown that A, is
symmetric on a dense subspace of Lyo(M, p® dV'). That yields the following scheme:

Ay pn  self-adjoint in H(V, x)

4 47
A symmetric in  Ly(M,p*dV)

In order to satisfy mutual consistency, H(V, x) has to be asymptotically equal to
Lo(M,p®dV) or said in another way: the limit operator A, should be symmetric
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Tabelle 2.1: Results of the previous sections. All statements hold (up to constants) pointwise for
h — 0 and nh™**/logn — oo (however some results require less restrictive conditions). On the
left hand the graph objects are listed and on the right hand side their corresponding limit on the
manifold for n — oo.

Graph Submanifold M in R?
dn,h p(x)
A, (p(x))' =
Anorm f Agf, s =2—2)\
Aunnorm f (p(z))' =P A f, s =2 — 2\
(F: D rnwvidnnn (f,9)3 with H = Lao(M, p®), s =2 — 2
S(f) = Af )y, (VI Vf)y with H = Lo(M,p®), s = 2 = 2

with respect to the limit inner product of Hy. We know by Proposition 2.41 that
under the conditions stated there for x(dxpn) = dann we have up to constants
Mmoo (f, 9)20, ~ (2 9) (0 ps avy With s = 2(1 = A). Since no other weight function
X(dann) Would yield the same limit, we conclude that for the specific weights on
the graph we have chosen there exists no other choice of y such that the inner
product converges in this way'®. Therefore the only choice of  to fulfill the mutual
consistency requirement is x(d) = d. Now the question is if we can also fix the
weights ¢ in H(FE, ¢) and the weights v of d. Using the general form of the graph
Laplacian for undirected graphs in Equation 2.6 and comparing it with that for the
normalized one in Equation 2.7, we get only the condition:

%Z'Y(wji)2¢(wji) =d;  — y(wp)e(ws) = wji. (2.26)

Unfortunately this does neither fix v nor ¢. A possible solution might lie in studying
also the limit of H(E, ¢). However at the moment we have little intuition about how
this limit should look like. In particular the interpretation of functions in H(E, ¢)
as discrete flows seems hard to transfer to the continuous setting.

Now the same analysis can be done for the unnormalized graph Laplacian Ay .
For bounded functions f, g we have by the strong law of large numbers

hm (fs Drvay = lim — Zf / f(z p(x)dV(z), a.s.

n—oo M,

Similar to the normalized case we get the following scheme:

18However this does not imply that there exists no other more general inner product on Hy which would have
the same limit.
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A self-adjoint in ~ H(V, x)

U 47
p(z)'72*A,  symmetric in  Ly(M,pdV)

The only way how this convergence can happen (for all A > 0) is x(d) = 1. Compa-
ring the general form of the graph Laplacian for undirected graphs in Equation 2.6
with that for the normalized one in Equation 2.8, we get the same condition as in
Equation 2.26 for the weights ¢ in H(FE, ¢) and + in the difference operator d.

2.4 Applications

2.4.1 Intrinsic dimensionality estimation of submanifolds in R?

The topic of intrinsic dimensionality estimation of submanifolds in R? has a long
history. In this work we consider the case where we have random samples from a
probability distribution which has support on a submanifold in R?. In recent years
there has been done a lot of work in estimating manifold structure from the data.
However finding low-dimensional approximations of submanifolds is considerably
harder than estimating their dimension, and the goal of what kind of the structure
of the manifold should be preserved in the approximation differs from method to
method.

The estimation of the intrinsic dimensionality is interesting in machine learning out
of the following reasons:

e The intrinsic dimensionality is equal to the degrees of freedom or free parame-
ters of the dataset which is an important qualitative description of the data,

e for some dimensionality reduction method one needs to know the intrinsic di-
mension, see also Section 2.3.4,

e one can use the intrinsic dimension as a feature for prediction (time series
analysis),

e high intrinsic dimension of a dataset can explain bad learning performance
(however high intrinsic dimension does not necessarily imply bad learning per-
formance).

The goal of estimating the dimension of a submanifold is a well-defined mathema-
tical problem. Let us first give a short description of different possibilities to define
dimension. The most general one is the topological dimension:

Definition 2.44 (Topological dimension) A topological space X has topological
dimension m if every open covering C' has an open refinement ° C' in which every
point occurs in at most m + 1 sets in C'. m is the smallest such integer.

The notion of Hausdorff dimension can deal with sets of non-integer dimension and
is therefore suited for fractal geometry, see [32].

19A refinement C” of a covering C'is a cover of X such that for every S’ € C’ there exists S € C such that S’ C S.
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Definition 2.45 (Hausdorff dimension) Let I be a subset of RY, s € R, s > 0.
For any 6 > 0 define

Hi(F) := inf{z diam(U;)* | {Ui}ier is a countable d-cover of F'},

icl
where diam(U) = sup, ,cp ||z — yl|. Define H*(F) = lims_o H(F). Then:
dimpausdort ' = inf{s > 0| H*(F) = 0} = sup{s | H*(F) = co}.

The topological as well as the Hausdorff dimension agree for submanifolds in R¢.
Differences arise only if one considers more irregular sets like fractals, see [32]. The
disadvantage of both is that they are very hard to compute.

The methods for dimensionality estimation up to now developed in statistics, stati-
stical physics and machine learning can be roughly divided into two groups. The first
one pioneered by Fukunaga [35] tries to determine the dimensionality by dividing
the data in small subregions followed by a principal component analysis (PCA) of
the points in each subregion. The averaged number of dominant eigenvalues (over
the subregions) determines then the dimension, see [35]. This method has two dra-
wbacks. First, one has to find a suitable scale for the size of the subregions. A too
small scale will lead to a systematic underestimation of the dimension and a too
large scale will lead to an overestimation due to the curvature of the submanifold.
Second, one has to determine what one considers as dominant eigenvalues which is
also a typical problem of standard PCA. The second type of estimators was ori-
ginally designed in statistical physics to determine the dimension of the attractor
of a chaotic dynamical system from samples of its time series, see [96] for a nice
review. They are all based on the assumption that the volume of an m-dimensional
set scales with its size s as s™ which implies that also the number of neighbors less
than s apart will behave in the same way. This was the motivation for Grassberger
and Procaccia in [38] to define the following notion of dimensionality which is easy
to compute from given data.

Definition 2.46 (Correlation dimension) Let X;, i = 1,...,n be points drawn
i.i.d. from a probability measure P where P has support on a submanifold in RY.
Then define the correlation integral as

Culs) = ﬁ Y Lixxg s (2:27)

1<j

The correlation dimension dim Corr is defined as

dim Corr = lim lim M.
s—0n—oo log S
In practice one computes C,,(s) for different s; and then fits a line through the set
of points [log s;,log C,(s;)] with least squares. Similar to the method of Fukunaga
also for the correlation dimension one has the drawback that one has to choose the
scales s;. Note that this is a crucial step since the (discrete) data always looks 0-
dimensional at a very small scale and is maybe even d-dimensional at a large scale so
that one either under- or overestimates the dimension. In our analysis we will take
the limits s — 0 and n — oo simultaneously since this corresponds also to what one
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does in practice: as one gets more sample points one examines the data at a smaller
scale.

The quantity we estimate is essentially the correlation integral with 1 replaced by a
general kernel function. However the way we estimate the dimension is based on the
convergence rate of the modified correlation integral. The advantage is that we only
have to choose once a kind of ’smallest’ scale at which one examines the data, the
others are then determined by the convergence rate. Also we examine to our know-
ledge for the first time the influence of using in the correlation integral the distance
in R? instead of the intrinsic distance of the manifold. The asymptotic analysis of
the modified correlation integral shows how the intrinsic and extrinsic curvature of
the submanifold as well as the smoothness of the density of the probability measure
influence the asymptotics of the correlation integral. Both effects lead to a scaling
of C,(s) which is different from s™.

This section has been partially published in [41].

Theoretical Background

We assume that the probability measure P generating the data X; € R? has support
on a m-dimensional submanifold M of R%. This means we are not trying to separate
possible noise in the data from the underlying ground truth. In fact we will argue
later in an experiment that on the basis of a finite sample it is in principle impossible
to judge whether one has noise in the data or a very curved manifold. Moreover we
also exclude the case of probability distributions with support of fractal dimension.
As in the case of noise it is in principle impossible to judge based on a finite sample
whether the data has fractal dimension or just very high curvature.

The m-dimensional submanifold M is a Riemannian manifold if one considers the
induced metric from R?. That means that the inclusion map i : M — R? is an
isometry (in the sense of Riemannian manifolds). Note that we will again use in
the following the somehow cumbersome notation z € M and i(z) € R? in order to
make it more obvious when we are working on the manifold M and when on R
As any Riemannian manifold, M is also a metric space with the path-metric. A key
point in the following proof will be the relation of the distance d(z,y) on M and the
Euclidean distance ||i(z) — i(y)|| in R? of two points x,3y € M given in Proposition
2.19.

Also in this section we will work in the general setting of non-compact Riemannian
submanifolds of R? with boundary and of bounded geometry and in general we
assume that the standard assumptions given in Section 2.3.1 hold. We impose an
additional condition on the density p(z) of the data-generating measure P:

/ pi(z)dV (z) < .
M
Again we define

Fu(lli(z) —i()I*) = himk(l\i(x) —i(y)II* /h?).

Now that we have stated the setting we are working in we can introduce our esti-
mator. We denote by X the i.i.d. sample X;,7 = 1,...,n of size n drawn from P.
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Then the U-statistic we use is defined as

Uan(k) = ———— 37 ka(li(X0) — (X)),

n(n —1) 1<i<j<n

For a moment we assume that we know the correct dimension m of M since the
neighborhood parameter h is taken to the power of m. This factor of 1/A™ is then
also the only difference (except that we use a “nicer” kernel function) to the standard
correlation dimension estimate in Equation (2.27). This apparently small change
allows us to take the limits as n — oo and A — 0 simultaneously which we think is
the more natural setting and also corresponds more to what people actually do in
practice. The actual estimator will be based on the behavior of U, ;(k) as one uses
another integer instead of the correct dimension m in the factor 1/h™.

The expectation of U, , (k) is given as

]EUn,h(/f)IEkh(Hi(X)—i(Y)HQ)I/M/Mkh(l\i(x)—i(y)HQ)p(x)p(y)dV(fC)dV(y)-

The central point is how this U-statistic behaves as n — oo and h — 0. At first we
study how the expectation behaves as h — 0. For this purpose we use a modification
of Proposition 2.27.

Proposition 2.47 Let S. = {x € M,d(z,0M) < €} and

fal) = / B ([i(2) — i) ]2) p(y) dV(y).

M

Assume furthermore that 0. := infeap s, 6(z) > 0. Then there exists an hy > 0, such
that for all h < hy,

/

M\S.

o) — (Copla) + O L [S)pla) + (B p)()]) | )V ()

< [ T@pla)avia),

M\S.

with S(x) = %[— R+1 152, T1(0;,0,)|1* | and where T'(x) is a bounded function on
M\S..

Proof: The expansion of f,(z) is given in Proposition 2.27, where hy(x) depends
on inj(z) and §(z). Now the injectivity radius on M\ S, is lower bounded due to our
assumption of bounded geometry and d(x) is by assumption lower bounded by d. on
M\S¢. Therefore there exists an hyg = infyepn s, ho(x) such that the expansion holds
on all of M\S, for h < hy. The function I'(x) is bounded since it depends only on
the bounded quantities. O

This proposition shows that U, (k) has only asymptotically the expected scaling
behavior. There is a second order correction induced by the curvature of M and
the possibly non-uniform probability measure P. We would like to notice that the
curvature corrections would vanish if one would use the intrinsic distance of M
instead of the Euclidean distance in U, (k).
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Proposition 2.48 Under the stated assumptions on M, P and k,

lim E U, (k) = Cy / p(@)2dV (z).

M
Proof: Let fu(z) = [ kn(|i(z) —i(y)|*)p(y) dV (y). Then by Proposition 2.27,
M

limy, o fn(z) = Cip(x). Moreover one can show that there exists a constant C' such
that | fn(z)| < C. Namely by our assumptions on M for h < min{x/2, Ry/2} :

15l [Pl
| fu(z)] < o Lyji(a)—i(y)|<hre AV (¥)
M

k
< Wl TPl ot (3, 200)) < . ) 27 52 B
where we have used Lemma 2.22 followed by Lemma 2.18. The upper bound for
h > min{k/2, Ry/2} is given by |f| < % Now both upper bounds for |f,| are
bounded and therefore integrable with respect to P. The proposition then follows

by the dominated convergence theorem since by assumption [, p(z)*dV (z) < co.
U

The next step in the proof is to control the deviation of U from its expectati-
on. A straightforward application of the concentration inequality for U-statistics of
Hoeftfding in Theorem 2.53 yields the following theorem.

Theorem 2.49 Let M, k, P fulfill the standard assumptions then

[n/2]R"™ 2

P (|Upp —EUpp| > €) < 2 HIoFUnn 2/ o ATE T e

Furthermore let n — oo and h — 0 then if nh™ — o0,

lim U, (k) = C’l/ p(z)*dV (x), inprobability.
M

n—oo

If the stronger condition nh™ /logn — oo holds then

lim U, n(k) = C’l/ p(z)*dV (x), almostsurely.
n—oo M

Proof: We have |k,||,, = |k|l/h™ and it can be verified that VarU,, <
K/hW™EU, . Since EU, ,(k) < oo we can apply Theorem 2.53. Using this concen-
tration inequality, convergence in probability of U, ; towards its expectation follows
immediately from the condition nh™ — oo. Moreover we know from Proposition
2.48 the form of EUjy as h — 0. Complete convergence which implies almost su-
re convergence follows from ) >°  P(|U,, —EU,;| > €) < oo. This follows if the
stronger condition holds. 0

The previous theorem together with the following corollary will be the cornerstones
of our algorithm.

Corollary 2.50 Let M, P and k fulfill the standard assumptions and define kj, =
Lk(|li(z) —i(y)|* /h®). Then if h — 0 and nh! — oo,

lim U, (k) = oo, if I>m
lim U, (k) = 0, in probability, if I<m

n—oo
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Proof: In Theorem 2.49 we have shown that for [ = m, U, (k) converges to
Cy [, p(x)?dV (z) in probability. Now with the different power of h in front of the
kernel we have convergence towards ]f+m v P(2)?dV (z). Since the integral is finite,
Up.n(k) diverges if [ > m and converges to zero if [ < m. O

Note that we get convergence to a finite number if and only if [ = m since 0 <

fM p(x)?dV(r) < 0.

The Algorithm

The algorithm is based on the convergence result in Theorem 2.49 and Corollary
2.50. Using these results, we know that in order to get convergence in probability
the bandwidth h has to fulfill nA™ — oo. Otherwise the U-statistic either diverges
or approaches zero. We will use this property by fixing a convergence rate for each
dimension, that means we are fixing h as a function of the sample size n. Then we
compute the U-statistic for subsamples of different sizes where h varies according to
the function we have fixed. Finally the dimension is determined by the U-statistic
which has the smallest slope as a function of h.

First Step: Fixing h;(n)

As a first step we fix hy(n) as a function of the sample size n and the dimension .
We choose the function h;(n) in such a way that it is just sufficient for convergence
in probability so that h;(n) approaches zero at the fastest allowed rate, that is

1 1 (logn\"
nh(n)' = glogn = hy(n) = - < ogn> ,

C n

where c¢ is a constant. The crucial point of this procedure is that the scales at which
we look at the data vary according to the dimension [ so that U, (k) will depend as
a function of the sample size n on the chosen dimension [. We fix the constant ¢ in
the algorithm by determining a certain nearest neighbor scale. Let N be the total
number of samples of our data set and define d(X;) as the distance of the sample
X; to its nearest neighbor. We set:

N o 1/1
h(N) = %Zd(){i) = c= hl(lN) (1 }gVN> .

In total we get for the function h;(n):

N logn ok
) = () (B

Note that h;(N) does not depend on the dimension that is we examine the full data
(all N sample points) for each dimension at the same scale h;(/N). The important
point is now that as we consider subsamples of size n the scale h;(n) is different for
each dimension.
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Second step: Computing the dimension

The choice of the kernel seems not to influence the result much. We choose a kernel
with compact support to save computational time, that is

ka) = (1— o),

Note that this is a very simple kernel which allows a fast evaluation. However this
kernel function is not differentiable at = 1 so that it violates our assumptions on
the kernel function. Instead one could use the kernel function k(z) = e*/U=2) for
r <1 and k(x) = 0 elsewhere which fulfills this condition. This kernel function has
the problem that it is very small already before x = 1 which results in an effective
choice of a smaller scale. Therefore in order to compare the results of the two kernel
functions, one has to take a slightly larger value of the minimal scale h;(N) for the
second one (dependent on «).
We consider subsamples of size {[N/5], [N/4],[N/3],[N/2], N}. For each dimension
I €{1,... lhax}, where we put usually /., = min{d,20}*°, we compute the empi-
rical estimate of U[N/r],hl([N/r])(k)y r = 1, ey D.
In particular for small sample sizes taking subsamples is usually not a good idea
since the variance of these estimates is quite high. In order to improve the estimates
in particular of the subsamples of small size, we consider not only one subsample but
several ones by using the so called two-sample U-statistics which is defined as fol-
lows. Given two i.i.d. samples X1,..., X, and Y;,...,Y,,, one considers the following
U-statistic

1 n

ij=1

It was shown by Hoeffding [48] that also this form of the U-statistic converges as in
Theorem 2.53. In our case we will take two samples of the same distribution so that
the expectation and variance and therefore also the limit and the convergence rate
are the same as for the one-sample U-statistic.
Let us explain how we use this result for the subsamples. Consider the size [N/2].
Using the full set of N data points, we can build three subsamples, namely (Xox, Xo ),
(Xogr1, Xox), and (Xogr1, Xoks1). The first and the last one lead to one-sample U-
statistics and the second one to a two-sample U-statistic. For each of these sub-
samples we compute the estimates of U[N/Q]JL([N/Q])(]{:). Obviously one gets for the
subsample of size [N/r], r = 5,4,3,2,1, r(r + 1)/2 such estimates, and for each r
we take the mean of them. This method looks at first quite complicated. However
the implementation is straightforward and solves the problem that especially for
small sample sizes N taking subsamples leads to high variances in the estimates.
Using instead a set of subsamples with the described method, we can minimize the
variance of the estimates corresponding to the subsamples.
The estimation of the U-statistics can be done for all dimensions and for all subsam-
ple sizes simultaneously. Especially for high-dimensional data which is potentially
the most interesting one the main computational cost lies in the computation of the
distances and not in the calculations of Uy/r an/r) (k).
Finally in order to determine the dimension we fit for each dimension [ a line through

20The choice of 20 as an upper bound is completely arbitrary and can be changed according to the problem at
hand.
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the five points

[log hi(IN/r]), 1og Uy (K] 7 =1,...,5,

with weighted least squares with weights w(r) = 1/r. This can be easily done in
closed form. The dimension is then determined by the line with the smallest absolute
value of the slope of the line. This is justified since by Theorem 2.49 and Corollary
2.50 the slope of log Uy, n,n)(k) behaves as (m — ) log hy(n) as n — oo and h — 0.
We use weighted least squares since for smaller subsamples we look at the data at
a larger scale. Therefore if one has high curvature these estimates are less reliable.

Experiments

The experiments we perform are only partially based on datasets which have be-
en previously used for dimensionality estimation. The reason for this is that these
datasets do not have high extrinsic and intrinsic curvatures. In our experiments ba-
sed on artificial datasets we study the influence of high curvature as well as noise
on our estimator. Later on we will evaluate the estimator on two real world data-
sets. The first one is the face database used in the study of ISOMAP [95] and the
MNIST database. For the MNIST database we actually do not know the intrinsic
dimensionality. Therefore we study first for the digit 1 an artificial dataset where
we can control the number of dimensions. This study gives then a hint how well our
estimator performs. We compare the results of our method to that of the correlati-

on dimension estimator described in the introduction and the estimator of Takens
defined in [94] as

dimé;rr = —< 1Og( ||Z<Xl) - Z<XJ>H /hTakens) >,

where < > is the mean over all distances smaller than ATakens. In order to do a fair
comparison, we tried to optimize the scales s; for the correlation dimension estimator
as well as the 'maximal’ scale hAukens for the Takens estimator over all the datasets.
Then we fixed them to s;, =d+ 0.2r0, r = 1,...,5, for the correlation dimension
estimator and the maximal scale of the Takens estimator to, hrakens = d + o, where
d is the mean and o the standard deviation of the nearest neighbor distances. We
would like to note that also for the Takens estimator one has to determine only one
scale however since it is a kind of 'maximal scale’ it is more difficult to choose then
a minimal scale as for our method.

Sinusoid on the circle In this example our one-dimensional submanifold is a strongly
oscillating sinusoid on the circle in R3, see Figure 2.4.

1
s(t) : [0,27) — R*  s(t) — (sint, cost, 1—Osin 150¢).

