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Abstract 
In today’s demanding applications in the field of computer vision the tracking of 
objects is becoming more and more of interest. Be it in facility automation or in the 
development of biometrical identification processes as well as in security applications, 
a robust way of finding and further tracking of objects in sequences of images is an 
essential method to these approaches. 
Inspired by some other workgroups around the world, this work deals with an 
approach to track the face of the user located in front of a computer. Web cams 
mounted on top of the monitor track the face of the user to extract parameters such 
as pose and location of the face in respect to the camera and thus the computer.  
To implement a tracker that allows for some variability in shape and appearance of 
the object to be tracked, Active Appearance Models were chosen as fulfilling this 
need with the benefit of an already existing programmer’s interface, the AAM-API 
developed by M. Stegmann. 
Demanding a real time scheme to meet the needs of modern Human-Computer-
Interfaces, the program developed to demonstrate the capabilities of the used 
algorithm has been written in C++ for Win32 in combination with some other libraries 
including OpenCV and DirectX 9.0a. 
For being able to measure the quality of the algorithm’s output, a stereo vision system 
operating on two calibrated web cams with two separate trackers was implemented. 
This allows for a direct comparison of two simultaneous tracks of the same object 
thus getting an estimate of the tracker’s overall accuracy as well as evaluating the 
robustness of Active Apearance Models in a real time application. 
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1. Tracking in real time 
Applications in tracking with methods applied by computer vision sciences are mani-
fold. Human-Computer-Interfaces for clinical application, the use of cameras to 
classify the quality of production goods as well as capturing motions and emotions 
from video streams are just a few samples of a vast area concerned. 
Crucial to many of these applications is the ability to deal with the data probe in real 
time, demanding for the use of sophisticated algorithms that comply with this need. 
 

1.1 Inspiration 
Some of the existing approaches to track rigid objects have been studied. 
Martin and Horaud [1] developed a tracker able to make use of several cameras. The 
approach was to track ship parts as they would occur in production with several 
cameras from different angles and fields of view. The underlying physical model was 
derived by using CAD-models of the specific ship parts. Optimisation was done by 
computing difference vectors between model and example and afterwards rotating 
and translating the model’s edges accordingly. This, of course, implies an object with 
clearly distinguishable edges. Though the setup seems to have worked rather exact, 
no statements were made suggesting a method to distinguish between visible edges 
and those occluded by the object or about real time capabilities of the presented 
method. 
Another approach to track objects through video sequences has been made by Isard 
who implemented a real time hand tracker with Condensation [2], a statistical method 
formerly proposed by Blake and himself. The name stands for conditional density 
propagation, performing tracking by using a particle filter that statistically keeps track 
of several possible states and assigns probabilities to each one. A sample, the 
conditional density, is then propagated over time. The performance of the implemen-
tation by Isard is very good, but as the dynamical model is non-linear with some 
stochastic portion, it is very likely hard to analyse. Furthermore, the model is not 
robust against changes in distance and rotations. 

 

1.2 Demands 
The two approaches above led to demands that our program implementing a new 
tracker should fulfill. 
Most important was the ability to track rigid objects in real time. As Java is known not 
to be the fastest programming language, the project was decided to be implemented 
in C++. This also guaranteed providing a possible solution to almost all the areas 
concerned with tracking today. 
Another goal was to be able to track different kinds of objects without having to 
change the program. The modularity implied should make it easy to interchange the 
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model the program relied on, so that the use on different objects would be as easy as 
possible in future applications. 
A qualitative approach to measuring the efficiency of the chosen algorithm was strived 
for by implementing a stereo vision system with two web cams. This offered an 
opportunity to compare two simultaneous tracks of the same object done by two 
different trackers. The demand for real time capabilities strengthened with this goal - 
now two trackers had to be fast at the same time. 
 

