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Abstract 
 

When sliding a finger across a bumpy surface, the 
finger follows the surface geometry (position signal). 
At the same time the finger is exposed to forces related 
to the slope of the surface (force signal) [1]. For 
haptic shape perception the brain uses both signals 
integrating them by weighted averaging [2]. This is 
consistent with the Maximum-Likelihood-Estimate 
(MLE) model on signal integration, previously only 
applied to passive perception.  

The model further predicts that signal weight is 
proportional to signal reliability. Here, we tested this 
prediction for the integration of force and position 
signals to perceived curvature by manipulating 
material properties of the curve. Low as compared to 
high compliance decreased the reliability and so the 
weight of the sensorily transduced position signal. 
High as compared to low friction decreased the 
reliability and so the weight of the transduced force 
signal. These results demonstrat that the MLE model 
extends to situations involving active touch.  
 
 
1. Introduction 

Perception is based on multiple sources of sensory 
information – we simultaneously and continuously 
obtain sensory inputs from our eyes, ears, and the skin. 
Some of the inputs provide information about the same 
physical property. For instance, we can both see and 
feel the shape of an object that we hold in our hands. 
The question of how our brain integrates such 
redundant signals into a unitary percept has been 
studied intensively in the recent past. 

The Maximum-Likelihood-Estimate (MLE) model 
has been proven to be a good description for signal 
integration strategies [3]. According to this model the 
brain takes into account all signals available for a 

property, derives estimates (si) for the property from 
each signal (i) and, then, combines all estimates into a 
coherent percept (P) by weighted averaging:  
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Estimates derived from each signal are prone to 

noise (σi
2). According to the MLE model the system 

can reduce the noise in the combined percept by 
averaging different estimates [4]. Noise reduction can 
be optimized, if the signal weights wj depend on the 
reliabilities (Rj = 1/σj

2) of the individual estimates. 
“Optimal” weights – resulting in the maximal 
reliability of the final percept (RP) – are proportional to 
the relative reliabilities of the signals – given that noise 
distributions are independent from each other [5]:  
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Experiments on within-visual signal integration as 

well as on crossmodal visuo-haptic and visuo-auditory 
integration confirm that the human brain integrates 
sensory information in such an optimal way [6-10]. 
Not much systematical research, however, has been 
done on signal integration within active haptic 
perception. From an informational point of view active 
touch is substantially different from the passive 
perceptual situations studied so far. In active touch 
observers are able to (and do) actively manipulate their 
informational inflow [e.g., 11]. First systematical 
studies on signal integration within active touch are, 
nonetheless quite recent. 

Robles-de-la-Torre and Hayward [1] distinguished 
between well-defined position and force signals to 
haptically perceived shape: When sliding a finger 
across a bump on a surface, the finger follows the 
geometry of the bump (position signal). At the same 
time the finger is exposed to forces – tangential to the 
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movement – that are related to the slope of the bump 
(force signal). A custom-made device dissociated 
position and force signals in the haptic perception of 
small-scale bumps and holes (3 mm amplitude): 
Participants in this experiment predominantly reported 
to feel the class of shapes (bumps or holes) indicated 
by the force signals. Drewing and Ernst [2] extended 
this research. They systematically disentangled force 
and position signals to the perception of curvature and 
quantified the perceived curvature. The result was that 
perceived curvature could be well predicted from 
weighted averaging of the two signals. This is 
consistent with equation 1 in the MLE model. Further, 
they found that the weights of force and position 
signals change with the magnitude of the curvature. 
This result is consistent with reliability-dependent 
signal weighting (equation 2). However, compelling 
evidence that the weights actually shift with the 
reliability of the signals was missing.. 