We sample straightforward in our coordinate expression which yields a non-uniform
probability measure on this manifold where more points appear at the extreme points
of the sinusoid. We compare this submanifold to a circle with uniform noise of height
0.1 in the z-direction, see Figure 2.5, which results in a strip of the cylinder which
is 2-dimensional. The results are shown in Table 2.2 for 400,500 and 600 sample
points. Two conclusions can be drawn. The first rather obvious one is that very
curved submanifolds require a large number of samples so that their dimension can
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estimated correctly since the high curvature of the sinusoid is misinterpreted as a
second dimension for small sample sizes. The second one is that for small sample
sizes it is impossible to distinguish between noise and high curvature. The rather
surprising fact is that already for a sample size of 600 we have an almost perfect
distinction between the one-dimensional sinusoid and the two-dimensional strip of
the cylinder.

og 1
02 04 08
TS, g -06 04 -02 0

Abbildung 2.4: 600 samples of the sinusoid

02 04 06 08 1

S _og -06 -04 02 0

Abbildung 2.5: 600 samples of the circle with uniform noise of height 0.1 in the z-direction

The m-sphere In this experiment we study the m-dimensional spheres S™ embed-
ded in R™*. The n = 600,800, 1000, 1200 data points are sampled in 90 trials
uniformly from the sphere S™. The number of successful trials is given in Table 2.3.
For S” and S? the number of samples is no longer sufficient (curse of dimensionality),
most of the time the dimension is underestimated by one.

The Gaussian distribution In this experiment the data is drawn from an isotropic
Gaussian in R? in order to show how the estimators can deal with a varying proba-
bility distribution. The results are shown in Table 2.4. In particular for dimension 6
we outperform the other estimators. This is the only dataset where our method has
a clear advantage over the Takens estimator.

The 10-Mbbius strip The k-Mobius strip is a submanifold in R? which can be crea-
ted by taking a rectangle, twisting it k-times, and then identifying the ends. If k
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Tabelle 2.2: Correct estimates of dimension 1 for the sinusoid and dimension 2 for the noisy circle
of 90 trials. a/b/c, a our method, b corr. dim. est., ¢ Takens est.

400 500 600
Sinuosid 15/0/12 | 49/57/49 | 86/88/90
Noisy Circle || 90/90/90 | 90/90/90 | 90/90,/90

Tabelle 2.3: Number of correct estimates of 90 trials for S™. a/b/c, a our method, b corr. dim. est.,

¢ Takens est.

600 800 1000 1200
53 1[790/89/90 | 90/90/90 | 90/90/90 | 90/90/90
5> || 83/80/88 | 87/81/90 | 89/86/90 | 90/89/90
ST || 68/57/65 | 73/66/79 | 78/66/78 | 79/72/84
5% || 30/36/32 | 47/30/43 | 50/33/47 | 58/45/50

is odd one gets a non-orientable manifold with surprising properties. It is obvious
that this manifold has high extrinsic curvature increasing with the number of twists
k. We considered a 10-Mobius strip, see Figure 2.6 for an illustration with 16000
points. The coordinate representation for u € [—1,1],v € [0, 27), is as follows:

z1(u,v) = (1+ L cos (Ev)) cos(v),

2 2
zo(u,v) = (1 + gcos (gv)) sin(v),
u k
x3(u,v) = 5 sin (Ev)

We sampled in this coordinate representation 20, 40, 80 and 120 points. This example
is done to illustrate that even for manifolds with high extrinsic curvature the intrinsic
dimension can be estimated with a relatively small sample size, see Table 2.5.

A 12-dimensional manifold in R7? As the last artificial dataset we present a high-
dimensional dataset, a 12-dimensional manifold in 72-dimensions. The submanifold

Abbildung 2.6: The 10-Mobius strip with 16000 points.
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Tabelle 2.4: Number of correct estimates of 90 trials of a d-dimensional Gaussian. a/b/c, a our

method, b corr. dim. est., ¢ Takens est.

Dim 100 200 400 800
3 || 86/81/86 | 90/90/90 | 90/90/90 | 90/90/90
4 || 76/65/75 | 85/78/85 | 90/89/90 | 90/90/90
5 || 58/41/49 | 66/49/59 | 81/72/82 | 90/90/90
6 || 44/25/23 | 41/24/15 | 49/37/34 | 77/55/61

Tabelle 2.5: Correct estimates of 90 trials of the 10-M&bius strip.

a/b/e, a our method, b corr. dim.

est., ¢ Takens est.

20 40 80 120
10/34/44 | 71/63/73 | 83/78/36 | 88/82/90
is generated by
z(a) :[0, 1] — R™,
Toi—1(a) = ayypq cos(2mey;), i=1,...,11,
Toi() = a1 8in(2mey), i=1,...,11,
Tog(a) = g cos(2maryn), xoy(a) = oy sin(2was),

Tjpoa = Tjpag = x5, J=1,...,24.

By construction the 12-dimensional manifold lies effectively in a 24-dimensional
subspace. We sample directly in these coordinates which yields a non-uniform pro-
bability measure on the manifold which is concentrated around the origin. This leads
to an interesting phenomenon when we try to estimate the dimension. The results
shown in Table 2.6 illustrate the connection between high curvature and non-trivial
probability measure effects on the manifold. We believe that they somehow cancel
out in this case. Namely a highly curved manifold leads to an overestimation of the
dimension whereas a concentrated probability measure leads to an underestimation.
For a relatively small sample size of 800 we already get a quite good estimate of the
dimension which is probably due to the high concentration around the origin.

The ISOMAP face database The ISOMAP face database consists of 698 images (256
gray levels) of size 64 x 64 of the face of a sculpture. This dataset has three parame-
ters: the vertical and horizontal pose and the lighting direction (one-dimensional).
All estimators get for this dataset in R*%% the correct intrinsic dimension of 3.

The MNIST dataset The MNIST dataset of handwritten digits consists of 70000
images (256 gray levels) of size 28 x 28. In the generation of the MNIST dataset the
center of mass was computed for all images and then the image was translated such
that the center of mass lies at the center of the image. However note that this does
not mean that there are no translational degrees of freedom in this dataset since e.g.
the digit 1 can be written with a line below or not and therefore the center of mass
varies.
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Tabelle 2.6: Correct est. of 90 trials on the 12-dim manifold. a/b/¢, a our method, b corr. dim. est.,
c Takens est.

200 400 800 1600
46/42/43 | 60/51/61 | 64/70/63 | 84/85/85

The artificial 1-digit dataset

The intrinsic dimension of each digit is in principle unknown. In order to validate our
experiment, we constructed an artificial dataset of the digit 1 where we can control
the dimensionality. Namely we have 5 degrees of freedom: two for translations (T),
one for rotation (R), one for line thickness (L), and one for having a small line at
the bottom (V). The images are constructed by having an abstract 1 as a function
on [0,1]? where the different transformations are applied and then this function on
[0,1]% is discretized to an image of size 28 x 28. We constructed 5 datasets each of
size 10000. The letter combination shows which transformations have been applied,
see Figure 2.7 for samples of the TRLV dataset. The results of the estimators on
this four datasets are shown in Table 2.7. In three cases we are able to estimate
the correct intrinsic dimension whereas in one case we overestimate the dimension.
Regarding these results on this artificial dataset, we have some confidence in the
results on the real MNIST dataset.

181)111]11

Abbildung 2.7: Samples of the artificial 1-dataset T+R+L+V.

Intrinsic Dimensionality of the Digits in MNIST The estimated intrinsic dimensions
are reported for each digit in Table 2.8 together with the number of samples of the
digit in the MNIST database. Considering our result of the artificial dataset for the
digit 1, we think that an estimated dimension 8 seems quite reasonable. Additional
degrees of freedoms could be the length of the main line, the angle between the main
line and the upper line, and the length of the upper line. The intrinsic dimensions
of digit 2 and 3 were estimated in [27] for a subsample of size 1000 as 13 and
12, respectively 12 and 11, depending on the way they build their neighborhood
graph. We estimate an intrinsic dimension of 13 for digit 2 and 14 for digit 3. In
comparison the results roughly agree. The difference could arise since as we consider
the whole dataset we look at the data at a smaller scale and therefore estimate a
higher dimension.

Discussion and open problems

We have presented an algorithm for intrinsic dimensionality estimation of a subma-
nifold in R from random samples. The assumptions we impose on the submanifold
and the probability measure on this submanifold are not restrictive. Our theoretical
analysis clarifies the influence of the curvature of the submanifold and smoothness
of the density on the asymptotic behavior of our estimated quantity. Opposite to
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Tabelle 2.7: Estimated Dimension of the artificial 1-data sets.

Art. Digit 1 T TR TRL | TRLV
int. dim. 2 3 4 5
est. int. dim. | 2/1/2 | 3/4/4 | 5/4/4 | 5/5/5

Tabelle 2.8: Number of samples and estimated intrinsic dimensionality of the digits in MNIST.

1 2 3 1 5
7877 6990 7141 6824 6903
8/7/7 |13/12/13|14/13/13|13/12/12[12/12/12

6 7 8 9 0
6876 7293 6825 6958 6903
11/11/11[10/10/10| 14/13/13[12/11/11 [ 12/11/11

the standard correlation dimension estimator we only have to choose once a scale at
which we examine the data. The scales at which we examine subsamples are then
fixed so that we have only one free parameter in our algorithm. Even more we fixed
this parameter by choosing the somehow smallest scale at which it makes sense to
look at the data. In that sense we have presented an algorithm without parameters
which estimates the dimension for all kinds of submanifolds irrespectively of their
intrinsic and extrinsic curvature and works well also for real world datasets. The
experiments show that we are on average significantly better than the correlation
dimension estimator and on a slightly better level than the Takens estimator (in
particular for the Gaussian dataset).

The most apparent open problem is the intrinsic dimensionality estimation of sub-
manifolds which are sampled noisy. Kegl proposes in [53] to estimate the correlation
integral at different scales so that finally the dimension is no longer a fixed number
but a function of the scale at which one examines the data. In principle this approach
is appealing, however it does not solve the question under which conditions one can
in prinicipal still estimate the dimension of a submanifold even if it is corrupted
by noise. We have demonstrated by our first experiment that the estimation of the
dimension of a highly curved submanifold leads to wrong results as long as the scale
at which one looks at the data is larger than the radius of curvature of the sub-
manifold. This implies that without bound on the curvature the estimation of the
‘correct’” dimension is impossible. However, even if one assumes that one has a bound
on the radius of curvature, one needs also a bound on the noise level. Effectively
the noise level has to be sufficiently smaller than the radius of curvature. Otherwise
it can happen that the noise 'connects’ parts of the submanifold and therefore the
intrinsic dimensionality cannot be observed anymore. Then examining the data at
a scale which lies in between the noise level and the radius of curvature should lead
to a correct estimation of the dimension. A more formal mathematical justification
of the just described scheme remains as an open problem.
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2.5 Appendix

2.5.1 U-statistics

In this chapter we collect some basic facts about U-statistics. They are taken from
the paper of Hoeffding [48] and the book of Serfling [84]. In particular we are inte-
rested in concentration inequalities for U-statistics.

Definition 2.51 (One-sample U-statistic) Let X;,,i =1,...,n be an i.i.d. sam-
ple from P on a set S and let k : S x S — R be a symmetric function. Then

Uulh) = —— SR X

1

We just note that in a V-statistic it is summed also over the diagonal. In general
if k£ is a bounded function on the diagonal all concentration inequalities for the U-
statistic can be transferred to the corresponding V-statistic. We have introduced a
U-statistic of degree 2, that is k is a function of 2 variables. However the general
setting considers symmetric functions k of an arbitrary fixed number of variables.
Another generalization are the so-called two-sample U-statistics where one has samp-
les drawn from two possibly different probability measures.

Definition 2.52 (T'wo-sample U-statistic) Let X;, i = 1,...,n and Y}, j =
1,...,m be two i.i.d. samples from P resp. QQ on S and k : S xS — R a sym-
metric function. Then

is called a (two-sample) U -statistic.

Most of the theory of one-sample U-statistics can be transferred to two-sample U-
statistics. In particular the following Bernstein type concentration inequality can be
proven to hold also for a two-sample U-statistic [48].

Theorem 2.53 Let ||k|| < b, EL(X,Y) < 0o, and 0? = Vark(X,Y) < oo then

[n/2]2

P (|U, (k) — EUL (k)| > €) < 2¢ 272/3b-20,00

where [z] denotes the greatest integer smaller than .



Kapitel 3

Kernels, Associated Structures
and Generalizations

3.1 Introduction

Positive definite kernels are extremely powerful and versatile tools. They allow to
construct spaces of functions on an arbitrary set with the convenient structure of a
Hilbert space. Methods based on such kernels are usually very tractable because of
the particular structure (reproducing property) of the space of functions. This has
a large number of applications in particular for statistical learning, approximation,
or interpolation where one has to manipulate functions defined on various types of
data.

Our goal is to survey some of the results relevant for machine learning. Since the
literature is scattered among various fields of mathematics, we believe that the lear-
ning community benefits from a unified exposition of the results and relationships
between them. This chapter is an attempt to go into that direction where we con-
centrate on basic structures and properties and ways of generalizing the standard
setting. Although the theory can be quite technical, we want to shed light on its
essence and convey several important messages that anyone working with kernels
and associated spaces should have in mind.

A first message is that there is an equivalence (in a strong) sense between sever-
al objects: positive definite kernels (which are specific functions of two variables),
Hilbert spaces of functions with a certain topological property, Gaussian processes,
and a class of positive operators. A second message is that the mysterious feature
mapséssociated to kernels are not related to the Mercer property and they exist and
can be defined in many different ways as soon as the kernel is positive definite. A
third message is that the integral operator associated to a kernel has nice properties
even if the kernel is not continuous. In particular it is tightly related to the cova-
riance operator (i.e. the population limit of a covariance matrix) as they have the
same spectrum. A fourth message is that most attempts to generalize kernels (e.g.
to operator-valued or generalized functions) end up being special cases. This may
seem surprising but it can be easily seen by changing the point of view one adopts,
going from sets to functions on these sets. Finally, we recall that there exists a well-
developed theory of indefinite kernels (i.e. kernels that are not positive definite) and
their associated structures based on the notion of reproducing kernel Krein spaces.
This chapter has been partially published in [44].
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3.2 Positive Definite Kernels and Associated Structures

We restrict ourselves to the real-valued case and denote by RY the vector space of
functions from X to R where X is an arbitrary indez set’ and by RI*! the vector space
of finite linear combinations of evaluation functionals (i.e. of the form Y | a;0,,).
We define a bilinear map from RI*! x RY to R as

<Zai5xi7f> ::Zaif(:vi) where 21,..., 1, € X.
=1 R[X],RX

i=1

In this first section we shortly review the notion of positive definite (PD) kernels
and its associated structures. Indeed such a kernel can be associated to a space
of functions, called reproducing kernel Hilbert space (RKHS), to a linear operator
called positive symmetric kernel (PSK) operator and to a Gaussian process in a
natural way. The following diagram illustrates the fact that all these notions are
tightly related.

’ PD kernel | — | RKHS |
l l
’ PSK operator ‘ — ’ Gaussian Process \

3.2.1 Definitions
We now give the definitions of the four objects in the preceding diagram.

Definition 3.1 A real-valued symmetric function k : X x X — R s called a posi-
tive definite (PD) kernel if for alln > 1, zy,...,2, € X, ¢1,...,¢c, €R,

Z CiCjk'(l’i, iL‘j) 2 0. (31)

ij=1
The set of all real-valued positive definite kernels on X is denoted fo}('

Definition 3.2 A positive symmetric kernel (PSK) operator K is a linear
operator K : RIXN — RY which is symmetric

v, w' e R (0, Kw')ga gx = (W', KV')gia g

and positive: Vo' € R (v, Kv')yiay pa > 0.
The set of all such operators is denoted as L, (RY).

Definition 3.3 A reproducing kernel Hilbert space (RKHS) H on X is a
Hilbert space of functions from X to R where all evaluation functionals 0, : H — R,
8.(f) = f(x) are continuous®, equivalently for all x € X, there exists a M, < oo
such that

The set of all such spaces is denoted as Hilb(R?).

Lor also called input space.
2with respect to the topology induced by the norm of H
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This definition stresses the fact that an RKHS is a Hilbert space of pointwise defined
functions where norm convergence implies pointwise convergence.

Definition 3.4 A centered Gaussian process indexed by X is a family X,, x €
X, of jointly normal random variables, that is for each finite set x1,...,x, € X, the
vector (Xu,, ..., X,,) is centered Gaussian®.

The set of all such processes is denoted by G(X).

Note that we restrict ourselves to centered Gaussian random variables. In principle
the results can be transferred to the non-centered case.

3.2.2 Properties and Connections

The fundamental and most important property of PD kernels is the relationship with
inner product spaces. Often the use of kernel methods is justified by the implicit
mapping of the input space X into a ’high-dimensional’ feature space. As the next
well-known proposition shows, such a mapping exists as soon as the kernel is positive
definite and actually characterizes such kernels.

Proposition 3.5 A function k : X x X — R is a PD kernel if and only if there
exists a Hilbert space H and a map ¢ : X — H such that Vx,y € X, k(z,y) =

(0(x), 9(y))y-

Note that this result has nothing to do with Mercer’s theorem (we will come back
to this issue in section 3.3.1). There exist many proofs of the above proposition and
we will give one later.

We will now establish the connections between the four objects we have introduced
in the previous section. It is well known (see e.g. [4]) that RT*¥ is closed under
addition, multiplication by a non-negative number, and point-wise limits and has a
partial order relationship (k1 = ks if k; — ko is PD). It is less known that all the
other sets introduced above (L, (RY), Hilb(RY) and G(X)) have a similar structure.
Actually, the following strong equivalence between these spaces and their structures
holds.

Theorem 3.6 [5]/ There exist bijections which preserve the structure of ordered,
closed convex cones between each two of the following sets

Rj\fXX ) L+(RX) ’ Hllb(RX) ’ G(X) :
An example how the order is transferred from RT*% to Hilb(R¥) is the following.

Theorem 3.7 [}/ Let ky, ks € RfXX and Hy, Ha their associated RKHS. Then H, C
Ha, and || fillye, = I filly, » ¥V f1 € Hy if and only if ky < k.

In the remaining part of this section we will show some of these bijections. All other
bijections can then be constructed by composing two of these maps. Additionally we
introduce in the appendix several objects associated to a Gaussian Process. These
objects become interesting if one is interested for example in sample path properties
of a Gaussian Process.

3equivalently, all linear combinations 3 o; Xz, are real Gaussian random variables with zero mean.
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PD Kernels and PSK Operators

The bijection between kernels and kernel operators is made explicit in the following
lemma.

Lemma 3.8 [83] Let k € RY*Y. The linear operator K : R¥ — RY defined by
K(d;) = k(x,) is a PSK operator. Conversely, given K € L. (X), the function k
defined as k(x,y) = (0u, K0y) gy px is a PD kernel.

The above lemma indicates the close correspondence between the kernel function
and its associated operator. In particular, symmetry of one corresponds to symmetry
of the other, while positive definiteness of the former one corresponds to positivity
of the latter.

PD Kernels and RKHS

The following fundamental theorems illustrate the link between RKHS and PD
kernels.

Theorem 3.9 [}/ Let H be a Hilbert space of functions from X to R, H is a« RKHS
iof and only if there exists a map k : X x X — R such that

Vee X, k(x,-)eH,
VfEH, <f<),k(l‘,)>H:f(£C)

If such a k exists, it is unique and it is a PD kernel.

The second property is called the reproducing property of the RKHS and k is called
the (reproducing) kernel of H.

Theorem 3.10 (Moore, see [4]) If k is a positive definite kernel, then there exists
a unique reproducing kernel Hilbert space H whose kernel is k.

Proof: We give a sketch of the proof (of both theorems above) which involves
an important construction. The proof proceeds in three steps. The first step is to
consider the set of all finite linear combinations of the kernel: G = Span{k(z,.) :
r € X} and to endow it with the following inner product

<Z aik(z;, ), Z bik(z;, .)> = aibk(xi,z)). (3.2)

% G 1,5

It can be shown that this is indeed a well-defined inner product. At this point we
already have the reproducing property on G. The second step is to construct the semi-
norm associated to this inner product and to show (thanks to the Cauchy-Schwarz
inequality) that it is actually a norm. Hence, and this is the third step, G is a pre-
Hilbert space which can be completed* into a Hilbert space H of functions. Finally,
one has to check that the reproducing property carries over to the completion. It is
then easy to show that any other Hilbert space with the same reproducing kernel
has to be isometric isomorphic. Namely let IC be another RKHS with reproducing

4i.e. we add to G the pointwise limits of all Cauchy sequences of elements of G
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kernel k. It is obvious that H has to be a closed subspace of IC. Then K can be
decomposed into K = H @& H*. Now let f € K, but f ¢ H. Then for all z € X

fa) = (f k(@) = (1 + 1 k() e = fl(2)
Therefore f = f which is a contradiction so that we get K = H. O

Hence H is simply the completion of the linear span (i.e. finite linear combinations)
of the functions k(z,-) endowed with the inner product (3.2).

PD Kernels and Gaussian Processes

It is well-known that a centered Gaussian process (X,;)zcx is uniquely determined
by its covariance function E [X,X;] which is a positive definite kernel. Conversely
any positive definite kernel defines a covariance function and therefore a unique
Gaussian process by Theorem 3.40.

3.3 Useful Properties

A quite useful relationship between k& € RT*Y and the set X is that k induces a
semi-metric on X by dy(z,y) = ||k(x,-) — k(y, )|, - Many properties of the RKHS
can be stated in terms of this (semi)-metric space (X, dy) as we will later see in the
study of the separability of the RKHS.

