
10.02.2005

Tracking Faces using Active-Appearance-Models
on calibrated web cams

Studienarbeit

Alexander Brendel
supervisor: Sven Fleck

GRIS, WSI für Informatik, Universität Tübingen
http://www.gris.uni-tuebingen.de/

alex_brendel@web.de

- 2 -

Abstract
In today’s demanding applications in the field of computer vision the tracking of
objects is becoming more and more of interest. Be it in facility automation or in the
development of biometrical identification processes as well as in security applications,
a robust way of finding and further tracking of objects in sequences of images is an
essential method to these approaches.
Inspired by some other workgroups around the world, this work deals with an
approach to track the face of the user located in front of a computer. Web cams
mounted on top of the monitor track the face of the user to extract parameters such
as pose and location of the face in respect to the camera and thus the computer.
To implement a tracker that allows for some variability in shape and appearance of
the object to be tracked, Active Appearance Models were chosen as fulfilling this
need with the benefit of an already existing programmer’s interface, the AAM-API
developed by M. Stegmann.
Demanding a real time scheme to meet the needs of modern Human-Computer-
Interfaces, the program developed to demonstrate the capabilities of the used
algorithm has been written in C++ for Win32 in combination with some other libraries
including OpenCV and DirectX 9.0a.
For being able to measure the quality of the algorithm’s output, a stereo vision system
operating on two calibrated web cams with two separate trackers was implemented.
This allows for a direct comparison of two simultaneous tracks of the same object
thus getting an estimate of the tracker’s overall accuracy as well as evaluating the
robustness of Active Apearance Models in a real time application.

- 3 -

Contents

Abstract .. 2

1. Tracking in real time.. 4

1.1 Inspiration
1.2 Demands
1.3 Libraries

2. Active Appearance Models ... 6

2.1 Interpretation by Synthesis
2.2 Modelling appearance
2.3 Synthesis of an example
2.4 Approximating a new example
2.5 AAM Search

3. AAM Tracking .. 10

3.1 Implementation
3.2 Excursion: Building a new model

4. Evaluation of the Tracker.. 12

4.1 Stereo Vision
4.2 qualitative verification

5. Discussion ... 15

5.1 Reached goals
5.2 Other aspects

6. Possibilities for further development .. 16

6.1 Variable model
6.2 Coupling the models of both cameras
6.3 Combination with other algorithms

Literature .. 18

Appendix .. 19

A.1 How to rebuild everything
A.2 How to get aamTracker running

- 4 -

1. Tracking in real time
Applications in tracking with methods applied by computer vision sciences are mani-
fold. Human-Computer-Interfaces for clinical application, the use of cameras to
classify the quality of production goods as well as capturing motions and emotions
from video streams are just a few samples of a vast area concerned.
Crucial to many of these applications is the ability to deal with the data probe in real
time, demanding for the use of sophisticated algorithms that comply with this need.

1.1 Inspiration
Some of the existing approaches to track rigid objects have been studied.
Martin and Horaud [1] developed a tracker able to make use of several cameras. The
approach was to track ship parts as they would occur in production with several
cameras from different angles and fields of view. The underlying physical model was
derived by using CAD-models of the specific ship parts. Optimisation was done by
computing difference vectors between model and example and afterwards rotating
and translating the model’s edges accordingly. This, of course, implies an object with
clearly distinguishable edges. Though the setup seems to have worked rather exact,
no statements were made suggesting a method to distinguish between visible edges
and those occluded by the object or about real time capabilities of the presented
method.
Another approach to track objects through video sequences has been made by Isard
who implemented a real time hand tracker with Condensation [2], a statistical method
formerly proposed by Blake and himself. The name stands for conditional density
propagation, performing tracking by using a particle filter that statistically keeps track
of several possible states and assigns probabilities to each one. A sample, the
conditional density, is then propagated over time. The performance of the implemen-
tation by Isard is very good, but as the dynamical model is non-linear with some
stochastic portion, it is very likely hard to analyse. Furthermore, the model is not
robust against changes in distance and rotations.

