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Abstract

While the kernel CCA has been applied in many problems, the
convergence of the estimated function with finite sample to the true
function has not been established yet. This paper gives a mathematical
proof of the statistical convergence of kernel CCA and a related method
(NOCCO) to provide theoretical justification for the methods. The
result gives also a sufficient condition on the regularization coefficient
in the methods to ensure convergence.

1 Introduction

Kernel methods ([17]) have been recently developed as a methodology of
nonlinear data analysis with positive definite kernels. In kernel methods,
data are represented as functions or elements in the reproducing kernel
Hilbert spaces (RKHS), which are given by the positive definite kernels.
Application of various linear methods in the Hilbert spaces are possible by
the reproducing property, which makes the computation of the inner prod-
uct in the Hilbert space tractable. Many methods have been proposed as a
nonlinear extension of conventional linear methods, such as kernel principal
component analysis ([16]), kernel Fisher discriminant analysis ([14]), and so
on.

Kernel canonical correlation analysis (kernel CCA) has been proposed
(1], [13], [3]) as a nonlinear extension of canonical correlation analysis.
Given two random variables X and Y, kernel CCA aims at extracting the
information which is shared by the two random variables. More precisely,
the purpose of kernel CCA is to provide nonlinear mappings f(X) and g(Y)
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in RKHS such that their correlation is maximized. Kernel CCA have been
successfully applied to various practical problems for extracting nonlinear
relations of variables ([19], [10]).

As in many statistical methods, the desired functions given by population
are in practice estimated from a finite sample. Thus, the convergence of the
estimated functions to the population ones with increasing sample size is
very important to justify the method. Since the goal of kernel CCA is
to estimate a pair of functions, the convergence should be evaluated in an
appropriate functional norm: thus we need tools from functional analysis to
characterize the type of convergence.

The purpose of this paper is to rigorously prove the statistical consis-
tency of kernel CCA and a related method. The latter uses a NOrmalized
Cross-Covariance Operator, and we call it NOCCO for short. Both kernel
CCA and NOCCO require a regularization coefficient, which is similar to
Tikhonov regularization ([9]), to enforce smoothness of the functions in the
finite sample case (thus avoiding a trivial solution) and to enable operation
inversion, but the decay of this regularization with increased sample size has
not yet been established. The main theorems in this paper give a sufficient
condition on the decay of the regularization coefficient for the finite sample
estimators converge to the desired functions in the population limit.

Another important issue in establishing the convergence is an appropri-
ate distance measure for functions. For NOCCO, we obtain the convergence
in the norm of RKHS. This result is very strong: if the positive definite
kernels are continuous and bounded, the norm is stronger than the uniform
norm in the space of continuous functions, and thus the estimated func-
tions converge uniformly to the desired ones. For kernel CCA, we show the
convergence in Lo norm, which is a standard distance measure for functions.

There have been some relevant works on nonlinear extension of canon-
ical correlation analysis. One of them is constrained covariance (COCO,
[8]), which uses a different normalization of covariance. Another one is the
nonlinear CCA for curves, which are represented by stochastic processes on
an interval ([12]). The latter work includes also a consistency result. We
will also discuss the relation between our results and these studies.

This paper is organized as follows. Section 2 reviews kernel CCA and
related methods, and formulates them in terms of cross-covariance operators,
which are basic tools to analyze correlation problems in functional spaces.
In Section 3, we describe two main theorems, which show the convergence
of kernel CCA and NOCCO. Section 4 is devoted to the proof of the main
theorems. Some basic facts from functional analysis and general lemmas are
summarized in Appendix.



2 Kernel Canonical Correlation Analysis

In this section, we briefly review the kernel CCA following Bach and Jordan
([3]), and reformulate it with covariance operators on RKHS. For the detail
of positive definite kernels and RKHS, see Aronszajn ([2]).

In this paper, a Hilbert space means a separable Hilbert space, and an
operator always means a linear operator. The operator norm of a bounded
operator T is denoted by ||T’||. The null space and the range of an operator
T are denoted by N(T) and R(T), respectively.

Throughout this paper, (X, By) and (), By) are measurable spaces, and
(Hx,kx) and (Hy,ky) are reproducing kernel Hilbert spaces (RKHS) of
functions on X and ), respectively, with measurable positive definite kernels
kx and ky. We consider a random vector (X,Y) : @ — & x Y with the law
Pxy. The marginal distribution of X and Y are denoted by Px and Py,
respectively. It is always assumed that the positive definite kernels satisfy

Ex[k/\/(X,X)] < oo and Ey[k‘y(Y, Y)] < 00. (1)

Note that under this assumption Hy and Hy are continuously included in
Lo (Px) and Lo(Py), respectively, where Lo(p) denotes the Hilbert space of
square integrable functions with respect to the measure y. This is easily
verified by Ex[f(X)?] = Ex[(f,kx (-, X))’] < Ex[If 13, kx (-, )13, 1=
£, Bx [k (X, X)] for f € Hey.

