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Approximate Bayesian Inference for Psychometric
Functions using MCMC Sampling

Malte Kuss, Frank J̈akel, Felix A. Wichmann

Abstract. In psychophysical studies the psychometric function is used to model the relation between
the physical stimulus intensity and the observer’s ability to detect or discriminate between stimuli of
different intensities. In this report we propose the use of Bayesian inference to extract the information
contained in experimental data estimate the parameters of psychometric functions. Since Bayesian in-
ference cannot be performed analytically we describe how a Markov chain Monte Carlo method can
be used to generate samples from the posterior distribution over parameters. These samples are used
to estimate Bayesian confidence intervals and other characteristics of the posterior distribution. In ad-
dition we discuss the parameterisation of psychometric functions and the role of prior distributions in
the analysis. The proposed approach is exemplified using artificially generated data and in a case study
for real experimental data. Furthermore, we compare our approach with traditional methods based on
maximum-likelihood parameter estimation combined with bootstrap techniques for confidence interval
estimation. The appendix provides a description of an implementation for the R environment for statis-
tical computing and provides the code for reproducing the results discussed in the experiment section.

1 Introduction

Psychophysics explores the connection between physical stimuli and subjective responses. The psycho-
metric function relates the stimulus intensity (“physics”) on the abscissa with the observer’s response
(“psychology”) on the ordinate and is the central function in the analysis of data obtained from psy-
chophysical studies. This is true not only in classical psychophysical settings in experimental psychol-
ogy but equally true in clinical or developmental studies where the datasets are typically even smaller,
and thus proper statistical procedures are even more important. It is also true in awake-behaving neuro-
physiology studies where the datasets may be larger but the problem of stimulus-independent errors or
“lapses” (Wichmann and Hill, 2001a) may be more pronounced.

Given that psychophysical experiments tend to be time consuming and tiring for the observers, many
methods have been developed to estimate only a single point of the psychometric function, typically a
point in the interval between 50% and 90% correct performance termed thethreshold. These so-called
adaptive methodsvary the stimulus strength based on previous responses of the observer; adaptive meth-
ods can be divided into non-parametric (Wetherill and Levitt, 1965; Rose et al., 1970; Taylor, 1971;
Garcia-Perez, 1998) and parametric (Pentland, 1980; Watt and Andrews, 1981; Watson and Pelli, 1983;
Madigan and Williams, 1987; Pelli, 1987; King-Smith and Rose, 1997; Snoeren and Puts, 1997; Kontse-
vich and Tyler, 1999; Alcalá-Quintana and Garcia-Pérez, 2004), the latter including some methods that
are explicitly Bayesian (Kontsevich and Tyler, 1999; Alcalá-Quintana and Garcia-Pérez, 2004). For a
review of some of the most common adaptive methods the paper by Treutwein (1995) is recommended.

However, in many cases it is important not only to know a single point of the psychometric function
but to estimate it in its entirety. Differences between experimental conditions may not lead to different
threshold values but the slope of the psychometric functions could have changed significantly (Green and
Swets, 1966; Wichmann, 1999). In principle all the trials taken during a run of an adaptive method could
be used to estimate the complete psychometric function, but this is not recommended as the sampling,
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optimised to estimate a single point only, is sub-optimal for complete function estimation (Kaernbach,
2001).

There exists a fairly comprehensive literature on estimating the psychometric function (e.g. O’Regan
and Humbert (1989); Treutwein and Strasburger (1999); Klein (2001)), with some papers additionally
covering sampling issues and goodness-of-fit (e.g. Wichmann and Hill (2001b,a)) or non-parametric
estimation methods (e.g. Miller and Ulrich (2001)). Comparatively few papers, however, have investi-
gated how to obtain reliable confidence intervals for the estimated parameters of psychometric functions
(Finney, 1971; McKee et al., 1985; Maloney, 1990; Foster and Bischof, 1991, 1997; Wichmann and Hill,
2001b,a). There appears to exist a general consensus, however, that bootstrap methods offer more reli-
able confidence-intervals than methods based on asymptotic considerations due to small datasets typical
in psychophysical research (between 50 and 1000 trials per psychometric function). In this paper we
present experiments indicating that Bayesian inference methods are superior to bootstrap-based methods
and are thus the method of choice for estimating the psychometric function and its confidence-intervals.

2 The Binomial Mixture Model

In this section we formally derive a basic statistical model of the process that generates the data. The
object of interest is aparametric psychometric functionF (x, θ) parameterised byθ which maps the
stimulus intensityx to the [0, 1] interval. This function is commonly chosen to have a sigmoidal form
like cumulative density functions of various probability distributions. We will discuss several common
choices in Section 4.

The psychometric function relates the observers response to stimulus intensity. In annAFC experi-
mental setting there is achance probabilityπc that the observer “guesses” the correct answer independent
of the stimulus. This probability of making the correct guess is usuallyπc = 1

n wheren is the number
of possible choices (then in nAFC). In a long sequence of experimental trials the observer occasionally
lapses, i.e. makes a random choice independent of the stimulus. In vision experiments an obvious ex-
ample is blinking while the stimulus is presented. This probability of lapsingπl is a nuisance parameter
but it is necessary to take its effect into account in statistical modelling as shown by Wichmann and Hill
(2001a,b).

We now have all quantities for a basic model to relate the psychometric functionF to the probability
of giving the correct answer in a singlenAFC stimulus presentation. Given the stimulus intensityx the
event of correct discrimination is a Bernoulli variable with probability of success equal to

Ψ(x, θ, πc, πl) = (1− πl) [(1− πc)F (x, θ) + πc] + πcπl (1)

whereF (x,θ) characterises the change of discriminability as a function of the stimulus intensity. The
model comes in the form of a mixture of two Bernoulli distributions, which is again a Bernoulli dis-
tribution. With probabilityπl the observer lapses and has chanceπc to guess the correct answer. With
probability (1 − πl) the observer does not lapse and has a chance of(1 − πc)F (x,θ) + πc, which is
F (x,θ) scaled to the[πc, 1] interval, to give the correct answer.

The psychophysical experiment can be seen as a sequence of such Bernoulli trials. Often only a small
number{x1, . . . , xk} of distinct stimulus intensities are used in an experiment which allows a more
compact representation. Aggregating the trials for identical stimulus intensities we compress the data to
a set of triplesD = {(x,N, n)i|i = 1, . . . k} such that at contrastxi we conductedNi trials and observed
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ni correct responses. Sinceni is a sum of Bernoulli variables it has a binomial distribution

p(D|θ, πl, πc) =
k∏

i=1

p(ni|Ni, xi,θ, πl, πc) (2a)

=
k∏

i=1

Binomial(ni|Ni,Ψ(xi,θ, πl, πc)) (2b)

whereΨ is given by (1). Equations (2) describe the assumed generative model of the data, i.e. the
sampling distribution. Furthermore, read as a function ofθ andπl for observedD we refer to it as the
likelihoodof the binomial mixture model.

3 Bayesian Inference for Psychometric Functions

In this section we describe how the data collected in psychophysical experiments can be used to do
Bayesianinferenceabout the parametersθ of a psychometric functionF (x,θ) and the lapse probability
πl.

At first we give a general description how inference is performed in the Bayesian framework, using
a simplified notation. Starting point is a model of the process of how the data that we can observe is
generated. Letp(D|φ) be a statistical description of this model whereD denotes observable data andφ
are model parameters. In a nutshell, the problem is that thetrue generating parameterφ∗ is hidden, but
by observing data we can reduce our uncertainty about its value. In the Bayesian framework probability
distributions over parameter values are used to describe beliefs and uncertainties about the parameter
value in the data generating process.

