Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Cognitive factors facilitate multimodal integration

MPG-Autoren
/persons/resource/persons83960

Helbig,  HB
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83906

Ernst,  MO
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Helbig, H., & Ernst, M. (2005). Cognitive factors facilitate multimodal integration. Poster presented at 8th Tübinger Wahrnehmungskonferenz (TWK 2005), Tübingen, Germany.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-D63B-0
Zusammenfassung
Ernst Banks (2002) showed that humans integrate visual and haptic signals in a statistically optimal way if they are derived from the same spatial location. Integration seems to be broken if there is a spatial discrepancy between the signals (Gepshtein et al., in press). Can cognitive factors facilitate integration even when the signals are presented at two spatial locations? We conducted two experiments, one in which visual and haptic information was presented at the same location. In the second experiment, subject looked at the object through a mirror while touching it. This way there was a spatial offset between the two information sources. If cognitive factors are sufficient for integration to occur, i.e. knowledge that the object seen in the mirror is the same as the one touched, we expect no difference between the two experimental results. If integration breaks due to the spatial discrepancy, we expect subjects’ percept to be less biased by multimodal information. To study integration, participants looked at an object through a distortion lens. This way, for both the “mirrored” and “direct vision” conditions, there was a slight shape conflict between the visual and haptic modalities. After looking at and feeling the object simultaneously participants reported the perceived shape by either visually or haptically matching it to a reference object. Both experiments revealed that the shape percept was in-between the haptically and visually specified shapes. Importantly, there was no significant difference between the two experimental results regardless of whether subjects matched the shape visually or haptically. However, we found a significant difference between matching by touch and matching by vision. Haptic judgments are biased towards the haptic input and vice versa. In conclusion, multimodal signals seem to be combined if observers have high-level cognitive knowledge about the signals belonging to the same object, even when there is a spatial discrepancy.