1.2 Demands
The two approaches above led to demands that our program implementing a new
tracker should fulfill.
Most important was the ability to track rigid objects in real time. As Java is known not
to be the fastest programming language, the project was decided to be implemented
in C++. This also guaranteed providing a possible solution to almost all the areas
concerned with tracking today.
Another goal was to be able to track different kinds of objects without having to
change the program. The modularity implied should make it easy to interchange the

- 5 -

model the program relied on, so that the use on different objects would be as easy as
possible in future applications.
A qualitative approach to measuring the efficiency of the chosen algorithm was strived
for by implementing a stereo vision system with two web cams. This offered an
opportunity to compare two simultaneous tracks of the same object done by two
different trackers. The demand for real time capabilities strengthened with this goal -
now two trackers had to be fast at the same time.

1.3 Libraries
The base of the later program was thought to be implemented using the Open
Computer Vision (OpenCV) library, as many functions already implemented there
could have been of use. It had also already been used at the chair with some
promising results in respect to its real time capabilities. The problems followed at
hand as it became clear in early evaluation process of the library that it would not be
possible to acquire two streams from two different web cams at a time, as long as one
desired an automatic detection of the cameras. This error was also reported by other
workgroups concerned with OpenCV programming. Another problem was the
implementation of OpenCV on video for Windows (VfW) interfaces. These were
reported to be relatively slow compared to newer interfaces.
Disappointed with the flaws of the above library, TLIB, a programmer’s interface for
computer vision issues, developed at the EPFL Lausanne, was inspected [3]. An
overview revealed a fast yet easy to learn interface. It is promised to be very memory
efficient and further development is given. The only negative argument arousing is the
reduced functional range compared to OpenCV. This makes it suitable for educational
purposes (these to meet it was designed), but not of general use. As one of the goals
set was being able to implement a wide range of filters, the search for an alternative
went on.
Some experiments with DirectX revealed a fast interface for capturing video from two
cameras at a time as it is widely independent from old VfW interfaces. The only
restriction encountered regarding the cameras was that no exact matches in the type
description of the cameras are allowed. For example, two cameras of the type
‘Logitech 3000’ would be accessible only as one camera. Another point worth being
mentioned is the highly complex programmer’s interface which makes it a time
consuming effort to get familiar with.
The implementation of a programmer’s interface for tracking objects using the AAM
model was done by Mikkel B. Stegmann of Denmark Technical University [4]. This
interface written in C++ had been thoroughly tested in medical and in some non-
medical environments on still images or sequences of images processed offline. It
produced very remarkable results [5]. The implementation needs CLAPACK support
for the Microsoft Vision SDK on which it relies.
The use of the intel Image Processing Library (IPL) became necessary because of
the incompatibility concerning the conversion of image formats mentioned later in this
work. intel discontinued the development of this library, the last version is IPL 2.5.

- 6 -

2. Active Appearance Models
Active Appearance Models (AAM) were first described by Cootes, Edwards and
Taylor in 1998 [6]. An AAM is a statistical model describing an object’s parameters
concerning shape and appearance. Shape is to be understood as the outlining
contours of the object plus some inner edges corresponding for example to facial
features. Appearance describes the texture of the object in a shape free space.
The model becomes ‘active’ by being able to learn its statistical borders of
representation in a one time training session. By learning a model from annotated
images, one can prevent blind optimisation in run time, which would slow the online
process down. Instead, it is possible to optimise similarities in the model offline
significantly speeding up later convergence in the underlying high dimensional space
of the model.

2.1 Interpretation by Synthesis
The AAM algorithm interprets images unseen before by searching for the best match
between the current example and that state of the model that minimises the difference
to it.
Other approaches to interpret previously unseen images were done, too. One by Turk
and Pentland, called ‘eigenfaces’, was building a merely physical model by applying a
principal component analysis (PCA) to raw data and analysing the difference between
the projected model and the image. However, this showed to be invariant to slight
deformations of the object which occurred by minimal tilting for example. Another idea
were Active Shape Models (ASM) presented by Cootes et al. The model here
represented shape only. As already being able to recognize flexible shapes, it did not
deal with texture in any way.
AAMs combine both shape and texture, resulting in appearance. This promises to
give robust results through measuring more dimensions in object space than other
models up to now did.

2.2 Modelling appearance
The active appearance model is built by examining a number of annotated images
showing the object to be modelled in a reasonable position. Appearance, in [6]
misleadingly used in both senses as the sole textural information and for the
combination of shape and texture, is here thought to be understood the first way.
In our case, images of three different faces were used. The images have to be paired
with data files containing the coordinate data to corresponding landmarks on the
object; this is what we call ‘annotated’ (see figure 2.1). Every image has to have the
exact same number of annotations based on the same landmarks to produce a
relevant model. Here it is advisable to use slight variations in the rotational orientation
of the object to allow for a higher variability in the later model to that respect. This
comes in handy, when two cameras in a stereo setup are used.