2.1 CCA in reproducing kernel Hilbert spaces

Classical CCA is the method of providing the linear mappings o X and 7Y
that achieve maximum correlation. Kernel CCA extends this approach by
looking for functions f € Hy and g € Hy such that the random variables
f(X) and ¢(Y) have maximal correlation. More precisely, the kernel CCA
solves the following problem:

Cov[f(X),9(Y)]

max .
feHx9ciy Var[f (X)]'/*Var[g(Y)]'/2

(2)

In practice, we have to estimate the desired function from a finite sample.
Given i.i.d. sample (X1,Y7),...,(X,,Y,) from distribution Pxy, an empir-
ical solution of Eq. (2) is given by

. Covlf (X),9(¥)]

Stz oty (Var[f (X)) + enllf13,,) ' (Varlg(V)] + enllgll3,,)

TERNC)



where

(e - s 7 060) (907 — X 0(7))))

Gl (X),9(1)] = - -

-
Il
_

Varlf (0] = -3 (£ — T X (X))
=1

Varlg(V)] = -3 (%) — -5 0(1))
=1

and a positive constant €, is the regularization coefficient. As we shall
see, the regularization terms e, || f ||%{X and e, | gH?Hy make the problem well-
formulated statistically, enforce smoothness, and enable operator inversion,
as in Tikhonov regularization ([9]). For this smoothing effect, see also the
discussion in Section 3, Leurgans et al. ([12]).

2.2 Cross-covariance operators on RKHS

The kernel CCA and related methods can be formulated by cross-covariance
operators, which make theoretical analysis easier. Cross-covariance opera-
tors are used also to define practical methods for dependence of variables
([6], [7]). This subsection explains the basic properties of cross-covariance
operators. For more details see [4], [6], and [7]. The cross-covariance oper-
ator ' of (X,Y) is an operator from Hx to Hy, which is defined by

(9: 2y x ey = Exy [(f(X)=Ex[f(X))(g(Y)=Ey[g(¥)])] (= Cov[f(X),g(Y)])

for all f € Hy and g € Hy. It is easy to see that the right hand side of
the above equation is a bounded bilinear function on Hy X Hy. By Riesz’s
representation theorem, a bounded operator Yy x exists uniquely. The cross-
covariance operator expresses all the covariance given by functions in RKHS
as the bilinear functional. Thus, it contains all the information on relevance
of X and Y expressed by the nonlinear functions in RKHS.

Obviously, Yyx = X%, where T denotes the adjoint of an opera-
tor T. If Y is equal to X, in particular, the self-adjoint operator ¥ x x
is called the covariance operator. Note that f € N(Xxx) if and only if
Varx[f(X)] = 0. The null space N (Xxx) is equal to {f € Hx | f(X) =
constant almost everywhere}. If there exists a probability density function

! Cross-covariance operator can be defined for Banach spaces, in general [4]. However,
we confine our discussion on reproducing kernel Hilbert spaces.



for Py and it is positive for all z € X, then N (Xxx) is at most one-
dimensional.

The expectation element my € Hy with respect to a random variable
X is defined by

(fimx)ny = Ex[f(X)] = Ex[(f,kx (s X))u,]  (Vf€Ha).  (4)

The existence and uniqueness of mx is proved again by Riesz’s representa-
tion theorem. Using the expectation elements, the characterization of the
covariance operator Yy x is rewritten by

(9, 2y xhuy = Exy[(fikx (5, X) —mx)a, (ky(Y) —my, )2y

Let (X1,Y1),...,(X,,Y,) be i.i.d. random vectors on X x Y with dis-

tribution Pxy. The empirical cross-covariance operator f]gf))( is defined by
the cross-covariance operator with the empirical distribution % S 0x,0y;.
By definition, for any f € Hy and g € Hy, the operator f]gf))( gives the

empirical covariance as follows;

—

(9, 5% )y, = Cov[f(X),G(Y)]

Let Qx and Qy be the orthogonal projection which maps Hy onto

R(Xxx) and Hy onto R(Zyy), respectively. It is known ([4], Theorem 1)
that Yy x has a representation

Yyx = E%Q/VYX Eigp (5)

where Vy x : Hxy — Hy is a unique bounded operator such that [|[Vy x| <1

and Vy x = QyVyxQx. We often write Vy x by E;;/Zzyxz;(l)f by abuse

of notation, even when E}%Q or E;;/Q are not appropriately defined as

operators.