1.3 Libraries 
The base of the later program was thought to be implemented using the Open 
Computer Vision (OpenCV) library, as many functions already implemented there 
could have been of use. It had also already been used at the chair with some 
promising results in respect to its real time capabilities. The problems followed at 
hand as it became clear in early evaluation process of the library that it would not be 
possible to acquire two streams from two different web cams at a time, as long as one 
desired an automatic detection of the cameras. This error was also reported by other 
workgroups concerned with OpenCV programming. Another problem was the 
implementation of OpenCV on video for Windows (VfW) interfaces. These were 
reported to be relatively slow compared to newer interfaces. 
Disappointed with the flaws of the above library, TLIB, a programmer’s interface for 
computer vision issues, developed at the EPFL Lausanne, was inspected [3]. An 
overview revealed a fast yet easy to learn interface. It is promised to be very memory 
efficient and further development is given. The only negative argument arousing is the 
reduced functional range compared to OpenCV. This makes it suitable for educational 
purposes (these to meet it was designed), but not of general use. As one of the goals 
set was being able to implement a wide range of filters, the search for an alternative 
went on. 
Some experiments with DirectX revealed a fast interface for capturing video from two 
cameras at a time as it is widely independent from old VfW interfaces. The only 
restriction encountered regarding the cameras was that no exact matches in the type 
description of the cameras are allowed. For example, two cameras of the type 
‘Logitech 3000’ would be accessible only as one camera. Another point worth being 
mentioned is the highly complex programmer’s interface which makes it a time 
consuming effort to get familiar with. 
The implementation of a programmer’s interface for tracking objects using the AAM 
model was done by Mikkel B. Stegmann of Denmark Technical University [4]. This 
interface written in C++ had been thoroughly tested in medical and in some non-
medical environments on still images or sequences of images processed offline. It 
produced very remarkable results [5]. The implementation needs CLAPACK support 
for the Microsoft Vision SDK on which it relies. 
The use of the intel Image Processing Library (IPL) became necessary because of 
the incompatibility concerning the conversion of image formats mentioned later in this 
work. intel discontinued the development of this library, the last version is IPL 2.5. 
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2. Active Appearance Models 
Active Appearance Models (AAM) were first described by Cootes, Edwards and 
Taylor in 1998 [6]. An AAM is a statistical model describing an object’s parameters 
concerning shape and appearance. Shape is to be understood as the outlining 
contours of the object plus some inner edges corresponding for example to facial 
features. Appearance describes the texture of the object in a shape free space. 
The model becomes ‘active’ by being able to learn its statistical borders of 
representation in a one time training session. By learning a model from annotated 
images, one can prevent blind optimisation in run time, which would slow the online 
process down. Instead, it is possible to optimise similarities in the model offline 
significantly speeding up later convergence in the underlying high dimensional space 
of the model. 
 

2.1 Interpretation by Synthesis 
The AAM algorithm interprets images unseen before by searching for the best match 
between the current example and that state of the model that minimises the difference 
to it. 
Other approaches to interpret previously unseen images were done, too. One by Turk 
and Pentland, called ‘eigenfaces’, was building a merely physical model by applying a 
principal component analysis (PCA) to raw data and analysing the difference between 
the projected model and the image. However, this showed to be invariant to slight 
deformations of the object which occurred by minimal tilting for example. Another idea 
were Active Shape Models (ASM) presented by Cootes et al. The model here 
represented shape only. As already being able to recognize flexible shapes, it did not 
deal with texture in any way. 
AAMs combine both shape and texture, resulting in appearance. This promises to 
give robust results through measuring more dimensions in object space than other 
models up to now did. 
 

2.2 Modelling appearance 
The active appearance model is built by examining a number of annotated images 
showing the object to be modelled in a reasonable position. Appearance, in [6] 
misleadingly used in both senses as the sole textural information and for the 
combination of shape and texture, is here thought to be understood the first way. 
In our case, images of three different faces were used. The images have to be paired 
with data files containing the coordinate data to corresponding landmarks on the 
object; this is what we call ‘annotated’ (see figure 2.1). Every image has to have the 
exact same number of annotations based on the same landmarks to produce a 
relevant model. Here it is advisable to use slight variations in the rotational orientation 
of the object to allow for a higher variability in the later model to that respect. This 
comes in handy, when two cameras in a stereo setup are used. 
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 figure 2.1. annotated image with open and closed contours 

 

To extract the shape of an image the coordinates of the annotations have to be 
warped into a normalised frame. All shapes from the training session describe 
examples of the shape to be modelled. Performing a PCA on the data results in a 
formula to compute a shape x  from a mean shape x  knowing its parameters gb . 

 g gx x P b= +  (1) 

gP  represents the modes of variation of the model. 