- 7 -

 figure 2.1. annotated image with open and closed contours

To extract the shape of an image the coordinates of the annotations have to be
warped into a normalised frame. All shapes from the training session describe
examples of the shape to be modelled. Performing a PCA on the data results in a
formula to compute a shape x from a mean shape x knowing its parameters gb .

 g gx x P b= + (1)

gP represents the modes of variation of the model.

Appearance is modelled by interpreting the textural information of the given images.
For being able to coherently compare this data, all images are warped according to
the shape data paired to the current image, so that texture can be represented in a
shape-normalised frame. To reduce the effect of differing global lighting conditions, an
optimisation is done.

 ()img g β α= − ⋅ (2)

This results in a scaled (α) and translated (β) grey image omissing the named
effects. When performing yet another principal component analysis a formula
describing appearance g is obtained.

 g gg g P b= + (3)

The mean appearance g and the appearance parameters gb are needed for
computing a new shape g .

So far it is possible to model shape and appearance of an object. But, the main
advantage of AAMs comes to count when both are combined. Now sb and gb are
correlated data because shadows in texture, for example, are caused by shape as
well as lighting conditions. Another principle component analysis minimizes those
correlations when it is applied to each training example.

- 8 -

()

()

T
s s s s

T
g g

W b W P x x
b

b P g g

⎛ ⎞−⎛ ⎞
⎜ ⎟= =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 (4)

sW is a matrix consisting of weighting values. These weights describe how image
intensities vary with translations of shape-annotations. A direct comparison is
obviously not reasonable. The specific weights are computed by a different process
described in [6].
Now the combination of the two entitities shape and appearance results in a new
active appearance model b .

 , s

g

Q
b Qc Q

Q
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

 (5)

Here Q are eigenvectors where c is the set of parameters.

The linear nature of the model allows for a direct formulation where iP are the modes
of variation and iW the weight matrices.

 s s s

g g g

x x PW Q c

g g P W Q c

= +

= +
 (6)

2.3 Synthesis of an example

Once the model is learnt and thus Q given, one can synthesise new images
according to some model-parameters c . With (5) b is computed which gives sb and

gb letting us compute a shape-free image with (3), using the mean appearance g .

The shape, to which this shape-free image is then to be warped to, is gained by
applying (1) under use of the mean shape x .

2.4 Approximating a new example
When given a previously unseen image labelled with annotations, the model is able to
generate a new approximation of the image. Whilst Q is gieb from former
approximations, b is to be computed from the current example. Given both, it is
possible to compute c with (5). Application of equations (6) gives the shape x and
appearance g .

We now have to invert the lighting normalisation (2) done before. After applying the
apropriate shape to all landmarks in the image, the grey-level image obtained through
appearance can be projected onto the image according to shape (see figure 2.2).

- 9 -

 figure 2.2. original imge (left), approximated and reprojected image (right)

2.5 AAM Search
The search algorithm is supposed to make a prediction concerning shape,
appearance, position and pose of a face to search in a given, previously unseen
image. An intuitive way of dealing with this is to efficiently adjust some or all model
parameters, generating a new example. Then, a comparison of this example to the
actual example found in the image is made. By minimising the difference between
both, the algorithm and thus the model should converge and thus give a reasonable
estimate.
The minimisation is done by altering certain model parameters. This seems to be hard
to do at first glance, as it is a high-dimensional optimisation problem caused by many
model parameters. On the other hand, the process of matching the model to a new
example is quite similar every time. So one can learn how to solve this problem in
advance, embedding the a priori knowledge on the optimisation into the process,
rendering it more efficient and by that less time consuming at run time.
The question, which parameters are crucial in finding a good estimate of the example
and how they can be efficiently varied during the search, has been dealt with in detail
in [6]. Now that it is possible to predict the changes needed to make to achieve a
better approximation of the example as the current one, an iterative method for the
optimisation process may be formulated.

First evaluation of the error between current estimate of the sample sg and the
estimate of the model mg , where the current estimate of the model parameters is 0c ,
has to be done. From this we get the current overall error thus letting us compute the
predicted displacement cδ of model parameters.