2.3 Representation of kernel CCA and related methods with
cross-covariance operators

With cross-covariance operators for (X,Y"), the kernel CCA problem can be
formulated by

(.fa EXXf>7‘ix = 1?

sup (9, 2y xf)n, subject to
Y (9. Zvvg)n, = L.



As with classical CCA, the solution of the above kernel CCA problem is
given by the eigenfunctions corresponding to the largest eigenvalue of the
following generalized eigenproblem:

() @)= 0o )6 o

For i.i.d. sample (X1,Y7),...,(X,,Y,), the empirical estimator in Eq. (3) is
represented by

(f, SUh + enD) flace = 1,

an) _ (8)
(9, Byy +en)g)ny =1,

sup (g, igz;(f)yy subject to
fe%.k',ge?{y

and the substitute of Eq. (7) is

Kt (f)zﬁn) Sk +ed O (f) o)
S0 J\g) o) S0 4e,1) \g

Let us assume that the operator Vi x given by Eq. (5) is compact?, and
let ¢ and 3 be the unit eigenfunctions of Vy-x corresponding to the largest
singular value; that is,

\% = \% . 10
<¢a YX¢>'H3; fGHrfyl,a;é'Hy (ga YXf>7‘iy ( )

f 113 5 =llgll2ey, =1

Given that ¢ € R(Xxx) and ¢ € R(Zyy), it is easy to see from Eq. (7)
that the solution of the kernel CCA is

—-1/2 —-1/2
fZZX)é ; g:EYY/d)‘
In the empirical case, let q?n € Hy and lzn € Hy be the unit eigenfunctions
corresponding to the largest singular value of the finite rank operator
—-1/2

V= (B +end) ™ B (B0 +end)

From Eq. (9), the empirical estimators fn and g, of kernel CCA are equal
to
Ja=Ek +eal) ™, G = (EF) +eal)™ 4.
Note that all the empirical operators and the estimators described above
can be expressed by Gram matrices. The solutions f, and g, are exactly

2See Appendix A for compact operators.



the same as the those given in Bach and Jordan ([3]). We now confirm it by

rewriting ‘7}(,72 with Gram matrices. Let u; € Hy and v; € Hy (1 <i < n)

be functions defined by
1 o 1 o
ui = k(- Xi) = — S kr(X;),  vi=ky(Y;) — " > ky(-Y))
7j=1 7j=1

Because R (X s ) and R(E g/}),) are spanned by (u;)?_; and (v;)}_,, respec-
tively, the eigenfunctions of Vé )2 are given by a linear combination of u;
and v;. Letting ¢ = > | ayu; and ¢ = Y| Biv;, direct calculation of
(1, V}Sgggb)rﬂy shows that the solutions (Zn and 12)\71 of NOCCO are given by
the coefficients & and 3 that achieve

I,I@lg‘f{fn T (Gy + n&tnfn)flﬁGyGX (GX + n&tnIn)flﬁa,
Q,
OATGXa:ﬁTGyﬁZI

where Gx is the centralized Gram matrix defined by

(Gx)ij = kx(Xi, Xj)— ka Xi, Xp) ——ka Xo, Xj)+— Z kx(Xa, Xp)
a=1 b=1

and Gy defined accordingly. The solution of kernel CCA problem is given
by

fn - ( X+ I) 1/2¢ = Zfzuza /g\n = (A Y+5n 1/277[) = ZCZ'UM

=1

where

€ =vn(Gx +nealy)"?a and = v/n(Gy +ne,I,) "B

Thus, the linear coefficients 5 and C are the solution of

max ¢("'GyGxe,
€,CeR™
T (G% +nenGx)E=CT (G +nenGy)(=n

which is exactly the same as the one proposed in Bach and Jordan ([3]). Note
that they approximate (G% + ne,Gx) by (Gx + %In)2 for computational
simplicity.

There are additional, related methods to extract nonlinear dependence
of two random variables. The Constrained Covariance (COCO, [8]) uses the



unit eigenfunctions of the cross-covariance operator Xy x. Thus the solution
of COCO is

5 — C X),g(Y)].
pepnax (9, Sy x )y fepnax ov[f(X),g(Y)]
£ =llall25, =1 1 £3 =llgll2, =1

The consistency of COCO has been proved in [7]. Instead of normalizing
the covariance by the variances, COCO normalizes the covariance by the
RKHS norms of f and g. Kernel CCA is a more direct nonlinear extension
of the ordinary CCA than COCO. COCO tends to find functions with large
variance for f(X) and g(Y'), which may not be the most correlated features.
On the other hand, kernel CCA may encounter situations where it finds
functions with moderately large covariance but very small variances for f(X)
or g(Y), since ¥ xx and Yyy can have arbitrarily small eigenvalues.