 
 
 
 
 
 
 
 
 
 
 
Appearance is modelled by interpreting the textural information of the given images. 
For being able to coherently compare this data, all images are warped according to 
the shape data paired to the current image, so that texture can be represented in a 
shape-normalised frame. To reduce the effect of differing global lighting conditions, an 
optimisation is done. 

 ( )img g β α= − ⋅  (2) 

This results in a scaled (α ) and translated ( β ) grey image omissing the named 
effects. When performing yet another principal component analysis a formula 
describing appearance g  is obtained. 

 g gg g P b= +  (3) 

The mean appearance g  and the appearance parameters gb  are needed for 
computing a new shape g . 

So far it is possible to model shape and appearance of an object. But, the main 
advantage of AAMs comes to count when both are combined. Now sb  and gb  are 
correlated data because shadows in texture, for example, are caused by shape as 
well as lighting conditions. Another principle component analysis minimizes those 
correlations when it is applied to each training example. 
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sW  is a matrix consisting of weighting values. These weights describe how image 
intensities vary with translations of shape-annotations. A direct comparison is 
obviously not reasonable. The specific weights are computed by a different process 
described in [6]. 
Now the combination of the two entitities shape and appearance results in a new 
active appearance model b . 
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Here Q  are eigenvectors where c  is the set of parameters. 

 

The linear nature of the model allows for a direct formulation where iP  are the modes 
of variation and iW  the weight matrices. 
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2.3 Synthesis of an example 

Once the model is learnt and thus Q  given, one can synthesise new images 
according to some model-parameters c . With (5) b  is computed which gives sb  and 

gb  letting us compute a shape-free image with (3), using the mean appearance g . 

The shape, to which this shape-free image is then to be warped to, is gained by 
applying (1) under use of the mean shape x . 

 

2.4 Approximating a new example 
When given a previously unseen image labelled with annotations, the model is able to 
generate a new approximation of the image. Whilst Q  is gieb from former 
approximations, b  is to be computed from the current example. Given both, it is 
possible to compute c  with (5). Application of equations (6) gives the shape x  and 
appearance g .  

We now have to invert the lighting normalisation (2) done before. After applying the 
apropriate shape to all landmarks in the image, the grey-level image obtained through 
appearance can be projected onto the image according to shape (see figure 2.2). 
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 figure 2.2. original imge (left), approximated and reprojected image (right) 

 

 
 
 
 
 
 

 

 

 

2.5 AAM Search 
The search algorithm is supposed to make a prediction concerning shape, 
appearance, position and pose of a face to search in a given, previously unseen 
image. An intuitive way of dealing with this is to efficiently adjust some or all model 
parameters, generating a new example. Then, a comparison of this example to the 
actual example found in the image is made. By minimising the difference between 
both, the algorithm and thus the model should converge and thus give a reasonable 
estimate. 
The minimisation is done by altering certain model parameters. This seems to be hard 
to do at first glance, as it is a high-dimensional optimisation problem caused by many 
model parameters. On the other hand, the process of matching the model to a new 
example is quite similar every time. So one can learn how to solve this problem in 
advance, embedding the a priori knowledge on the optimisation into the process, 
rendering it more efficient and by that less time consuming at run time. 
The question, which parameters are crucial in finding a good estimate of the example 
and how they can be efficiently varied during the search, has been dealt with in detail 
in [6]. Now that it is possible to predict the changes needed to make to achieve a 
better approximation of the example as the current one, an iterative method for the 
optimisation process may be formulated. 

First evaluation of the error between current estimate of the sample sg  and the 
estimate of the model mg , where the current estimate of the model parameters is 0c , 
has to be done. From this we get the current overall error thus letting us compute the 
predicted displacement cδ  of model parameters.  

Now we are able to settle the difference that leads to a new estimate 1c  of the model 
parameters. 