Now we are able to settle the difference that leads to a new estimate 1c of the model
parameters.

 1 0 , where {1.5,1.0,0.5,0.25,...}c c k c kδ= − ∈ (7)

- 10 -

 Figure 3.1. output of aamTracker

After sampling the image at this new prediction, the new error vector is determined. If
the new error is smaller than the last one, the new approximation is used for further
processing, else the approximation is recomputed with the next choice of k .

Convergence is declared when the error does not improve any more.

3. AAM Tracking
We now come to the central chapter of this work, the tracking of faces with an AAM.
The model used was made by M. Stegmann using three grey scale faces. Compared
with the 88 hand labelled faces Cootes et al. used, this is a small number, but the
model was feasable to produce the good results discussed below.

3.1 Implementation
Up to now a program called ‘aamTracker’ had been implemented, being able to
acquire two live streams from two web cams mounted on top of the monitor. Different
OpenCV filters were applicable by means of a DirectX callback filter called
ProxyTrans. Saving the video streams to hard disk was an option.
The tracker was implemented on one stream only at first. The course of events is as
follows: The program acquires the images and routes them to the callback filter where
they are processed. Initialisation of the tracker is done on the first image using the
StegmannInitialise function which predefines some initialisation parameters needed
by the AAM-API. After that a frame-to-frame iteration is started, which is very much
faster than the initialisation, until the error exceeds defineable boundaries. Then a
reinitialisation takes place (see figure 3.1).

The first difficulty was to get all the needed libraries up and running. A sequential
HowTo can be found in the appendix.

- 11 -

 Figure 3.2. aamTracker tracking stereo

The main problem was dealing with the disjunctive image formats OpenCV and the
AAM-API use. Converting an image from one side to the other, using a common
format, as for example *.dib, both interfaces would support, was also not possible
because of some incompatibility between Microsoft VisionSDK and DirectX 9.0a.
Investigations revealed this to be a known problem existing with DirectX. This seems
to be caused by two headers (d3d.h and qedit.h), both defining the same globally
unique IDs (GUID) for two Direct3D devices, probably the web cams. The problem is
known to exist from Direct3D version 7 on.
The workaround implemented was dividing the program into two partitions. One side
only knows the AAM-related headers including VisionSDK; the other side only knows
OpenCV-related headers and DirectX. The passing of images from one side to the
other takes place by converting them to iplImages, a data type of the IPL, passing
void pointers and reconverting them to a VisionSDK format and vice versa.
After having managed to find solutions to the above problems, the implementation of
a second tracker on the second stream could be done. Here another instance of a
CAAMTracker object is initialized so that both trackers run, each standalone, on
different areas in memory. This was necessary to avoid overlapping of data in the
callback function.
The options, to log the output of the tracker textually and being able to determine the
error tolerance towards a new initialization manually, were implemented (see figure
3.2).

- 12 -

3.2 Excursion: Building a new model
Being able to build a customized model was one of the goals the tracker should be
able to fulfill. Since the model lies outsourced in its own file, modularity is granted so
far.
For building a model we need some images of the object to model. It is possible to
acquire these by recording one video stream showing the object with aamTracker with
no filters applied. It may be important to use the same resolution as the tracker later
and a grey scale color scheme. The images can be extracted from the video file by
calling ‘aamc sm *.avi‘.
To go on, one possibility is to use the AM_tools by Cootes. Use ‘am_markup’ to gain
the point-contour relations and description of the contours. Compare [7] on how to do
this.
Now the results are in Cootes’ format that is another than the one used by Stegmann.
As we have to build the model with the AAM-API using ‘aamc b ..’, it is necessary to
convert the result files to Stegmann’s format. As these are text files, conversion with
Matlab for example should be quite easy.
By doing so, it is possible to create models to any kind of rigid object.

4. Evaluation of the Tracker
The development of the aamTracker was a step towards real time tracking of objects
for many kinds of applications. But being now able to run two trackers simultaneously
tracking the very same object, reveals new possibilities in evaluating the tracking
algorithm implemented as well as the speed of the implementation itself.