The purpose of the present study was to manipulate  
the reliabilities of force and position signals for haptic 
shape in a predictable manner and to test whether 
signal weights systematically increase with the signal’s 
reliabilities – like predicted by equation 2 in the MLE 
model. We employed natural causes of reliability 
change. On the one hand, high surface compliance can 
be expected to decrease the reliability of the position 
signal as compared to low compliance. This is because 
finger pressure influences the position of the finger 
more when touching a highly as compared to a hardly 
compliant surface and unavoidable motor variability 
[cf. 12, 13] in finger pressure should add noise to the 
sensorily transduced position signal. Then, noise in the 
position signal stemming from motor variability should 
be higher for high than for low compliance surfaces. 
On the other hand, high friction can be expected to 
decrease the reliability of the force signal as compared 
to low friction. Friction is a complex physical 
phenomenon widely depending on the dynamics 
between the contact surfaces [14] and frictional forces 
are – like the force signals to shape – tangential to the 
movement. Variability in the dynamic of the finger 
movement should cause varying effects of friction 
which interfere with the sensorily transduced force 
signal. The more so, the larger the effects of friction. 

From the above relations, the principle of 
reliability-dependent weighting predicts that the weight 
of the force signal is higher for low as compared to 
high friction surfaces and the weight of the position 
signal is higher for low as compared to high 
compliance surfaces (and – because the signal weights 
sum up to 1 – vice versa for position and force signal 
weights, respectively).  

 

In the present experiment, we measured sensorily 
transduced signal information and signal weights under 
each combination of high and low surface friction with 
high and low surface compliance. Using the 
PHANToM force-feedback device we constructed 
haptic curve stimuli, in which force and position 
signals to curvature were not consistent (using 
curvatures [= 1/radius] of 14 and 24 m-1). Using the 
method of double-staircase, we determined the point of 
subjectively equality (PSE) between the curvature of 
these curves and ‘natural’ curves (i.e., with consistent 
position and force signals). From the PSE data and the 
curvatures indicated by either signal we determined the 
signal weights (for details see [2]).  

 
2. Experiment 
 
2.1. Methods 
 

2.1.1. Participants. 18 right-handed observers (50% 
females) without any sensory or motor impairments of 
their right index finger participated for pay. All were 
naïve to the purpose of the experiment. 

2.1.2. Apparatus. Participants sat in front of a custom-
made visuo-haptic workbench (Fig. 1A) comprising a 
PHANToM 1.5A haptic force feedback device and a 
21”-computer screen. The participant’s right index 
finger was connected to the PHANToM via a thimble-
like holder, which allows for free finger movements 
having all six degrees of freedom in a 20 cm3 
workspace. Simultaneuosly, the participants looked – 
fixated by a chin rest – via a mirror onto the screen 
(52-cm viewing distance).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A) Visuo-haptic workbench, B) Haptic 
curve and movement trajectory 

 
The mirror enables spatial alignment of visual with 
haptic display. In the present experiment, however, 
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visual display was used only to guide participants 
through the experiment. A custom-made software 
running on a PC controlled devices and experiment, 
collected responses and recorded the movement of the 
finger (100 Hz).  
 
2.1.3. Stimuli. Haptic stimuli were generated by using 
the PHANToM force-feedback device that simulates 
3D-objects by applying appropriate reaction forces FS 
depending on three-dimensional finger position P 
within its workspace. When touching a virtual object, 
reaction forces are given in direction normal to the 
object’s surface. Force magnitude increases with the 
finger’s indentation of the surface following a spring 
model:  
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D denotes the spring coefficient and i the 
indentation depth. When stroking across the surface, 
the PHANToM can apply frictional forces FF 
counteracting the movement:  

SF FfF
ρρ

⋅=               (4) 

f denotes the friction coefficient. In the real world f 
is usually different for static and dynamic situations 
(finger does not move vs it does). We implemented 
just dynamic friction in that f depended on the finger’s 
velocity v:  

 
 
                            for                          (5) 
 
 
 
 
 
DV equalled 20 mm/s and vSat 12 cm/s. Virtual 

objects that are constructed according to these 
equations provide an explorer with consistent position 
and force signals to the object’s geometry.  

Here, we constructed curves (sections of a circle) 
where onset position and magnitude of reaction forces 
indicated one curvature (position signals), but the 
directions of the reaction forces were taken as the 
normals of another curvature (force signals, Fig. 2). 
Starting at the curves apexes we projected force 
directions on geometry one-to-one in terms of curved 
distance of a point from the apex. The curves arched in 
the horizontal plane along the observer’s depth axis. 
They were touched from above and finger movement 
was restricted by vertical haptic walls to be within an 
area of 30 mm width x 50 mm depth and by another 

horizontal wall to be no more than 25 mm above the 
curve’s amplitude (see Fig. 1B).  

