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A Combinatorial View of Graph
Laplacians

Jiayuan Huang

Abstract. Discussions about different graph Laplacians—mainly the normalized and un-
normalized versions of graph Laplacian—have been ardent with respect to various meth-
ods of clustering and graph based semi-supervised learning. Previous research in the graph
Laplacians, from a continuous perspective, investigated the convergence properties of the
Laplacian operators on Riemannian Manifolds. In this paper, we analyze different variants
of graph Laplacians directly by solving the original NP hard graph partitioning problems
that provides a combinatorial point of view of graph Laplacians. The spectral solutions
provide evidence that the normalized Laplacian encodes more reasonable considerations
for graph partitioning. We also explain the direct relationship between spectral clustering
and graph-based semi-supervised learning. We provide experiments comparing the results
of using different graph Laplacians.

1 Introduction

In recent decades, methods of spectral clustering and graph based semi-supervised learning
involved with graph Laplacians have been attractive and prospective in the area of machine
learning. Example include, ratio cut clustering [1], normalized cut spectral clustering [2],
transductive inference with smoothing over graphs [3, 4, 5]. These methods implicitly take
advantage of the connection between the Laplacian spectra and properties of the associated
graphs for learning problems. It is known that graph Laplacians can be thought of as
discrete analogue of Laplacian-Beltrami operators on Riemannian manifolds. One may
refer to [6, 7, 8] about the relationship between graph Laplacians and Laplacian-Beltrami
operators.

We propose analyzing graphing Laplacians from a combinatorial point of view, understand
them from a discrete perspective. This is the opposite direction of analysis of manifolds and
an alternative approach to explain the differences of graph Laplacians. We think it would be
helpful to understand many current methods of clustering and graph-based semi-supervised
learning that use different graph Laplacians. In this paper, we directly examine a discrete
graph. What does the graph’s spectrum of the associated partition really mean? In fact, the
study of the connection between Laplacian spectra and associated graph connectivity dates
back to Fielder’s work in the 1970s [9]. But still we do not know what way of partitioning

the graph will result in the best performance. As we know, the original graph partitioning
problem is a combinatorial optimization problem. Here, we would like to explain difference

in graph partitioning from a combinatorial point of view. Graph Laplacians are naturally
recovered from the relaxed solutions to an original combinatorial problem. Actually, it is
quite straightforward to go from clustering to graph based transductive learning. In this
paper, we will also examine difference in graph based transductive methods with respect to
spectral clustering methods.



2 Preliminaries

2.1 Definition

Let G(V, E) be a finite, connected, undirected graph.is connected if there is a path
linking two of its vertices. The graph is associated with a symmetric weight funeation
E — RT. Adegree functionl : V — RT is defined to be,

d(u) = Z w(u,v),Yu e V

v~y

wherev ~ v meansy andu are adjacent. The volume of a graph is defined as

vol G = Z d(v)

veV

2.2 Graph Laplacian

This section introduces different versions of graph Laplacians which are commonly used.

The unnormalized Laplacian (also referred to as combinatorial LaplaEiegnglefined as,
dlu)ifu=wv
L(u,v) = ¢ —w(u,v) ifu~wv
0 otherwise

It would make more sense to take the Laplacian as a linear operator such that for any
functionf : V — R, we have,

Lf(u) =) wlu,0)(f(u) - f(v))
In matrix form, L is represented as
L=D-W
whereD is a diagonal matrix wher®(u, u) = d(u), andW is the matrix for the weight
function wherdV (u, v) = w(u, v).

L is a positive semidefinite operator, so its eigenvalues are real and non-negative. Obvi-
ously, its first eigenvector is= (1, 1, ..., 1) with the eigenvalue of 0.

The normalized LaplaciaA is defined as,

1_— w(v,v)
wz%) P
Al v) = = Jaaam 40

0 otherwise

ifu=v

Also, as a linear operator we have for functipn

1 flw) — fv)
Af(u) = —=—= ) w(u,v) ( -
Vd(u) % Vid(u)  /d(v)

Note that ifd(u) is uniformly distributed, ther f(«) degrades intd. f («) up to a constant
factorﬁ.
We can write the normalized Laplacian as a matrix as,

A=T1-DYV2Wwp-1/2
In general, the following relation holds betwegrand A,

A =D V2Lp-1/?

A is also semidefinite. However, its first eigenvector is not constant anymore.



3 Graph Partitioning: A Combinatorial Problem

The binary graph partitioning intends to separate a connected simple graph into two parts
such that dissimilar vertices are in different clusters and similar vertices are grouped to-
gether in the same clusters. We want to obtain an integer assignment fufictioh —

{—1, 1} that satisfies the objective well. This is mostly related to an NP-hard problem that
finds a way of partitioning vertices in two equal subsets with the minimum number of edges
cutting across the partition [10]. The problem requires an exponential search time for find-
ing the exact optimum. For a long time, people have been devoted to developing heuristics
for the problem. Then, spectral partitioning methods emerged as effective approaches to
solve the partitioning problem. The spectral graph partitioning methods relaxed the combi-
natorial problems into real valued problems. We introduce some typical spectral methods
and analysis graph Laplacians with respect to their solutions.