4.1 Stereo Vision
A necessary task before being able to evaluate the quality of the tracker’s output is
the calibration of both web cams.
This is possible by using the Matlab Calibration Toolbox [8]. Here it was used directly
from Matlab but a C implementation is distributed with OpenCV as well.
First, the calibration pattern included in the toolbox has to be printed and mounted on
a stand when possible. Each camera has to be calibrated by itself first according to
the first example from the manual [9]. About twenty calibration images for each
camera will be needed there for best results. These can for example be taken by
using the snap shot function many cameras provide. It is most important that the
pictures for both cameras are taken at the same view of the calibration setup. The
resulting files calib_results.mat have to be renamed to
calib_results_left.mat and calib_results_right.mat respectively.

Second, both cameras have to be calibrated together. By doing so, we gain
information about the intrinsical as well as the extrinsical factors. This is done

- 13 -

according to [10]. The resulting file Calib_Results_Stereo.mat will later be used
by the evaluation script.

4.2 qualitative verification
With the cameras calibrated, several rounds of simultaneous trackings were
performed. Data recorded by aamTracker was the center of gravity of the face mesh
as well as the pose of the face at each iteration step and for both trackers.

The resulting files were processed by a Matlab script using the calibration data
obtained above. The script renders the trajectory of the first camera into the view of
the second camera using the extrinsic parameters. The rendered trajectory can now
directly be compared with the actual trajectories of the second camera (see figure
4.1).
The difference in both parameters pose and position is correlated with the uncertainty
of the algorithm. Small values in the differences speak for robust and accurate
tracking.
The differences resulting from those tracks were surprisingly good. The difference of
tracking position was always smaller than 7 pixels horizontal and even smaller than 3
pixels vertical (see figure 4.2).
When regarding the size of each frame being 320 on 240 pixels, the percentual error
computes to a maximum of 2.2% horizontal and 1.3% vertical.

figure 4.1.left: trajectory of center of gravity (back), trajectory of pose (front)

 right: difference between rendered and actual trajectory for center of gravity

- 14 -

 figure 4.2. resulting differences in an x-y-view

The angle measured by both cameras was also evaluated by taking the difference,
here no calibration data was used (see figure 4.3).
By omissing calibration data a non-zero rotation between the two cameras is not
regarded in this evaluation, causing the median not to be located in the origin as it
would be intuitive.
A maximum difference of 1.7 degrees can be found here. The maximum angle
appearing in the data probe is 11.8 degrees.

 figure 4.3. left: trajectory of difference of angle

 right: difference of angle with median (blue)

- 15 -

5. Discussion

5.1 Reached goals
We defined some goals above our implementation should fulfill. It was possible to
meet even our most eager demands.
The implemented algorithm allows for using the program in real time applications as
was expected. Meeting this demand with even two parallel trackers running was
surprising even to us.
Implementing the program with C++ was a goal set by myself on the one hand to get
into the ‘real time world’ and on the other hand to learn programming in this language
as I didn’t have time for this in my studies up to that point.
We also met the demand to being able to track a variety of objects without having to
change anything on the implementation itself. As the model file is separate from the
program itself it can be easily interchanged.

5.2 Other aspects
The down side of the story are the many libraries necessary to be used.
The at first promising OpenCV was mostly set aside as the capturing of video on two
streams was nothing to be easily solved. This is why DirectX came into talk. The
unpredictable incompatibilities aroused by VisionSDK and DirectX made the situation
quite complex. Now IPL was used to allow communication between VisionSDK and
DirectX. The AAM-API also relied on CLAPACK which had to be added to VisionSDK
as an extension.
Being a very good, yet poorly documented, programmer’s interface for dealing with
AAM issues, the AAM-API still has some mostly minor bugs. The most serious one is
an unhandled exception that is thrown when something with the initialisation goes
wrong. This was hard to trace and impossible for us to cure. Another flaw is the
absence of the projected mesh-grid in the video window when it would get partially
occluded. So it is not easy to say if the tracker is still on it or if it already lost the object
to be tracked.
At least being able to use more than one camera, VisionSDK still has its negative
aspects. One being the incompatibility with DirectX, the other making it impossible to
mount two cameras that have the exact same device description. Two cameras of
different type can at least be mounted.

- 16 -

6. Possibilities for further development
Since the results are promising enough to be of interest for future extensions, some
possibilities that evoked during the development of aamTracker will be discussed.