A possible compromise of these methods is to use ¢ and ¢ in Eq. (10),
and their estimates qbn and 1/;n While the statistical meaning of this method
is not as direct as the kenrel CCA, it can incorporate the normalization by
Y xx and Xyy. We call this variant NOrmalized Cross-Covariance Operator
(NOCCO). We will establish the consistency of kernel CCA and NOCCO in
the next section.

3 Main theorems

First, the following theorem asserts the consistency of the estimator of
NOCCO in the RKHS norm.

Theorem 1. Let (¢,)52, be a sequence of positive numbers such that

n-1/3

= 0. (11)

lim ¢, =0, lim
n—o0o n—oo  £p

Assume Vyx is a compact operator and the eigenspaces which attain the
singular value problem

ma, %
e (0, Vv x )21y,

8l13¢  =[1Pll7y, =1

are one-dimensional. Let q?n and 17)\71 be the unit eigenfunctions for the largest
singular value of Vé@g Then,

(B Byl = 1y (o, )iy | = 1

in probability, as n goes to infinity.



The next main result shows the convergence of kernel CCA in the norm
of LQ(PX) and LQ(Py)

Theorem 2. Let (¢,,)52, be a sequence of positive numbers which satisfies
Eq. (11). Assume that ¢ and 1 are included in R(Xxx) and R(Zyy),
respectively, and that Vyx is compact. Then,

(2 = Ex[F2 (X)) = (f = Bx[F (XD 1py) = 0

and
|G = By (YD) = (9 = Byl 5y, = 0

in probability, as n goes to infinity.

While we restrict our attention on the first eigenfunctions, it is not diffi-
cult to see the convergence of eigenspaces corresponding to the m-th largest
eigenvalue by extending Lemma 9 in Appendix.

The convergence of NOCCO in RKHS norm is a very strong result. If
X and Y are topological space, and if the kernels ky and ky are continu-
ous and bounded, all the functions in "y and Hy are continuous and the
RKHS norm is stronger than the uniform norm in C'(X’) and C(Y), where
C(Z2) is the Banach space of all the continuous functions on a topologi-
cal space Z with the supremum norm. In fact, for any f € Hy, we have
supgey |f(2)] = supzex [(kx (-, 2), flay| < Supmex(kx(x )2 f |3 In
such cases, Theorem 1 implies qbn and 1/)n converge uniformly to ¢ and 1, re-
spectively. This uniform convergence is useful in practice, because in many
applications the function value at each point is important.

For any complete orthonormal systems (CONS) {¢;}2; of Hy and
{1i}3°, of Hy, the compactness assumption on Vyx in the above theo-

rems requires that the correlation of ¥ Xl)f (X)) and Eyyzz/)l( Y') decays to
zero as ¢ — oo. This is not necessarily satisfied in general. A trivial exam-
ple is the case of variables with Y = X, in which Vy x = I is not compact.
In this case, the problem in Theorem 1 is solved by an arbitrary function.
Moreover, the kernel CCA problem in Theorem 2 does not have solutions,
if X xx has arbitrarily small eigenvalues.

Leurgans et al. ([12]) discuss canonical correlation analysis on curves,
which are represented by stochastic processes on an interval, and use the
Sobolev space of functions with square integrable second derivative. Since
the Sobolev space is a RKHS, their method is an example of kernel CCA in
a specific RKHS. They also prove the consistency of estimators under the



condition n~!/2 /en, — 0. Although the proof can be extended to a general
RKHS, the convergence is measured by that of the correlation,

‘(ﬁla EXXf>'Hx‘
({fn, EXan)Hx)l/2 (f, Sxxf)re)

which is weaker than the Lo convergence in Theorem 2. In fact, since the de-
sired eigenfunction f is normalized so that (f,Xxx f)#, = 1, from Theorem
2 it is easy to derive the above convergence of correlation. On the other hand,
the convergence of correlation does not imply ((fn — f), Xxx(fn — ) #x-
From the equality

(Fn = £y Zxx (o = Dre = (o Exx Fdan — (r Exxfre)”

(For Sxx )2 /2 » 1/2
+2(1- e IS ol S
xxJInllHx 1= xxJ IHx

1/2 1,

we require the convergence (ﬁL,EXXﬁL)HX = (f,Exxf)nu, = 1 in order
to guarantee the left hand side to converge to zero. However, with the
normalization (fn, (f]g?;( —i—snI)j’ATL)yX = (f,2xxf)u, = 1, the convergence
of (fn,EXan>HX is not clear. We use the assumption n='/3/e, — 0 to

prove ((]/”;L - f),EXX(ﬁL — f))#, in Theorem 2.