 1 0 , where {1.5,1.0,0.5,0.25,...}c c k c kδ= − ∈  (7) 
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   Figure 3.1. output of aamTracker 

 

After sampling the image at this new prediction, the new error vector is determined. If 
the new error is smaller than the last one, the new approximation is used for further 
processing, else the approximation is recomputed with the next choice of k . 

Convergence is declared when the error does not improve any more. 
 

3. AAM Tracking 
We now come to the central chapter of this work, the tracking of faces with an AAM. 
The model used was made by M. Stegmann using three grey scale faces. Compared 
with the 88 hand labelled faces Cootes et al. used, this is a small number, but the 
model was feasable to produce the good results discussed below. 
 

3.1 Implementation 
Up to now a program called ‘aamTracker’ had been implemented, being able to 
acquire two live streams from two web cams mounted on top of the monitor. Different 
OpenCV filters were applicable by means of a DirectX callback filter called 
ProxyTrans. Saving the video streams to hard disk was an option. 
The tracker was implemented on one stream only at first. The course of events is as 
follows: The program acquires the images and routes them to the callback filter where 
they are processed. Initialisation of the tracker is done on the first image using the 
StegmannInitialise function which predefines some initialisation parameters needed 
by the AAM-API. After that a frame-to-frame iteration is started, which is very much 
faster than the initialisation, until the error exceeds defineable boundaries. Then a 
reinitialisation takes place (see figure 3.1). 
 
 
 
 
 
 
 
 
 
 
 
The first difficulty was to get all the needed libraries up and running. A sequential 
HowTo can be found in the appendix. 
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   Figure 3.2. aamTracker tracking stereo 

 

The main problem was dealing with the disjunctive image formats OpenCV and the 
AAM-API use. Converting an image from one side to the other, using a common 
format, as for example *.dib, both interfaces would support, was also not possible 
because of some incompatibility between Microsoft VisionSDK and DirectX 9.0a. 
Investigations revealed this to be a known problem existing with DirectX. This seems 
to be caused by two headers (d3d.h and qedit.h), both defining the same globally 
unique IDs (GUID) for two Direct3D devices, probably the web cams. The problem is 
known to exist from Direct3D version 7 on. 
The workaround implemented was dividing the program into two partitions. One side 
only knows the AAM-related headers including VisionSDK; the other side only knows 
OpenCV-related headers and DirectX. The passing of images from one side to the 
other takes place by converting them to iplImages, a data type of the IPL, passing 
void pointers and reconverting them to a VisionSDK format and vice versa. 
After having managed to find solutions to the above problems, the implementation of 
a second tracker on the second stream could be done. Here another instance of a 
CAAMTracker object is initialized so that both trackers run, each standalone, on 
different areas in memory. This was necessary to avoid overlapping of data in the 
callback function. 
The options, to log the output of the tracker textually and being able to determine the 
error tolerance towards a new initialization manually, were implemented (see figure 
3.2). 
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3.2 Excursion: Building a new model 
Being able to build a customized model was one of the goals the tracker should be 
able to fulfill. Since the model lies outsourced in its own file, modularity is granted so 
far. 
For building a model we need some images of the object to model. It is possible to 
acquire these by recording one video stream showing the object with aamTracker with 
no filters applied. It may be important to use the same resolution as the tracker later 
and a grey scale color scheme. The images can be extracted from the video file by 
calling ‘aamc sm *.avi‘. 
To go on, one possibility is to use the AM_tools by Cootes. Use ‘am_markup’ to gain 
the point-contour relations and description of the contours. Compare [7] on how to do 
this. 
Now the results are in Cootes’ format that is another than the one used by Stegmann. 
As we have to build the model with the AAM-API using ‘aamc b ..’, it is necessary to 
convert the result files to Stegmann’s format. As these are text files, conversion with 
Matlab for example should be quite easy. 
By doing so, it is possible to create models to any kind of rigid object. 
 

4. Evaluation of the Tracker 
The development of the aamTracker was a step towards real time tracking of objects 
for many kinds of applications. But being now able to run two trackers simultaneously 
tracking the very same object, reveals new possibilities in evaluating the tracking 
algorithm implemented as well as the speed of the implementation itself. 
 