6.1 Variable model
Since the model is integrated into aamTracker in a modular way, it would be of great
interest to test the algorithm on other objects to track. Being possible in principal, only
one step is yet to be implemented, a way to generate custom models. The use of
Cootes’ AM_tools has been adressed in chapter 3.2. As explained there, it is possible
to annotate images with a resulting data file in the wrong format. A script, for example
in Matlab, has to be written to convert this data into the format the AAM-API is able to
use to build a model. The latter format is well described in documentation of the
programmer’s interface.
Another option, making further development necessary, is trying to build evolutionary
active appearance models. Evolutionary in the sense of being adaptive to changes in
the object. One could think of this idea of evolution as producing a model from a
reasonable starting definition of the object. This could be done by optimising the
model like in the present training phase with the difference that it is not only done in
advance to tracking but also in parallel to tracking the object. That is using free
resources on the host computer to improve the model during run time.

6.2 Coupling the models of both cameras
In the present version of the program, fusion of the results of both trackers is done
after recording the data. This rather passive fusion gives the opportunity to compare
and evaluate the data. Another approach of interest would be an active fusion of
results, meant as a coupling of the models through their iteration’s results during run
time. One could use the calibration data to build the differences in the center of
gravity’s positions regarding both trackers while running them. By doing so it would be
possible to automatically reinitialise one tracker if both, its own error prediction and
the difference of tracking data, have high values.
Another possibility, coupling both trackers in an even closer manner, would be to use
calibration data again, computing an estimate of the objects position, derived from the
data of the still accurate tracker. This could then be used in the reinitialisation of the
other tracker, leading to a yet more robust tracking with significantly reduced initiali-
sation time.

- 17 -

6.3 Combination with other algorithms
The combination of aamTracker with other algorithms could also be a promising
possibility. M. C. Santana is developing a tracker based on skin tone detection called
ENCARA2 designed to track iris [11]. The tracker also uses an OpenCV implemen-
tation of the Viola Jones face detector to gain an initial estimate for the search radius
and position (see figure 6.1). As being pretty good, a possible improvement could be
made when using aamTracker for the initial guess, since the current solution is fast
but not as robust as it could be. Having access to the shape of the face and its
position could give the good hints the iris tracker could need to converge in less time.

 figure 6.1. M.C. Santana’s ENCARA2

- 18 -

Literature

[1] F. Martin, R. Horaud: Multiple-camera Tracking of Rigid Objects.
 INRIA, Rapport Récherche No. 4268, 2001

[2] M. Isard, A. Blake: CONDENSATION - Conditional density propagation for
visual tracking.
Int. Journal of Computer Vision, 29, 1, pp. 5-28, 1998

[3] S. Grange: TLIB overview.
VRAI, EPFL, 2003. http://vrai-group.epfl.ch/tlib/

[4] Mikkel B. Stegmann: The AAM-API: An Open Source Active Appearance Model
Implementation.

 Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003,
pp. 951-952

[5] AAM Tracking.
IMM, Technical University Denmark, 2004.
http://www.imm.dtu.dk/~aam/tracking/

[6] Cootes, Edwards, Taylor: Active Appearance Models.
Lecture Notes in Computer Science, 1998

[7] Cootes: How to start building models.
http://www.isbe.man.ac.uk/~bim/software/am_tools_doc/index.html

[8] Camera Calibration Toolbox for Matlab.
http://www.vision.caltech.edu/bouguetj/calib_doc/

[9] Calibrating one camera – first example.
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html

[10] Calibrating two cameras – fifth example.
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example5.html

[11] Santana, Tejera, Gámez: ENCARA: Real-Time Detection of Frontal Faces
IUSIANI, Universidad de Las Palmas de Gran Canaria, 2003

- 19 -

Appendix

A.1 How to rebuild everything
This should also solve stream.h and highgui[d].lib problems.

DirextX
1. Open..\directxSDK_root\Samples\C++\DirectShow\BaseClasses\baseclasses.sln

with Visual Studio. Rebuild the both the release and the debug version with
‘Erstellen->Batch erstellen...’.

2. Copy the files strmbase.lib and strmbasd.lib from
..\directxSDK_root\Samples\C++\DirectShow\BaseClasses\Debug and from
..\directxSDK_root\Samples\C++\DirectShow\BaseClasses\Release to
..\OpenCV_root\lib.

3. Correct the path to ‘strmbase.lib’ to suit path of Visual Studio. This can be done in
“Projekt->Einstellungen>Linker” .

4. Open ..\directx_root\sdk\samples\C++\DirectShow\Filters\EZRGB24\ezrgb24.sln
and rebuild the both the release and the debug version. (This checks if the
previous rebuild was successful.)