3.3.1 Feature Maps

Sometimes Mercer’s theorem is mentioned as a necessary condition to have a feature
map. The goal of this section is to show, that it is a sufficient condition but it requires
additional assumptions on X and k. As we have seen in Proposition 3.5 a necessary
and sufficient condition that such a feature map into a Hilbert space exists is that
the kernel is positive definite. Two questions can then be raised: Can such a map
be constructed explicitly ? What is the induced representation for the kernel ? The
first question has an affirmative answer without any further assumptions on k as
the following feature maps ® : X — H show.

1. Aronszajn map
¢ :x— k(z,-), H is the associated RKHS, k(x,y) = (k(z,-), k(y, "))

2. Kolmogorov map
¢:x— X;, H = Ly(RY, ) where u is a Gaussian measure®, k(z,y) = E [ X, X,)]

3. Integral map
There exists a set T and a measure p on T such that one has ¢ : x +— (T (¢))er,

H = Lo(T, p)°, k(z,y) = [T(z, )0 (y,t)dp(t)

4. Basis map
given any orthornormal basis” (f,)aer of the RKHS associated to H, one has

¢ L= (fa(m»cvéh H= 62(1)8 and k(l’,y) = Zae] fa(x)fa<y>'

5see Section 3.7.1 for details.

6The Kolmogorov map shows that such a set T and a measure p always exist.

“such a basis always exists but may be uncountable, in which case, only a countable subset of the coordinates of
any vector are non-zero.

8space of square summable functions on I with countable support
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When infinite sums are involved like in the last case, it is important to specify
in which sense the sum converges. In general the convergence occurs for each pair
(x,y). However, [68] shows one has stronger convergence, namely uniform on every
set A x B C X x X, with A bounded and B compact (w.r.t. the topology induced
The integral map seems at first to be redundant since also the Kolmogorov map is an
integral map. We listed it as an extra feature map since for certain classes of kernels,
e.g. translation-invariant kernels on R?, the set 7" needed to represent the kernel is
much smaller than RY, namely it is R? instead of RE* for the translation-invariant
kernels on R?.

Given additional structure of the kernel resp. the corresponding RKHS, there exist
other feature space interpretations. Mercer’s theorem is a special case of the basis
map. It gives stronger convergence properties of the kernel representation, but needs
additional assumptions, namely X has to be compact and the kernel k£ continuous.

3.3.2 Boundedness and Continuity

Because of the PD property and Cauchy-Schwarz inequality, there are relationships
between the function = — k(z,z) and (x,y) — k(x,y) when one considers boun-
dedness or continuity properties of the kernel.

Lemma 3.11 For a PD kernel k the following two statements are equivalent
(i) © +— k(z,x) is bounded;
(i1) (x,y) — k(z,y) is bounded.

Lemma 3.12 [56]/ A PD kernel k is continuous on X X X if and only if the following
two conditions are fulfilled

(i) x — k(z,x) is continuous;
(i1) for any fized x the function y — k(z,y) is continuous at y = .

These conditions are equivalent to the continuity of the function (x,y) — k(x,y) at
every point of the diagonal {(x,y) : x = y}.

Corollary 3.13 Ifk is continuous on X X X then the identity map (X, d) — (X, dy)
1S continuous.

Proof: Follows directly from di(z,z,) = k(z,x) — 2k(xn, ) + k(z,, ,). O

A related question is: when does the RKHS consist of continuous functions ? Since
k(x,-) belongs to the associated RKHS, this means that & has to be at least separa-
tely continuous. The following theorem provides necessary and sufficient conditions
in a rather general setting.

Theorem 3.14 [83] Let X be a locally compact space and C(X) the space of conti-
nuous functions on X with the topology of uniform convergence on compact subsets.
The canonical injection i : Hy, — C(X) is continuous if and only if k(x,y) is sepa-
rately continuous on X x X and locally bounded.
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3.3.3 When is a Function in a RKHS ?

Let us suppose we are given a function f and want to know if it is contained in the
RKHS associated to a PD kernel k. We give a general result.

Lemma 3.15 [56] The function [ belongs to the RKHS H associated to k if and
only if there exists € > 0 such that

Re(z,y) = k(x,y) — ef (x) f(y)

is a positive definite kernel. Equivalently this corresponds to the condition

su Zie[ alf(xl)
p

I|<00, (ai)ic1€R, (z;)ic €EX
Il ( 1)161 ( l)lel <§ ijel aiajk(xi,xj)>

< 0.

If this is satisfied, one can compute the norm of f as the value of the above supre-

mum, or as || f|lx = inf{l1/y/e]e >0, R. = 0}.

A simple consequence of this lemma is that the RKHS associated to any bounded

kernel cannot contain unbounded functions?.

3.3.4 Separability of the RKHS

Some convergence proofs of iterative algorithms require the separability of the RK-
HS. However, this is seldom made explicit in the Machine Learning literature. The
first result gives a necessary and sufficient condition for separability.

Theorem 3.16 [62] H,, is separable if and only if (X, dy) is separable.

Proof: Let H; be separable, then since Hy is a metric space Hj and every subset
of Hj, is second countable!®. Particularly the set k(X,-) = {k(z,-)|z € X} is
second countable and therefore separable. Since (X, dy) is isometric to the set k(X -),
(X, dy) is separable.

We sketch the proof of the other direction. Since (X,dy) is separable, k(X -) is
separable. Then it is easy to show that the span of k(X,-) with rational numbers is

dense in Span k(X -) and since Hy = Span k(X -) we are done. O

In the case of continuous kernels we get the following consequence

Theorem 3.17 [56] Let X be a topological space, k a PD kernel which is continuous
on X x X, and H its associated RKHS. If X is separable, then H is separable.

As a result any continuous kernel on R"™ induces a separable RKHS e.g. the RKHS
associated to the RBF kernel k(z,y) = exp(— ||z — y|| /o?) is separable. In the case
where Hy, is separable the basis feature map can be written with a countable sum.
Again, this does not require anything like Mercer’s theorem.

9This can also be seen directly by ||f|lo. =supgex | (k(z, ), Fla¢ | < supgex VE(@, ) || flly
10A topological space is second countable if it has a countable topological basis.
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3.4 Integral and Covariance Operators

In general we assume in statistical learning theory that the space X is endowed with
a probability measure P. Then samples X; are drawn according to this probability
measure P. These define then the empirical measure P, = 3" | 0x,.

In kernel-algorithms one uses the so-called (normalized) kernel matriz K,, : Lo(X, Py,)
Ly(X, P,) defined as K,, = %(k:(Xi,Xj))i’j:l ,,,,, » and the empirical covariance ope-
rator C,, : Hj, — H;. defined as C,, = % > rey D(Xi) ® ©(Xg). These are under some
conditions finite sample approximations of operators K : Ly(X, P) — Lo(X, P) re-
sp. C' : ‘Hy — Hj, defined for the whole probability measure P.

We will study the properties of the operators K and C and the convergence of the
empirical counterparts to the true operators under the following assumptions on the
kernel.

e /(z,y) is measurable,
e k(x,y) is a positive definite kernel,
o [ k(z,x)dP(x) < oo.

Note that the second assumption implies k € Lo(X x X, P ® P) by the Cauchy-
Schwarz inequality. Also note that in our setting we have no assumptions on the
separability of H or Lo(X, P).

Theorem 3.18 Let i : H — Lo(X, P) be the canonical injection. Then under the
stated assumptions i is continuous. Moreover i is a Hilbert-Schmidt operator with

lill7s < [ (2, 2)dP(x).
Proof: Let i be the canonical injection i : H — Lo(X, P). Then for all f € H,

1615 sy = [ 1@FaPG) = [ (b, ) dPla) < 171 [ o a)dPo).

Therefore ¢ is a bounded operator.

Denote by {e,, @ € A} an orthonormal basis (posrﬂbly uncountable) of Ly(X, P). i
is Hilbert-Schmidt if and only if > _, ||i ea||L2 x,p) < o0. For all finite sets F' C A
we have

S lliealZm = / S Jew(@) PP (x / S ea bz, ))yl* dP(2)

/X V(, I, dP(x) = /X Kz, 2)dP(z)

where we have used Bessel’s inequality. Let now Sp;,,(A) = {P C A| P finite} be
the directed set of finite subsets of A with the set inclusion as partial order. Since
all summands are positive, the limit of the net of partial sums can be computed as
follows

S licall s = 50003 licallt ey« F € Spul)} < [ Ko a)dP(a)

aEA aeF X

IN

O

The next proposition connects the canonical injection ¢ with the integral and the
covariance operator:
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Proposition 3.19 The integral operator K

K ¢ Lo(X, P) = La(X, P), (K f)(x) = /X Ko w)f@)dPy).  (33)

and the covariance operator C

C:H—H, (f,Cg) = /Xf(x)g(:c)dP(x). (3.4)

are both positive, self-adjoint, Hilbert-Schmidt, and trace-class. Moreover they can
be decomposed as K = it* and C = i*t and have the same spectrum which tmplies
that tr K = tr C and ||Cl| g = | K[ ys = ||kHL2(X><X,P®P)'

Proof: We showed in theorem 3.18 that 7 is continuous. Therefore the adjoint
i* : Ly(X, P) — H exists and is defined for g € Ly(X, P) and f € H as (i*g, f);, =
(9,4f) 1,x.p) - In particular, choosing f = k(z,-) € H, we see that

(°9)(@) = (k(z, ), " g)y, = {ik(, ), g) = /X k(. 9)g(y)dP ().

so that K = #*. As a consequence K is positive and self-adjoint. Moreover it is
trace-class since

tr K = Z (€q, K6a>L2(X,P) = Z 7" €ealls = ||z*||§{s < /Xk;(x,x)dp(x),

acA acA

where we use the fact [|i|| ;5 = [|7*]| y5-
Moreover, for f,g € H, (f,i*ig),, = <if,ig>L2(X7P) = E[f(X)g(X)] so that C' is
positive, self-adjoint and C' = ¢*i. It follows easily that C' is trace-class with

.2 12
trC = Z (€as C ea)y = Z HZ€04||L2(X,P) = [lills -

acA acA

Both C' and K are trace-class and therefore compact which implies that they only
have a discrete spectrum. Moreover they have the same spectrum and all non-zero
eigenvalues have the same multiplicity. Let A\, be an eigenvalue of K and denote by
A,, the corresponding finite-dimensional eigenspace. Then

i Ay = Ay = (i%1)i" Ay = Ai* A, (3.5)

that is i*A,, is an eigenspace of C' to the corresponding eigenvalue A\, and the same
argumentation holds in the other direction. Also dim A,, = dimi*(A,,) since it follows
from (3.5) that A, € Ker(i*) and i*(A,) € Ker(i).

It is a classical result that k € Ly(X x X', P® P) implies that K is Hilbert-Schmidt
and || K|l g = Ikl L, (xxx.pep): See [26] (note that this is true, even if Ly(X, P) is
not separable). Since a compact self-adjoint operator is Hilbert-Schmidt if and only
if Y, A7 < oo it follows directly from the equality of the spectra that C' is Hilbert-
Schmidt with [|[C] ;¢ = [|K][gs = ||k||L2(X><X,P®P)' U

Corollary 3.20 If Ker(i) =0 then H = i*(Lo(X, P)) and H is separable.
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Proof: If Ker(i) = 0 then Ran(i*) = Ker(i)* = H. Since * is compact, Ran(i*)
is separable and therefore H is separable. 0

In other words if the zero function is the only function in the RKHS H which is
zero P-almost everywhere, then the image of the integral operator K is dense in the
RKHS and the RKHS is automatically separable.

Corollary 3.21 If H is separable then |i|%q =trC =tr K = [y k(z, 2)dP(x).

Proof: Let {e,}>°, be a complete orthonormal basis of H. Then

hrn ZHZ@nHLQXP = hrn Z/ |len(2))?dP(x

_ ﬂnwz [ e endy Pap) = | ngréo 7.}, en)y [PdP(2)
_ /X||k:(x,-)||HdP(:z;):/Xk;(x,x)dP(x)<oo

lills

where the fourth step follows from the monotone convergence theorem and the fifth
step is Parseval’s identity. 0

The next corollary establishes a feature map in Lyo(X, P).

Corollary 3.22 Ifk € Ly(X x X, P® P), then there exists an orthonormal system
(¢n) in Lo(P) such that

= Z >\n¢n(x)¢n(y) ) (3'6)

neN

where A, > 0 and the convergence of the sum occurs in Lo(X x X, P ® P). The
associated feature map is thus

= (\/)‘_n¢n(x))neN .

Proof: That is a classical result in functional analysis, see e.g. [73]. O
The remaining question is how the empirical counterparts K, and C), are related to
the operators K and C.

Proposition 3.23 Let K be the integral operator defined in (3.3) and X; a set of
i.i.d. random variables drawn from P. For all f € Ly(X, P) we have:

Yim (f K f)pywp,y = lmno * 3 FF R X))

i,7=1

_ /X Tk p)AP@AP) = (K )y o5

Proof: The proof is essentially an application of a result in [36]. Given an i.i.d.
set of random variables X; € X drawn from P and a measurable symmetric functi-
on g(z,y) : X x X — R it states that lim, . n > " | (X, X;) = Eg(X,Y)
almost surely if E|g(X,Y)| < oo and E+/|g(X,X)| < oo. Let now g(z,y) =
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f(z)f(y)k(x,y) for some realization f of the equivalence class in Ly(X, P). The
choice of the realization does not matter since the functions differ on a set of mea-
sure zero. Then the conditions require that [, f(x)f(y)k(z, y)dP(x)dP(y) < oo

and [, |f(z)]\/k(z,z)dP(z) < co. The second condition implies the first one and

we have
Lvumwmwwwmgtmwwmwéuamww<m%

since [[FI2, .0 < 112, [y bz, 2)dP (). O

The next statement relates C,, and C:

Proposition 3.24

<.f7 Cng>7-[k P;S._) <f7 Cg>7—[k7 vf?.g € Hk

Proof: The proof is a simple application of the strong law of large numbers.  [J

As a final remark we would like to note that if k is bounded then all the assumptions
are fulfilled and the theorems of this section apply for any probability measure P.

3.5 Generalizations

Now that we have the general picture in mind, we investigate possible generalizati-
ons of the presented notions. We consider the generalization of kernel functions to
operator-valued functions and of the RKHS to Hilbertian subspaces. We will show
that they are both special cases of the general theory above. Finally we will consider
the only real generalization the theory of reproducing kernel spaces with indefinite
inner product.

3.5.1 Operator-Valued Kernels

Recently there was interest in the machine learning community to extend real-valued
kernels to operator-valued kernels in order to learn vector-valued functions [66]. This
concept is not new in the mathematics literature. It can at least traced back to the
paper of [28].

Let X be a set and G a Hilbert space!’. The goal is to generate a (generalized) RKHS
whose functions are from X to G (instead of X — R). We define a (generalized)
notion of positive definite kernel:

Definition 3.25 A function k : X x X — L(G)'? such that k(z,y) = k(y,z)* is
called a positive definite operator-valued kernel function if for alln > 1,
Tiyeos Ty € X, €1y e €G, Y0 (eik(Ti, 35),¢5) > 0

This seems to generalize the PD kernels we introduced before, and indeed, several
papers deal with the notion of operator-valued kernels. However, a slight change
of point of view allows to recast operator-valued kernels in the standard setting of
real-valued ones, showing their great generality. We have the following result.

the same theory can be developed for Banach spaces or locally convex spaces.
125et of bounded linear operators on G
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Proposition 3.26 Let k be a PD operator-valued kernel X x X — L(G). Define {
as the function on (X x G) such that £((z, f), (y, 9)) = (f, k(x,y)g)g. The map k +— {
thus defined, is a bijection between PD operator-valued kernels X x X — L(G) and
real-valued PD kernels (X,G) x (X,G) — R which are bilinear on G x G*3. If G is
finite dimensional, dim G = d, one can also define, (e;) being an orthonormal basis
of G, {((x,1),(y,7)) = (ei, k(z,y)e;), such that k — { is a bijection to real-valued
PD kernels on (X,{1,...,d})

Proof: We prove the above proposition in the finite dimensional case (the general
case has a similar proof). Let ¢((x, 1), (v, j) be a PD kernel on (X, {1,...,d}). Define
a bilinear form on R? by defining the matrix k(z,y) : R — R? as

kij(x,y) = <€i>k3($ay)€j>Rd = {((z,1), (y,7))

where e; denotes a basis in R?. Conversely given the PD operator valued kernel
k(x,y), define by the above expression the kernel function ¢((x,1), (y,7)). Then we
have with v,, € {1,...,d}

n d n d

Z Z im0l (T, V), (5, 0,)) = Z Z Qimjnky, v, (Ti, )

3,j=1m,n=1 i,j=1m,mn=1

n d d
= g Aim €,y k(l‘lv mj) § : ®jnCo,
1 n=1

i,j=1 \m=
= > ekl z))e;)

ij=1

with ¢; = anzl Qim€y,, - Now if £ is positive definite then consider the index set of
size nd given by zi, = (z;,v,) which gives the above expression and implies that
k(z,y) is a PD operator-valued kernel, since we can express any vector ¢ € R? in
the form 3¢ _ aye,, . Conversely let k(z,y) be a PD operator-valued kernel and
take as vectors ¢; = e, then ¢((x,1), (y,7)) is a PD kernel function since we can
express all index sets in the form z; = (z;, v;). O

The meaning of the above proposition is that at the price of changing the index set,
one can simply work with real-valued kernels, and the positive definiteness of these
kernels implies the positivity of the corresponding operator valued kernels. Moreover
one can use the properties of the real-valued kernels to derive the properties of the
operator-valued one.

3.5.2 Hilbertian Subspaces

Instead of trying to generalize the PD kernels, one may, as in the work of Schwartz
[83], generalize the notion of RKHS and kernel operator. The idea is to consider
instead of Hilbert spaces of real-valued functions, that is a Hilbertian subspace of
R*, subspaces of quit general spaces equipped with the structure of a Hilbert space
that may not even contain functions. The framework of Schwartz is formulated in the
very general setting of locally convex topological vector spaces (l.c.s.), see [73, 6]
for an introduction. Note that R with the topology of pointwise convergence is

Bie. k((x,91), (y,g2)) is bilinear in g1, go.
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a complete l.c.s.. This topology is equivalent to the weak topology induced by the
duality map (-, -)px) g+ defined above. In the following E denotes a complete l.c.s.

Definition 3.27 A linear subspace H C E is called a Hilbertian subspace if
(i) it is provided with (-,-),, and H is a Hilbert space.

(i1) The injection of H into E is continuous; that is convergence in H implies
convergence in E.

Definition 3.28 A kernel operator K is a linear, symmetric map'* from E''®
into E. K is said to be positive if for all ¢’ € £, {¢/, Ke')p, > 0.

The following theorem gives the analogue of the bijection between positive definite
kernels and RKHS.

Theorem 3.29 [83] There is a one-to-one correspondence between the closed convex
cone of Hilbertian subspaces H and the positive kernel operators K. To H corresponds
the kernel operator K = j o @ o j, where j : H — E is the natural injection,
j'+ E' — H'its adjoint and 0 : H' — H the canonical isomorphism. Moreover given
a positive kernel operator K, the Hilbert space is given by H = KE' with the inner
product on KE' defined as

(Ke',Kf')y =&, Kf) -

The inner product in H defined in the above way 'reproduces’ the value of €’ on any
element of E contained in H.

Example: [Hilbertian subspaces of RY] We have defined in a previous section a
positive symmetric kernel operator K : RI*) — R¥. Since RY is a complete l.c.s., K
is also a positive kernel operator in the sense of Schwartz. Additionally by Theorem
3.10 the associated reproducing kernel Hilbert spaces are Hilbertian subspaces of
RY.

So one recovers the standard RKHS as a special case of Schwartz’s theory, see [83].
The setting of Schwartz seems at first much to general for machine learning tasks.
However as we will see soon it provides us with the right setting to deal with dis-
tribution valued kernels which is a generalization of the usual kernel function. One
could ask at this point why it is a good idea to consider kernels on functions instead
of kernels on points. One can argue that because of the limited precision of the
measurement device measurements of real-valued physical quantities can never be
made with arbitrary precision. This measurement error can be modelled by conside-
ring, instead of points, functions with compact support which are concentrated on
the measured points. The width of the function then models the uncertainty in the
measurement. This means we smear the points before we compare them with the
kernel function. The following famous theorem characterizes the form of the kernel
operator when one considers Hilbertian subspaces of distributions.

Theorem 3.30 (Schwartz kernel theorem) The topological vector space of con-
tinuous linear maps D(R™) — D'(R™)®, with the strong topology, is canonically
isomorphic to the topological vector space D'(R™ x R™).

14Note that a linear, symmetric map is weakly continuous.

15 B’ denotes the topological dual space of E.

16 D/(R™) denotes the distributions on R™ and D(R"™) the space of smooth functions on R™ with compact support
with the strict inductive limit topology.
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This theorem guarantees that we have again a unique correspondence between the
kernel operator and a generalized kernel function as in the case of usual positive
definite kernels. Indeed, in the abstract framework of Hilbertian subspaces, it is
not clear that a function of two variables is naturally associated to a subspace.
However, thanks to this result, it is true in the case of Hilbertian subspaces of
distributions: they are naturally associated to a (generalized) kernel function which
is actually a distribution on R” x R". We give a simple yet illustrative example of
this phenomenon.