4.1 Stereo Vision 
A necessary task before being able to evaluate the quality of the tracker’s output is 
the calibration of both web cams.  
This is possible by using the Matlab Calibration Toolbox [8]. Here it was used directly 
from Matlab but a C implementation is distributed with OpenCV as well.  
First, the calibration pattern included in the toolbox has to be printed and mounted on 
a stand when possible. Each camera has to be calibrated by itself first according to 
the first example from the manual [9]. About twenty calibration images for each 
camera will be needed there for best results. These can for example be taken by 
using the snap shot function many cameras provide. It is most important that the 
pictures for both cameras are taken at the same view of the calibration setup. The 
resulting files calib_results.mat have to be renamed to 
calib_results_left.mat and calib_results_right.mat respectively. 

Second, both cameras have to be calibrated together. By doing so, we gain 
information about the intrinsical as well as the extrinsical factors. This is done 
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according to [10]. The resulting file Calib_Results_Stereo.mat will later be used 
by the evaluation script. 
 

4.2 qualitative verification 
With the cameras calibrated, several rounds of simultaneous trackings were 
performed. Data recorded by aamTracker was the center of gravity of the face mesh 
as well as the pose of the face at each iteration step and for both trackers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The resulting files were processed by a Matlab script using the calibration data 
obtained above. The script renders the trajectory of the first camera into the view of 
the second camera using the extrinsic parameters. The rendered trajectory can now 
directly be compared with the actual trajectories of the second camera (see figure 
4.1). 
The difference in both parameters pose and position is correlated with the uncertainty 
of the algorithm. Small values in the differences speak for robust and accurate 
tracking.  
The differences resulting from those tracks were surprisingly good. The difference of 
tracking position was always smaller than 7 pixels horizontal and even smaller than 3 
pixels vertical (see figure 4.2). 
When regarding the size of each frame being 320 on 240 pixels, the percentual error 
computes to a maximum of 2.2% horizontal and 1.3% vertical.  

figure 4.1.left: trajectory of center of gravity (back), trajectory of pose (front) 

 right: difference between rendered and actual trajectory for center of gravity 
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  figure 4.2.  resulting differences in an x-y-view 

 

 
 
 
 
 
 
 
 
 
 
 
The angle measured by both cameras was also evaluated by taking the difference, 
here no calibration data was used (see figure 4.3). 
By omissing calibration data a non-zero rotation between the two cameras is not 
regarded in this evaluation, causing the median not to be located in the origin as it 
would be intuitive. 
A maximum difference of 1.7 degrees can be found here. The maximum angle 
appearing in the data probe is 11.8 degrees. 
 
 
 
 

 

 

 

 

 
 

 figure 4.3. left: trajectory of difference of angle 

   right: difference of angle with median (blue)
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5. Discussion 

5.1 Reached goals 
We defined some goals above our implementation should fulfill. It was possible to 
meet even our most eager demands. 
The implemented algorithm allows for using the program in real time applications as 
was expected. Meeting this demand with even two parallel trackers running was 
surprising even to us. 
Implementing the program with C++ was a goal set by myself on the one hand to get 
into the ‘real time world’ and on the other hand to learn programming in this language 
as I didn’t have time for this in my studies up to that point. 
We also met the demand to being able to track a variety of objects without having to 
change anything on the implementation itself. As the model file is separate from the 
program itself it can be easily interchanged. 
 

5.2 Other aspects 
The down side of the story are the many libraries necessary to be used. 
The at first promising OpenCV was mostly set aside as the capturing of video on two 
streams was nothing to be easily solved. This is why DirectX came into talk. The 
unpredictable incompatibilities aroused by VisionSDK and DirectX made the situation 
quite complex. Now IPL was used to allow communication between VisionSDK and 
DirectX. The AAM-API also relied on CLAPACK which had to be added to VisionSDK 
as an extension. 
Being a very good, yet poorly documented, programmer’s interface for dealing with 
AAM issues, the AAM-API still has some mostly minor bugs. The most serious one is 
an unhandled exception that is thrown when something with the initialisation goes 
wrong. This was hard to trace and impossible for us to cure. Another flaw is the 
absence of the projected mesh-grid in the video window when it would get partially 
occluded. So it is not easy to say if the tracker is still on it or if it already lost the object 
to be tracked. 
At least being able to use more than one camera, VisionSDK still has its negative 
aspects. One being the incompatibility with DirectX, the other making it impossible to 
mount two cameras that have the exact same device description. Two cameras of 
different type can at least be mounted. 