Theprior distributionp(φ) represents beliefs about the value of the true parameterφ∗ previous to an
inference step. By inference we refer to the process of integrating the information contained in observed
dataD and the priorp(φ) into aposteriordistributionp(φ|D). The posterior is obtained according to
Bayes’ rule

p(φ|D) =
p(D|φ)p(φ)

p(D)
. (3)

This can be understood as a weighting in which prior beliefs aboutφ∗ are weighted proportionally to
their compatibility with the observed data. The weighting is given by the likelihood function, which
is p(D|φ) as a function ofφ for givenD. Prior and posterior are probability distributions describing
two states relative to an inference step and correspond to potentially different beliefs about the value of
the parameter that generated the data. For details the reader is referred to O’Hagan (1994) and Jaynes
(2003), to mention only two textbooks on Bayesian statistics.

We now describe how this framework can be applied to infer something about the parameters
of psychometric functions. In the following we assume the data is generated according to the bi-
nomial mixture model for some specific parametric type ofF (x,θ). In psychometric studies data
D = {(x,N, n)i|i = 1, . . . k} is collected in order to learn aboutθ andπl. Again Bayes’ rule de-
scribes how the observed data consistently reduces the uncertainty about the underlying value ofθ and
πl. Formally the posterior is obtained according to Bayes’ rule

p(θ, πl|D, πc) =
p(D|θ, πl, πc)p(θ)p(πl)∫

p(D|θ, πl, πc)p(θ)p(πl)dθdπl
(4)

wherep(θ) andp(πl) are prior distributions,p(D|θ, πl, πc) acts as the likelihood, andp(θ, πl|D, πc) is
the posterior. The posterior distribution summarises all information contained in the observations and
the prior aboutθ andπl. Unfortunately solving the integral in the denominator appears to be analytically
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intractable such that the posterior cannot be computed in closed form. Even if we could compute the
posterior, the distribution would be of a non-standard type and we would be unable to work with it
analytically. We therefore have to use approximative techniques to describe the information presented
by the posterior.

3.1 Point Estimates of Parameters and Confidence Intervals

The most simple approximation to the information represented by the posterior distribution is to state a
single point estimate of the true parameter values. In the Bayesian framework choosing a point estimate
is considered adecisionproblem in which the decision maker minimises an expected risk, where the
expectation is taken with respect to the posterior distribution (Jaynes, 2003, ch. 13.9). The risk function
characterises thelossassociated with a discrepancy between the point estimate and the unknown true
parameter value. For example, the expected absolute error is minimised by the median of the posterior
distribution (MED). Likewise minimising the expected squared error leads to choosing the mean of the
posterior (MEAN).

The mode of the posterior, which will be referred to as themaximum a posteriori(MAP) estimate, is
obtained for a loss function which is zero if the estimate and the true value match exactly and 1 otherwise.
In the binomial mixture model, assuming the psychometric function is differentiable, gradient based
methods can be used to find the MAP point estimate

(θ, πl)MAP = argmax
θ,πl

p(D|θ, πl)p(θ)p(πl) . (5)

If the prior p(θ)p(πl) is taken to be constant, i.e. a flat prior, themaximum likelihood(ML) estimator is
derived as a special case.

Another simple approximation technique isLaplace’smethod by which the posterior is approximated
by a Gaussian distribution which is found by a second order Taylor expansion around the mode. This
method is applicable in the proposed setting but the approximation might be poor. An obvious drawback
is that the approximation is symmetric and fitted locally around the mode but can be poor in approximat-
ing the tails of the posterior. We therefore do not consider this method in the following.

The posterior distribution represents the remaining uncertainty after having seen the data. An obvious
problem is that any notion of uncertainty or confidence is lost when only point estimates are stated. A
convenient way of expressing how narrowly a parameter is determined is to stateconfidence regions.
Given a confidence levelγ ∈ (0, 1), the notion of a confidence region is conceptually different in fre-
quentist and Bayesian statistics (see e.g. DeGroot and Schervish (2002, ch. 7)).

From a Bayesian perspective it is valid to define aγ confidence region simply as a region in which the
true parameter values are believed to lie in with probabilityγ. This can be stated because the parameters
are random variables and we can express our degree of belief for any statement regarding the parameters
by evaluating the statement under the posterior distribution.

In frequentist statistics confidence regions are constructed and interpreted differently. In this setting
the region itself is a random variable which contains the true parameter value with probabilityγ. This
means that if the experiment is repeated infinitely many oftenγ percent of the computed regions would
contain the true value. For a particular data set it is not possible to state a probability assignment that the
true parameter lies in a computed confidence interval.

In case the distribution of an estimator cannot be computed analytically, a common strategy in fre-
quentist statistics is to compute approximate confidence intervals usingbootstrapmethods (Efron and
Tibshirani, 1993). The basic idea is to repeatedly generate artificial data sets. For each artificial data set
the parameters are re-estimated and the variability of these estimates is used to estimate confidence inter-
vals. Inparametricbootstrap methods artificial data sets are generated from the model using maximum
likelihood estimates of the parameters. For psychometric functions this approach has been described by
Wichmann and Hill (2001b).

4



From a Bayesian perspective parametric bootstrap methods exhibit several conceptual flaws. The
experimental data enters the bootstrap analysis only through the maximum likelihood estimator. How
tightly the data determines the ML estimator is disregarded and instead it is subsequently taken as to be
the true generating value, regardless of how informative the data was. Afterwards the bootstrap samples
are used to regain a notion of variability, i.e. by how much the ML estimate could have been erroneous,
given how the function was sampled. From a Bayesian point of view the posterior represents the un-
certainty about the true parameter values and should therefore be used to make confidence statements.
Reducing the information contained in the data to a ML estimate is counter-productive. The data is ob-
served, therefore not a random variable, and generating artificial data samples from a model does not
produce any new information about the parameters.

Approximations using sampling methods are also common in Bayesian statistics in situations in which
the posterior cannot be computed analytically. The difference is that in the Bayesian framework samples
are generated from the posterior over parameters. This can be implemented usingMarkov chain Monte
Carlo techniques.

3.2 Approximate Inference by Markov Chain Monte Carlo Sampling

In this section we describe the basic idea of using Markov chain Monte Carlo (MCMC) methods for
approximate Bayesian inference. For more technical introductions the reader is referred to MacKay
(1999, 2003), while more comprehensive reviews can be found in Neal (1993) and Gilks and Richardson
(1996).

Recall the simplified notation introduced in the previous section. Assume some dataD has been
observed and we want to compute the posterior according to Bayes’ rule (3). A common situation
is that we can evaluate the likelihoodp(D|φ) and the priorp(φ) for every possible value ofφ but
we cannot compute or work with the posterior analytically. MCMC methods sidestep this problem by
generating samples from the posteriorp(φ|D) using only evaluations of theunnormalisedposterior
q(φ|D) = p(D|φ)p(φ). The idea behind is that the samples characterise the posterior distribution
sufficiently well. In particular, statistics of the samples can be used to approximate properties of the
posterior distribution. For example, the mean of the samples is an approximation to the mean of the
posterior distribution.

In order to generate a sample from the posterior a random sequence of parameter values
φ0,φ1, . . . ,φn is generated such that the distribution ofφn asymptotically becomes identical to the
posterior as the length of the sequencen increases. In the MCMC terminology the sequence is called
a chain and each element is referred to as astate. In practice the chain is generated for a finite length
n and the stateφn is interpreted as a sample of the posterior. The procedure is repeated until enough
samples are obtained such that the characteristics of the posterior distribution can be well approximated
by statistics of the generated samples.

For this mechanism to work the sequence has to be constructed in a particular way following the
Metropolis-Hastingsmethod which describes how the consecutive state is found. Assumeφt is the
current state. In order to find a valid consecutive stateφt+1 a candidate valuẽφ is proposed from a
proposal distributionp(φ̃|φt), for example a Gaussian distribution centred atφt. The decision whether
φ̃ is accepted as consecutive state depends on the ratio ofq(φ|D) evaluated at̃φ andφt. Ignoring some
further technicalities, the intuition is thatφ̃ is accepted if it yields a higher value, i.e.q(φ̃|D) > q(φt|D).
Otherwise the probability of acceptance is proportional to the ratio of values under the unnormalised
posterior. Sinceφt+1 depends only onφt and not on the history of states the resulting chain is called a
Markovchain. See Figure 1(a) for an example.