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Force and position signals and their 
combination 

 
2.1.4. Design and Procedure. The experimental 

design comprised four within-participant variables: 
Compliance (high vs low), Friction (high vs low), 
Force signal curvature (14, & 24 m-1), and Position 
signal curvature (14, & 24 m-1). Compliance and 
Friction were varied by manipulating the spring 
coefficient D in equation 3 (0.2 vs 0.6 mm/N) and the 
friction coefficient fSat in equation 5, respectively (0.6 
vs. 0.2). Under each of the four combinations of 
material properties, we used four (convex) standard 
curves completely combining position and force 
signals related to curvatures of 14, and 24 m-1. We 
measured the points of subjectively equal curvature 
(PSE) of these standard curves compared to 
comparison curves having the same surface material 
properties, but consistent force and position signals – 
using one double-staircase per standard.  

Each single trial in each staircase consisted of the 
sequential presentation of a standard and a comparison 
curve (order randomized). Participants self-initiated 
the curves’ presentations and, then, starting at the 
curve’s apex made one complete stroke across each 
curve (forth – back – forth; Fig. 1B). After the second 
curve participants decided by a button press which of 
the two curves had felt more convex; during the curve 
presentation the screen went black. 

In each double-staircase, trials of two adaptive 
staircases (1-up/ 1-down) were interleaved. Each 
staircase started with a comparison curve the curvature 
of which was obtained by adding ±14 m-1 to the 
higher/lower curvature value (up/down staircase) of 
the two values related to the two standard’s signals. 
We used a stepsize of 2 m-1; a staircase stopped after 
10 reversals. The average of the comparisons’ 
curvatures across the final 8 reversal points estimated 
the PSEs (cf. Falmagne, 1986).  
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The order of double-staircases was random; the 
experiment lasted about 3 hours including 4 breaks, 
instructions and initial practice. 
 
2.1.5. Data Analysis. The first part of the data analysis 
dealt with our expectations of noise in the sensorily 
transduced position and force signals. Unsystematic 
deviations of actual finger amplitudes from a perfectly 
curved trajectory indicate noise in the transduced 
position signal. Angular deviations of actual force 
direction from force directions related to a perfect 
curve indicate noise in the transduced force signal 
(Fig. 3). For each standard stimulus we regressed the 
actual finger amplitudes during the stroke on the finger 
position along the shape’s base and the actual force 
directions on the finger position along the shape’s 
surface path – using the appropriate functions that 
already defined the force and position signals. The 
standard error of the residuals, then, provided us with a 
measure of noise in the sensorily transduced position 
and force signals, respectively1. Individual averages of 
these values entered two ANOVAs with the two 
within-participant variables Compliance and Friction. 
 

 
 
 
 
 
 
 
 
 

Fig. 3. Indicators of noise in sensorily 
transduced force and position signal 

 
In the second part of the data analysis we focused on 

the participants’ percept. Individual PSEs entered into 
an ANOVA with all four within-participant variables. 
Further, from the individual PSEs of standard curves 
with inconsistent force and position signals (Cforce & 
Cposition) we calculated individual force signal weights 
(wforce, note that wposition equals 1-wforce).  

 
 
               (6) 
 

Averaged individual force signal weights for each 
surface material entered an ANOVA with the two 
within-participant variables Compliance and Friction. 
                                                           
1 We also checked for systematic bias in transduced 
signals. Observed bias, however, did not change the 
main results and, hence, is not further reported. 

 
 
2.2. Results and Discussion 
 
2.2.1. Sensorily transduced information. Noise in 
the sensorily transduced information is plotted in 
Figure 4 A and B for the force and position signal, 
respectively. A two-way ANOVA on noise in the 
position signal revealed a significant effect of 
Compliance, F(1, 17)=282.9, p<.001. As expected the 
transduced positional information was considerably 
more noisy, when the observers followed the geometry 
of a highly compliant surface as compared to a low 
compliance surface. Noise increased by about 100 %. 
The effect of Compliance was exclusive, Friction did 
not have any reliable effect on positional noise. 