 
- 16 - 

6. Possibilities for further development 
Since the results are promising enough to be of interest for future extensions, some 
possibilities that evoked during the development of aamTracker will be discussed. 
 

6.1 Variable model 
Since the model is integrated into aamTracker in a modular way, it would be of great 
interest to test the algorithm on other objects to track. Being possible in principal, only 
one step is yet to be implemented, a way to generate custom models. The use of 
Cootes’ AM_tools has been adressed in chapter 3.2. As explained there, it is possible 
to annotate images with a resulting data file in the wrong format. A script, for example 
in Matlab, has to be written to convert this data into the format the AAM-API is able to 
use to build a model. The latter format is well described in documentation of the 
programmer’s interface. 
Another option, making further development necessary, is trying to build evolutionary 
active appearance models. Evolutionary in the sense of being adaptive to changes in 
the object. One could think of this idea of evolution as producing a model from a 
reasonable starting definition of the object. This could be done by optimising the 
model like in the present training phase with the difference that it is not only done in 
advance to tracking but also in parallel to tracking the object. That is using free 
resources on the host computer to improve the model during run time. 
 

6.2 Coupling the models of both cameras 
In the present version of the program, fusion of the results of both trackers is done 
after recording the data. This rather passive fusion gives the opportunity to compare 
and evaluate the data. Another approach of interest would be an active fusion of 
results, meant as a coupling of the models through their iteration’s results during run 
time. One could use the calibration data to build the differences in the center of 
gravity’s positions regarding both trackers while running them. By doing so it would be 
possible to automatically reinitialise one tracker if both, its own error prediction and 
the difference of tracking data, have high values. 
Another possibility, coupling both trackers in an even closer manner, would be to use 
calibration data again, computing an estimate of the objects position, derived from the 
data of the still accurate tracker. This could then be used in the reinitialisation of the 
other tracker, leading to a yet more robust tracking with significantly reduced initiali-
sation time. 
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6.3 Combination with other algorithms 
The combination of aamTracker with other algorithms could also be a promising 
possibility. M. C. Santana is developing a tracker based on skin tone detection called 
ENCARA2 designed to track iris [11]. The tracker also uses an OpenCV implemen-
tation of the Viola Jones face detector to gain an initial estimate for the search radius 
and position (see figure 6.1). As being pretty good, a possible improvement could be 
made when using aamTracker for the initial guess, since the current solution is fast 
but not as robust as it could be. Having access to the shape of the face and its 
position could give the good hints the iris tracker could need to converge in less time. 
 
 
 

   figure 6.1. M.C. Santana’s ENCARA2 
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Appendix 

A.1 How to rebuild everything 
This should also solve stream.h and highgui[d].lib problems.  
 

DirextX  
1.  Open..\directxSDK_root\Samples\C++\DirectShow\BaseClasses\baseclasses.sln 

with Visual Studio. Rebuild the both the release and the debug version with 
‘Erstellen->Batch erstellen...’.  

2. Copy the files strmbase.lib and strmbasd.lib from 
..\directxSDK_root\Samples\C++\DirectShow\BaseClasses\Debug and from 
..\directxSDK_root\Samples\C++\DirectShow\BaseClasses\Release to 
..\OpenCV_root\lib.   

3.  Correct the path to ‘strmbase.lib’ to suit path of Visual Studio. This can be done in 
“Projekt->Einstellungen>Linker” .  

4.  Open ..\directx_root\sdk\samples\C++\DirectShow\Filters\EZRGB24\ezrgb24.sln 
and rebuild the both the release and the debug version. (This checks if the 
previous rebuild was successful.)   

 
HighGUI  
 5.  Open ..\OpenCV_root\_dsw\OpenCV.sln. Go to ”Erstellen->Batch erstellen” and 

deselect all but ‘HighGUI’, i.e. the Debug and Release versions. Don’t select the 
‘HighGUI’ MIL versions unless you really need them (you would need the extra 
MILibrary). Then rebuild (Neu Erstellen).   