The computational efficiency of MCMC sampling method depends on how the consecutive state is
proposed. While simulating the Markov chain, states that occur close-by in the chain are dependent
through the proposal distribution. Refinements of this scheme are directed towards improved proposal
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Figure 1: Illustration of MCMC sampling: The ellipse represents the contour of a posteriorp(φ|D) we want to sample from,
i.e. which we want to approximate. Figure (a) shows a chain (after10 proposed states) generated by Metropolis-Hastings
sampling using local moves (the proposal distribution is Gaussianp(φ̃|φt) = N (φ̃|φt, Iα)). States are depicted by points and
consecutive states are connected by lines. Figure (b) shows a chain (after10 proposed states) obtained using hybrid MCMC
sampling. Note that the states appear to be less dependent while the number of accepted states is larger. Figure (c) shows2000
samples generated using hybrid MCMC.

distributions such that this dependence is reduced. As an effect this also reduces the length of the se-
quencen after which the state can be considered an approximately independent sample of the posterior.

In the following we usehybrid Monte Carlo sampling which is also known asHamiltoniansampling,
as described by Neal (1993) and MacKay (2003, ch. 30). New states are proposed using a procedure that
can be understood as a discrete simulation of Hamiltonian dynamics. The sampling scheme requires to
set additional parameters, namely the number of steps (so calledleapfrogsteps) and the step sizes used
in the discrete simulation. In Appendix A.3 we discuss some heuristics how to find these parameters in
practice. Figure 1(b) illustrates the potential improvement gained by using this method.

The main idea of this paper is to use hybrid MCMC sampling to generate samples from the pos-
terior (4) over the parameters of psychometric functions. Once we are convinced that the generated
MCMC samples are representative for the posterior, they can be used to estimate certain characteristics
of the posterior distribution. The empirical mean of the samples can be used as an estimate of the ex-
pectation of the posterior distribution (MEAN). Likewise the sample median is an approximation to the
median of the posterior distribution (MED). The empirical quantiles of the samples can be interpreted as
estimates of the quantiles of the posterior distribution. We refer to the interval between the(1 − γ)/2
and(1 + γ)/2 empirical quantiles of the samples as anapproximate Bayesianγ confidence interval.

Before we present examples of this approach, the following section describes parameterisations of
psychometric functions and the role of prior distributions in the analysis.

4 Parameterisation and Prior Distributions

In psychophysical practice the experimentalist has certain beliefs about the mechanism of interest, other-
wise the experiment could not be designed. Expressing prior beliefs and parameterisation of the model go
hand in hand. It is therefore advantageous to parameterise the model close to the way the scientist thinks
about the mechanism it describes. In the following section we describe a convenient parameterisation of
psychometric functions, before we discuss various forms of prior distributions on their parameters.
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Figure 2: Types and parameterisation of psychometric functions: Figure (a) illustrates the parameterisation of psychometric
functions in terms of threshold locationm and widthw betweenF−1(α) andF−1(1 − α). The example shows a Gumbel
function for α = 0.1. Figure (b) exemplifies different types of psychometric function. The logistic, Gaussian and Gumbel
functions are shown form = 5 andw = 5. The Weibull functions are plotted form = 5 ands = 0.5.

4.1 Parameterisation of the Psychometric Function

Let F (x,θ) be the psychometric function andF−1 its inverse. In the analysis of psychometric data a
common interest is to locate thethresholdm = F−1(0.5) and a range for which the detectability varies
with the stimulus intensity. A common way of characterising the sensitivity of an observer is the slope of
the psychometric function at the threshold location. Another way of describing the range of interest is the
widthw defined asw = F−1(1− α)− F−1(α). This is the length of the interval betweenF−1(α), the
stimulus intensity at whichF (x,θ) = α, andF−1(1− α) for some smallα. As default we useα = 0.1
(see Figure 2(a)). This parameterisation of the psychometric function in terms of threshold and width
has been proposed by Alcalá-Quintana and Garcia-Pérez (2004). An advantage of this parameterisation
is thatw comes in the scale of the stimulus itself whereas the value of the slope is usually difficult to
interpret. We now show how various common functions used to modelF can be parameterised such that
θ = [m,w]. Many of the function used to modelF also appear in statistical Generalised Linear Models
(GLMs) in which they are called response functions (Fahrmeier and Tutz, 2001; Collet, 1991).

The logistic function, which is calledlogit response function in GLMs, can be parameterised as

Flogistic(x, θ) =
(

1 + exp
(
−z(α)

w
(x−m)

))−1

(6)

wherez(α) = 2 ln( 1
α − 1). The function is point symmetric around the threshold. Ifw is positive the

functions have positive slope and negative slope ifw is negative.
The cumulative density function (cdf) of the Normal distributionΦ, theprobit response, can be pa-

rameterised as

Fgauss(x,θ) = Φ
(

x
∣∣∣m,

w

z(α)

)
(7)

wherez(α) = Φ−1(1 − α) − Φ−1(α) using the quantile functionΦ−1 (inverse of cdf) of the standard
normal distribution. The resulting functions appear often very similar to the logistic (see Figure 2(b)).
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The Gumbel function can be derived from the cdf of the Gumbel distribution and is known in GLMs
as thelog-logmodel. We use the parameterisation

Fgumbel(x, θ) = 1− exp
(
− exp

(
z(α)− z(1− α)

w
(x−m) + z(0.5)

))
(8a)

wherez(α) = ln(− ln(α)). The Gumbel function is asymmetric. For smallx the function is similar to
the logistic function but approaches 1 faster as the stimulus intensity gets larger. The asymmetry can be
reversed and we obtain the reversed Gumbel function

Frgumbel(x,θ) = exp
(
− exp

(
z(1− α)− z(α)

w
(x−m) + z(0.5)

))
(8b)

where againz(α) = ln(− ln(α)).
Another frequently found functional form is the cdf of the Weibull distribution which is also asymmet-

ric. Using the Weibull function is equivalent to using a Gumbel function for log-transformed stimulus
intensities. Unfortunately the Weibull function cannot be parameterised in terms of a width parameter
w. Instead we parameterise the function by threshold locationm and slope at thresholds = ∂F

∂x

∣∣
m

. So
we use the following parametric form for the Weibull function

Fweibull(x,θ) = 1− exp
(
− exp

(
2sm

ln(2)
(ln(x)− ln(m)) + ln(ln(2))

))
(9a)

and

Frweibull(x,θ) = exp
(
− exp

(
− 2sm

ln(2)
(ln(x)− ln(m)) + ln(ln(2))

))
(9b)

for the reversed Weibull function. Both Weibull functions are defined forx > 0 and tend to0 asx→ 0,
which makes them conceptually appealing in many psychophysical settings.

4.2 Prior Distributions

Ideally a prior distribution describes the scientist’s degree of belief for all hypotheses about the true
model parameters. For continuous parameters one could ask to “draw” a curve over the parameter space
representing the shape of the prior. The line would be at zero for parameter values which are believed
to be absolutely impossible and otherwise proportional to the degree of belief in the hypothesis that the
pen is over the true value. Using a prior from a parametric family of distributions can be seen as a
convenient approximation to this “drawn prior” because it reduces the prior to a parametric form with
a few parameters. In practice, a simple technique to find a parametric representation of prior beliefs is
to plot probability densities functions from a convenient family of distributions. Varying the parameters
one can often find a function that is close to the drawn prior. One should also sample from the prior and
inspect whether the corresponding model is consistent with prior beliefs.