4 Proof of the main theorems

4.1 Hilbert-Schmidt norm of covariance operators

As preliminaries to the proof of main theorems, in this subsection we show
some results on the Hilbert-Schmidt norm of cross-covariance operators. For
convenience, we provide in Appendix the definition and some basic proper-
ties of Hilbert-Schmidt operators. See also [7].

In describing the result, we use the notion of random elements in a
Hilbert space ([18], [4]). Let #H be a Hilbert space equipped with Borel
o-field. A random element in the Hilbert space H is a measurable map
F : Q — H from a measurable space (£2,8). Let H be a RKHS on a
measurable set X with a measurable positive definite kernel k. For a random
variable X in X, the map k(-, X') defines a random element in H.

A random element F' in a Hilbert space H is said to have strong order
p (0 < p < o00) if E||F||P is finite. For a random element F' of strong order
one, the expectation of F' is defined as the element mp in H such that

<mFag>7{ = E[<Fvg>'H]

10



holds for all g € H. The existence and the uniqueness is proved by Riesz’s
representation theorem. The expectation mp is denoted by E[F]. Then, the
equality (E[F],g9)n = E[(F,g)%] is justified, which means the expectation
and the inner product are interchangeable. If F' and G have strong order
two, (F, G) is integrable. If further F' and G are independent, the relation

E[(F,G)u] = (E[F], E[G])n (12)

holds.

It is easy to see that the above example F' = k(-, X') in a RKHS H has
strong order two, i.e. E[||F||?] < oo, under the assumption E[k(X, X)] < oo.
The expectation of k(-, X) is equal to mx in Eq. (4) by definition. For two
RKHS Hxy on X and Hy on Y with kernel ky and ky, respectively, under
the condition Eq. (1), the random element kxy (-, X)ky(-,Y) in the direct
product Hx ® Hy has strong order one.

The following lemma is straightforward from Lemma 1 in [7] and Eq. (12).

Lemma 3. The cross-covariance operator Xy x is a Hilbert-Schmidt opera-
tor. Moreover, the Hilbert-Schmidt norm is given by

1Sy x|
= Byx B¢ [(kx (- X) —mx, kx (-, X) = mx ), (ky(,Y) = my by (1Y) — my ), |
= || By x[(ka (-, X) = mx) (ky(,Y) = m3)] [y o, (13)

where (X,Y) and (X,Y) are independently and identically distributed with
distribution Pxy .

From the facts Hy C Lo(Px) and Hy C Lo(Py), the law of large num-
bers implies for each f € Hy and g € Hy

(9,5 Py = (9, Sy x Py

lim
n—o00
in probability. Moreover, the central limit theorem shows the above conver-
gence is of Op(n~'/2). The following lemma shows a tight uniform result

saying that ||§]§;L))( — Sy x||#rs converges to zero in the order of O, (n"1/2).

Lemma 4. R
IS = Svx ||y = Op(n ) (n = o).

Proof. Write for simplicity F' = kx(-,X) — Exlkx (-, X)], G = ky(-,Y) —
Eyky(,Y)), F; = kx (-, X;) — Exlkx (-, X)), Gi = ky(-,Y;) — Ey[ky(-,Y)],

11



and F = Hy ® Hy. Then, F, Fy,...,F, are i.i.d. random elements in Hy,
and a similar fact holds for G, G1,...,G, also. Lemma 3 implies

HZYXHHS_H_ (F__ZF)(G __ZG>H

and the same argument as the proof of Lemma 3 shows

(Syx, 50k s = (BIFG), - Z(F — - ZF ) (i - %Z G;)),-
j=1

From these equations, we have

2

HS — HEYX p 503

s — 205vx, S50 s + 115V s

5 r-a ) et L) sl
i= J= )=
1o b ZFG _ nizgm - miral.

From (FG,FG)r = (F, F)3,(G,G)y, and E[F;] = E[G,] = 0, the follow-
ing relations hold on the expectations with respect to (X1, Y1),..., (Xn, Ya);

Higl))c —Yyx

B{F G, FuGa) ] = { 1G] for i =k,
IEIFG)|% fori#k,

E[(FiGj, FyGo)F] =0  fori# jand {i,j} # {k, ¢},

E[(FiG;, FiGj) 5] = E[|IF |13, ]ElIGI,]  fori#j,

E[(F,G;, F;Gi)#) = |[E[FG)|[%  fori# j,

and

<ZZFG],E FG> = 0.