 6.  Open ..\OpenCV_root\lib on the shell. Decapitalize the files ‘HighGUI.lib’ and 
‘HighGUId.lib’ by renaming them to ‘highgui.lib’ and ‘highguid.lib’.  

  
The rest of OpenCV  
7. Go to ”Erstellen->Batch erstellen”  again and select all this time but ‘HighGUI’, i.e. 

the Debug and Release versions. Don’t select the ‘HighGUI’ MIL versions, 
‘MtlbWrps’ or ‘Hawk’ either. Then rebuild (Neu Erstellen).   

 8. Add the include and library paths (see appendix) to the DV according to your 
system configuration (meaning paths here are to be understood as examples that 
does not necessarily match yours).   

 9. Then build ProxyTrans (Debug & Release) and copy the folders 
..\OpenCV_root\_temp\ProxyTrans_Release and 
..\OpenCV_root\_temp\ProxyTrans_Debug to ..\OpenCV_root\lib.  
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VisSDK  
10. First install.  
11. Add ..\VisSDK_root\lib and ..\VisSDK_root\inc to Visual Studio paths.  
12. Rebuild all.  
 

CLAPACK (needed for VisMatrix)  
13. Download sources from http://www.netlib.org/clapack and install/unzip them.  
14. Open the project and build BLAS, CLAPACK, F77 and I77 libraries (!use MFC in 

a shared DLL!).  
15.  Rename the libraries (*.lib) to Blas.lib, Clapack.lib, F77.lib, I77.lib for the release-

versions and to BlasDB.lib, ClapackDB.lib, F77DB.lib, I77DB.lib for the debug-
versions.  

16.  Copy these to ..\VisSDK_root\VisXCLAPACK and build the VisXCLAPACK.dll.  
17.  Set path to it. Now VisMatrix can call the functions wrapped in here.  
  

AAM-API  
18.  Download sources from http://www.imm.dtu.dk/~mbs/api/ and install/unzip them.  
19. Add paths to ..\AAM-API_root\inc, ..\AAM-API_root\diva\inc and ..\AAM-

API_root\lib to Visual Studio.  
20.  Rebuild all ..\AAM-API_root\aam-api-lib\*.dsw.  
21.  Rebuild Diva.  
22.  Rebuild AAMC.  
  

IPL  
23.  Download sources and install/unzip them.  
24.  Add all *.dll’s to path. The directory is ..\IPL_root\bin .  



 
- 21 - 

A.2 How to get aamTracker running 
Installation 
1. aamTracker including all necessary dlls has to be copied to hard disk. Here 

‚RegisterProxyTrans.bat’ is to be executed. Set path to IPLbin if not done 
yet. 

2. Both web cams (not of the same type) have to be connected to the PC using 
different USB hubs. 

3. Start aamTracker. 
4. Press „Show Cams “. Click on the left camera (your view), press „Set Camera 

1“. Click on the right camera, press „Set Camera 2“. 
5. Now press „Start“ with no filter selected („none“). 
6. In some cases several hubs of the computer have to be tested until both cameras 

produce fluent video streams. 
7. Now set both cameras to a resolutuin of 320 on 240 pixels, a framerate greater 20 

fps and equal contrast. 
8. The positions of the cameras on top of the monitor should be optimized in a way 

that during a test run with „AAM Tracking of faces“ both cameras produce 
reasonable tracks. The cameras should not stand too far apart as the model 
supplied is trained on purely frontal views of faces. 

9. Now calibration can take place. 
  
Tracking 
1. Start aamTracker. 
2. Select both cameras (as in installation). 
3. Set tolerance to a value between 3 and 6. 
4. Press „Save to file(s)…“ and follow the dialog boxes, leave „log tracking“ 

unchecked for now. 
5. Start the streams by pressing „Start“. You see virgin streams. 
6. Start tracking by selecting „AAM Tracking of faces“. 
7. When both trackers are initialised, start logging by enabling „log tracking“. 
8. Stop by pressing „Stop“. 

9. The results of both trackers are saved to output1.txt and output2.txt. Be 
sure to make a copy before restarting the tracker, else the files will be over-
written without a warning! 

 