Often scientists unfamiliar with Bayesian data analysis feel that using informative priors—reflecting
their understanding and uncertainties about the data generating process—somehow “distorts” the in-
ference process. Expressing prior beliefs is certainly non-trivial, and requires great care. A common
misconception is that using a flat, constant prior on model parameters is equivalent to expressing no
prior information about the data generating process—from a Bayesian point of view this is exactly what
non-Bayesians do when they do not specify any prior explicitly. In fact this prior describes the belief that
everyparameter value is equally likely to the scientist. However, this is typicallynot what the scientists
intend: what they want is to allow every model or “shape of the model” to be equally likely, that is, they
want a flat prior in “model space”. Typically a flat prior on parameters is, unfortunately, not flat in model
space. For psychometric functions this is illustrated in Figure 3. Here we show that using flat priors
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Figure 3: Simply changing the parameterisation of the psychometric function makes flat priors favour steep psychometric
functions—the prior is flat on parameters but not in function space. We approximate a flat prior on the elements ofθ by
uniform distributions on the interval[−1000, 1000]. For Figure (a) the logistic psychometric function was parameterised
F (x, θ) = (1 + exp(−(θ1x + θ2)))

−1. We then sampled values ofθ from the “flat” prior and plotted the corresponding
psychometric function. For Figure (b) the parameterisation as shown in equation 6 was used. Note the differentx scales.

on the parametersθ strongly favours very steep psychometric functions in Figure 3(a), whereas if we
simply re-parameterise our psychometric function this tendency to favour steep psychometric functions
disappears in Figure 3(b).

Using a flat prior for the lapse rateπl, a uniform distribution on[0, 1], indeed represents maximal
uncertainty. The hypotheses that every experimental observation was independent of the stimulus or
that no lapse occurred are equally likely. That might reflect the uncertainties of a scientist under certain
circumstances, but in general the notion of a lapse implies a rare event. Note that a flat prior on the lapse
probability allows the model to explain all the data as a sequence of lapses, which intuitively minimises
the credibility of every observation. So if the scientist can safely assume that the lapse rate of an observer
in a given task is small, the observations become more informative about the psychometric function and
so its parameters can be better identified. On the other hand, excluding the potential existence of outliers
forces the model to explain every single observation such that a single observation can become decisive.
Note that also in the procedures described by Wichmann and Hill (2001a,b) the parameter similar to the
lapse rate is constrained during the ML optimisation.

It can also be insightful to examine how sensitive the posterior reacts to changes of the prior. The
more data is available and the more the data is informative about the parameters, the less influential the
prior will be. Comparing posteriors and priors can illustrate how informative the experimental data is
about the parameters. When the data does not reduce the uncertainty about a certain parameter then
both distributions will be the same, expressing that the beliefs are unchanged. The only warning is not
to put zero prior probability on potential parameter values unless one knows that they are impossible
(Cromwell’s dictum).

We now describe some families of distributions that will be used as priors for the parameters of psycho-
metric functions in the experiments described in the following sections. For details on the distributions
the reader is referred to any standard text book on statistics, e.g. DeGroot and Schervish (2002).

The lapse parameterπl takes values in the unit interval and therefore the Beta distributionp(πl|α, β) =
Beta(πl|α, β) is a convenient choice (see Figure 4(a)). Forα = 1 andβ = 1 the uniform distribution on
[0, 1] is a particular case.
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Figure 4: Illustration of theform of probability density functions of the beta, gamma, and log-normal distribution for different
parameter values. Note that the probability density functions are scaled to the unit interval.

Considering priors for the elements ofθ, parameterising the psychometric function as described above
is advantageous because the parameters have a more intuitive interpretation. For convenience we specify
the priors independentlyp(θ) = p(θ1) p(θ2). Especially for the location parameterm a normal (Gaus-
sian) distribution is a convenient choice if its value is unconstrained. By setting the standard deviation
to increasingly large values the prior becomes more vague. For parameters that are known to be strictly
positive, for example the widthw or the slopes, the gamma or the log-normal distribution can be used. If
x is log-normal distributed,log(x) follows a normal distribution. See Figure 4(b) for examples of gamma
and log-normal probability density functions. This section sketched only a small selection of possible
densities one can use for specifying priors on the parameters of psychometric functions. If common
distributions are not sufficient to model the prior, also mixtures of distributions can be used.

5 Experiments

In this section we present and discuss simulations based on synthetic data and a case study in which we
analyse real experimental data. Experiments in which the data is generated from the model can be useful
for examining how well the true parameters can be identified dependent on the properties of the data.
We do not aim at providing an exhaustive set of experiments for all possible data situations. Instead the
focus will be on understanding the advantages and difficulties of the proposed method.

5.1 Synthetic Data

For illustration purposes, a data set from the binomial mixture model is generated, whereF is a Gumbel
function with threshold locationm = 5, width w = 3 (for α = 0.1), and lapse probabilityπl = 0.05.
For k = 6 stimulus intensitiesxi corresponding to theF values equal to[0.1, 0.3, 0.6, 0.74, 0.84, 0.94]
we generateNi = 60 samples respectively, which sums to360 Bernoulli trials in total.

How to choose a prior in artificial experiments is a problematic issue. In the following examples the
prior should be accepted as a toy-prior for demonstration purposes. For the lapse probability we use a
Beta(2, 50) prior (see Figure 4(a)). On the threshold location we put a wide normal prior with mean
µ = 2 and standard deviationσ = 10, which expresses very little information aboutm. On the width
we put a log-normal prior distributionlnN (1, 1) (see Figure 4(b)). Using hybrid MCMC sampling we
simulate a Markov chain of2000 samples from the posterior with100 leapfrog steps and step sizes
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Figure 5: Synthetic data example: Figure (a) shows the generated data set (dots), theΨ(x, θ, πl) that was used to generate the
data and three estimates thereof. The ML clearly overestimatesπl and infers a too small widthw. The estimate that appears
closest to the generatingΨ(x, θ, πl) corresponds to the mean of MCMC samples and the MAP estimate. In Figure (b) we plot
large number of “hypotheses”, each corresponding to a MCMC sample.

[0.5, 0.1, 0.2], which were chosen as to obtain an acceptance rate of approximately80% and very little
autocorrelation between samples.

Furthermore, we compute the posterior sample MEAN, MAP, and ML point estimates, for which
the correspondingΨ(x,θ, πl) are depicted in Figure 5(a). Taking samples from the MCMC chain and
plotting the correspondingΨ(x,θ, πl) we obtain Figure 5(b). Each of the sampled functions represents a
hypothesis about the underlying generative function valid under the posterior. The functions are relatively
close for large values ofx but show rather large differences for smaller stimulus intensities. This can be
interpreted such that the experimental observations for low stimulus intensities do still support a rather
wide range of hypotheses about the width of the psychometric function.

We can gain more insights into the posterior by inspecting the MCMC samples. To illustrate how much
the data reduced the uncertainty about the parameters we graphically compare priors and posteriors, of
which the posterior is approximated by a normalised histogram of MCMC samples (see Figure 6).

For the lapse rate shown in Figure 6(a) we observe that the posterior is very similar to the prior,
which indicates that the data did not allow us to reduce our uncertainty about this parameter. In many
experiments we observed that identifying the lapse rate is relatively difficult. Nevertheless, the posterior
samples ofm andw are sampled while the assumedπl value varies according to the prior.

For the threshold locationm the samples shown in Figure 6(b) suggest that the threshold location
is well inferred from the data. The prior, which was a wide normal, is approximately constant in the
plotted region and we observe that the data was very informative. The posterior samples of the width
w illustrated in Figure 6(c) show that the data was informative aboutw but the remaining uncertainty is
still relatively large. Note that the function samples given in 5(b) already indicated that the posterior still
supports a rather wide range of hypothesis onw.

We can use the empirical quantiles of the MCMC samples to estimate the quantiles of the posterior
distribution. We take the range between the0.05 and0.95 empirical quantile as an approximation for the
Bayesian90% confidence interval.