i

12



Using these relations, we obtain

B[S - ny\lis

:%( __) ZZE FiGi, FuGi)z + — ZZZZE F,Gj, F.Gy)r

n
i=1 k=1 1=1 j#i k=1 {#£k

HIBFGYE — (1~ )ZZZEFG“F,CGH

i1=1 k=1 {#k

_2 (1 _ %) iE(FiGi,E[FG])f

n

L (1——) ZE FGZ,FG>f+i(1——) ZZE (F;Gy, FiGy)r

n2
1=1 k#¢

—l—HZZEFG],FG 4ZZEFGJ,FG)

1=1 j#i 1=1 j#i

HIPPGI ~0- 2 (1= 1) S BRG EIFG);

-1~ 1) BIFGIs + (1- - ) IBFGIIE

_l’_

n — n—1

E[“F“HX] [IGN5,] + —5—EIFGI%

+IEFaE —2(1- ) ||E[FGJ||f,
from which we see the terms of O(1) are canceled, and
E||S{% — Sy |[3s = 0(1/n).
The proof is completed by Chebyshev’s inequality. O

4.2 Preliminary lemmas

We prepare further preliminary lemmas for the proof of the main theorems.

Lemma 5. Let ¢, be a positive number such that e, = 0 (n — oo0). Then,
for i.i.d. sample (X1,Y1),...,(Xn,Yn), the following equality holds;

17 = (Syy + enl) 2y x (Sxx + D) V2| = Op(e,¥2n 112,

13



Proof. The operator in the left hand side is decomposed as

f/\'é; (Eyy +enl )_I/QEY)((EXX +EnI)_1/2
— (S + e, 1)V = (Syy +eal —1/2}5(") (S0 + 1)1/
+ (Zyy—i-En )71/2{/2\]%1 ny} X +En1)71/2

+ (Syy +end) 28y x { (B + enl) V2 — (Sxx +ead) Y2}
(14)

From the equality
A—1/2 o B—1/2 — A—1/2 (B3/2 o A3/2)B—3/2 + (A o B)B_3/2,

the first term in the right hand side of Eq. (14) is equal to

~ ~

(W e 2 (S-S 2)+(i§&’%—2w) FEW Head) PR By )T

From the facts (S + enl) 2] < o, S5 + D) 250 (B0 +
EnI - 2H < 1 and Lemma 7 in Appendix, the norm of the above operator

is bounded from above by

1 3 ~ ~
AT w1 I IS+ LIS = Sl

ETL n

A similar bound applies also to the third term of Eq. (14). An upper bound
of the second term of Eq. (14) is —||ZYX — gf))(H Thus, Lemma 4 and

the facts [S{% ] = ISxx |l + 0p(1), IS4 = |Syyll + 0p(1) complete the
proof. O

Lemma 6. Assume Vyx is compact. Then, for a sequence €, — 0,
H(EYY + 8nI)_1/QEy)((EXX + €nI)_1/2 — VYXH — 0 (n— ).
Proof. An upper bound of the left hand side of the assertion is given by
H{(Syy +enl) 2 = £/ Sy x (Sxx + D) 2|
+ S Sy x {(Exx +eaD) T2 =27 (
The first term of Eq. (15) is equal to

H{(Syy + D) 225 — I} x| (16)

14



Note that the range of Vy-x is included in R(Xyy), as remarked in Section
2.2. Let v be an arbitrary element in R(Vy x) NR(Xyy ). Then, there exists
u € Hy such that v = Xyyu. Noting that Xyy and (Xyy + EnI)1/2 are
commutative, we have

[{Svy +eaD) ™28 = o]l

= vy +eal) P85 =1} Srvul,,

= |Syy +en]) TSRS - Sy +eal) Y5 ullg,
< IS = Svy + eaD) 2] 52,

. . 1
Since Yyy + e, = Yyy in norm means (Lyy + &tnI)l/2 — Z]Y/Y in norm,
the convergence

{Syy +en) P82 —Tho = 0 (n— ) (17)

holds for all v € R(Vy x) NR(Xyy). Because Vy x is compact, Lemma 8 in
Appendix shows Eq. (16) converges to zero. The convergence of the second
term in Eq. (15) can be proved similarly. O

4.3 Proof of the main theorems

We are now in the position ready to prove the main theorems.