3.1 Definitions

A vertex partition on a graph separates the graph into two disjoint vertexssatsl S¢,
whereS¢ is the compliment of S. It does this by removing edges connecting the two sets.
LetII(S, S¢) represent a partition of the vertices of a gra@pinto two setsS and.S¢. The

edge cutut(S, S¢) betweenS and.S¢ in an undirected graph is defined as

cut(S, S¢) = Z w(u,v)

u€eS,veS*®

The quantity ofcut (.S, S¢) acrosdI(.S, S¢) is also a measure alssociation Basically, we
want the edge cut to be as small as possible to reduce the association b tarehf.

Theout-boundarydsS of S is defined to b&S = {(u,v)|u € S,v € S¢}.
We definevol S, the volume ofS, to be the sum of the degree of the vertice§'in
vol S =Y " d(u)
uesS

Obviously, the volume oS measures the same quantity of association and edge cut.

3.2 Spectral Methods

There are various partitioning objectives we want to optimize. The graph Laplacians are
naturally recovered from the relaxed solutions of the combinatorial problems.

1. Minimum cut
The objective is to minimize the weighted edge connections betweamd 5°.
Sincecut(S, S¢) = cut(S¢,.S), we can only minimizing:ut(S, S¢).

min cut (.S, S°)

Let f be an indicator function with(u) = 1Vu € S and f(u) = —1Vu € S°. For
(u,v) € E,u € S,v € 5S¢, we have(f(u) — f(v))? =4and(f(u) — f(v))?> =0
if u, v are both inS or S¢. Therefore, the objective equals,

mini Z w(u, v)(f(u) — f(0)* = = Z w(u,v)(f(u) — f(v))?

ueS,veSe u~v



The equation results from the fact that we count the cut twice for each edge. Ex-
pand the right-hand side,

§ O wl,n) (7w — ()

u~v

= 72 u,v) )2+ f(0)? —2f(u)f(v))

u~v

= ff —fo f()

1 1
= ZfT(D -W)f = ZfTLf

Without any constraint, the solution for this can be very arbitrary. We can cut the
vertex which has minimum sum of weight connections to all other vertices. Un-
fortunately, this causes an ill-conditioned problem: it produces a quite unbalanced
partition that the result tends to group small number of isolated vertices. This
is because the cut criterion does not add any constraint within each partition [2].
To overcome this problem, some proper constraints are proposed to balance the
partition on graphs.

. Ratio-cut [1]

After the min-cut method was proposed, people tried to constraint partition size
to obtain balanced partitions. However, this leads to a NP-complete problem.
Many heuristics were proposed to solve this problem. The ratio-cut method is an

important step that it incorporates the balance of partition sizes in the cut criterion
rather than imposing constraints explicitly.

This method attempts to minimize the cut cost while implicitly preserving the
cardinality of partitions at the same time. The cut criterion is defined as,

cut(S,8°)  cut(S,S)

5] 5]
where|S] is the number of vertices i. Let the total number of vertices i@
be |G| where|G| = >°, f?(u). Leta denote the ratigS¢|/|G|. The Ratio Cut
criterion can be further written as,
2w W, ) (f(w) = £(v))?
sa(l—a)y., f2(u)

Reut(S, S¢) =

Reut(S, 5¢) =

Define another functiop as,

(u) = 201 —a)>0,uesS
g\ = —200 < 0,u € S°

therefore, we have
3 gPw) =4a(1—a) > f3(u)

and

thus,

e e W(w,0)(g(u) —g(v))*  g"Lg
Rt 232, 9%(u) 47y



If we drop the condition thaf must be either 1 or -1, then by relaxing the combi-
natorial problem we obtain the optimum solution of the Rayleigh Quotient which
leads to,

ming"Lg st || f[=1,f"1=0; ()
wherel is a column vector with all elements equalThe solution is the second
eigenvector that satisfies,

Lg=Xg

whereL, = D — W which is the unnormalized Laplacian.
The unnormalized graph Laplacian is recovered by relaxing the solution for Ratio-
Cut. Ratio-cut balances the two partitions by adding the implicitly constraint that
the number of vertices should be approximately equal in cut criterion. This is
a significant improvement from previous heuristics. However, we should note
that this constraint is not reasonable if the weights on edges are not uniformly
distributed. We will demostrate this pitfall in our later experiment comparisons.

. Normalized min-cut [2]

In this method, the proposed cut cost function is

cut(S, 5°) n cut(S¢,5)
vol S vol §¢

The intuition is that we want not only to minimize the edge cut between the two
sets, but also to keep the size of the two sets as big as possible so that the cut is
no trivial. By “size” we mean the total edge weight in a partition. This is different
from the Ratio-Cut which only considers the total number of vertices.