In order to examine the accuracy of point estimates and the approximated Bayesian confidence regions
we conducted a large set of repeated experiments. We compare approximate Bayesian confidence inter-
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Figure 6: Synthetic data example: Plots of prior densities and histograms of posterior samples. Each plot (a–c) corresponds
to one model parameter (πl, m andw) and shows the normalised histogram of MCMC samples of the posterior distribution
in comparison to the prior density. Vertical lines mark the value that was used to generate the data, the ML and MAP point
estimates and the0.05, 0.5, and0.95 empirical quantiles of the MCMC samples. The interval between the0.05 and0.95
quantiles is the approximate Bayesian90% confidence interval. Figure (d) shows a scatter plot ofw and m parts of the
samples. Note the negative correlation which corresponds to the necessity of steeper functions as the threshold location is
moved to the right.
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vals estimated from MCMC samples and the popular bootstrap1 confidence intervals. In the experiments
we varied the number of trialsN and the lapse parameterπl. The Gumbel function as described above
with m = 5 andw = 3 and same sample locations were used. The data set sizeN takes the values
90, 360, and900 and lapse rate is set to either0.05 or 0.15. For each of the six conditions we generated
1000 data sets.

Performing a large set of MCMC simulations is computationally demanding and we cannot inspect
each individual chain. We used one set of parameters for hybrid MCMC sampling for each of the six
conditions and later removed those rare runs in which the acceptance rate was lower than50%. As above
we used priorsp(m) = N (2, 10) andp(w) = lnN (1, 1). For data sets generated with a lapse rate
πl = 0.05 we used a Beta(2, 50) prior for πl in the MCMC sampling and a box constrained[0, 0.1] on
the corresponding parameter for bootstrap sampling. For data sets generated withπl = 0.15 we used
Beta(2, 20) and[0, 0.25] respectively.

At first we examine the accuracy of several point estimates form andw. We compare the MAP esti-
mate, the MCMC sample mean (MEAN) and median (MED), the maximum likelihood (ML) estimate,
and the constrained ML (CML) estimate computed bypsignifit . Each line in the following table
states the median of the absolute errors of these point estimates in1000 repeated experiments for the
different values ofN andπl.

|m−m∗| |w − w∗|
N πl MAP MEAN MED ML CML MAP MEAN MED ML CML

90 0.05 0.301 0.316 0.289 0.349 0.336 0.906 1.331 1.024 1.446 1.363
90 0.15 0.370 0.426 0.353 0.418 0.401 0.905 2.113 1.128 1.717 1.655
360 0.05 0.147 0.141 0.136 0.166 0.165 0.479 0.517 0.478 0.629 0.635
360 0.15 0.232 0.175 0.179 0.241 0.230 0.559 0.616 0.574 0.828 0.826
900 0.05 0.102 0.088 0.090 0.109 0.110 0.314 0.334 0.320 0.400 0.401
900 0.15 0.183 0.131 0.139 0.166 0.155 0.464 0.431 0.405 0.502 0.495

For estimatingm the sample median MED consistently shows good accuracy. Note that the MED
minimises the expected absolute error so this result conforms with the theory. The widthw is best
estimated by the MAP followed by the MED. The errors decrease with sample size and increase for the
large lapse rate.

We now compare the reliability of bootstrapped and Bayesian confidence regions. We therefore com-
pare the frequency at which the true generating value was included in the approximated90% confidence
interval. In theory this frequency should become exactly90% for large numbers of repeated experiments.
Larger values correspond toover-conservativestatements while smaller values indicateover-confidence.
With the frequency we also report the median width of the computed confidence intervals.

Bayesian Confidence Intervals Bootstrap Confidence Intervals
m w m w

N πl Accuracy Width Accuracy Width Accuracy Width Accuracy Width

90 0.05 0.911 1.765 0.933 8.103 0.783 1.422 0.903 9.049
90 0.15 0.922 2.340 0.981 11.882 0.707 1.558 0.911 18.258
360 0.05 0.918 0.750 0.931 2.959 0.863 0.757 0.883 3.184
360 0.15 0.926 0.884 0.937 3.745 0.795 0.915 0.865 4.148
900 0.05 0.919 0.457 0.916 1.694 0.848 0.488 0.859 1.934
900 0.15 0.901 0.585 0.916 2.209 0.818 0.682 0.867 2.573

For the threshold locationm the approximated Bayesian confidence intervals exhibit accuracy close
to the desired90% for all six conditions. The bootstrap confidence intervals appear to be over-confident

1For the bootstrap experiments we use thepsignifit software implementation of methods described by Wichmann and
Hill (2001b) which can be obtained fromhttp://www.bootstrap-software.org .
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especially for small data sets and high lapse rates. For small data setsN = 90 the width of the Bayesian
confidence regions is larger while for larger data set sizes the Bayesian confidence intervals exhibit higher
accuracy but smaller interval width.

For thew parameter both the bootstrap and the Bayesian confidence regions show to be relatively
accurate. The Bayesian confidence regions tend to be conservative, especially forN = 90 andπl = 0.15,
while the median width over the confidence regions is consistently smaller.

In the presented set of synthetic experiments the Bayesian MCMC sampling based estimators show to
give more accurate point estimates and more accurate and tighter confidence regions.

5.2 A Case Study

The data for the case study are taken from a visual contrast discrimination task published by Henning
et al. (2002). Observers either performed a sinusoidal contrast increment detection, or detected a contrast
increment applied to a pulse train grating; both were two interval forced choice tasks. For both conditions
the contrast of the added signal was varied using the method of constant stimuli.

The aim of the experiment was to determine whether the two conditions yielded similar or different
discrimination thresholds. Both stimuli—the sine wave and the pulse train—have the same fundamental
frequency but the pulse train has additional higher frequency components. Hence, one might expect that
these facilitate discrimination and therefore the threshold for the pulse condition might be lower.

First we analyse the data from the sine wave condition. The data come from one of the observers and
consists of 13 blocks with 50 trials each. Each block was measured at a different contrast between0.5%
and7.5%. Using a Weibull function to explain the data is a common choice for contrast experiments.
Instead of directly fitting a Weibull we have found it more convenient to log-transform the contrast and
use a Gumbel function instead. As pointed out before these two possibilities are equivalent but the
Gumbel function allows a more intuitive parameterisation in terms of the width.

Next, we have to specify our prior beliefs about the parameter values. For the lapse rate, a convenient
choice for the prior is the beta distribution. We expect from our experience with observers that some of
the trials are lapses. A reasonable choice that makes small lapse rates more likely than big lapse rates
is α = 2 andβ = 50 (see Figure 4(a)). This prior also expresses our belief that observers are unlikely
to perform errorlessly. The mean of the prior distribution is given byα/(α + β) ≈ 4% and the mode
is (α − 1)/(α + β − 2) = 2%. Thinking about the stimulus, we can derive a conservative prior on the
threshold location. At100% contrast a sine wave can clearly be seen but at about10% the task becomes
difficult. This is the range that we would expect the threshold to be in. At1% the task seems almost
impossible. A reasonable prior on log contrast therefore has a maximum at−1 (10%). We can take
a Gaussian with this mean. Even though−2 corresponding to(1%) and0 corresponding to(100%)
seem to be unlikely threshold values we do not want to rule out these hypothesesa priori. Therefore, a
standard deviation of1 seems to be a conservative choice.