HighGUI
 5. Open ..\OpenCV_root_dsw\OpenCV.sln. Go to ”Erstellen->Batch erstellen” and

deselect all but ‘HighGUI’, i.e. the Debug and Release versions. Don’t select the
‘HighGUI’ MIL versions unless you really need them (you would need the extra
MILibrary). Then rebuild (Neu Erstellen).

 6. Open ..\OpenCV_root\lib on the shell. Decapitalize the files ‘HighGUI.lib’ and
‘HighGUId.lib’ by renaming them to ‘highgui.lib’ and ‘highguid.lib’.

The rest of OpenCV
7. Go to ”Erstellen->Batch erstellen” again and select all this time but ‘HighGUI’, i.e.

the Debug and Release versions. Don’t select the ‘HighGUI’ MIL versions,
‘MtlbWrps’ or ‘Hawk’ either. Then rebuild (Neu Erstellen).

 8. Add the include and library paths (see appendix) to the DV according to your
system configuration (meaning paths here are to be understood as examples that
does not necessarily match yours).

 9. Then build ProxyTrans (Debug & Release) and copy the folders
..\OpenCV_root_temp\ProxyTrans_Release and
..\OpenCV_root_temp\ProxyTrans_Debug to ..\OpenCV_root\lib.

- 20 -

VisSDK
10. First install.
11. Add ..\VisSDK_root\lib and ..\VisSDK_root\inc to Visual Studio paths.
12. Rebuild all.

CLAPACK (needed for VisMatrix)
13. Download sources from http://www.netlib.org/clapack and install/unzip them.
14. Open the project and build BLAS, CLAPACK, F77 and I77 libraries (!use MFC in

a shared DLL!).
15. Rename the libraries (*.lib) to Blas.lib, Clapack.lib, F77.lib, I77.lib for the release-

versions and to BlasDB.lib, ClapackDB.lib, F77DB.lib, I77DB.lib for the debug-
versions.

16. Copy these to ..\VisSDK_root\VisXCLAPACK and build the VisXCLAPACK.dll.
17. Set path to it. Now VisMatrix can call the functions wrapped in here.

AAM-API
18. Download sources from http://www.imm.dtu.dk/~mbs/api/ and install/unzip them.
19. Add paths to ..\AAM-API_root\inc, ..\AAM-API_root\diva\inc and ..\AAM-

API_root\lib to Visual Studio.
20. Rebuild all ..\AAM-API_root\aam-api-lib*.dsw.
21. Rebuild Diva.
22. Rebuild AAMC.

IPL
23. Download sources and install/unzip them.
24. Add all *.dll’s to path. The directory is ..\IPL_root\bin .

- 21 -

A.2 How to get aamTracker running
Installation
1. aamTracker including all necessary dlls has to be copied to hard disk. Here

‚RegisterProxyTrans.bat’ is to be executed. Set path to IPLbin if not done
yet.

2. Both web cams (not of the same type) have to be connected to the PC using
different USB hubs.

3. Start aamTracker.
4. Press „Show Cams “. Click on the left camera (your view), press „Set Camera

1“. Click on the right camera, press „Set Camera 2“.
5. Now press „Start“ with no filter selected („none“).
6. In some cases several hubs of the computer have to be tested until both cameras

produce fluent video streams.
7. Now set both cameras to a resolutuin of 320 on 240 pixels, a framerate greater 20

fps and equal contrast.
8. The positions of the cameras on top of the monitor should be optimized in a way

that during a test run with „AAM Tracking of faces“ both cameras produce
reasonable tracks. The cameras should not stand too far apart as the model
supplied is trained on purely frontal views of faces.

9. Now calibration can take place.

Tracking
1. Start aamTracker.
2. Select both cameras (as in installation).
3. Set tolerance to a value between 3 and 6.
4. Press „Save to file(s)…“ and follow the dialog boxes, leave „log tracking“

unchecked for now.
5. Start the streams by pressing „Start“. You see virgin streams.
6. Start tracking by selecting „AAM Tracking of faces“.
7. When both trackers are initialised, start logging by enabling „log tracking“.
8. Stop by pressing „Stop“.

9. The results of both trackers are saved to output1.txt and output2.txt. Be
sure to make a copy before restarting the tracker, else the files will be over-
written without a warning!

