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Introduction
Similarity has been proposed as an organizational principle for representing objects in the brain [1-2]. But how does 
similarity vary as a function of perceptual modality? Here, we investigated this question by parametrically varying two 
object properties, shape and texture, gathered similarity ratings between pairs of objects, and used these to obtain 
modality-specific stimulus maps.  Comparing the map obtained from visual similarity ratings against the map 
obtained by haptic ratings revealed differences in the weightings of shape and texture in the two modalities. We then 
compared these perceptual maps against maps derived from various computational measures of similarity to 
search for features/computations which may explain the perceptual similarities.

Parametrically-defined stimuli

Visual Similarity Ratings: Results

Computational Similarity Measures: Results

At a glance…
Questions: How do similarity relationships between objects differ when objects are seen and touched? What 

aspects of perceptual similarity can be captured using machine vision techniques?
Approach: Gather similarity ratings, use multi-dimensional scaling (MDS) to derive maps of stimuli, and then 

compare maps based on human vision, human touch, and machine vision

Extraction of low-dimensional variation from high-dimensional measurement spaces
• In both modalities, subjects were able to extract two stimulus variations, which they referred to as changes in “shape” 

and “texture”: non-trivial given the high-dimensionality of measurement spaces → motivates a comparison against 
computational measures

Visual vs. haptic similarity representations
• Shape dominated visual representations, while both shape and texture were important for haptic representations
• Stimuli clustered in both similarity spaces, suggesting a link between similarity relationships and category structure [5]

Methodological advantages
• Using this approach, object representations/topologies can be compared across modalities
• Using this approach, human and computationally-derived representations can be compared, e.g., for perceptual 

validation of computational features

Future work
• Validation of a wider range of computational features
• Studies to explore the generalizability of these results to other stimulus sets
• Studies to explore relationship between similarity and categorization for vision vs. touch

Our stimuli consist of novel, three-dimensional 
objects whose shape and texture were varied 
parametrically: a macrogeometric smoothing 
operation gradually averaged out sharp edges in the 
objects’ global shape, while a microgeometric
smoothing operation gradually reduced the objects’ 
local texture. 

• 10 subjects rated similarity on a 7-point scale (1 = low similarity, 7 = high similarity)
• Stimuli were photographs of printed objects
• Bounding box of stimuli subtended 7° x 7° visual angle
• In one block, each stimulus appeared once with itself and once with every other stimulus, 

i.e., 0.5 x 25 x 24 + 25 = 325 trials/block
• 6 blocks with random trial order
• Afterwards, subjects filled out a questionnaire asking them to describe the objects and 

how they judged similarity

Haptic Similarity Ratings: Results
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Similarity matrices and maps
• Edge detection correlates poorly with human data
• 2D/3D subtraction, correlation, and Gabor jets yield comparable correlations 

with human data
Shape vs. texture
• All except edge detector dominated by shape dimension
• Recovery of shape-based groupings (lower 3 and upper 2 rows)
Computational vs. human haptic/visual maps
• Fit evaluated using mean Procrustes fit error across individual maps
• Better correlations with human visual than human haptic data

⇒ A new technique for perceptually validating computational features

MDS Stress

For all measures except the edge detector, a single 
dimension suffices to explain the similarity data.
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Mention “shape” or shape-
related properties 90% 90% 100%

Mention “texture” or texture-
related properties 80% 60% 100%

Mention other properties (e.g., 
colour, weight) 40% 0% 10%

Perceptual dimensions in vision and touch
MDS stress plot

• Visual ratings: a single dimension suffices to 
explain similarity data (shape)

• Haptic ratings: two dimensions are required

Individual shape/texture weighting
• Visual ratings: consistent dominance of shape 

over texture
• Haptic ratings: broad range of relative 

weightings → subjects use different strategies

Responses to questionnaire
• Subjects perceive two dimensions of variation 

as “shape” and “texture”
• Visual ratings: Both shape and texture were 

used to describe objects, but shape was used 
more often to describe how similarity was 
judged

• Haptic ratings: Texture was used more often to 
describe objects, but shape and texture were 
mentioned equally often to describe how 
similarity was judged

• Subjects can extract a low-dimensional representation
from the high-dimensional haptic measurement space

• Ordinal relationships between stimuli are preserved
• Both shape and texture are important perceptual dimensions
• Same groupings present as in visual data, but less 

pronounced along the shape axis

Pixel-wise image difference Image correlation Edge image difference Gabor jet filtered image difference

• Large box pattern in upper left ↔ effect of shape “groups”
• Fading off-diagonals ↔ effect of parametric shape 

change
• 5x5 box patterns ↔ effect of parametric texture change
• Similarity data analyzed by MDS to obtain perceptual 

stimulus map

• Absence of large box pattern seen in visual data
• Fading off-diagonals ↔ effect of parametric shape change
• 5x5 box patterns ↔ effect of parametric texture change
• Similarity data analyzed by MDS to obtain perceptual stimulus map

• Subjects can extract a low-dimensional representation from a high-
dimensional measurement space

• Ordinal relationships between stimuli are preserved
• Shape is the dominant perceptual dimension, but subjects still recover 

order along texture axis
• Clear shape-based groupings (top 2 rows and bottom 3 rows) suggest a 

link to category formation

MDS stress plot obtained using 
Young’s S-stress formula 1. Stress 
should fall below 0.2 for an adequate 
number of dimensions [4].  

Individual shape/texture tradeoff values 
are based on a ratio of dimension weights 
provided by the INDSCAL algorithm [6]. 

1) Sum of squared differences (SSD) 
between pixel values of two images;

2) Correlation between two images;
3) SSD between two images generated by 

running Canny edge detector on stimulus 
images;

4) SSD between two images generated by 
filtering stimuli with Gabor jets;

5) SSD between two object meshes’ 3D 
vertex positions.

Similarity ratings were generated using the following 
standard computer vision techniques and MDS was 
applied to generate maps of the stimuli:

3D vertex-wise difference

MDS maps

Similarity matrices

Haptic Similarity Ratings: Experimental Design
• 10 subjects rated similarity on a 7-point scale (1 = low similarity, 7 = high similarity)
• Subjects were given up to 10 s to trace the contour of each object with eyes closed
• Contour-following was chosen because it has been shown to allow for haptic extraction of a wide range of 

object properties, including local texture and global shape [3]
• 3 blocks of 325 randomized trials over five 2-hour sessions on consecutive days
• Afterwards, subjects filled out a questionnaire asking them to describe the objects and how they judged 

similarity

Similarity matrix MDS map
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