A width smaller than zero would correspond to a psychometric function for which performance in-
creases with lower contrasts, so we constrained the prior to positive values. A width of2 log-units is
highly unlikely because it would mean that the psychometric function potentially ranges from1% to
100% contrast. Therefore, a width between0.5 and1.5 log-units seems to be a reasonable range. For
positive parameters the gamma distribution is a common choice for the prior. By plotting a gamma dis-
tribution forα = 2 andβ = 1.5 we found it to be a good description of our beliefs. The mean is given by
α/β = 1.33 and the mode by(α− 1)/β = 0.66. The standard deviation that is given by

√
α/β = 0.94

is large enough to even support values bigger than2.
Once we have specified the prior we can sample from the posterior. For this we have to set values for

the number and sizes of the leap-frog steps. We emphasise that this stage does need some experience and
understanding of the MCMC procedure to ensure that enough approximately independent samples are
generated in reasonable time. The code for reproducing this case study can be found in Appendix A.4
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Figure 7: Sine condition: The estimated posterior distributions for the lapse parameter (a), the threshold (b) and the width (c)
of the psychometric function. Vertical lines depict MAP estimates, ML estimates and quantiles at 5%, 50% and 95%. The solid
black line shows the prior distribution. For the threshold and width the prior is relatively flat compared to the posterior.
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Figure 8: Sine condition: The estimated posterior distributions for the lapse parameter (a), the threshold (b) and the width (c) of
the psychometric function. The posterior was computed with the same prior as in Figure 7 and for a flat prior for comparison.
For the threshold parameter there is hardly any difference between the two posteriors. For the lapse parameter the influence of
the prior is substantial.

and Appendix A.3 contains further comments about how the parameters of the MCMC sampling can be
set.

Figure 7 presents histograms of the posterior samples generated by hybrid MCMC sampling. First we
inspect the samples corresponding to the threshold parameter. The MAP, ML and MEAN point estimate
for the threshold all lie between−1.70 and−1.65 log-units, i.e. at a contrast between2.0% and2.2%.
Furthermore we compute the approximate Bayesian90% confidence region from empirical quantiles
of the samples. The Bayesian confidence interval ranges from−1.74 to −1.59 log-units or1.8% and
2.6% contrast (the outermost dashed lines in Figure 7). Information like this is necessary if one wants to
compare thresholds from different conditions.

15



x

Ψ
(x

)

−2.5 −2.0 −1.5 −1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

MAP Estimate
ML Estimate
MEAN Estimate

x

Ψ
(x

)

−2.5 −2.0 −1.5 −1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(a) (b)

Figure 9: Point estimates for both conditions: Figure (a) shows data from the sine condition and three estimates of the psy-
chometric function (MAP, ML and MEAN). Each data point represents 50 trials. In Figure (b) we show the same for the pulse
condition. For both conditions the three estimates are very similar.

At this point it may be interesting to examine the influence of the prior in the analysis. At first sight,
it can be noted that the prior densities for the threshold and the width parameter were flat relative to
the posterior distributions. The posterior of the lapse rate parameter is similar to the prior which shows
that the data did not allow a reduction in uncertainty about this parameter. Figure 7 also depicts the
maximum likelihood (ML) and the maximum a posteriori (MAP) estimates. The difference between the
two indicates how much the prior has influenced the MAP estimate. The difference for the lapse rate
is substantial which again emphasises the importance of the prior on this parameters. The ML estimate
suggests that far more than10% of the observations were lapses, which also explains why the width is
estimated to be relatively small.

Furthermore, we sample from a posterior distribution where the prior has been chosen to be flat. This
allows us to examine how sensitive the posterior is to the choice of the prior. Note again that a flat prior
is not uninformative. Figure 8 compares the posterior distributions that result from using either flat priors
(on log-contrast) or the priors as specified above. It reveals that the choice of prior matters for the lapse
parameter and the width but in this case not so much for the threshold.

Figure 9(a) shows the data and three point estimates of the psychometric function for the sine condi-
tion. We have also plotted approximated Bayesian95% confidence intervals for the threshold parameter
as given by the posterior (see Figure 7 (b)).

The second condition in the experiment was a pulse train instead of a sine wave discrimination task.
The fundamental frequency of the pulse train was identical to the frequency of the sine wave. As the pulse
train has additional higher frequency components one may expect that these facilitate discrimination.
For the second condition the data consists of11 blocks with50 trials each. The stimuli varied between
10% contrast and1% contrast. We used the same priors as we used for the first condition. The data
can be seen in Figure 9(b) along with various estimates. The psychometric functions for the pulse and
the sine condition look similar. Figure 10 compares the posteriors of both conditions, confirming that
the approximated posterior distributions over the parameters are highly overlapping. Especially, the
parameters for the thresholds are very close. Comparing the psychometric functions one might suspect
a difference in the their width. The posteriors over the width parameters are shown in the right panel of
Figure 10. It has to be stressed that the lapse parameter and the width cannot be interpreted independent
of each other, since a negative correlation between the two parameters can be seen in the MCMC samples.
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Figure 10: A comparison of the sine and the pulse condition. Panel (a) shows the posterior distributions for the lapse parameter.
In panel (b) the posteriors for the thresholds are similar. The uncertainty is a bit bigger in the pulse condition. (c) It cannot be
concluded that the psychometric functions have a different width. The respective posteriors are not different enough. Usually,
the lapse parameter and the width show a negative correlation. Hence, they need to be compared carefully. The smaller width
of the sine condition goes along with a higher lapse rate.

Intuitively, a higher lapse rate squeezesΨ down which is compensated by a smaller width. In conclusion,
we did not find evidence that pulse trains lead to a different discrimination performance than sine waves.

6 Conclusions

In this article we presented a Bayesian approach to inference about the parameters of psychometric func-
tions. Since computing the density of the posterior distribution is analytically intractable we described
how Markov chain Monte Carlo techniques can be used instead to generate samples from the posterior.

We exemplified that the proposed Bayesian method can produce more exact point estimates and con-
fidence intervals than the popular frequentist bootstrap technique. Although we cannot prove that this
observation generalises to all possible data situations, there is no reason to believe that the Bayesian
approach should do worse on other datasets. Furthermore, the Bayesian approach exhibits several con-
ceptual advantages. Yet another advantage is that by inspecting the MCMC samples and observing
correlations and dependencies we gain a deeper understanding of the process at hand. A difficulty of
the proposed method is that using Markov chain Monte Carlo methods is non-trivial and requires the
Markov chains to be inspected by the user.

We discussed the role of prior distributions in the analysis of experimental data and the difficulties
of avoiding informative priors. We observed that especially the prior on the lapse parameter can be
influential. Forθ we found that even relatively small data sets are often informative enough to overrule
the prior. However, a Bayesian analysis should always report prior and posterior distributions and the
latter should always be interpreted relative to the prior given the model.

The described binomial mixture model for parametric psychometric functions is easy to analyse and
efficient to implement but is based on perhaps overly simplistic assumptions. Assuming a particular
parametric form ofF might be difficult and opens the problem of model selection. The assumption
that for a given stimulus intensity the Bernoulli trials all have the same probability of success ignores
adaptation processes, learning, and other forms of non-stationarity.

Future work will be devoted to study Bayesian inference for models making less restrictive assump-
tions. Possible directions includeover-dispersionmodels using the beta-binomial model developed in
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Generalised Linear Models as for example described by Williams (1982) and Prentice (1986). Another
simple extension is to useneural networksto implement the psychometric functionF (x,θ). The po-
tential advantage is that the class of functions implemented by neural networks is much richer than the
functions described in Section 4 such that the risk of model-mismatch can be reduced.

As a companion to this report we release a software implementation in form of a package named
PsychoFun for the (free) R environment for statistical computing2.
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A The PsychoFun Software Package

In this section we describe some implementational details that might be useful for using the routines.
This report coversPsychoFun version 0.5-0 which has been written entirely in R. The computational
performance could be drastically improved by implementing the basic routines in C, which might be an
issue for future releases. This section also provides some code that was used in the examples described
in the main text.

A.1 Implementational Details

As described above, we are interested in sampling from the posterior

p(θ, πl|D, πc) ∝ p(D|θ, πl, πc) p(θ) p(πl) (10)

which we cannot compute in closed form. For hybrid MCMC sampling and for computing MAP esti-
mates it is sufficient to be able to compute the logarithmic value of the product of likelihood and prior

ln p(D|θ, πl, πc) + ln p(θ) + ln p(πl) (11)

and the partial derivatives thereof with respect toπl andθ. We use the gradient based optimisation routine
“BFGS” provided by R to maximise this function to obtain MAP estimates. Note that numerical optimi-
sation methods in general converge to a local mode of the posterior which must not necessarily be the
global maximum. It is therefore recommendable to repeat the optimisation from different initialisations.
The implementation of hybrid MCMC sampling is very similar to Algorithm 1.