In contrast, a two-way ANOVA on noise in the force 
signal revealed a significant effect of Friction, F(1, 
17)=641.2, p<.001. Also as expected the transduced 
force information was considerably more noisy (about 
150 %) under high as compared to low friction. We 
also found effects of Compliance on force signal noise 
(main effect: F(1, 17)=36.5, p<.001, interaction: F(1, 
17)=14.5, p<.001). These, however, tended to be small 
(noise increase of only 14% from low to high 
compliance). 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Average noise in sensorily transduced 
force and position signals and standard error 

as a function of material property 
 

Taken together, noise in the transduced force signal 
mainly covaried with the surface’s friction and noise in 
the transduced position signal exclusively covaried 
with the surface’s compliance. These results confirm 
our expectations on the effects of the surface material 
on sensory transduction. Further, it is highly 
reasonable to assume that the reliability of a certain 
signal directly depends on the measurable noise of this 
signal in sensory transduction [cf. 6]. Thus, our results 
on signal noise provide good evidence that low as 
compared to high compliance selectively decreased the 
reliability of the position signal and high as compared 
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to low friction decreased the reliability of the force 
signal. 
 
2.2.1. Percept. Individual PSEs (Fig. 5) entered a four-
way ANOVA with the within-participant variables 
Force signal, Position signal, Friction and Compliance. 
Main effects of Force Signal, F(1, 17)=153.9, p<.001, 
and Position Signal, F(1, 17)=785.9, p<.001, indicated 
that both force and position signals contributed to the 
participants final percept of curvature. This result 
confirms previous work [2]. Further, interactions of 
Position signal with Compliance, F(1, 17)=14.2, p<.01, 
and Friction, F(1, 17)=5.8, p<.05 indicated that the 
contribution of the signals was modified by the surface 
material.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Average PSEs and standard error 
 
A two-way ANOVA of the force signal weights with 

the within-participant variables Compliance and 
Friction (Fig. 6) clarifies how signal contribution 
depended on surface material: The force signal weight 
was higher under low as compared to high friction, 
F(1, 17)=7.3, p<.02, and it was higher under high as 
compared to low compliance, F(1, 17)=13.0, p<.01. 
There was no reliable interaction. 

These results match with our hypothesis that high 
friction lowers the contribution of force signals to 
perceived shape and high compliance lowers the 
contribution of position signals. Moreover, the first 
part of the analysis supported the assumption that high 
friction lowers the reliability of the force signal and 
high compliance lowers the reliability of the position 

signal. Taking the two parts of data analysis together, 
we found good evidence that the weights in the 
integration of force and position signals to haptic shape 
systematically depend on the signals’ reliabilities. That 
is, our results support the MLE model’s prediction of 
reliability-dependent weighting in human signal 
integration (equation 2) for the case of haptically 
perceived shape.  
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Fig. 6. Average force signal weights and 

standard error 
 
3. Conclusion 
We have good evidence that the brain acts as if it 

reassigns the weights of haptic force and positional 
signals to perceived shape when the reliability of the 
signals changes. A similar argument has been made in 
other domains, i.e. for within-visual, visuo-haptic or 
visuo-auditory combination of different signals. These 
reports, however, used passive stimulation and mostly 
artificial manipulations of sensory reliability. We 
employed natural causes of variation in signals: 
differences in surface material. This correlation is 
ubiquitous in everyday perception. Hence, observers in 
our study were likely to use commonplace rather than 
ad hoc strategies [15]. Most importantly, signal 
reliability in our stimuli depended on the interaction of 
an active observer with the stimulus, and, partially, 
was conditional on noise stemming from motor 
control. The fact that also in active touch weight shifts 
correspond to an observer accounting for reliability 
shifts suggests that this principle is pervasive.  

In conclusion, we demonstrated that signal integration 
in active haptic perception obeys both principles 
formulated in the MLE model. However, there are also 
hints that individual movement variations can 
modulate integration [16]. It is an interesting question 
for future research, to determine how movement 
control influences signal integration and whether 
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movement variations may be strategically exploited to 
optimize the input for signal integration in active 
perception [12]. 
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