Example: [Ly(R") as a Hilbertian subspace of D'(R™)] Let K = §(x—y) € D'(R™ x
R™). Then we have for all f € D(R"), (Kf)(z) = [z 0(x —y)f(y) = f(x) and the
inner product on K D(R™) is defined as:

(Kf,Kg) = (K, g)p/(Rn),D(Rn) = - f(z)g(z)dz.

Since D(R") is dense in L?(R") and the above inner product induces an isometry
between K D(R™) and L?(R") restricted to D(R") we get the desired result that
L*(R™) is isometrically isomorphic to the Hilbertian subspace K D(R") C D'(R").

Remark: The example on Hilbertian subspaces of RY suggests that the framework
of Hilbertian subspaces is a generalization of the Aronszajn framework of RKHS.
But one can always see the elements of the Hilbertian subspace H C FE as linear
functions on the dual E' acting via h(e') = (€/,h)p p. So H can be considered

as a Hilbertian subspace of R¥. Since E’ must have a special structure, whereas
the Aronszajn approach works for any set X, from this point of view Hilbertian
subspaces are actually less general. For example the framework of distributions can
be seen as a RKHS on R?*. The problem of the Aronszajn approach is that the
special properties of the underlying set X play no role and are ’forgotten’. It seems
that from the structural point of view the framework of Schwartz is better, from the
practical point of view the framework of Aronszajn is maybe easier to handle.

3.5.3 The General Indefinite Case

It is generally not easy to check if a given symmetric function is a positive defi-
nite kernel. In some cases like k(z,y) = tanh(a (z,y) + ) it is even known that
the associated kernel matrix can have negative eigenvalues. Nevertheless it is some-
times used in support vector machines. Naturally the question arises if there still
exists something like reproducing kernel spaces, such that we can interpret this non-
positive definite kernel as an indefinite inner product in these space. The theory of
reproducing kernel spaces with indefinite inner products was to our knowledge first
explored by Schwartz [83] in the framework of Hermitian subspaces. A more explicit
treatment following Aronszajn was done by Sorjonen [88].

Reproducing Kernel Pontryagin Spaces

Definition 3.31 A symmetric kernel function K(s,t) : X x X — R is said to have
k megative squares, Kk a nonnegative integer, if Vn > 1, and all x4, ..., x, € X the
matriz (k(x;,x;); =1, n) has at most k negative eigenvalues and at least one such
matriz has exactly k negative eigenvalues.

Now we define a generalization of Hilbert spaces.
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Definition 3.32 A Krein space is an inner product space H, which can be written
as the orthogonal sum H = Hy ® H_ of a Hilbert space H, and the antispace”
H_ of a Hilbert space. If the antispace H_ 1is finite dimensional then H is called
Pontryagin space.

This decomposition is not unique, but the resulting spaces are all isomorphic. The
dimensions of H. are independent of the choice of the decomposition and are called
positive and negative indices of H.

Definition 3.33 A reproducing kernel Pontryagin space (RKPS) H on X
is a Pontryagin space of functions from X to R with a reproducing kernel k(x,y) on
X X X such that

Vee X, k(x,:)€H,
\V/f EH, <f()7k(x’)>H:f(x)

The RKPS are very similar in their structure as the following two theorems show.

Theorem 3.34 [88] A Pontryagin space H of real-valued functions on Q admits a
reproducing kernel K (s,t) if and only if all evaluation functionals are continuous. In
this case K (s,t) is unique, and it is a Hermitian kernel having k negative squares,
where k 1s the negative index of H.

Theorem 3.35 [88] If K(s,t) is a Hermitian kernel on X x X having k negative
squares, then there is a unique Pontryagin space H of functions on X with dim H~ =
K having K (s,t) as reproducing kernel.

Reproducing Kernel Krein Spaces

The following theorem gives necessary and sufficient conditions for a symmetric
function to be a reproducing kernel of a Krein space.

Theorem 3.36 [83] If k(x,y), z,y € X, is a symmetric function with values in R,
the following assertions are equivalent

(i) k is the reproducing kernel of a Krein space Hy, of functions on X .
(ii) There exists an { € RY*Y such that —¢ <k < .
(iii) k =k, — k_ for some k,,k_ € RY*Y.

Unfortunately there exist counterexamples of symmetric functions which do not
fulfill these conditions, but when the above conditions are satisfied, the reproducing
kernel Krein space (RKKS) is characterized in the following way.

Proposition 3.37 [83] If k = k. — k_ with k., k_ € RY*Y, then one can choose
ki and k_ such that the associated RKHS of ki and k_, H. respectively H_, fulfill
Hy (YH- = {0}. In this case the RKKS associated to k consists of the functions f =
fv+ [, f+ € Hy, [- € Ho with the indefinite inner product [f, g] = (f+, 9+)3, —

<f7797>71,-

17 An antispace of a Hilbert space is (H, (-, -))y is given by (H, — (-, V)
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3.6 Conclusion

We have tried to extract from the mathematical literature on kernels the basic facts
that are relevant to researchers in Machine Learning working with kernel methods.
In particular, if one wants to develop generalizations of these concepts, it should
be clear that there already exist several points of view for such generalizations and
that, changing the point of view they can be cast in the same framework.

Finally, this chapter is far from being a complete overview on kernels. There exist
many other notions which could be explored e.g. Gaussian measures, generalized
stochastic processes, group representations in RKHS, spectral decompositions of
kernels, regularization theory and various results of applications in approximation,
interpolation etc.

3.7 Appendix

3.7.1 Structures Associated to a Gaussian Process

In this section we introduce extra objects that are naturally associated to a Gaussian
process (hence to a PD kernel). We refer to [49] for additional details.
We denote by E a locally convex space.

Definition 3.38 A Borel probability measure p on E is a Gaussian measure if
each € € E', regarded as a random variable defined on the probability space (E, )
is Gaussian.

Definition 3.39 A random variable X with values in E is a Gaussian vector if
the real-valued random variable (€', X)E,E is Gaussian for every e’ € E', or equiva-
lently, if the distribution of X is a Gaussian measure on E.

Theorem 3.40 (Kolmogorov extension theorem) Let Q = RY, where X is an
arbitrary indez set, and let F be the product o-field BY on Q. Suppose that for every
finite subset Y C X, we are given a (consistent) probability measure Py on RY; then
there exists a unique probability measure on RY such that the projection onto RY
induces Py for every finite ).

It follows from this theorem that all the objects introduced before are tightly related.

Proposition 3.41 Every Gaussian process (X, )zex defines a unique Gaussian mea-
sure on RY and a unique random vector X with values in RY.

We now give the construction of a feature map via the Kolmogorov theorem [70]. Gi-
ven a PD kernel k£ on X define for any finite subset Y = x4, ..., x, a probability mea-
sure which is centered Gaussian and has covariance matrix (k(z;, z;)); ;. By Theorem
3.40 there exists a measure p on RY and it is Gaussian. If we consider the Hilbert
space Lo(RY, 1) and define X, := f(x), f € RY (where f has the distribution p),
then X, is an element of Lo(RY, u) and E[X,X,] = [ f(z)f(y)du(f) = k(z,y).
Moreover one can check that the completion of the subspace of Gaussian random
variables X, in Lo(R?, 1) still consists only of Gaussian random variables. Therefore
it is called Gaussian Hilbert space. It is shown in Janson [49] that the Gaussian
Hilbert space is isometric isomorphic to the RKHS associated to the PD kernel k.



Kapitel 4

Maximal Margin Classification in
Metric Spaces

4.1 Introduction

If the only knowledge available to the statistician is that the data comes from a
semi-metric space (X, d), where X' is the input space and d is the corresponding
semi-metric, it is reasonable to assume, for a classification task, that the class labels
are somewhat related to the semi-metric. More precisely, since one has to make as-
sumptions about the structure of the data (otherwise no generalization is possible),
it is natural to assume that two points that are close (as measured by d) are likely
to belong to the same class, while points that are far away may belong to different
classes. Another way to express this assumed relationship between class member-
ship and distances is to say that intra-class distances are on average smaller than
inter-class distances.

Most classical classification algorithms rely, implicitly or explicitly, on such an as-
sumption. On the other hand, it is not always possible to work directly in the space
X where the data lies. In particular, some algorithms require a vector space structure
(e.g. linear algorithms) or at least a feature representation (e.g. decision trees). So,
if X does not have such a structure (e.g. if the elements of X are DNA sequences of
variable length, or descriptions of the structure of proteins), it is typical to construct
a new representation (usually as vectors) of the data. In this process, the distance
between the data, that is the (semi)-metric, is usually altered. But with the above
assumptions on the classification task this change means that information is lost or
at least distorted.

It is thus desirable to avoid any distortion of the (semi)-metric in the process of
constructing a new representation of the data. Or at least, the distortion should
be consistent with the assumptions. For example a transformation which leaves the
small distances unchanged and alters the large distances, is likely to preserve the
relationship between distances and class membership. We later propose a precise
formulation of this type of transformation.

Once the data is mapped into a vector space, there are several possible algorithms
that can be used. However, there is one heuristic which has proven valuable both
in terms of computational expense and in terms of generalization performance, it
is the maximum margin heuristic. The idea of maximum margin algorithms is to
look for a linear hyperplane as the decision function which separates the data with
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maximum margin, i.e. such that the hyperplane is as far as possible from the data
of the two classes. This is sometimes called the hard margin case. It assumes that
the classes are well separated. In general one can always deal with the inseparable
case by introducing slack variables, which corresponds to the soft margin case.
Our goal is to apply this heuristic to (X, d), the (semi)-metric input space directly.
To do so, we proceed in two steps: we first embed X into a Banach space (i.e. a
normed vector space which is complete with respect to its norm) and look for a
maximum margin hyperplane in this space. The important part being that the em-
bedding we apply is isometric, that is, all distances are preserved.

We explain how to construct such an embedding and show that the resulting al-
gorithm can be approximated by the Linear Programming Machine proposed by
Graepel et al. [37]. We also propose to use as a pre-processingftep, a transformation
of the metric which has the properties mentioned above (i.e. leaving the small di-
stances unaltered and affecting the large ones) which may remove the unnecessary
information contained in large distances and hence give a better result when com-
bined with the above mentioned algorithm.

Embedding the data isometrically into a Banach space is convenient since it is pos-
sible for any metric space. But as we will show it has also the disadvantage that
the obtained maximum margin algorithm cannot be directly implemented and has
to be approximated. It may thus be desirable that the space into which the data is
embedded has more structure. A natural choice is to use a Hilbert space (i.e. a Ba-
nach space where the norm is derived from an inner product). However, we recall a
result of Schoenberg, see [80], which states that only a certain class of metric spaces
can be isometrically embedded into a Hilbert space. Hence, we gain structure at the
price of loosing generality. Moreover, we give a characterization of metric spaces that
can be embedded into a Hilbert space with some distortion of the large distances. If
the metric has the appropriate properties, we thus also derive an embedding into a
Hilbert space and the corresponding maximal margin algorithm.

It turns out that the obtained algorithm is equivalent to the well-known Support
Vector Machine (e.g. [81]). We thus obtain a new point of view on this algorithm
which is based on an isometric embedding of the input space as a metric space,
where the metric is induced by a kernel. However, the main distinction between our
point of view and the more classical one, is that we show that the solution only
depends on the metric induced by the kernel and not on the kernel itself. And given
this metric, the effect of the algorithm is to perform maximal margin separation
after an isometric embedding into a Hilbert space.

Finally we investigate the properties of the class of functions that are associated
with these embeddings. In particular we want to measure their capacity. For that
we use a (by now) standard measure of the size in learning theory, the Rademacher
averages. These can be directly related to the generalization error of the algorithm.
Our computations show that in the case of the Banach space embedding of an
arbitrary metric space, the size of the obtained class of hypotheses is the same as
the size of (X, d) itself as a metric space, where the size is measured by the covering
numbers. For the second embedding into a Hilbert space, we get results similar to
the previously known ones for SVM, but we express them in terms of the induced
(semi)-metric. Finally, in the case where X can be embedded isometrically both in a
Banach and a Hilbert space, we compare the capacities of both obtained hypotheses
classes and show that the SVM algorithm corresponds to a more parsimoniousfpace
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of functions.

The paper is organized as follows. Section 4.2 introduces the general approach
of embedding into a Banach space and performing maximum margin classification
in this space. In particular, several possible embeddings with their effects on the
metric are discussed. In Section 4.3 this approach is applied to an arbitrary metric
space and we give the resulting general algorithm. Then, section 4.4 deals with the
special case of metric spaces that can be isometrically embedded into a Hilbert
space. These metrics are characterized and we derive, with our general approach, an
algorithm which turns out to be equivalent to the SVM algorithm. Finally in section
4.5, we compute Rademacher averages corresponding to the previously mentioned
algorithms and compare them.

Part of this chapter has been published in [43, 42].

4.2 The general approach

We are working in the following setting. We are given a set X, together with a
(semi)-metric defined on it, which makes it a (semi-)metric space (X, d). Recall that
a semi-metric is a non-negative symmetric function, d : X x X — R, which satisfies
the triangle inequality and d(z,z) = 0 for all x € X (it is a metric if d(z,y) = 0
implies = = y).

Remark: In the following we will consider only metric spaces. But all the results
remain true for semi-metric spaces. The reason why we restrict ourselves to metric
spaces is on the one hand simplicity but on the other hand the in general undesired
implications of a semi-metric, see Appendix 4.7.1 for this issue.

Our basic assumption is that this metric is consistent with the classification pro-
blem to be solved in the sense that when two points are close, they are likely to
belong to the same class. Of course, there are many algorithms that can take into
account such an assumption to build a classifier (e.g. nearest neighbors classifiers).
Moreover if one has more structure than the pure metric space e.g. when X is a diffe-
rentiable manifold, then this knowledge should be used in the classifier. In the sense
that one should build functions which satisfy stronger smoothness requirements. One
could argue that then the approach presented here is too general since at first sight
we only use the metric structure of the input space. However as we will show later
the functions used by the general maximal margin algorithm are always Lipschitz
functions which can be regarded as the lowest level of smoothness. Moreover if the
metric has stronger smoothness properties e.g. in the case of a Riemannian mani-
fold then these smoothness properties are also transferred to the associated function
space used by the maximal margin classifier. This will become obvious from the
form of embedding we use. In that sense the maximal margin algorithm adapts to
the smoothness of X.

One of the cornerstones of the algorithm we use is the large margin heuristic. Thus
we work with hyperplanes in a linear space. Since X’ need not be a linear space, we
have to transform it into one, which can be done by embedding it into a linear space
(with a norm defined on it). Since the metric information is the only information
available to us to perform classification and we assume that the local structure is
correlated to the class affiliations, we should not distort it too much in the embedding
process. Or in other words the minimal requirement for our embedding is that it
preserves neighborhoods, so it should at least be a homeomorphism of (X, d) onto



104 CHAPTER 4

a subset of a linear space.
The following diagram summarizes this procedure:

embedding
_

(X, d)

(B, ||||) — maximal margin classification

4.2.1 First step: embedding into a normed space

Maximal margin hyperplane classification requires that we work in a linear normed
space. We thus have to map X to a subset of a normed space B (chosen to be
complete, hence a Banach space).

Formally, we define a feature map ® : X — B, v — ®(x), and denote by dg the
induced metric on X.

dp(z,y) = [|®(x) — 2(y)lls -

We require that d and dp are not too different since we want to preserve the metric
information, which we assume to be relevant for classification. In other words we
want that the map ® seen as the identity map id between the metric spaces (X, d)
and (X, dp) to have one of the properties in the following list. We give the embed-
dings in the order of increasing requirements and each embedding is a special case
of the previous one.

1. ® is an embedding if and only if ® is a homeomorphism, that is

Va,y e X ,Ve>0, 301,09 such that:
d(l’,y) <51 =>d3($,y) <€, dB(l',y) <(52:>d<$,y> <€

2. ® is a uniform embedding if and only if id : (X,d) — (X,dp) is a uniform
homeomorphism, that is

Ve >0,3d6d,0, such that Vo, y € X :
d<xay) <61 :>d3(x,y) <€, dB(xsz <(522>d(33,y) <€

3. ® is a Bi-Lipschitz embedding, that is

1
dAN>0, Vz,ye X, Xd(m,y) <dg(z,y) < Ad(z,y).

4. ® is an isometric embedding,
Va,y e X, dp(z,y) = [[®(x) — ()| = d(z,y) .

In this paper we will consider two cases.

e In the first case we assume that the metric d(z, y) is meaningful and helpful for
the classification task on all scales. That means we should preserve the metric
in the embedding process, that is ® should be an isometric embedding.

e In the second case we assume that the metric d(z,y) is only locally meaningful.
What do we mean by that? In the construction of a metric on a set X for a real-
world problem one has some intuition about what it means for two elements
x,y € X to be 'close’ and can encode this information in the metric d(z,y).
However larger distances are sometimes not very meaningful or even completely
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arbitrary. Consider for example the edit-distance for sequences. It is fairly clear,
what it means to have an edit-distance of one or two, namely the word sequence
is roughly the same. However for two completely different sequences the distance
will be large without any meaning and will possibly have a great influence on
the construction of the classifier with the danger of fitting an irrelevant feature.
Therefore in cases where we trust our metric only locally it makes no difference
if we change the global structure as long as we preserve the local structure.
Additionally this change of the global structure should fulfill two requirements.
First it should be uniform over X, since without further information we have
no reason to change it differently in some regions. Second it should eliminate
the influence of high distance values.

In mathematical terms:

Definition 4.1 The local distortion of a map ¢ : (X,d) — (X, dg) is given by

u(w) = Dy (2)/D_(x)
where the functions Dy (x) and D_(x) are defined as

. dB(flf,y) . . dB(x>y)
D =1 —==  D_ =1 f———=
+(@) = Jig sup d(z,y)’ () = Jrgin d(z,y)

Definition 4.2 A uniform local isometry is a uniform homeomorphism ¢ :
(X,d) — (X,dg) with local distortion p(z) = 1.

A uniform local isometry preserves the local structure up to a global rescaling,
which does not matter for the maximal margin classification. Finally our em-
bedding should be a uniform local isometry such that the transformed metric
is bounded, i.e. sup, ,cy ds(z,y) exists.

It is interesting to note here that for all embeddings ® : (X', d) — (B,||-||) one can
adopt two points of view:

e Direct embedding: ¢ : (X,d) — (B, ||||5)

e Indirect embedding: identity id : (X,d) — (&X,dg) and isometric embedding
¢ (X,dg) — (B,||||g) with & = ¢oid

The above two points of view are completely equivalent (i.e. any embedding ® can
be written as ¢ o id where id is the identity and ¢ an isometric embedding and
conversely) but the second point of view emphasizes the importance of isometric
embeddings. Namely any embedding can be decomposed into a transformation of
the initial metric followed by an isometric embedding. This equivalence allows us to
treat isometric and uniform locally isometric embeddings in the same framework.

The first question is how to construct such a uniform local isometry. One general
way to do this are the so called metric transforms introduced by Blumenthal. (We
use here and in the following R, = {x € R|z > 0}.)

Definition 4.3 Let (X, d) be a metric space and let F' : R, — R, be a function
with F(0) = 0. Then (X, F(d)) is called a metric transform of (X,d).

The following lemma gives sufficient conditions for a metric transform F'(d) to be a
metric.
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Lemma 4.4 Let F' : Ry — R, be a monotone increasing concave function, such
that F(0) =0 and F(x) > 0 for all x > 0. If d is a metric on X, then F(d) is also
a metric on X.

The proof of this lemma can be found e.g. in [29]. We denote the functions which
fulfill the assumptions of the above lemma as true metric transforms. Note that the
map id : (X,d) — (X, F(d)) is a uniform homeomorphism for every true metric
transform. The next lemma characterizes all true metric transforms which are in
addition uniform local isometries.

Lemma 4.5 Let F' be a true metric transform. If lim;_ @ exists and is positive,

then the identity id : (X,d) — (X, F(d)) is a uniform local isometry. Moreover the
resulting metric space (X, F(d)) is bounded if F is bounded.

Proof: With the assumptions the functions D, (x) and D_(x) defined in Definition
4.1 exist and Vo € X, Dy (x) = D_(x) > 0, so that u = 1. O

In order to illustrate this lemma, we give two examples of metric transforms F' which
result in uniform local isometries, where (X, F'(d)) is bounded.

Flt) = —

1+t

Furthermore an important question is whether there exists for any given metric
space (X, d) a Banach space B and a map ® which embeds (X, d) isometrically into
B. In the following we will answer this positively, namely any metric space (X, d)
can be embedded isometrically via the Kuratowski embedding into (Cy(X), |||l )
where C,(&X') denotes the continuous, bounded functions on X'. However in the later
analysis of the maximal margin algorithm it turns out that an embedding into a
Hilbert space provides a simpler structure of the space of solutions. Therefore we
will consider after the general case of an isometric embedding into a Banach space
the special case of an isometric embedding into a Hilbert space.
Moreover all isometric embeddings we consider have the following minimal property:

F(t) =1—exp(—=At), YA >0 (4.1)

Definition 4.6 (Total isometric embedding) Given a metric space (X,d) and
an isometric embedding ® : X — B where B is a Banach space, we say that ®
is a total isometric embedding if ®(X) is total, that is B is the norm-closure of

span{®(z)|r € X'}.

This definition is in a sense trivial, since if we have an isometric embedding ® into a
Banach space C, then the norm closure of span ®(X) is again a Banach space B with
the same norm. But this 'minimal’ isometric embedding allows then to associate to
the dual space B’ (the space of continuous linear functionals on B endowed with
the norm |Jw'|| = supyep, b <1 [w'(D)]) ! an isometrically isomorphic Banach space of
functions on & as we will see now.