The lapse parameterπl is by definition constrained to the unit interval. In order to use hybrid MCMC
and unconstrained optimisation routines the model can be reparameterised in terms of a real valued
unconstrained parametera such that

a(πl) = − ln
(

1
πl
− 1

)
andπl(a) =

1
1 + exp(−a)

(12)

for which we have to make a Jacobian correction (for MCMC only)

p(θ, a|D, πc) = p(θ, πl|D, πc)
∂πl

∂a
(13)

where∂πl
∂a is the so called Jacobian of the transformation (see for example DeGroot and Schervish (2002,

ch 3.8)). Let

E(θ, πl) = − ln p(D|θ, πl(a), πc)− ln p(θ)− ln p(πl(a))− ln
∂πl

∂a
(14)

denote the negative value of the logarithm of the product of likelihood, priors and Jacobian. This function
(and its derivatives) are used for hybrid MCMC sampling.

LetD = {(x,N, n)i|i = 1, . . . k} be the experimental data, then the log-likelihood for the Binomial
model described in Section 2 can be computed as

ln p(D|θ, πl, πc) = ln
k∏

i=1

(
Ni

ni

)
Ψ(xi,θ, πl, πc)ni(1−Ψ(xi,θ, πl, πc))Ni−ni (15a)

=
k∑

i=1

[
ln

(
Ni

ni

)
+ ni lnΨ + (Ni − ni) ln(1−Ψ)

]
. (15b)

The software implementation allows various forms of prior distributions. Forπl usually a Beta prior
will be used and the flat prior (a uniform distribution on[0, 1]) corresponds to a Beta(1, 1) prior. For the
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elements ofθ the user can choose between normal, log-normal, gamma and flat (constant) priors. Since
the software calls the R routines to evaluate the respective probability densities the parameterisation and
implementation of these routines can be obtained from the respective help pages.

Furthermore, the package provides some useful macros which should cover the standard use-cases.

A.2 Hybrid Monte Carlo Sampling

Let φ = [θ, πl] be the shorthand notation for the vector of parameters of the model. In MCMC methods
a Markov chain in the parameter spaceφ0,φ1,φ2, . . . is generated such that the distribution of the
state is asymptotically identical to the posterior distribution. The state explores the parameter space in
a random walk. The random walk is constructed according to the Metropolis-Hastings method such
that in the long run the probability that the state is at a certain position is identical to the posterior
distribution. The movement of the state is simulated and its states are interpreted as samples from the
posterior. The challenge is to construct a Markov chain properly such that it explores the whole posterior
distribution efficiently, in order to obtain a number of approximately independent samples in reasonable
time. Different techniques exist to construct such a Markov chain. We usehybrid Monte Carlo sampling
which is also known asHamiltoniansampling, as described by Neal (1993) and MacKay (2003, ch. 30).

Hybrid MCMC sampling is a computationally efficient method that can be used in situations in which
the parameters are continuous and the derivative of the likelihood and the priors can be computed. New
states are proposed using a procedure that can be understood as a discrete simulation of Hamiltonian
dynamics, hence the name Hamiltonian sampling. The intuition behind Hamiltonian sampling is that
the states of a chain are interpreted as the positions of a particle that moves through the parameter
space. In the Metropolis-Hastings algorithm the particle moves through the parameter space by a purely
random walk. The next position of the particle is found by taking a random step from the old position.
In Hamiltonian sampling the particle also takes random steps but additionally it has a momentum and
follows the gradient. Because of the momentum the particle can travel a greater distance in the parameter
space than would be possible by a purely random walk. The parameter space is explored faster and nearly
independent samples are obtained quicker.

The algorithm consists of three steps. The first step is a random perturbation of the particle. The second
step can be interpreted as a discrete simulation of Hamiltonian dynamics. In Hamiltonian dynamics the
potential energy of a particle is transformed into kinetic energy following the gradient, and vice versa.
By setting the potential energy equal to the negative logarithmic value of the unnormalised posterior it
is ensured that asymptotically the states of the particle can be taken as samples from the posterior. Low
probability regions have a high potential energy and therefore a particle will spend more time in the
regions with high probability mass. In our case the potential function is

E(φ) = − ln [p(D|θ, πl, πc)p(θ)p(πl)] (16a)

= − ln p(D|θ, πl, πc)− ln p(θ)− ln p(πl) . (16b)

In the third step, after simulating the Hamiltonian dynamics for a certain time, the resulting position of
the particle is a proposal state that is either accepted or rejected according to the Metropolis-Hastings
rule.

The discrete simulation of the dynamics is implemented using the so-called leapfrog method. Algo-
rithm 1 provides a schematic overview of the sampling scheme. The accuracy of the physical simulation
is given by a parameter that is called leapfrog step size. It is better to have one step size for each parame-
ter separately because the parameters will have different scales. The accuracy of the physical simulation
is not crucial. By using the Metropolis-Hastings rule for the acceptance of proposal states the validity of
the chain is assured irrespective of the accuracy of the physical simulation. Big leaps are possible and are
actually desirable because they are computationally more efficient. Another parameter of the algorithm
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Algorithmus 1 Hybrid MCMC Sampling
Given: Initial stateφ0, length of simulationT , number of leapfrog steps, vector of leapfrog step sizes
ε, energy functionE
Initialisee← E(φ0) andg← ∇E(φ0)
for t = 0, . . . , T do

Sample initial momentumm fromN (0, I)
H ← m>m

2 + e

Setφ̃← φt andg̃← g
for all leapfrog stepsdo

m←m− 1
2ε� g̃ {where� denotes the element-wise product}

φ̃← φ̃ + ε�m
g̃← ∇E(φ̃)
m←m− 1

2ε� g̃
end for
ẽ← E(φ̃)
H̃ ← m>m

2 + ẽ
Drawu from a uniform distribution on[0, 1]
if lnu > H̃ −H then {Proposed state is accepted}

φt+1 ← φ̃
g← g̃
e← E(φt+1)

else{Proposed state is rejected}
φt+1 ← φt

end if
Storeφt+1 andE(φt+1)

end for
Return: φt andE(φt) for t = 1, . . . , T
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is the number of leapfrog steps between the random perturbations. The number of leapfrog steps and
the leapfrog step size determine how far the particle can travel before being proposed as the consecutive
state.

The algorithm requires that for given parameter valuesφ the logarithmic value of the likelihood and
the prior can be evaluated. Furthermore derivatives of these quantities with respect to the parameters
φ must be computed. Note that the lapse parameterπl is constrained to the[0, 1] interval, but hybrid
MCMC is suitable only for unconstrained continuous variables. As described in Appendix A.1 using an
invertible mapping from the real line to the[0, 1] interval this problem can be avoided.

In the following section we discuss some heuristics how to set the leapfrog step size and the number
of leap frogs in practice. After simulating the Markov chain using Algorithm 1 the chains have to be
inspected for convergence and mixing. The chains should travel the support of the posterior quickly and
states close in the chain should be as uncorrelated as possible. More on analysing convergence can be
found in Gelman (1996).

A.3 Some Hints Concerning the Parameterisation of hybrid MCMC

Using Markov chain Monte Carlo methods in practice requires some experience and manual fine-tuning.
For a comprehensive overview of practical issues of MCMC sampling the reader is referred to Gilks and
Richardson (1996).

In theory, hybrid MCMC sampling can be shown to converge to the correct answer but the speed at
which this happens and therefore the computational efficiency can be controlled by a few parameters.
The parameters to tune are the number of leapfrog steps and the respective step sizes. The aim is to
obtain a sufficient number of samples in reasonable time, such that the statistics of the samples are a
good approximation to the corresponding properties of the posterior distribution.