The problem is a combinatorial optimization problem. It can be solved by relaxing
the integer constraints. Define the same indicator fundii@ahV'. Let~ denote

the ratiovol S/ vol V. Since for undirected graphsit(S, S¢) = cut(S¢, S), the

cut criterion is written as,

Ncut(S, S¢) =

> (e w(u,v) (h(w) = h(v))?
8v(1=7) 2Xvev M2 (v)d(v

Ncut(S, S¢) = ]

Define an indicator functiop with g(v) = 2(1 — v) if v € S and—2 if v € S°.
u)— =
0.

Clearly for allu, v € V, signg(v)=signh(v )andg( )—g(v) = h(u) —h(v). It's
easy to see thgf ., g(v)d(v) =0and)_ . ¢*(v)d(v) = 0. Therefore,
(

. > (e (1, 0) (9(u) — g(v))?
Ncut(S,S5¢) = :
s S 25" cv )
2
(U) S
2% vev f (v)

_ fTAf

ST
wheref = V/dg.
If we allow to relax the value of to be real values, then the problem becomes,

min fTAf st | fll=1,<f,Vd>=0 2)

Clearly, the solutiory is the second smallest eigenvector of the normalized Lapla-
cian.

Here we recover the normalized graph Laplacian by solving the relaxed optimiza-
tion problem with a normalized cut criterion which implicitly constrains the vol-
ume of partition.



4 Why We Prefer the Normalized Graph Laplacian

Having understood the spectral methods in graph partitioning, a key observation is that
we obtain different graph Laplacians by defining different cut criterions. It is not hard to
see that the normalized cut criterion is more preferable in the sense that it balances the
sum of edge weights of partitions, not the sum of vertices. The former considers a more
general graph in which the graph edge weights are not uniformly distributed. Therefore,
simply balancing the vertex number in the two partitions is generally not reasonable. The
solution involving the unnormalized graph Laplacian is derived from Ratio-cut which only
take balance on number of vertices. The solution involving the normalized graph Laplacian
is naturally derived from Normalized cut which more reasonably balances the volume for
each class. This explains why the clutering method using normalized graph Laplacian
performs better than the one using unnormalized graph Laplacian. The normalized graph
Laplacian implicitly takes the weights information into account while the unnormalized
one simply ignores this information.

5 From Clustering to Transduction

This understanding of the graph Laplacian based on the original combinatorial problem also
helps explain the efficiency of different graph based semi-supervised learning methods in
[3, 4, 5]. Itis quite straightforward to go from clustering to transductive learning. A general
objective for these methods can be written as,

min ¢(f(x),y) + Reg(f) 3

whereg(-) is aloss function measuring the difference between the estimated function value
over labeled vertices and the original label value. For simpligitg,a square loss function.
Reg(f) is a regularization term which involves a graph Laplacian. It has the form of
fT Lq f whereL is a graph Laplacian. This is exactly the objective in (1) and (2). Further,
we can rewrite the objective as,

min Reg(f) st o(f(z:),v:) <€
where¢ is a small positive real number.

Generally, the difference in methods lies in using different graph Laplacians and whether
to fix the labels for the labeled vertices. If we fix the labels, then the constraint becomes

o(f(z:),y:) = 0 which equalsf (z;) = y;.

Based on the observations above, the methods used in [4] and [5] amount to constrained
clustering with basic minimum cut criterion that explain, in our later experiments, why they
require additional heuristic to maintain the class proportions to achieve better performance.
The method used in [3] is a constrained clustering with normalized cut criterion. In fact,
in semi-supervised learning, since we only have a small number of labeled data, the most
important part is how well we can do the clustering. The efficiency relies heavily on the
clustering part when applying the framework (3) for semi-supervised learning.

6 Experiment Comparisons

We compare two semi-supervised methods in the framework (3) by adopting the unnor-
malized regularizer and normalized regularizer. The unnormalized regularizer and the
normalized regularizer can be written §§ Lf) and (f, Af) separately. We consider a
classification task using the USPS handwrittén< 16 digits dataset. We use digits2, 3

and4 in the experiment as the four classes. There are 1269, 929, 824 and 852 examples for
each class, for a total of 3874. We construct a fully connected graph by using a RBF kernel
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where the width is set to 1.25. We sequentially increase the number of labeled points. The
test errors averaged over 100 trails are summerized in the following first figure. It is clear
that the method with the normalized regularizer significantly improved the accuracy. The
second figure shows the performance of three methods. The heuristic one approximates
the class proportions as a prior knowledge that is used in [4]. However, the method with
normalized regularizer still has the best performance.

7 Conclusion

We have discussed about different methods for a combinatorial graph partitioning prob-
lem. It is easier and clearer to recognize the difference in graph Laplacians by recovering
them directly from the relaxed solutions of the partition problem. The combinatorial view
serves as a proof which is lacking in the manifold approach. This paper also clarifies some
debate on various methods in graph-based semi-supervised learning. Since, so far, the
semi-supervised learning methods still heavily rely on clustering, it would be interesting to
explore a more proper approach to use the labeled data.
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