Proposition 4.7 Let & : X — B be a total isometric embedding. Then there exists
a Banach space Fpg of real-valued Lipschitz functions on X and a map I' : B' — Fp
such that T is an 1sometric isomorphism. The map T" is given by

C(w') () = (W', () g 5

1Given an element b of a Banach space B and an element w’ of its dual B’, we write w’(b) = (w’, b) s, - This

should not be confused with the inner product (,-),, in a Hilbert space.



MAXIMAL MARGIN CLASSIFICATION IN METRIC SPACES 107

and we define |[U(w')| z,, = W[z . The Lipschitz constant of I'(w') is upper bounded
by [[w'll5-

We need for the proof of the proposition and in the rest of the article the following
notions and a theorem relating them.

Definition 4.8 Let M, N be subspaces of B resp. B'. Then the annihilators M+ and
LN are defined as

M+ ={w eB :(w,m)=0Yme M},
IN={beB:(nb)=0,Vnec N}

Theorem 4.9 [75]
o L(M*1) is the norm closure of M in B.

o (tN)*t is the weak*-closure of N in B’

Now we can prove Proposition 4.7.
Proof: The only thing we have to prove is that I" is injective. Let f, g € Fpr, then

f=g e (wp—w, @)y =0, Vo € X.

Since @ is a total isometric embedding, B = span{®(X)} = *(span{®(X)}").
In particular, we have span{®(X)}*+ = {0}. Therefore w; — w, = 0, that is, T
is injective. The Lipschitz constant of I'(w’) can be computed as follows. For all
T,y € X,

IF(w") (@) = T(w)(y)] = | (W', @(x) = 2(¥))g 5 | < [Iw']l5 [|D(z) = D)5
= [[w'll d(z, y)-
0

The fact that one always obtains Lipschitz functions has been pointed out in [103,
104] where it is shown that a large class of isometric embeddings can be obtained
via an embedding into the predual of Lipschitz functions.

4.2.2 Second step: maximal margin classification

Maximal margin and its dual problem

What does maximal margin classification mean? The classifier is a hyperplane in
B, which can be identified with an element in the dual of B’ plus an offset, such
that the distance, the margin, to the two classes is maximized. This problem is
equivalent to the problem of determining the distance between the convex hulls of
the two classes of our training data. This duality was proven in the generality of an
arbitrary Banach space by Zhou et al. [109]. We define the convex hull of a finite
set T'C B as

co(T) = {Zamﬂ Zaizl,xiGT, a; >0, || <oo}.

el el
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Theorem 4.10 [109] Let Ty and Ty be two finite sets in a Banach space B. Then if
co(Ty) Neo(Ty) =10
d(co(Ty),co(Ty)) = inf : ly — ||

y€co(Th),z€co(T>

inf 2 w/, — Z)n
= sup y€T1,z€T5 < Yy >B ,B . (42>

weB’ [’

The condition co(T}) N co(Ty) = B is equivalent to the condition of separability.

Corollary 4.11 The mazimal margin problem s translation invariant in the Ba-
nach space B.

Proof: This is a trival statement, since we are only interested in distances. 0]

Later we will use the above dual formulation in order to derive properties of the
solution w' € B'.

Maximal margin formulations

In this section we derive from the dual problem the usual maximal margin formula-
tion. We consider an input sample x1,...,z, € X with labels y;,...,y, € {—1,1}.
These samples can be embedded via ® into a Banach space B. We denote by ®, the
embedded point ®(z) and by 7 the set {®,, : y; = +1} of positive examples and
by To = {®,, : y; = —1} the set of negative examples.
First we rewrite the second line of (4.2) by using the definition of the infimum:

c—d

sup —_—

z'eB’ c,deR Hx/H

subject to: (v, y)p p>¢c, Yy €Ti, (2 2)pp<d, VzeT.

Now subtract —%1 from both inequalities, and define the following new quantities:

b= %Z, w = ﬁx’, T =T, UTs. Then taking the inverse we arrive at the standard
hard margin formulation:
. /
4.3
Jin [l (43)

subject to:  y;((w', ®p)p p+0) > 1, Vi=1,...,n

Another equivalent formulation where we use the space of functions Fp which we
defined in Proposition 4.7 takes more the point of view of regularization.

fw’ 6.7:3/ s

min (| furll s, + D€ @ilfur(wi) +0)) (4.4)

where the loss function ¢ is given by ¢(z) =0, Vo > 1, {(x) = oo, Vo < 1.

In principle we have two points of view on the hard margin problem. One is
based on the geometric interpretation (4.2), (4.3) of finding a separating hyperplane
with maximal distance to the two classes. The other is based on (4.4) and regards
the problem as the search for a function which classifies correctly and has minimal
norm, where we assume that the norm is some measure of smoothness. In this paper
we will switch between these two viewpoints depending on which is better suited to
illustrate a certain property.
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Form of the solution

Let us now come back to the initial formulation (4.2). Our goal is to obtain a
characterization of the solutions w’ € B’. We consider the following subspace A =
span{®,, — ®,, | z1 € 11,25 € To} C span{®,, | x; € T'} which can be equivalently

written as . .
A= {Zaz@xi : Zoz,- = 0} )
i=1 i=1

The following lemma characterizes the space of solution w’ € B'.

Lemma 4.12 The quotient space* B' /AL, endowed with the quotient norm, is a
Banach space. It is isometrically isomorphic to the dual A" of A and has dimension
n— 1. Moreover the problem of mazimal margin separation in B', (4.3), is equivalent
to the following problem in B'JA*:

. /
wemiis I e (45)

subject to: y; ((w', D)t b) >1, Vi=1,...,n.

Proof: A is finite dimensional hence closed in B. It is thus a Banach space with
the induced norm. It is well known (see e.g. [75]) that then B'/A+ with the quotient
norm [[V'|| 40 = inf{|Jt —d’[| : @' € At} is a Banach space isometric isomorphic to
A’ the dual of A. Since A is a normed space of finite dimension n — 1, its dual has
the same dimension.

Since addition of elements of A+ does not change the numerator of (4.2), but will
change the norm in the denominator, the problem can be equivalently formulated
in the quotient space B'/A*.

In the constraint of (4.5), w' is an arbitrary representative of its equivalence class
w' 4+ A+, This is well defined, since if 4’ is another representative of the equivalence
class we have m’' = v’ —w' € At and Vm' € AL, ¢y, ¢, €T,

<m/7 ¢$1 - ¢xj>Bl,B = 0

That is, m’ is constant on the data. Therefore if w’ satisfies the constraint with
constant b, u’ will satisfy the constraint with the constant ¢ =b— (m, ¢s,)p 5. O

Remarkably, this lemma tells us that the solution of the maximum margin problem
is effectively in a finite dimensional subspace of B’ which is determined by the data.
However, it gives no explicit description how this subspace depends on the data,
which makes it hard to be effectively used in general.

Moreover, in order to solve the initial problem using the above lemma, one has to
first solve the finite dimensional problem in B’'/A* and then to solve the minimum
norm interpolation problem in B'. Indeed, if a is a solution in B'/A*, one has to find
an element b’ in the equivalence class a. For this one has to solve

. /
yesil  1Vls
which corresponds to minimizing the norm provided the values on a finite dimen-
sional subspace are known.

2A closed subspace C of a Banach space B defines a linear equivalence relation ~ by u ~ v if w — v € C. The
quotient space B/C' is the vector space of these equivalence classes.
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We give an interpretation of this lemma from the point of view of functions which
we developed in the previous section. The closed subspace A+ of B’ defines a closed
subspace of functions F 41 of Fp on (X, d) which are constant on all data points,
namely Vw' € A+, x; € Ty, x9 € T

Fur(@1) = fur () = (0, D(a1) — D(2)) gy = O

The proposition then states that the solution is only defined up to a constant function
on the data or in other words we are looking for a solution f in Fp/Fs1 with
the usual quotient norm ||f||f5,/fAL = infyer,, [|f — gl|- In particular, if there are

constant functions (constant functions are constant on the data) in our function
class Fpr, they will not be penalized in the norm. This reflects the fact that constant
functions are useless for classification and should therefore not be considered in the
norm of our solution space. Since we use the threshold 0 for classification we have
to compensate for the constant functions on the data with the bias term b in the
final solution.

fu(z) = sgn({w', ®(2)) g +b).

Later we will consider also isometric embeddings into a Hilbert space H. There we
have (AY)* = A and we can actually decompose H into H = A+ @ A. Then the
solution of the maximal margin problem is an element of A, which is itself a Hil-
bert space and consists of all functions f € H, orthogonal to the functions which
are constant on the data. This is a stronger statement than the usual representer
theorem, which says that the solution lies in the space spanned by the data.

4.3 Metric based maximal margin classifier in a Banach
space

In this section we treat the general case, where we embed isometrically a given
metric space (X,d) into a Banach space B followed by a maximal margin classi-
fication in B. In general there exist for each metric space several Banach spaces,
into which it can be embedded isometrically. In this section we use the very simple
Kuratowski embedding. After the definition of the Kuratowski embedding ® and
the corresponding Banach space B we finally formulate the algorithm of maximal
margin classification in B. Unfortunately the full problem cannot be solved exactly.
We provide a reasonable approximation to the full problem, which is exact if one
considers the training set and a possible test point as a finite metric space.

The following diagram illustrates the employed procedure

(X,d) Isomelrie, (D, |I]loe) C (Co(X), ]|.]]oc) — maximal margin separation
where D is a Banach space of (continuous and bounded) functions defined on X’ (see
definitions below).

4.3.1 Isometric embedding into a Banach space

Let (X, d) be a metric space and denote by Cp,(X) the Banach space of continuous
and bounded functions on X endowed with the supremum norm. If X is compact



MAXIMAL MARGIN CLASSIFICATION IN METRIC SPACES 111

the topological dual of Cy(X) is the space of regular signed Borel measures M(X)
with the measure norm ||u|| = [, duy — [, du— (where py and p_ are respectively
the positive and negative parts of ).

Consider an arbitrary xy € X and define the following map

P: X — RY =z — &, :=d(x,)—d(zo,")

Let D = span{®, : x € X'}, where the closure is taken in (Cy(X), ||-||..)-
We will show that ® defines an isometric embedding of the metric space X into D.

Lemma 4.13 ® is a total isometric embedding from (X, d) into the Banach space
(D [[-llee) € (Co(X), [ o0)-

Proof: We have ||®,]|_ < d(z,z¢) < oo and |®,(y) —P.(v')| < |d(z,y) —d(z,y')|+
|d(xo,y) — d(xo,y")] < 2d(y,y’), so that &, € Cy(X). In addition ||, — || =
\d(z,-) —d(y,-)||,, = d(z,y) and the supremum is attained at x and y. Hence,
¢ is an isometry from (X,d) into (D, ||-||,) which is a closed subspace of Cy(X).

Therefore (D, ||-]|]) is also Banach space and ® a total isometric embedding, since by
definition D = span ®(X). O

Note that, as an isometry, ® is continuous, and x is mapped to the origin of D. The
choice of this origin ®,, has no influence on the classifier since the maximal margin
problem is translation invariant.

4.3.2 The algorithm

The maximal margin formulation (4.3) can be directly stated as:

min  |jw’||
w' eD'beR
subject to:  y; (<w/, CI)%'>D' bt b) >1, Vj=1,...,n. (4.6)

Note that since we have no explicit description of the dual space D" we cannot solve
this directly. If X is compact it is well-known that the dual of Cy(X) is isometri-
cally isomorphic to the Banach space of regular signed Borel measures M(X') on X
with the measure norm. Thus we can state the problem explicitly. Note that even
though we work in a bigger space than D', we will get the same solution lying in A’
isometrically isomorphic to M(X)/A*3since we are minimizing the norm:

min
w € M(X)bER vy

subject to:  y; </ (d(zj,x) — d(z,z0))dp(z) + b) >1, Vj=1,...,n.
x

This problem also cannot be solved directly, since we have no parametrization of
M(X).
Let us now consider again the general problem (4.6). Since we have neither a des-
cription of the dual A’ ~ D'/A* nor of D', we develop a reasonable approximation in
the bigger space Cy,(X)’. We introduce the space E defined as the span of evaluation
functionals:

E :=span{é, : x € X'}.

First we have the following lemma:

3Let AL

MX) AJL'), denote the annihilator of A in M(X) resp. D’. Then we have A’ ~ M(X)/AL ~ D'/AZ,.

M(X)
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Lemma 4.14 The space E defined above is weak*-dense in the dual of Cy(X) and
the norm is given by |31, €ida, |, vy = 200 |l -

Proof: The evaluation functionals are in the dual of Cy(X') since

10:(f) = 0u(9) = |f(x) = g(@)] <[ = 9lloo

Consider now the span of evaluation functionals span{d, : z € X'}. The norm
induced by Cy(X) is given as

n
E Oziéxi
i=1

Further on we have that +{d, : z € X} = 0 since (d,, f) = 0,Vr € X & f = 0.
That implies

= sup = sup
FeCy (XY £l FECH (XY 1l oo

| X iny @i, ) ] Y eif(@)l <
: : =D lail
>

Cp(X)

(H{0e 1z € X" = Cy(X)
Therefore by Theorem 4.9 the weak*-closure of span{d, : z € X'} is Cy(X)". O

Let us explain shortly what this result means. The weak*-topology is the topology
of pointwise convergence on Cy(X). Therefore the weak*-denseness of E in Cp(X)
can be equivalently formulated as follows: YV € Cyp(X)', I{ea}tacr € E such that
eo — j in the weak*-topology, that is

VfeCy(X), (e f>cb()c)/,cb(x) — (u, f>Cb(X)’,Cb(X)‘

In other words one can approximate in the above sense any element of Cy(X')" arbi-
trarily well with elements from E. On the other hand weak*-dense does not imply
norm-dense.

Our first step is that we formulate the problem in C,(X’)" which seems at first
to be an approximation. But according to the same argument as before we have
A~ Cy(X) A+ ~ D'JAL. Since we are minimizing the norm under the given
constraints this implies that the solution will lie in Cy(X)'/A* which is isometrically
isomorphic to A’. Then as an first approximation we restrict C,(X)’ to E. Since the
span of evaluation functionals is not norm dense in Cy(X')’, this implies that even
in the limit of an infinite number of evaluation functionals we might not get the
optimal solution.

This approximation can be formulated as the following optimization problem:

!/

elergb ||6|I - meN, 21,.1.?£m€)(m,b ; |6Z|
s.t. Yj (Z ﬁz <5zia (I)x]> + b) =Yy (Z ﬁz(d<x37 Zi) - d($0> ZZ)) + b) >1
=1 =1
Vi=1,...,n.

Unfortunately it is not possible to prove that the solution can be expressed in terms
of the data points only (which would be a form of a representer theorem for this
algorithm). We could actually construct explicit counterexamples. Note however
that in [103] a representer theorem was derived for a similar but different setting.
Namely they showed that if one considers all Lipschitz functions together with the
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Lipschitz constant as a norm, the solution lies in the wvector lattice spanned by the
data. However it is also shown there that this setting is not equivalent to the setting
presented here. Moreover as we will show later the capacity of all Lipschitz functions
measured by Rademacher averages is higher than of our approach.

In order to make the problem computationally tractable, we have to restrict the
problem to a finite dimensional subspace of E. A simple way to do this is to consider
only the subspace of E generated by a finite subset Z € X, |Z| = m, which includes
the training set T' C Z. We are free to choose the point z( in the embedding, so we
choose it as xg = 21, 21 € Z. Since the problem stated in Theorem 4.10 is translation
invariant, this choice has no influence on the solution. This leads to the following
optimization problem:

m
minz |5i]
i, £
=1

subject to: y; (Z Bi(d(xj, zi) — d(z1,2)) + b) >1, Vz; €T

=1

A convenient choice for Z is Z = T'. In a transduction setting one can use for Z the
union of labelled and unlabelled data.

As the second term in the constraint, > .-, 4;d(z1, z;), does not depend on j, we can
integrate it in a new constant ¢ and solve the equivalent problem:

m
min Z |54
i,C i=1

subject to:  y; (Z Bid(xj, z) + c) >1, Vx; € T. (4.7)

i=1

The corresponding decision function is given by

f(z) = sgn <Z Bid(z, z;) + c) .

The above optimization problem can be transformed into a linear programming
problem, and is easily solvable with standard methods. Note that if we take Z =T
we recover the algorithm proposed by Graepel et al. [37]. We also note that it is
easily possible to obtain a soft-margin version of this algorithm. In this case there
still exists the equivalent problem of finding the distance between the reduced convex
hulls [12, 109]. This algorithm was compared to other distance based classifiers by
Pekalska et al. in [71] and showed good performance.

The approximation with a finite subset Z, |Z| = m, such that T C Z can also be
seen from another point of view. Namely consider the finite metric space (Z, d). Since
the isometric embedding ® is possible for any metric space, we can use it also in this
special case and the Banach space of continuous, bounded functions (Cy(2), ||-||.)
is actually equal to [ = (R™,||-||..). We note that in the case of finite dimension
m the dual of [ is given by [{". Formulating the maximal margin problem in the
Banach space I leads then exactly to the optimization problem (4.7). Therefore the
approximation to the maximal margin problem for (X,d) using a finite subset of
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evaluation functionals indexed by Z is equivalent to the maximal margin problem for
the finite metric space (Z,d) without any approximation. Moreover one can embed
m—+ 1 points isometrically into [ with the embedding ® (z; is mapped to the origin
of [2). Thus the resulting classifier is not only defined on Z but by embedding Z
plus a possible test point x € X isometrically into [} we can classify all points
x € X respecting all the distance relationships of = to Z.

4.4 Metric based maximal margin classifier in a Hilbert
space

In the previous section we constructed a maximal margin classifier in the Banach
space D C (Cy(X),||]|.) which works for any metric space (X, d), since any me-
tric space can be embedded isometrically into (Cy(&X),|-]|,,).- The problem of the
resulting maximal margin classifier is that the space of solutions D’/A* is not easily
accessible. However in a Hilbert space the dual space H’' is isometrically isomorphic
to H. Therefore we have H/A+ = (A+)L = A, that is given n data points we have
an explicit description of the at most (n — 1)-dimensional space of solutions.
Regarding these properties of the space of solutions in H it seems desirable to rather
embed isometrically into a Hilbert space than into a Banach space. It turns out that
isometric embeddings into Hilbert spaces are only possible for a subclass of metric
spaces. Following the general framework we first treat isometric and uniform locally
isometric embeddings. Then the resulting maximal margin classifier is determined.
Finally we show the equivalence to the SVM and provide an alternative point of
view on kernels regarding SVMs.

4.4.1 Isometric embedding into a Hilbert space

We have seen in the previous part that all metric spaces can be embedded isome-
trically into a Banach space. Is this true also for isometric embeddings into Hilbert
spaces? The answer was given by Schoenberg in 1938 in terms of the following class of
functions, by now well-known as positive definite resp. conditionally positive definite
kernels.

Definition 4.15 A real valued function k on X x X is positive definite (resp. con-
ditionally positive definite) if and only if k is symmetric and

ZCiCJ‘k’(.ﬁEi,l’j) Z 0, (48)
i,J
for allm € N, x; € X,i = 1,...,n, and for all ¢; € R;i = 1,...,n, (resp. for all

ceRi=1,..n, with) ¢ =0).

The metric spaces which can be isometrically embedded into a Hilbert space can be
characterized as follows:

Theorem 4.16 (Schoenberg [80]) A metric space (X, d) can be embedded isome-
trically into a Hilbert space if and only if —d?(z,y) is conditionally positive definite.

Based on this characterization, one can introduce the following definition.
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Definition 4.17 A metric d defined on a space X is called a Hilbertian metric if
(X,d) can be isometrically embedded into a Hilbert space, or equivalently if —d?* is
conditionally positive definite.

We notice that isometric embeddings into a Hilbert space are only possible for a
restricted subclass of metric spaces. So we achieve the advantage of having a small
and easily accessible space of solutions by losing the ability to handle the whole class
of metric spaces in this framework.

Let us now construct explicitly the corresponding isometric embedding.

Proposition 4.18 Let d(x,y) be a Hilbertian metric. Then for every point xy € X
there exists a reproducing kernel Hilbert space Hy and a map V¥ : X — Hj given by

1= W) = o (=, ) + B, 20) + (-, 0))

N | —

such that
o {U,|z € X} is total in Hy,
o [V —Wylly, = d(x,y).
oV, =0
We need the following two lemmata to prove this proposition.

Lemma 4.19 [1/] Let X be a nonempty set, xg € X, and let k: X x X — R be a
symmetric function. Let k(z,y) be given by

k('r7 y) = k(l’,y) - k(l’,l’o) - k(x(]?y) + k‘(l‘o, .730).
Then k is positive definite if and only if k is conditionally positive definite.

Lemma 4.20 [81] Given a positive definite kernel k(z,y) : X x X — R there
exists a unique reproducing kernel Hilbert space (RKHS) of functions on X, where

H = span{k(zx,-)|x € X}.

Proof: [Proposition 4.18] Define the symmetric kernel function k(z,y) : X x X — R
by

K(ry) = 5 (<) + Pl m0) + P (y,70))

Using Lemma 4.19, k(x,y) is a positive definite kernel. Moreover by Lemma 4.20
there exists a unique reproducing kernel Hilbert space Hy associated to k(z,y) such
that k(z,y) = (U, ¥y),, and {k(z,-)]z € X} = {U,[z € X} is total in Hj.