Proof of Theorem 1. From Lemmas 5 and 6, 171%2 converges to Vy x in norm.
Because ¢ and ¢ are the eigenfunction of the largest eigenvalue for Vy x Vxy
and VxyVyx, respectively, and the similar facts hold for ¢, and ,, the
assertion is obtained by Lemma 9 in Appendix. O

Proof of Theorem 2. We show only the convergence of fn Without loss of
generality, we can assume ¢, — ¢ in Hy. The squared La(Py) distance of
Fo — Ex[fu(X)] and f — Ex[f(X)] is given by

H21/2 _ f)H?Hx - Hgﬁ&]”ix — 2(¢, 2;/?( /;L>'HX + ||¢||’2Hx'

Thus, it suffices to show Z;/?(fn converges to ¢ in Hy in probability. We
have

=5 T = 8l S IEVRLETK +ead) ™72 = (Sxx +eal) "} nl],y,
+ |1 =¥x Bxx +end) 2 (80— 0) |,
+||I=Y2 (Sxx +ead) P - O, (18)
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Using the same argument as the bound of the first term of Eq. (14), the first
term in Eq. (18) is shown to converge to zero. The second term obviously
converges to zero. Using the assumption ¢ € R(Xxx), the same argument
as the proof of Eq. (17) in Lemma 6 ensures the convergence of the third
term to zero, which completes the proof. ]

5 Concluding remarks

We have established the statistical convergence of kernel CCA and NOCCO,
showing that the finite sample estimators of the relevant nonlinear mappings
converge to the desired population functions. This convergence is proved in
the RKHS norm for NOCCO, and in the Ly norm for kernel CCA. These
results give a theoretical justification for using the empirical estimates of
NOCCO and kernel CCA in practice.

We have also derived a sufficient condition, n'/3¢, — oo, for the decay
of the regularization coefficient ¢,,, which ensures the convergence described
above. As [12] suggests, the order of the sufficient condition seems to depend
on the function norm used to determine convergence. An interesting consid-
eration is whether the order n'/3
in the Ly or RKHS norm.

We put an assumption of compactness for Vyx to derive convergence
results in Theorem 1 and 2. However, practical characterization of this
requirement in terms of the random variables X and Y has not been clarified.
It is shown in Baker [4] that for Gaussian random elements in Hy and Hy
with variance and covariance Y xx, Yyy, and X xy, the operator Vy x is
Hilbert-Schmidt and ||Vy x|| < 1 if and only if the mutual information of the
Gaussian elements in RKHS is finite. Thus, if we consider Gaussian random
elements £x and &y with the same variance covariance operators with X
and Y, the finiteness of the mutual information of £x and &y works as a
sufficient condition for the compactness of Vy x. However, the meaning of
the mutual information in terms of the original random variables X and Y
is not clear. It is a very interesting problem to derive practical sufficient
conditions of the compactness.

Another question that remains to be addressed is when to use kernel
CCA, COCO, or NOCCO in practice. The answer probably depends on the
statistical properties of the data. It might consequently be helpful to deter-
mine the relation between the spectral properties of the data distribution
and the solutions of these methods.

en — 00 can be improved for convergence
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A Basics from functional analysis

We briefly give definitions and basic properties of compact, trace class, and
Hilbert-Schmidt operators. For complete references, see, for example, Reed
& Simon ([15]), Dunford & Schwartz ([5]), and Lax [11], among others.
Let H1 and Ho be Hilbert spaces. A bounded operator T : Hi; — Hs is
called compact if for every bounded sequence {f,,} C H; the image {T'f,,} has
a subsequence which converges in Ho. By Heine-Borel theorem, finite rank
operators are necessarily compact. Among many useful properties of com-
pact operators, singular value decomposition is available. Let T : Hi — Ho
be a compact operator. Then, there exist N € N U {oo}, non-increasing
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sequence of positive numbers {);}¥;, and (not necessarily complete) or-
thonormal systems {¢;}N., C H; and {¢;}Y; C Hs so that

o0

T = Xibi, Yathi-

=1

If N = oo, then \; = 0 (¢ = co) and the infinite series in the above equation
converges in norm.

Let H1 and Ho be Hilbert spaces. A bounded operator T : Hi — Ho
is called Hilbert-Schmidt if >-7°, HT(,DZ-H%{2 < oo for a CONS {¢;}°, of H;.
It is known that this value is independent of the choice of a CONS. For a
Hilbert-Schmidt operator T', the Hilbert-Schmidt norm ||T'|| s is defined by

oo
IT7s =Y ITeill3,. (19)
=1

For two Hilbert-Schmidt operators 77 and T, the Hilbert-Schmidt inner
product is defined by

o0

(T1, To) s = Y _(Thpi, Togi)as-
=1

With this inner product, the set of all Hilbert-Schmidt operators from H;
to Ho is a Hilbert space. Obviously,

1T < 1Tl zrs

if T' Hilbert-Schmidt.

B Lemmas used in the proofs

We show three lemmas used in the proofs in Section 4. Although they may
be basic facts, we show the complete proofs for convenience.