Moreover we have

and Wy, (-) = 3(—d*(wo, ) + d*(xo,-)) = 0. O
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4.4.2 Uniform locally isometric embedding into a Hilbert space

In the previous section we constructed an isometric embedding into a Hilbert space.
If one trusts the metric d(x, y) only locally we argued in section 4.2.1 that one should
use a uniform locally isometric embedding.

The following proposition gives necessary and sufficient conditions for a uniform
embedding of a metric space into a Hilbert space:

Proposition 4.21 [1] A metric space (X,d) can be uniformly embedded into a Hil-
bert space if and only if there exists a positive definite kernel k(x,y) on X such
that

o Foreveryx € X, k(x,z) =1
o k is uniformly continuous
o For every e > 0, inf{l — k(z,y) : d(x,y) > e} >0
o lim._gsup{l — k(z,y) : d(z,y) <e} =0
The following corollary extends the previous proposition to uniform local isometries.

Corollary 4.22 Let (X, d) be a metric space and k a positive definite kernel which
fulfills the conditions of Proposition 4.21. If the limits

1 —_— 1 f ————
e Rayy) v ()

exist and are non-zero then ¢, : v — k(x,-) is a uniform local isometry of (X,d)
onto a subset of the RKHS associated to k.

Proof: Simply calculate the metric induced by the positive definite kernel k,
di(z,y) = 2 — 2k(z,y) and use the definition of the functions D, and D_ in Defini-
tion 4.1. The explicit embedding ¢ follows from Lemma 4.20. U

In principle the above proposition and the corollary are not very satisfying since
they provide no explicit construction of a positive definite kernel which fulfills the
conditions for a given metric.

In the case where the given metric is a Hilbertian metric we can use a result of
Schoenberg. It characterizes the metric transforms F' of a given Hilbertian metric d,
such that F'(d) is also a Hilbertian metric. This implies that the the identity map
id: (X,d) — (X, F(d)) is a uniform homeomorphism. Moreover using Lemma 4.20
we get a uniform embedding into a Hilbert space.

Theorem 4.23 [79] Let F : Ry — R be a function such that F(0) = 0 and all
derivatives of F' exist on R.\{0}. Then the following assertions are equivalent:

e F(d) is a Hilbertian metric, if d is a Hilbertian metric.

o] _eftQu 1/2
F<t>=</0 1Tdv(U)> ,

where y(u) is monotone increasing for u > 0 and satisfying floo

4

dy(u)
” < 00",

4The integrals are Lebesgue-Stieltjes integrals.
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o (1)L F2(\/t) >0 for allt >0 and n > 1.

dtn

Moreover F' is bounded if and only if

exists.

. [T dy(w)

lim~y(€) = 7(0), and lim T
For a uniform, local isometric embedding one has to fulfill in addition the require-
ments of Lemma 4.5. Combining Theorem 4.23 and Lemma 4.5 we get a complete
description of all metric transforms for a given Hilbertian metric which induce a uni-
form local isometry and where the transformed metric is Hilbertian. The examples
given in (4.1) fulfill both the conditions of Theorem 4.23 and of Lemma 4.5. The-
refore they provide two examples of metric transforms which induce uniform local
isometries and produce Hilbertian metrics if one starts with a Hilbertian metric. The
drawback of the Theorem 4.23 is that we have to start with a Hilbertian metric. A
more general theorem which characterizes metric transforms of an arbitrary metric
space such that the transformed metric is Hilbertian seems not to be available in
the literature.

4.4.3 The maximal margin algorithm

In the general considerations we defined the subspace A C span{W¥,|z € T'} by

A= {Xn:ozi\llxi : Zn:ozi = O} .
i=1 i=1

Since in a Hilbert space the dual is isometrically isomorphic to the Hilbert space
itself we get the following form of the space of solutions:

Lemma 4.24 The space of solutions H /AL is equal to A.
Proof: We have the simple equalities H/A+ = (A1)t = A. O

Following Zhou [109] note that if in (4.2) the infimum on the left is achieved by
Yo € co(Th) and zg € co(T3) then w' is aligned with yo — zg, that is

(Yo — 20, w")3; = 1Yo — 20|l 10" [l

In a Hilbert space it follows from the Cauchy-Schwarz inequality that in this case
w’ = yo— 29. Therefore in a Hilbert space the problem of maximal margin separation
is not only equivalent to the problem of finding the distance of the convex hulls but
it has also the same solution. Therefore we can equivalently formulate the problem
of maximal margin separation as finding the distance of the convex hulls of the
isometrically embedded training data in Hj.

The optimization problem corresponding to the maximum margin hyperplane can
be written as

2

min

Z Oéi\I]asi_ Z Oéi\I/xi

lylz—l-l i:yi:—l

Hy,

subject to: Z o = Z a =1, «a; >0,

iy =-+1 ty;=—1
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The distance HZzy: Ve =3V, can be calculated explicitly with
*JT 1 H

Ly =

k
the expression of the inner product (V,, ¥,), = k(z,y) from the proof of Proposi-

tion 4.18:

Z Yic; @y,

k

2

= Z yiyjcicsk(x;, ;)

H 4,j=1

1 n
=3 > vy (—d (@i, x5) + & (i, w0) + d* (0, 7))

1,7=1

1 n
— —5 Z yiyjaiajdz(:ﬂi,xj)

1,j=1

where the other terms vanish because of the constraint Z?:l y;a; = 0. So the final
optimization problem becomes

R
R Zgzl yiy;iyd* (zi, 5)

subject to: Zy,;oz,- =0, ZO"' =2, «a; >0,

and with w =) _._; y;c;®,, the final classifier has the form

f(@) = (w, z)y, +b= Zyioéik(ﬂfmfﬂ) +0

1 . 2 2 1 - 2
- 2;Ozlyz(d (i, ) — d*(xi, 20)) +b = 2;0@%6[ (ri, )+ ¢

The constant ¢ is determined in such a way that the hyperplane lies exactly half
way between the two closest points of the convex hulls. Following this consideration
the point m = % Yo, a;®,, lies on the hyperplane. Then ¢ can be calculated by:

1 n
e=—(wm)y, =5 Y viooy(d(wi, 25) — d(zs, w0))

i,j=1

4.4.4 Equivalence to the Support Vector Machine

The standard point of view on SVM is that we have an input space X which describes
the data. This input space X is then embedded via ® into a Hilbert space ‘H with a
positive definite kernel® and then maximal margin separation is done. The following
diagram summarizes this procedure:

y Fernelk ‘H; — maximal margin separation (4.9)

5QOriginally the SVM was only formulated with positive definite kernels. Later it was shown in [82] that due to
the translation invariance of the maximal margin problem in feature space one can use the class of conditionally
positive definite kernels. In this case the kernel k(z,y) is not equal to an inner product (®,, ®,) in a Hilbert space,
but it defines an inner product on a subspace which includes A.
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where the kernel £ is positive definite.
We show now that this is equivalent to the point of view in this paper:

1sometric . . .
(X,d) —— Hj — maximal margin separation

where d is a Hilbertian metric.

The next proposition is the key to this equivalence. It is a characterization of the
class of all conditionally positive definite kernels in terms of the class of Hilbertian
metrics. It can be found in Berg et al. (see Proposition 3.2 of [14]). We have rewritten
it in order to stress the relevant result.

Proposition 4.25 All conditionally positive definite kernels k : X x X — R are
generated by a Hilbertian metric d(x,y) in the sense that there exists a function
g: X — R such that

1
and any kernel of this form induces the Hilbertian metric d via

This proposition establishes a many-to-one correspondence between the set of condi-
tionally positive definite kernels and Hilbertian metrics. This is rather obvious since
already any change of the origin in the RKHS corresponds to a new kernel function
on X but the induced metric (4.11) is invariant. Moreover the following theorem
shows that only the Hilbertian metric d matters for classification with the SVM.

Theorem 4.26 The SVM is equivalent to the metric based maximal margin clas-
sifier in a Hilbert space. The solution of the SVM does not depend on the specific
isometric embedding ®, nor on the corresponding choice of the kernel in a given
family determined by a Hilbertian metric, see (4.10). The optimization problem and
the solution can be completely expressed in terms of the (semi)-metric d of the input
space,

2

. 1 2
m;n = —5 Z yiyjaiajd (%‘, %‘)
7]

Z Yi0; Py,
) Hy,
subject to : Zyiai =0, Z a; =2, a; >0.
The solution can be written as
1
flz) = ) ZyiaidZ(xhx) +ec

Proof: By Proposition 4.25 all conditionally positive definite kernels are generated
by a Hilbertian metric d(z,y). Using (4.10) one can show now that for each kernel
associated to a Hilbertian metric the corresponding optimization problem for maxi-
mal margin separation and the corresponding solution are equivalent to the metric
maximal margin classification problem in a Hilbert space for the associated Hilber-
tian metric.
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The expression of the optimization problem of the SVM in terms of the (semi)-metric
follows from (4.10);

‘ Z Yio; Py,

2

= Z yiyjouagk(zi, v;)

1
= Z yiyjaiaj[_idQ(fEia ;) + 9(@i) + g(z;)]
iJ

1
=3 Z yiyjaioyd® (i, 5),
1,

where the terms with g vanish due to the constraint ), y;0; = 0.
The solution expressed in terms of a CPD kernel k£ can also be expressed in terms
of the (semi)-metric by using (4.10):

f(x) = Zfl/ioéik(ﬂfi, r)+b= Zyiai[_%d(mia 2)® + g(z;) + g(z)]

1
= —5 Z yiOéidz(SEi, I') + C,

where again ) . y;a;g(x) vanishes and ¢ = b+ ), y;059(z;), but ¢ can also be di-
rectly calculated with the average value of b = y; + % > yicud? (x4, x;), where j runs
over all indices with o; > 0. Since neither the specific isometric embedding ® nor
a corresponding kernel £ enter the optimization problem or the solution, the SVM
only depends on the (semi)-metric. 0

The kernel is sometimes seen as a similarity measure. The last theorem, however,
shows that this property of the kernel does not matter for support vector classifiers.
On the contrary the (semi)-metric as a dissimilarity measure of the input space on-
ly matters for the maximal margin problem. Nevertheless it seems to be easier to
construct a conditionally positive definite kernel than a Hilbertian metric, but one
should have in mind that only the induced metric has an influence on the soluti-
on, and therefore compare two different kernels through their induced metrics. This
should also be considered if one uses eigenvalues of the kernel matrix. They depend
on the underlying Hilbertian metric and as well on the function g(x) in (4.10) whe-
reas the solution of the SVM only depends on the Hilbertian metric. In other words
properties which are not uniform over the class of kernels induced by a semi-metric
are not relevant for the solution of the SVM.

One could use the ambiguity in the kernel to chose from the whole class of kernels
which induce the same (semi)-metric (4.10) the one which is computationally the
cheapest, because the solution does not change as is obvious from the last theo-
rem. Furthermore note that Lemma 4.24 provides a slight refinement of the usual
representer theorem of the SVM which states that the solution lies in an at most
n dimensional space spanned by the data (see e.g. [81]). This refinement seems to
be a marginal effect for large training sets. However the crucial point here is that
the constraint on the subspace implies that the SVM is actually equivalent to the
metric based maximal margin classifier in a Hilbert space.

As a final note we would like to add that the whole argumentation on the isome-
tric embedding of the (semi)-metric space into a Hilbert space also applies to the
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soft-margin-formulation of the SVM. The reformulation in terms of reduced convex
hulls is a little bit tricky, and we refer to [19, 12, 109] for this issue.

4.5 Measuring the capacity via Rademacher averages

In this section we compute the Rademacher averages corresponding to the function
classes induced by our embeddings. The Rademacher average is a measure of capacity
of a function class with respect to classification, and can be used to derive upper
bounds on the error of misclassification.

4.5.1 General case

Given a sample of input points xzi,...,x,, we define the empirical Rademacher
average R, of the function class F as

R.(F) := E,su oif (z:), 4.12
(F) fegnz (4.12)

where o are Rademacher variables, that are independent uniform random variables
with values {—1,+1}, and E, denotes the expectation conditional to the sample
(i.e. with respect to the o; only). We repeat here Theorem 7 from [6] to show
how the expectation of the Rademacher average can be used to bound the error of
misclassification, followed by a Lemma provided in [7] which shows that the empirical
Rademacher average is concentrated.

Theorem 4.27 Let F be a set of real-valued functions on X with sup{|f(x)|: f €
F} < oo for all x € X. Suppose that I' : R — [0, 1] satisfies ['(«) > ly<o and is
Lipschitz with constant L. Then with probability at least 1 — 6, every function in F
satisfies

2

In§

P(Y f(X) <0) < %Z Dyif (w1)) + LE Ry(F) + |/ 22

The next Lemma shows how E R,,(F) can be upper bounded by R, (F).

Lemma 4.28 Fiz x > 0 and let F be a class of functions with range in [a,b]. Then
with probability at least 1 —e™%,

a€e(0,1)

~ _ 1 =~ (b—a)x
< - e
ER,(F) < inf (1—@Rn(f)+4na(1—a)>
Also, with probability 1 — e™7,

~ , ~ b—a)x,1 1
Bo(F) < inf (14 ) R(F) + 25 (o= + 5)
( )_(go(( +a) (F) + 2n 20z+3
The function classes we are interested in are hyperplanes with a given margin. Now
hyperplanes correspond to elements of the dual of the Banach space into which the
data is embedded and the margin corresponds to the norm in that space. Therefore
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we have to consider the Rademacher averages of balls in the dual space.
For a function fu in Fg, fur () = (0, o) g 5 With || fur|| g, = [lw']|5 so that

n
E Uiq)gci
i=1

Notice that even if the embedding ® is isometric, the above quantity depends on how
the ®(z;) are located in the embedded linear space. So, a priori, the above quantity
depends on the embedding and not only on the geometry of the input space.

More precisely, we consider the following two classes. For a given positive definite
kernel k, let k be defined as k(x y) = k(z,y) — k(z,20) — k(x0,y) + k(x0,20)® and
H be the associated RKHS for k. We define F; = {g € H, ||g|| < B}. Also, with the
notations of the previous section, we define F, = {e € D, |le|| < B}.

B
E, sup Zsz z;) = —FE,
n

l[w'||gr<B T

B

Theorem 4.29 With the above notation, we have

where d(z;, x0) = ||k(x;,-) — k(xo,)|lx is the distance induced by the kernel on X.
Also, there exists a universal constant C' such that

CB [ €
< — log N(=, X .
Rn(fQ) = \/ﬁ/o \/Og (27 >d) de

Proof: We first compute the Rademacher average of F5:

n
E Uiq)x E Uz :El
i=1

We will use Dudley’s upper bound on the empirical Rademacher average [30] which
states that there exists an absolute constant C' for which the following holds: for
any integer n, any sample {x;} ; and every class Fs,

~ B
R, (F) = EEU = —E sup

reX

(4.13)

~ C >
< — log N ) d 4.14
R < o= [ Ve NG P d (1.14)

where N (g, Fy, £3) are the covering numbers of the function class F, with respect to
the /5 distance on the data, i.e. ||[f — g gg =25 (@) — g(x:))?

In order to apply this result of Dudley, we notice that the elements of X can be
considered as functions defined on X. Indeed, for each y € X, one can define the
function f, : z — ®,(y). We denote by G the class of all such functions, i.e. G =
{fy 1y € X}. Then using (4.13), we get

n§0—z xl

Swhere k(zo, ) corresponds to the origin in H and is introduced to make the comparison with the space D easier

R.(F;) = BE, sup = BR,(G). (4.15)
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We now upper bound the empirical Ly-norm of G:
1fyr = frelleg < max D, (1) — Pa, (y2)]
= max |d(zi, y1) — d(s, y2) + d(20, y2) — d(zo, y1)]
< 2d(y1, y2)- (4.16)

Combining (4.14) and (4.16) we arrive at

- C [®
R.(G) < %/0 \/logN(%,X,d) de

This gives the first result. Similarly, we have

~ B
R,(F) =—FE,

n

where the second step follows from Jensen’s inequality (applied to the concave func-
tion /). O
If we can assume that the data is inside a subset of X with finite diameter R, then
this simplifies to

The above theorem gives an upper bound on the Rademacher average directly in
terms of the covering numbers of the metric space (X, d).

In particular, this shows that the Rademacher average corresponding to the Ku-
ratowski embedding are much smaller than those corresponding to the Lipschitz
embedding of [103]. Indeed, for a bounded subset of the metric space R?, the co-
vering numbers behave like e~¢ so that the Rademacher average in our case is of
order \/d/n while in the Lipschitz case it is of order (1/n)'/?. Note that in order
to establish these results one needs to use a modified version of the metric entropy
bound of Dudley, see [104][Chapter 3, Theorem 17], since the integral in Theorem
4.29 diverges in these cases.

Notice that a trivial bound on R,(F2) can be found from (4.13) and

n

ZO’Z(C“Z’Z,Z') —d(.’ljo,.’lf)) S Zd(xiaxO)a
i=1 =1
which gives the upper bound

n

~ B
Ro(Fo) < — 3 d(xi,30),

=1

which is also an upper bound on R, (F1). However, this upper bound is loose since
if all the data is at approximately the same distance from x; (e.g. on a sphere), then
this quantity does not decrease with n. This is undesirable as it would mean that
the bound on the error does not decrease when the sample size is increased.
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4.5.2 Comparing the approaches

More interesting than upper bounds on the Rademacher averages of the individual
algorithms is to compare them directly in the cases where both algorithms can be
applied (i.e. when —d? is conditionally positive definite). In this case, one can choose
to embed isometrically the input space either into a Hilbert space or into a Banach
space. The question is then how different balls of same radius in the dual spaces are.

Theorem 4.30 If d is a Hilbertian metric, then

The second step follows from the Khintchine-Kahane inequality. The constant 1/+/2
is optimal, see e.g. [59]. O

This result can be seen as an indication that the SVM is as good as the general
algorithm for arbitrary metric spaces in terms of complexity of the unit ball. Ho-
wever, this does not directly allow to compare the generalization abilities of both
algorithms. Indeed, the obtained margin in each case could be quite different.

4.6 Conclusion and perspectives

In this article we have built a general framework for the generation of maximal mar-
gin algorithms for metric spaces. We considered two general cases. In the first one
we trust the metric globally, in the second one we believe only in the local structure
of the metric which seems to be often the case for metrics defined on real-world
data. In the first case we embed directly isometrically into a Banach space, in the
second one we first perform a uniform transformation of the metric such that the
local structure is preserved and then embed isometrically the transformed space into
a Banach space.

For each metric space we presented a Banach space into which it can be embedded
isometrically. It turned out that the optimization problem of the maximal margin
algorithm in this Banach space cannot be solved exactly. We provided an appro-
ximation which is exact if one considers the training data plus one test point as a
finite metric space. One special approximation is the LP-machine for distances of
[37].
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Since the space of classifiers has a considerably nicer structure if one embeds in a
Hilbert space, we considered in the second part isometric embeddings into a Hilbert
space. These are no longer possible for all metric spaces, but are restricted to the
subclass of Hilbertian metrics. We showed that the resulting algorithm is equivalent
to the SVM classifier, but since the relationship between kernels and Hilbertian me-
trics is many-to-one, the metric based point of view provides a better insight into
the structural properties of the SVM.

For the class of Hilbertian metrics we can compare the two isometric embeddings.
They both preserve the metric structure, that is, all available information on the
data. Therefore the question arises which norm on the linear extension provides the
better results in the sense of generalization error. We provided a first answer to this
question by comparing the Rademacher averages of both embeddings. It turned out
that the Rademacher average of the SVM are upper bounded by a constant times
the Rademacher average of the metric based classifier in the Banach space. This
result suggests that the SVM has a better generalization performance. But further
work has to be done in that direction.

4.7 Appendix

4.7.1 Semi-metric spaces compared to metric spaces for classification

In this article all results were stated for metric spaces. As the following observations
show they can be formulated equivalently for semi-metric spaces. In fact there is a
connection between both of them which we want to clarify in this appendix.

Theorem 4.31 Let (X, d) be a (semi)-metric space and ~ be the equivalence re-
lation defined by x ~ y < d(x,y) = 0. Then (X/ ~,d) is a metric space, and if
—d*(z,y) is a conditionally positive definite kernel and k a positive definite kernel
on X which induces d on X, then —d? is also a conditionally positive definite kernel
and k a positive definite kernel on (X/ ~,d).

Proof: The property d(x,y) = 0 defines an equivalence relation on X, x ~ y <=
d(z,y) = 0. Symmetry follows from the symmetry of d, and transitivity x ~ y,y ~
z = x ~ z follows from the triangle inequality d(z, z) < d(z,y)+d(y, z) = 0. Then
d(x,y) is a metric on the quotient space X'/ ~ because all points with zero distance
are identified, so

d(CL’,y) =0 <= z=y,

and obviously symmetry and the triangle inequality are not affected by this opera-
tion. d is well-defined because if x ~ z then |d(z,.) — d(z,.)| < d(x,z) = 0.

The fact that —d? is conditionally positive definite on X'/ ~ follows from the fact
that all possible representations of equivalence classes are points in X and —d? is
conditionally positive definite on X'. It is also well defined because if x ~ z then

2 (x,.) — d*(z, )] < d(z, 2)|(d(z,.) +d(z.,)| = 0.