Lemma 7. Suppose A and B are positive self-adjoint operators on o Hilbert
space such that 0 < A < A and 0 < B < Al hold for a positive constant .
Then,

1A% — B*2|| < 3)¥?|| A - B,

Proof. Without loss of generality we can assume A = 1. Let

fz)=(1-2)%* and  g(z)=(1-2)"2
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be functions on {z | |z| < 1}, and

f(z) = i bp 2" and 9(z) = i 2"
n=1 n=0

These series converge absolutely for |z| < 1. In fact, because direct differ-
entiation derives by = 1, by = —%, and b, > 0 for n > 2, the inequality

Z|b |—1+§+Zb 1+ = +hm2bnx

3 3
<1+ +lm{f(@)-1+5} =
<1+ 5 + ;%1 f(x) + 5 3
shows the convergence of > >, b, 2" for |z| = 1. The bound Y ;|c,| < 2
can be proved similarly.
From 0 < I — A,I — B < I, we have f(A) = A%? f(B) = B%?, and
thus,
o
1432 = B32| < [balll(T = A)* = (I = B)"||.
n=0
It is easy to see [|[T™ — S™|| < n||T — S|| by induction for any operators

T and S with |T|| < 1 and [|S|| < 1. From f'(2) = —2g¢(z), the relation
nb, = —%cn holds for all n. Thus,

o0 o0
3
1432 — B32| <y " n|b,|||A — B| = 2 > lenllA—BJ| < 3|4 - B
n=0 n=0
holds, which proves the lemma. ]

The following lemma is a slight extension of Exercise 9, Section 21.2 in
Lax ([11]).

Lemma 8. Let Hy and Ho be Hilbert spaces, and Hg be o dense linear
subspace of Ha. Suppose A, and A are bounded operators on Ho, and B is
a compact operator from Hi to Ho such that

A,u — Au

for all w € Hy, and
sup ||An|| < M
n

for some M > 0. Then, A,B converges to AB in norm.
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Proof. First, we prove that A,u — Au holds for an arbitrary u € Hy. For
any € > 0, there is ug € Hp so that ||u — up|lp, < €/(3(M + ||A]])). For

ug € Ho, there is N € N such that ||A,up — Auglly, < e/3 foralln > N.
Then, for all n > N we have

[Anu — Aull3, < [|Anlllu —uollw, + [ Anuo — Auolls, + |Alllu — uoll2, <e.

Next, assume that the operator norm ||A,B — AB|| does not converge
to zero. Then, there exist § > 0 and a subsequence (n’) such that ||A, B —
AB|| > 24. For each n' there exists v,y € Hy such that ||v,|, = 1 and
|Ap Buy — ABuyl|3, > 0. Let u, = Bu,. Because B is compact and
|vnr||2, = 1, there is a subsequence w,» and wu, in Ha such that w,» — ..
We have

||Anuunu — Aunu ||f,1_[2
< [ Awr (U = wa)llay + [[(Anr = A)tis |30, + [ A(unr — ) ||,
< (M A+ [|A[D[[unr = wallaey + [1(Anr = A)tis [,

which converges to zero as n” — oo. This contradicts the choice of v,. O

Lemma 9. Let A be a compact positive operator on o Hilbert space H, and
Ay, (n € N) be bounded positive operators on H such that A, converges to A
in norm. Assume that the eigenspace of A corresponding to the largest eigen-
value is one-dimensional spanned by a unit eigenvector ¢, and the maximum
of the spectrum of A, is attained by a unit eigenvector f,. Then,

[(frs@)u| =1 (n = o0).

Proof. Because A is compact and positive, the eigen decomposition

A= pidili, -)

=1

holds, where p; > ps > p3 > --- > 0 are eigenvalues and {¢;} is the
corresponding eigenvectors so that {¢;} is the CONS of H.
Let 0p, = |(fn, #1)|- We have

(fns Afn) = p1(fns 01)* + D pil iy fn)?

1=2
< p1{fns 1)+ p2(1 = (fn, $1)?) = p162 + pa(1l — 62).
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On the other hand, the convergence

|<fn7Afn> - <¢17A¢1>| < |<fn7Afn> - <fnaAnfn>| + |<fnaAnfn> - <¢17A¢1>|
< A=Al + |14l = [1Al] = 0

implies that (f,, Af,) must converges to p;. By p; > p2, this concludes
on — 1. O

Note that from the norm convergence Q,A,Q, — QAQ, where Q,, and
Q are the orthogonal projections onto the orthogonal complement to ¢, and
¢, respectively, we have the convergence of the eigenvector corresponding to
the second eigenvalue. It is not difficult to obtain the convergence of the
eigenspaces corresponding to the m-th eigenvalue in a similar way.
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