The argumentation that k is also positive definite on X'/ ~ is the same as above. It is
well defined because if x ~ 2’ then ||®, — ®,/|| = 0, so that actually k(z,-) = k(a', )
(since for all y € X, |k(x,y) — k(2',y)| < [|Ps — Pur|| [|Py]])- O

The equivalence relation defined in Theorem 4.31 can be seen as defining a kind of
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global invariance on X'. For example in the SVM setting when we have the kernel
k(x,y) = (x, y)Q, the equivalence relation identifies all points which are the same up
to a reflection. This can be understood as one realization of an action of the discrete
group D = {—e, +e} on R", so this kernel can be understood as a kernel on R"/D.
Assume now that there are no invariances in the data and two different points z # y
with different labels are such that d(z,y) = 0. Then they cannot be separated by
any hyperplane. This means that using semi-metrics implicitly assumes invariances
in the data, which may not hold.
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Hilbertian Metrics and Positive
Definite Kernels on Probability
Measures

5.1 Introduction

Kernel methods have shown in the last years that they are one of the best and ge-
nerally applicable tools in machine learning. Their great advantage is that positive
definite (pd) kernels can be defined on every set. Therefore they can be applied to
data of any type. Nevertheless in order to get good results the kernel should be
adapted as well as possible to the underlying structure of the input space. This has
led in the last years to the definition of kernels on graphs, trees, and manifolds. Ker-
nels on probability measures also belong to this category, but they are already one
level higher since they are not defined on the structures directly but on probability
measures on these structures!. In recent time they have become quite popular due
to the following possible applications:

e Direct application on probability measures e.g. histogram data of text [57] and
colors [21].

e Given a statistical model for the data, one can first fit the model to the data and
then use the kernel to compare two fits, see [57, 51|, thereby linking parametric
and non-parametric models.

e Given a bounded probability space X', one can use the kernel to compare arbi-
trary sets in that space, e.g by putting the uniform measure on each set.

In this paper we consider Hilbertian metrics and pd kernels on M (X)?. Previous
approaches to pd kernels on probability measures were often only defined on a sub-
set of M (X) namely a parametric model of probability measures. In the work of
Lafferty and Lebanon on diffusion kernels on statistical manifolds® in [57] they pro-
pose to use the heat kernel on a statistical manifold as a positive definite kernel.
Though mathematically beautiful the approach is hard to apply in practice since

1However note that one can always use the kernel K on probability measures to define a kernel k on X by:
k(z,y) = K (62, 8y)-

2./\/l}r(X) denotes the set of positive measures u on X with u(X) =1, i.e. the set of probability measures.

3A statistical manifold is a parametric set of probability measures which under certain conditions can be seen as
a manifold. It becomes a Riemannian manifold by using the Fisher information matrix as Riemannian metric.
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the heat kernel can in general not be computed. The authors then suggest to use
certain approximations of the heat kernel which however are not guaranteed to be
positive definite. In [50], Jebara, Kondor, and Howard introduce a family of so called
probability product kernels. One special case is the so called Bhattacharyya kernel
which is defined on all probability measures. However the other members of this
family do not fulfill this. Then the authors concentrate on computing these kernels
for various interesting models of probability measures. Our goal is tackle the pro-
blem from a more general perspective and to build Hilbertian metrics and positive
definite kernels on the set of all probability measures. The results in this chapter
have been partially published in [46, 45].

In the first section we will summarize the close connection between Hilbertian me-
trics and pd kernels which was already discused in the last chapter.

We will consider two types of kernels on probability measures. The first one is ge-
neral covariant and defined on the whole set M (X). That means that arbitrary
smooth coordinate transformations of the underlying probability space will have no
influence on the kernel. Such kernels can be applied if only the probability measu-
res themselves are of interest, but not the space they are defined on. We introduce
and extend a two parameter family of covariant pd kernels which encompasses all
previously used kernels of this type. Despite the great success of these general co-
variant kernels in text and image classification, they have some shortcomings. For
example for some applications we might have a similarity measure resp. a pd kernel
on the probability space which we would like to use for the kernel on probability
measures. In the second part we investigate types of kernels on probability measures
which incorporate such a similarity measure. We provide an alternative descriptions
of these kernels which on one hand makes it easier to understand which properties
of the measures are effectively used, and on the other hand gives in some cases an
efficient way of computing these kernels. Finally we apply these kernels on two text
(Reuters and WebKB) and two image classification tasks (Corell4 and USPS).

5.2 Hilbertian Metrics versus Positive Definite Kernels

It is a well-known fact, see Chapter 3, that a pd kernel k(x,y) corresponds to an
inner product (¢, ¢y),, in some feature space H. The class of conditionally positive
definite (cpd) kernels is less well known. Nevertheless this class is of great interest
since Scholkopf showed in [82] that all translation invariant kernel methods can also
use the bigger class of c¢pd kernels. Therefore we give a short summary of this type
of kernels and their connection to Hilbertian metrics®.

Definition 5.1 A real valued function k on X x X is pd (resp. cpd) if and only if
k is symmetric and Z cicik(xi,xj) >0, foralln € N, z; € X, i=1,...,n, and for
allc; eRi=1,...,n, (resp forall¢; e Ryi=1,...,n, with Y7 ¢; =0).

Note that every pd kernel is also cpd. The close connection between the two classes
is shown by the following lemma:

Lemma 5.2 [1}] Let k be a kernel defined as k(x,y) = k(x y)— l%(:z:,:to) l%(.ro, y)+
k(xo,0), where o € X. Then k is pd if and only if k is cpd.

4A semi-metric d(z,y) fulfills the conditions of a metric except that d(z,y) = 0 does not imply = y. It is called
Hilbertian if one can embed the (semi)-metric space (X, d) isometrically into a Hilbert space. A (semi)-metric d is
Hilbertian if and only if —d?(z,y) is cpd. That is a classical result of Schoenberg, see [80].
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Similar to pd kernels one can also characterize cpd kernels. Namely one can write
all cpd kernels in the form: k(z,y) = —3 [|¢s — gbyHi{ + f(z)+ f(y). The cpd kernels
corresponding to Hilbertian (semi)-metrics are characterized by f(x) = 0 for all x €
X, whereas if k is pd it follows that f(z) = +k(z,z) > 0. We refer to Chapter 4 for
further details. We also would like to point out that for SVM’s the class of Hilbertian
(semi)-metrics is in a sense more important than the class of pd kernels. Namely as
we have shown in the previous chapter the solution and optimization problem of the
SVM only depends on the Hilbertian (semi)-metric which is implicitly defined by
each pd kernel. Moreover a whole family of pd kernels induces the same semi-metric.
In order to avoid confusion we will in general speak of Hilbertian metrics since, using
Lemma 5.2, one can always define a corresponding pd kernel. Nevertheless for the
convenience of the reader we will often explicitly state the corresponding pd kernels.

5.3 ~-homogeneous Hilbertian Metrics and Positive Defini-
te Kernels on R

The class of Hilbertian metrics on probability measures we consider in this chapter
are based on a pointwise comparison of the densities p(z) using a Hilbertian metric
on R, . Therefore Hilbertian metrics on R, are the basic ingredient of our approach.
In principle we could use any Hilbertian metric on R, but, as we will explain later,
we require the metric on probability measures to have a certain property. This in
turn requires that the Hilbertian metric on R, is y-homogeneous®. The class of
~v-homogeneous Hilbertian metrics on R, was recently characterized by Fuglede:

Theorem 5.3 (Fuglede [34]) A continuous, symmetric function d : Ry x Ry —
R, with d(z,y) = 0 <= = = y is a y-homogeneous Hilbertian metric d on R, if
and only if there exists a (necessarily unique) non-zero bounded measure p > 0 on
R, such that d* can be written as

) )
d*(z,y) = / |20 — O P dp(N). (5.1)
Ry

Using Lemma 5.2, we define the corresponding class of pd kernels on R by choosing
xo = 0. We will see later that this corresponds to choosing the zero-measure as origin
of the RKHS.

Corollary 5.4 A continuous, symmetric function k : Ry xR, — Ry with k(z,z) =
0 < x = 0 s a 2v-homogeneous pd kernel k on R, if and only if there exists a
(necessarily unique) non-zero bounded symmetric measure k > 0 on R such that k
18 given as

k(z,y) = /w(wi)‘)y(%"’\) dr(N). (5.2)
R

Proof: If k has the form given in (5.2), then it is obviously 27-homogeneous and
since k(z,z) = 2?7k(R) we have k(z,z) = 0 <= x = 0. The other direction follows
by first noting that £(0,0) = (¢, ¢9) = 0 and then applying theorem 5.3, where
k is the symmetrized version of p around the origin, together with lemma 5.2 and

k(@,y) = (s, 0y) = 5 (—d?(2,y) + d*(2,0) + d*(y,0)). N

5A symmetric function k£ on Ry x Ry is y-homogeneous if k(cz,cy) = cVk(z,y) for all c € Ry
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At first glance Theorem 5.3, though mathematically beautiful, seems not to be very
helpful from the viewpoint of applications. But as we will show in the section on
structural pd kernels on M2 (X), this result allows us to compute this class of ker-
nels very efficiently.

Recently Topsge and Fuglede proposed an interesting two-parameter family of Hil-
bertian metrics on R, [98, 34]. We extend now the parameter range of this family.
This allows us in the next section to recover all previously used Hilbertian metrics
on ML (X) from this family.

Theorem 5.5 The function d : Ry x Ry — R defined as:

(:Cagya); - (xﬁ;yﬁYI (5.3)

is a 1/2-homogeneous Hilbertian metric on Ry, if a € [1,00], B € [3,a] or 3 €

29
[—o0, —1]. Moreover the pointwise limit for « — 3 is given as:

: O (2P +4yP 5
i:f%diﬁ(xay):52%< 5 >

1
log + log .
2 P+ yP zf + yP P+ yf af + yP

Note that di‘ 5= déla. Before we give the proof let us give the following equivalent
description for negative values of 3. We introduce the parameter p = —/3 and get

for 1 < p < o0,
1 1
x()!_i_ya a 2 P
- .
2 4 xP + yP

We need the following lemmas in the proof:

Lemma 5.6 [1/, 2.10] If k : X x X is c¢pd and k(x,x) <0, Vx € X, then —(—k)7
1s also cpd for 0 <~ < 1.

|of]
a—p

diw(l‘, y) =

ap
a—+p

di\p(za y) =

Lemma 5.7 Ifk: X x X — R is ¢pd and k(z,y) <0, Vx,y € X, then —1/k is pd.

Proof: It follows from Theorem 2.3 in [14] that if £ : X x X — R_ is cpd, then
1/(t—k) is pd for all t > 0. The pointwise limit of a sequence of cpd resp. pd kernels
is cpd resp. pd if the limit exists, see e.g. [81]. Therefore lim; o 1/(t — k) = —1/k is
positive definite if & is strictly negative. O

We can now prove Theorem 5.5:

Proof: The proof for the symmetry, the limit @« — 3 and the parameter range
1 <a<o00,1/2 < [ < «a can be found in [34]. We prove that —dilﬂ is cpd
for 1 < a < o0, —o0 < [ < —1. First note that k(z,y) = —(f(z) + f(y)) is
cpd on R, for any function f : R, — R, and satisfies k(z,y) < 0, Vz,y € X.
Therefore by Lemma 5.6, —(z* + y®)"/* is cpd for 1 < a < oo. The pointwise
limit limg e — (2% 4+ y*)/® = —max{z,y} exists, therefore we can include the
limit @ = oo. Next we consider k(x,y) = —(x + y)/# for 1 < 8 < oo which is
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cpd as we have shown and strictly negative if we restrict £ to R% x R%. Then all
conditions for lemma 5.7 are fulfilled, so that k(z,y) = (z +y)~'/# is pd. But then
also k(z,y) = (77 4+ y=?)~1/# is pd. Moreover k can be continuously extended to 0
by k(x,y) = 0 for x = 0 or y = 0. Multiplying both parts with the positive factor
% and adding them gives the result. By construction —di‘ 5 1s then cpd and dqg
a semi-metric since

di‘ﬁ(x,x) =0, VzxeR,;.

Now dys(2,y) = 0 implies = = y since

|| Jz ||
Vo =d(z,0) <d(z,y) +d(y,0) =\ | =Y
2a (o — ) 2a (o — )
so that \/x < \/y. Vice versa we get \/y < v/ which implies \/z = |/ so that dqs
is a metric. OJ

It is easy then to define with the help of Lemma 5.2 a corresponding family of
positive definite kernels k,g. We fix the family by requiring that k,3(0,0) = 0
which corresponds to the choice xp = 0 in Lemma 5.2 so that the origin in R, is
mapped to the origin in the corresponding RKHS.

Corollary 5.8 The function k: Ry x Ry — R defined as:

L L a | g\ e g .8\ /8
k’a,@(x,y):a&_ﬁﬁ [( _a—25>(m+y)_(x —;—y) +($ —;—y) ]

is a 1-homogeneous positive definite kernel on Ry, if a € [1,00], f € [%,a]. For
a = [3 one gets

r+y
kgis(,y) =log(2) o1

1
— log + log :
2 zf + yf zf + yP zh + yP zf + yP

For negative values of 3 we introduce p = —[3. Then for a € [1,00], p € [1, 0]

1
vty  [(a+y° 5+$ 2
2% 2 Y\aor+yr

1s a 1-homogeneous positive definite kernel on R, .

=

ap
a—+p

ka|—p(x7 y) =

5.4 Covariant Hilbertian Metrics on M! (X)

In this section we define Hilbertian metrics on M? (X) by comparing the densities
pointwise with a Hilbertian metric on R, and integrating these distances over X.
Since densities can only be defined with respect to a dominating measure® our defi-
nition will at first depend on the choice of the dominating measure. The final goal is

6 A measure p dominates a measure v if u(E) > 0 whenever v(E) > 0 for all measurable sets E C X. In R™ the
dominating measure p is usually the Lebesgue measure.
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however to become independent of the dominating measure so that we get a metric
on the set of all probability measures. The dependence on the dominating measu-
re would restrict the applicability of our approach since there exists no universal
dominating measure which dominates all probability measures. For example if we
had X = R" and choose the dominating measure p to be the Lebesgue measure,
then we could not deal with Dirac measures ¢, since they are not dominated by the
Lebesgue measure.

Therefore we construct the Hilbertian metric such that it is independent of the
dominating measure. This justifies the term ’covariant’ since independence from
the dominating measure also yields invariance from arbitrary one-to-one coordinate
transformations. In turn this also implies that all structural properties of the pro-
bability space will be ignored so that the metric on MY (X) only depends on the
probability measures and not on properties of X. As an example take the color hi-
stograms of images. Covariance here means that the choice of the underlying color
space say RGB, HSV, or CIE Lab does not influence our metric since these color
spaces are all related by one-to-one coordinate transformations. Note however that
in practice the results will usually slightly differ due to different discretizations of
the color space.

In order to simplify the notation we define p(z) to be the Radon-Nikodym derivative
(dP/du)(x) © of P with respect to the dominating measure .

Proposition 5.9 Let P and ) be two probability measures on X, i an arbitrary
dominating measure® of P and Q, and dg, a 1/2-homogeneous Hilbertian metric on
R,. Then DM1+(X) defined as

D2yt 0(P.Q) = [ & (o(o).a()dn(o). (5.4

X

is a Hilbertian metric on MY (X). DM#(X) 1s independent of the dominating measure
L.

Proof: First we show by using the 1/2-homogeneity of dgr, that d M (x) is inde-
pendent of the dominating measure ;. We have

dP dQ dP dv dQdv du / dP dQ
& (—, = dp= | di (——, —2—)—dv= [ d& (—,=2)d
/X R+(du’ d,u) # /X R+<du du’ dv d,u)dl/ g e R+(du’ dy) g

2
M,
ditionally positive definite, simply take for every n € N, Py, ..., P, the dominating

where we use that d%h is 1-homogeneous. It is easy to show that —d X) is con-

measure % and use that —dﬁh is conditionally positive definite. 0

Remark: By plugging into Equation 5.4 arbitrary Hilbertian metrics on R, , one
can also define Hilbertian metrics on a subset of probability measures. Namely the
subset of probability measures which are dominated by u. The problem with such
a definition is that the domain of the metric as well as the metric itself depend on
the choice of the dominating measure. There might exist cases where from a practi-
cal point of view this is even desired. However from a theoretical point of view the
metric should only measure differences in the assignment of probability mass on X.

"In case of X = R™ and when y is the Lebesgue measure we can think of p(z) as the normal density function.
8Such a dominating measure always exists take e.g. M = (P + Q)/2
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Therefore it should not depend on the dominating measure or roughly equivalent the
choice of coordinates since this introduces an implicit dependence on the description
of the space X.

Using the same principle one can define positive definite kernels on probability mea-
sures.

Proposition 5.10 Let P and ) be two probability measures on X, u an arbitrary
dominating measure of P and Q, and k a 1-homogeneous continuous positive definite
kernel on R,. Then K defined as

K(P.Q) = [ k(p(o).a(w))dute). (5.5)

is a positive definite kernel on ML (X) and K is independent of the dominating
measure [i.

The beautiful Theorem 5.3 of Fuglede allows us now to characterize all Hilbertian
metrics on probability measures of the type introduced in Equation 5.4.

Theorem 5.11 All continuous, covariant Hilbertian metrics d on ML (X) of the
form (5.4) are given up to constants as:

1. 1iin]?
%) _ G+ go( ) dp(e) (5.6)

d2(P7 9 N P(I;@r)

x JRy
where p is non-zero bounded measure on R .

As a corollary one can derive a similar result for covariant kernels on MZ (X).

Corollary 5.12 All continuous, covariant positive definite kernels on M1+(X) de-
fined in (5.5) with K(P,P) =0 <= P =0 are up to constants of the form:

K(P.Q R+ / / Relplr GG E D) dp(Ndu(z).  (5.7)

where p is non-zero bounded measure on R .

We would like to note that Proposition 5.9, Theorem 5.11 and Corollary 5.12 can
be easily extended to all bounded positive measures M’ (X) on X. It can be seen
from Corollary 5.12 that

1
KPP = s || at@dotvant) = P)

so that measures P with equal mass of X are mapped to the sphere in the corre-
sponding RKHS with radius r = P(X).

The principle introduced in Proposition 5.9 can also be applied to the two-parameter
family dn s of 1/2-homogeneous Hilbertian metrics on R, in order to get the corre-
sponding family of covariant Hilbertian metrics D,jg on M2 (X).

As special cases we get the following well-known measures on probability distribu-
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tions. Note that these metrics are not normalized as in Theorem 5.11.

9 1 x) — q(x))?
Dl\fl(Pa Q) :Z/X (];((x)) +qq(<x)>) du(z),

D3,(P.Q) = [ (Vpla) = Va@)Pduta),

> 1 o 2p(z) o q(x) .
DR @) = | teios [ |+ atoyos 250 [t
D24(P.Q) =3 [ Ipta) = ala)ldnta) 5.9

Difl is the symmetric y?-measure, Dy, the Hellinger distance, Dil the Jensen-

Shannon divergence and Dzo|1 the total variation. The symmetric y?-metric was
for some time wrongly assumed to be pd and is new in this family due to our
extension of di| 5 to negative values of 3. The Hellinger metric is well known in the
statistics community and was for example used in [51, 50] respectively the induced
positive definite Bhattacharyya kernel. The total variation was implicitly used in
SVM’s through a pd counterpart which we will give below. Finally the Jensen-
Shannon divergence is very interesting since it is a symmetric and smoothed variant
of the Kullback-Leibler divergence. The Jensen-Shannon (JS) divergence, see [61]
for some basic properties, attracted recently some interest since it was proven by
Endres and Schindelin [31] that the JS-divergence is a square of a metric and shortly
afterwards Fuglede and Topsge showed in [33] that this metric is Hilbertian. Instead
of the work in [67] where they have a heuristic approach to get from the Kullback-
Leibler divergence to a pd matrix, the Jensen-Shannon divergence is a theoretically
sound alternative. As a final remark we would like to note that the four special
cases of metrics on M (X) can all be written as f-divergences®, see [97, 98]. Up to
D§o|1(P7 ()) they are all smooth and fulfill f(1) = 0. Then it is a standard result in
information geometry (3| that all smooth f-divergences with f(1) = 0 induce up to
constants the same Riemannian metric on a statistical manifold. That implies that
locally all these metrics are equivalent for a given parametric model.

For completeness we also give the corresponding pd kernels on M? (X) where we
take in Lemma 5.2 the zero measure as zo in M2 (X). This choice seems strange
for probability measures. But as noted before the whole framework presented in this
chapter can easily be extended to all positive, bounded measures Mi()’( ) on X. For

9Let f be a convex function. Then for P,Q € Mfr(X) the f-divergence D(P, Q) is defined as

D@~ [ 1 (%) aQ
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the set MY (X) the zero measure is a natural choice of the origin.

_ [ _p(@)q(x)
Ky-1(P,Q) —/ Wdﬂ(@,

Ky (P,Q) = /x/idu

1 p(2) q(z)
Kin(P,Q) = — 3 /Xp(ﬂf) log (m) + ¢q()log (m) du(x),
K (P.Q) = [ min{p(o).a(o)}du(z). (5.9)

where p is an arbitrary dominating measure of P and (). For the derivation of the
last kernel Ko1(P, Q) note that |z — y| = max{z,y} — min{z,y}.

The astonishing fact is that we find the four (partially) previously used Hilbertian
metrics resp. pd kernels on M (X) as special cases of a two-parameter family of
Hilbertian metrics resp. pd kernels on M? (X). Due to the symmetry of di‘ 5 (which
implies symmetry of Di| ﬁ) we can even see all of them as special cases of the family
restricted to aw = 1. This on the one hand shows the close relation of these metrics
among each other and on the other hand gives us the opportunity to do model
selection in this one-parameter family of Hilbertian metrics. Yielding an elegant
way to handle both the known similarity measures and intermediate ones in the
same framework.

5.5 Structural Positive Definite Kernels

The covariant Hilbertian metrics proposed in the last section have the advantage
that they only compare the probability measures, thereby ignoring all structural
properties of the space X where the measures are defined on. On the other hand
there exist cases where we have a reasonable similarity measure on the space X,
which we would like to be incorporated into the metric. We will consider in this
section two ways of doing this.

5.5.1 Structural Kernel 1

To incorporate structural information about the probability space X is helpful, when
we compare probability measures with disjoint support. For the covariant metrics
disjoint measures have always maximal distance, irrespectively how closetr fartheir
support is. Obviously if our training set consists only of disjoint measures, learning
is not possible with covariant metrics.

If one has a metric or similarity measures on X, one can use it to measure the
distance resp. similarity between disjoint measures. One prominent example of a
metric on probability measure using such information is the Kantorovich metric
also known as Wasserstein distance, see [101].

Definition 5.13 (Kantorovich metric) Let (X, dy) be a complete, separable and
bounded metric space. Then the Kantorovich metric dx on M (X) is defined as:

dg(P,Q) = inf {/X Xd(x,y) dv(z,y)|lv € ML(X x X),m(v) = P,m(v) = Q}

v
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where m; denotes the marginal with respect to i-th coordinate.

There exist various generalizations by replacing the metric with more general cost
functions. When X is finite, the Kantorovich metric is also known as Earthmover
distance.

In the same spirit we propose here a positive definite kernel which incorporates a
given similarity measure, namely a pd kernel, on the probability space. The only
disadvantage is that this kernel is not invariant with respect to the dominating
measure. That means we can only define it for the subset MY (X, ) € ML(X)
of measures dominated by p. On the other hand in some cases one has anyway
a preferred measure, or one is only interested in a kernel on a parametric model
which is dominated by a certain measure. Such a preferred measure is then a natural
choice for the dominating measure so that practically it does not seem to be a major
restriction. For our experiments it does not make any difference since we anyway
use only probabilities over finite spaces, so that the uniform measure dominates all
other measures and therefore ML (X, ) = ML (X).

Theorem 5.14 (Structural Kernel I) Let k be a bounded PD kernel on X and
k a bounded PD kernel on R,.. Then

Ki(P,Q) = /X /X Kz, ) k(). o(y)) du(x) du(y) (5.10)

is a pd kernel on ML (X, p) x ML(X, p).

~

Proof: Note first that the product k(z,y)k(r,s) (z,y € X,r,s € R;) is a positive
definite kernel on X x R,. The corresponding RKHS H is the tensor product of the
RKHS Hj, and H;, that is H = H; ® H;. We denote the corresponding feature map
by (z,7) — ¢ ® 1. Now let us define a linear map L, : H — R by

L, Oz @ VP — /Xk(x,y)lgr(r,q(y))du(y) :/X <¢x»¢y>ﬁk <¢T’¢Q(y)>H,; d”(y)
<162 @0l [ 1108 vt o

Therefore by the assumption L, is continuous. By the Riesz lemma, there exists a
vector ug such that Vv € H, (ug,v),, = Lq(v). It is obvious from

(Up, Ug)yy = /X<upv by ® ¢q(y)>H dp(y) :/X2<¢Jf ® Up(a), Py ® Qﬁq(y)>7{ dp(y)dp(x)
= [ k) blpla), ) du(o) dny)

that K is positive definite. O

Note that this kernel can easily be extended to all bounded, signed measures. This
structural kernel generalizes previous work done by Suquet, in [91, 92, 93], where
the special case with k(p(x), ¢(y)) = p(x)q(y) has been considered. The advantage of

this choice for k is that K;(P, Q) becomes independent of the dominating measure.
In fact it is easy to see that among the family of structural kernels K;(P, Q) of

the form (5.10) this choice of k yields the only structural kernel K (P, Q) which is
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independent of the dominating measure. Indeed for independence bilinearity of k is
required which yields k(x,y) = zy k(1,1).

The structural kernel has the disadvantage that the computational cost increases
dramatically compared to the covariant one, since one has to integrate twice over
X. An implementation seems therefore only to be possible for either very localized
probability measures or a sharply concentrated similarity kernel £ e.g. a compactly
supported radial basis function on R".

The following equivalent representation of this kernel will provide a better un-
derstanding and at the same time will show a way to reduce the computational
cost considerably. The same construction has been done by Suquet in [93] with

k(p(x),q(y)) = p(x)a(y).

Proposition 5.15 Let k and k be two bounded kernels on X x X resp. Ry x Ry
which can be written as

ko, y) = / P(w, )Ty B (),
(@), aly)) = / (p(a), N0 V().

where w resp. Kk are o-finite measures. Then the structural kernel K;(P, Q) can be
equivalently written as the inner product in Ls(T,w) ® Ly(S, K):

Ki(P.Q) = [ [ on(t.oqE ) dr(at
for some sets T, S with the feature map:

¢ ML(X, p) — Lo(T,w) @ La(S, k),
P — ¢p(t,\) = / C(x, )V (p(z), \)du(x).

X
Proof: First note that one can write every pd kernel in the form:

5@, 9) = (0@, ), T ) 1y = / (e, )Ty B (1),

where ['(z,-) € Lo(T, ) for each x € X. In general the space T is very big since
one can show that such a representation always exists in Lo(RY, 1), see e.g. [49]. For
the product of two positive definite kernels we have such a representation on the
set T" x S. The rest of the argument follows by applying Fubini-Tonelli’s theorem
several times. First note that

k(z,2)k(s,s) = /T ) D (2, )W (s, \)|?d(w x k)(t,\) < C < o0

~

where C' = sup ey ser, k(7,2)k(s, s). Now introduce ®(z, s, A,t) = ['(x,1)¥(s, A)
[ 10 s A Bl dew x (6N di x ) )
XXX JTxS

S/ ( /I‘P(Im A H)Pd(w x K)(t, A) / [D(y, s, A, 1)|*d(w x K)(t, A))d(u X p)(x,y)
XxX TxS TxS
<0
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This allows us to use Fubini-Tonelli on (X x X') x (T x S) so that we can interchange
the integration order. Moreover it implies that w X x-almost everywhere.

[ 1A 0BG s AT ) ) < o0
XxX

which implies using Fubini-Tonelli on X x X

/ 1B, 7, A )] dia(z) < 00
X
]

This representation has several advantages. First, the functions I'(x,t) give us a
better idea what properties of the measure P are used in the structural kernel.
Second, in the case where S x T is of the same or smaller size than X we can decrease
the computation cost, since we now have to do only an integration over 7" x .S instead
of an integration over X x X. Finally, this representation is a good starting point if
one wants to approximate the structural kernel. Since any discretization of T, .5, or
X or integration over smaller subsets, will nevertheless give a pd kernel in the end.
We illustrate this result with a simple example. We take X = R" and k(z,y) =
k(z — y) to be a translation invariant kernel, furthermore we take k(p(z), ¢(y)) =
p(z)q(y). The characterization of translation invariant kernels is a classical result
due to Bochner:

Theorem 5. 16 A continuous function k(z,y) = k(z —y) is pd on R"™ if and only
if  k(x— fR ey dw(t) where w is a finite non-negative measure on R™.

Obviously we have in this case T = R". Then the above proposition tells us
that we are effectively computing the following feature vector for each P, ¢p(t) =
Jen €450 p(2)dp(z) = Ep . Finally the structural kernel can in this case be equi-
valently written as K;(P, Q) = [, Ep '@V Eq '™ dw(t). That means the kernel is
in this case nothing else than the inner product between the characteristic functions
of the measures in Ly(R™, w)!°. Moreover the computational cost has decreased since
we only have to integrate over 7' = R” instead of R™ x R™. Therefore in this case
the kernel computation has the same computational complexity as in the case of the
covariant kernels. The calculation of the features, here the characteristic functions,
can be done as a preprocessing step for each measure.

5.5.2 Structural Kernel II

The second structural kernel we propose has almost the opposite properties com-
pared to the first one. It is invariant with respect to the dominating measure and
therefore defined on the set of all probability measures M (X). On the other hand
it can also incorporate a similarity function on X', but the distance between disjoint
measures will not correspond to their 'closeness’ in X.

Theorem 5.17 (Structural Kernel IT) Let s : X x X — R be a bounded non-

negative function, koa one-homogeneous pd kernel on R, and p a dominating mea-
sure of P and Q). Then

K (P,Q) = /X N s(z,y) k(p(x), q(x)) k(p(y), q(y)) dp(z) duly), (5.11)

10Note that w is not the Lebesgue measure.
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is a pd kernel on ML (X). Ky is independent of the dominating measure. Moreover

K (P,Q) >0, VP,Q € ML(X) if s(x,y) is a bounded positive definite kernel.
Proof: We first prove that K is positive definite on MY (X). Note that
> i Kiu(P,Py) = / s(z,y) Z cicik(pi(x), pi (@) k(pi(y), p; () du(x)du(y)
i,7=1 1,j=1

The second term is a non-negative function in z and y since k2 is positive defini-
te on (Ry x Ry) x (Ry x R;). Now since s(z,y) is a non-negative function, the
integration over X x X is positive. The independence of K;(P, Q) of the domi-
nating measure follows directly from the one-homogeneity of l%(a:,y). Define now

f(x) = k(p(z), q(x)). Then f € Ly(X, ) since
J1t@ln) < [ i ekt ae)dnte)
— h(R)? /X VP a@)du(z) < K(R)?

where we have used the representation of one-homogeneous kernels. A bounded
positive definite kernel s(z,y) defines a positive definite integral operator

I LX) = Ll (19)(e) = [ st na(u)duty).

With the definition of f(x) as above, K is positive since

Ki(P.Q) = /X /X s(x,y) 1) () dp() () > 0.

O

Even if the kernel looks quite similar to the first one, it cannot be decomposed as
the first one since s(x,y) need not be a positive definite kernel. We just give the
equivalent representation without proof:

Proposition 5.18 If s(x,y) is a positive definite kernel on X then K (P, Q) can
be equivalently written as:

2

Ki(P.Q) = / /X D t)(p(), q(w))dula)| dwl),

where s(z,y) = [, T(z, )T (z, t)dw(t).

We illustrate this representation with a simple example. Let s(x,y) be a translation-
invariant kernel on R™. Then we can again use Bochner’s theorem for the represen-
tation of s(z,y). Also assume that P and () are dominated by the Lebesgue mea-
sure. Then note that f(t) = [, I'( (p(x),q(x))du(x) is the Fourier transform
of k(p(x),q(x)) so that in this case the kernel K;(P, (@) is nothing else than the
integrated power spectrum of the function k(p(z), ¢(x)) with respect to w.
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5.6 Experiments

We compared the performance of the proposed metrics/kernels in four classification
tasks. All used data sets consist of inherently positive data resp. counts of terms,
counts of pixels of a given color, intensity at a given pixel. Also we will never encoun-
ter an infinite number of counts in practice, so that the assumption that the data
consists of bounded, positive measures seems reasonable. Moreover we normalize
always so that we get probability measures. For text data this is one of the standard
representations, also for the Corel data this is quite natural, since all images have
the same size and therefore the same number of pixels. This in turn implies that all
images have the same mass in color space. For the USPS dataset it might seem at
first a little bit odd to see digits as probability measures. Still the results we get are
comparable to that of standard kernels without normalization, see [81]. Nevertheless
we don’t get state-of-the-art results for USPS since we don’t implement invariance
of the digits with respect to translations and small rotations.

Details of the datasets and used similarity measures:

e Reuters text data set. The documents are represented as term histograms.
Following [57] we used the five most frequent classes earn, acq, moneyFx, grain
and crude. Documents which belong to more than one of theses classes are
excluded. This results in a data set with 8085 examples of dimension 18635.

e WebKB web pages data set. The documents are also represented as term hi-
stograms. The four most frequent classes student, faculty, course and project
are used. 4198 documents remain each of dimension 24212, see [57]. For both
structural kernels we took for both text data sets the correlation matrix in the
bag of documents representation as a pd kernel on the space of terms.

e (Corel image data base. We chose the categories Corell4 from the Corel image
database as in [21]. The Corell4 has 14 classes each with 100 examples. As re-
ported in [21] the classes are very noisy, especially the bear and polar bear clas-
ses. We performed a uniform quantization of each image in the RGB color space,
using 16 bins per color, yielding 4096 dimensional histograms. For both struc-
tural kernels we used as a similarity measure on the RGB color space the com-
pactly supported positive definite RBF kernel, k(z,y) = (1 — ||z — y|| /dmaz)3,
with dpne. = 0.15, see [105].

e USPS data set. 7291 training and 2007 test samples. For the first structural
kernel we used again the compactly supported RBF kernel with d,., = 2.2
where we take the euclidean distance on the pixel space such that the smallest
distance between two pixels is 1. For the second structural kernel we used as
the similarity function s(x,y) = 1jj;—y|<2.2.

All data sets were split into a training (80%) and a test (20%) set. The multi-
class problem was solved by one-vs-all with SVM’s. For all experiments we used the
one-parameter family diu of Hilbertian metrics resp. their positive definite kernel
counterparts kq(1 as basic metrics resp. kernels on R, in order to build the covariant
Hilbertian metrics and both structural kernels. In the table they are denoted as dir.
Then a second run was done by plugging the metric D, (P, Q) on M! (X) induced
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by the covariant resp. structural kernels into a Gaussian'!:

Kopa(P,Q) = e PanPQ/A (5.12)

They are denoted in the table as exp. As a comparison we show the results if one
takes the linear kernel on R, k(x,y) = zy, as a basis kernel. Note that this kernel
is 2-homogeneous compared to the 1-homogeneous kernels k, ;. Therefore the linear
kernel will not yield a covariant kernel. As mentioned earlier the first structural
kernel becomes independent of the dominating measure with this choice of k. Also
in this case we plugged the resulting metric on M2 (X) into a Gaussian for a second
series of experiments. In the simplest case this gives the Gaussian kernel k(z,y) =
exp(— ||z — y|* /).

For the penalty constant we chose from C' = {10* k = —1,0, 1,2, 3,4} and for o from
a={1/2,£1,42,4+4,+16,00} (@ = —o0 coincides with a = 00). For the Gaussian
(5.12) we chose additionally from A\ = 0.2x0 % {3,4,5,6,7,8,9,10,11,12,13}, where
o= %2221 K (P, Py,). In order to find the best parameters for C, a resp. C, a, A
we performed 10-folds cross validation. For the best parameters among a, C' resp.
a,C, X\ we evaluated the test error. Since the Hilbertian metrics of (5.8) were not
yet compared or even used in kernel methods, we also give the test errors for the
kernels corresponding to a = —1,1/2, 1, co. The results are shown in table 5.1.

5.6.1 Interpretation

e The test error for the best o among the family k,; selected by cross-validation
gives for all three types of kernels and their Gaussian transform always optimal
or close to optimal results.

e For the text classification the covariant kernels were always better than the
structured ones. We think that by using a better similarity measure on terms
the structural kernels should improve. For the two image classification tasks
the test errors of the best structural kernel is roughly 10% better than the best
covariant one.

e The linear resp. Gaussian kernel were for the first three data-sets always worse
than the corresponding covariant ones. This remains valid even if one only
compares the direct covariant ones with the Gaussian kernel (so that one has
in both cases only a one-parameter family of kernels). For the USPS dataset the
results are comparable. Future experiments have to show whether this remains
true if one considers unnormalized data.

5.7 Conclusion

We extended a family of Hilbertian metrics proposed by Topsge so that now all
previously used measures on probabilities are now included in this family. Moreover
we studied with our structural kernels two ways of incorporating similarity informa-
tion in the space X into the kernel on probability measures. We gave an equivalent
representation for our first structural kernel on M (X) which on the one hand
provides a better understanding how it captures structure of the probability mea-
sures and on the other hand gives in some cases a more efficient way to compute it.

1Tt is well-known that this transform yields a positive definite kernel iff D is a Hilbertian metric, see e.g. [14].
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Tabelle 5.1: The table shows the test errors for the covariant and the two structural kernels resp. of
their Gaussian transform for each data set. The first column shows the test error and the a-value
of the kernel with the best cross-validation error over the family Di‘l denoted as dir resp. of the
Gaussian transform denoted as ezp. The next four columns provide the results for the special cases
a=-1,1/2,1,00 in Diu resp. Ky1,x. The last column (-,-) gives the test error if one takes the
linear kernel as basis kernel resp. of the Gaussian transform.

Best « a=-1| a=3 a=1 | a= )

cov dir | 1.36 -1 1.36 1.42 1.36 1.79 1.98

cov  exp 1.54 1/2 1.73 1.54 1.79 1.91 1.73

Reuters str dir | 1.85 1 1.60 1.91 1.85 1.67 2.16
str exp | 1.54 1 1.60 1.54 1.54 1.60 2.10

str2  dir | 1.54 1 1.85 1.67 1.54 2.35 2.41

str2 exp | 1.67 1/2 2.04 1.67 1.91 2.53 2.65

cov dir | 4.88 16 4.76 4.88 4.52 4.64 7.49

cov exp | 4.76 1 4.76 4.40 4.76 4.99 7.25

str dir | 4.88 00 5.47 5.95 5.23 4.88 6.30

WebKB str  exp 5.11 00 5.35 5.23 5.11 5.11 6.42
str2  dir | 4.88 1/2 5.59 4.88 5.59 6.30 9.39

str2 exp | 5.59 1/2 6.18 5.59 5.95 7.13 9.04

cov dir | 12.86 -1 12.86 20.71 15.71 12.50 30.00

cov exp | 12.50 1 11.48 14.29 12.50 11.79 34.64

Corell4 str dir | 15.71 -1 15.71 23.21 16.43 12.14 29.64
str  exp | 10.36 1 10.71 12.50 10.36 11.07 20.36

str2  dir | 20.00 16 18.57 21.43 19.29 20.00 36.79

str2 exp | 17.14 1/2 18.57 17.14 19.29 18.93 35.71

cov  dir 7.82 -2 8.07 7.92 8.17 7.87 9.02

cov exp | 4.58 -16 4.58 4.58 4.53 5.28 4.58

USPS str  dir 7.52 -1 7.52 8.87 .77 7.87 9.07
str exp | 4.04 1/2 3.99 4.04 3.94 4.78 4.09

str2  dir | 5.48 2 5.18 5.28 5.33 6.03 5.03

str2  exp | 4.29 1/2 4.09 4.29 4.24 5.03 4.88

Further we proposed a second structural kernel which is independent of the domi-
nating measure, therefore yielding a structural kernel on all probability measures.
Finally we could show that doing model selection in diu resp. ko1 gives almost
optimal results for covariant and structural kernels. Also the covariant kernels and
their Gaussian transform are almost always superior to the linear resp. the Gaussian
kernel which suggests that the considered family of kernels is a serious alternative
whenever one has data which is generically positive. It remains an open problem
if one can improve the structural kernels for text classification by using a better
similarity function/kernel.






NOTATION

Notation
General:
R, Set of positive real numbers including zero
R% Set of strictly positive real numbers
k Kernel function (not necessarily positive definite)
(X,d) metric space, set X with metric d
B’ dual space to Banach space B
Chapter II:
V Set of vertices
E Set of edges
(s )y Inner product on the functions on the vertices
() g Inner product on the functions on the edges
X Weight function in (-, -),,
o Weight function in (-, -) 5
¥ Weight function in the difference operator d
Aorm Normalized graph Laplacian
Aunnorm Unnormalized graph Laplacian
M Submanifold
oM Boundary of the submanifold M
9, 9ij Metric tensor and its coordinate representation
I1, 1% Second fundamental form and its coordinate representation
Rijn Riemannian curvature tensor and its coordinate representation
R Scalar curvature
VyV Covariant derivative of V' in the direction of U
D,V Covariant derivative of V' along a curve
Vv, 11 Cov. derivative and second fundamental form of the boundary 0 M
v (z) natural volume element of M
exp,, Exponential map at p
inj(p) Injectivity radius at p
Ry Largest ball in M for which one has global bounds on the volume
1 Isometric embedding of M into RY
P Radius of curvature
K measures the global self-‘nearness’ of M with respect to R?
d(z) more local version of
C1,Ca, Ry, r, Constants associated to the kernel function k
P, p(x) Probability measure and its density with respect to dV (z)

Space of k-times continuously differentiable functions on M
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Chapter III:

R Vector Space of finite linear comb. of evaluation functionals
RY*X Set of positive definite kernels on X’
L (RY) Set of positive, symmetric kernel operators

Hilb(RY) Set of Hilbertian subspaces of R

Chapter IV:

M+ Subspace of the dual space which annihilates the subspace M
N Subspace which annihilates the subspace N of the dual space
Cp(X) Banach space of cont., bounded funct. on X' with the ||| -norm
R,.(F) empirical Rademacher average of the function class F

N(e, F,d) Covering numbers of the set F at scale € with respect to d

Chapter V:

ML(X) Set of probability measures on X
ME(X) Set of bounded positive measures on X
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