Certain characteristics of the simulated chains should be inspected for each simulation:

• Plots of the samples, e.g. using the routinePlotMCMCSamples provided byPsychoFun . The
chains should not show any obvious trends, shifts, steps etc.

• The autocorrelation of samples, e.g. using the functionacf provided by R. The less correlated the
samples are the more efficient the sampling is. Sometimes autocorrelation between samples can be
reduced by increasing the corresponding leapfrog step sizes.

• The acceptance rate, as returned byMCMCSampling, is the fraction of proposed states that were
accepted. As a rule of thumb: the acceptance rate should be between60% and90% and can be
influenced by the number and size of leapfrog steps.

We now describe a heuristic procedure how to proceed in order to find good parameters for hybrid
MCMC as implemented inPsychoFun . For a fixed number of leapfrog steps, e.g.50, we set the step
sizes to very small values, such that all proposed states in a simulation are accepted. We then vary one
step-size parameter at a time to localise the region in which the acceptance rate reacts sensitively. After-
wards we increase—a trial-and-error procedure—all step size parameters such that the acceptance rate
balances between60% and90% and the autocorrelation is acceptable (decreases rapidly). For each sim-
ulation the chains are plotted and autocorrelation coefficients are computed. Note that having rejections
indicates that the chain also reaches areas of lower posterior density. If the samples show large autocor-
relation we can a) increase the number of leapfrog steps and b) down-sample the chains. Increasing the
number of leapfrog steps decreases the dependency between samples but is computationally expensive.
By down-sampling we refer to the procedure of simulating a longer chain and to pick only everynth
state of the chain as a sample.

We now give a concrete example of how this procedure might work in practice. At first we load some
toy-data that comes withPsychoFun and describe the priors:
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Figure 11: Plots illustrating bad and good behaviour of simulated MCMC chains. Both figures show the part of a MCMC
chain corresponding to the width parameter for two differently parameterised runs of hybrid MCMC. In Figure (a) a very small
step size and a small number of leapfrog steps were used (acceptance rate was1). The effect is that the states in the chain are
highly correlated and the chain does not explore the posterior high density region. In Figure (b) the step size and the number of
leapfrog steps were increased as described in the example resulting in an acceptance rate of87%. The samples are much less
correlated and the chain travels the whole range of the high posterior density region.

library(PsychoFun) # Load routines
data(PsychoFunToyData) # Load some toy data

SetUp <- PsychoSetUp(PsychoFunToyData,
plPrior="beta",
plPriorParameters=c(2,50),
t1Prior="normal",
t1PriorParameters=c(2,10),
t2Prior="lognormal",
t2PriorParameters=c(2,1),
type = "gumbel")

PlotPsychoPriors(SetUp)

We now simulate MCMC chains for several values of the leapfrog step sizes. We start of with very
small values such that we get an acceptance rate of100%:

MCMCOutput <- MCMCSampling(SetUp, 500, 10, c(0.001,0.001,0.001))

But as expected, plotting the chains it becomes obvious that the chains are static and the states are
highly autocorrelated, as exemplified in Figure 11(a). We then proceed by testing separately for each
parameter in which range the acceptance rate reacts sensitively to changes in the leapfrog step size.
We then increase all parameters until the acceptance rate drops to values between60% and90%. We
repeatedly use

PlotMCMCSamples(MCMCOutput)
acf(MCMCOutput$Samples)

to inspect the chains. If the autocorrelation of samples is unsatisfying we increase the number of
leapfrog steps or subsample the chains. For the example above we might end up with

MCMCOutput <- MCMCSampling(SetUp, 500, 100, c(0.1,0.03,0.08))

for which an illustration is given in Figure 11(b).
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A.4 Code Used In Experiments and Case Study

Finally we describe some of the code that was used in the reported experiments and the case study.

A.4.1 Synthetic Experiments

As described in Section 5.1 we conducted repeated experiments on artificially generated data. We
illustrate the code for a simulation withN = 90 binomial trials and lapse rateπl = 0.05. In each
simulation first a data set is simulated:
nSamples <- 15
chance <- 0.5
alpha <- 0.1
type <- "gumbel"
trueTheta <- c(5,3)
truePlapse <- 0.05

# Find x values by looking at inverse of F
FLevels <- 2 * (c(0.97, 0.92, 0.87, 0.80, 0.65, 0.55) - 0.5)
z1 <- log(-log(0.5))
z2 <- log(-log(alpha))
z3 <- log(-log(1-alpha))
xValues <- (trueTheta[2]/(z2-z3)) * (log(-log(1-FLevels)) - z1) + trueTheta[1]

BinomialData <- matrix(data = NA, nrow = length(xValues), ncol = 3)
BinomialData[,1] <- xValues
BinomialData[,3] <- nSamples

# Sample the data from binomial distribution
for(i in 1:length(xValues)){

F <- PsychoFun(trueTheta, xValues[i], type=type, alpha=alpha)
Psi <- (1-truePlapse) * ((1-chance) * F + chance) + truePlapse * chance
BinomialData[i,2] <- rbinom(1,nSamples,Psi)

}

We then describe the priors, sample from the posterior and compute MAP and ML estimates:
SetUp <- PsychoSetUp(BinomialData,

plPrior="beta",
plPriorParameters=c(2,50),
t1Prior="normal",
t1PriorParameters=c(2,10),
t2Prior="lognormal",
t2PriorParameters=c(1,1),
type = type,
chance = chance,
alpha = alpha)

# Generate Samples from the posterior
MCMCOutput <- MCMCSampling(SetUp, 2000, 100, c(0.5,0.1,0.15), loud = FALSE)

# Compute quantiles of samples
MCMC <- SummaryPsychoSamples(MCMCOutput, SetUp, makePlots = FALSE)

# Maximum likelihood and MAP estimates
ML <- MLEstimation(SetUp)
MAP <- MAPEstimation(SetUp)

A.4.2 Case Study

The code in this section was used for the case study described in Section 5.2. First we analysed the
sine condition.
library(PsychoFun)
set.seed(123) # Set random seed for reproducibility

# load data from file
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data(PsychoFunSineData)
PsychoFunSineData[,1] <- log10(PsychoFunSineData[,1])

# set up parameters
SineSetUp <- PsychoSetUp(PsychoFunSineData,

plPrior="beta",
plPriorParameters=c(2,50)
t1Prior="normal",
t1PriorParameters=c(-1,1),
t2Prior="normal",
t2PriorParameters=c(1,1),
type = "gumbel",
chance = 0.5,
alpha = 0.1)

# look at priors
PlotPsychoPriors(SineSetUp)

# have a first look at the data and the MAP and ML estimate
PlotData(SineSetUp)
MAP <- MAPEstimation(SineSetUp)
PlotPsi(MAP,SineSetUp,col=’red’,hold=TRUE)
ML <- MLEstimation(SineSetUp)
PlotPsi(ML,SineSetUp,col=’blue’,hold=TRUE)

# Sample
SineMCMC <- MCMCSampling(SineSetUp, 3000, 100, c(0.2,0.02,0.1))

# and check the Samples again
acf(SineMCMC$Samples)
PlotMCMCSamples(SineMCMC)

# this looks good, so here is the posterior distribution
# the first 100 Samples are discarded and we want to calculate
# some confidence intervals
SineQuantiles <- SummaryPsychoSamples(SineMCMC, SineSetUp,

burnIn = 100, quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95))

# possible estimators for the function (the last column of
# SineQuantiles is the mean)
SineMean <- c()
SineMean$pLapse <- SineQuantiles[1,6]
SineMean$theta <- SineQuantiles[c(2,3),6]
SineMAP <- MAPEstimation(SineSetUp)
SineML <- MLEstimation(SineSetUp)

# look at the posterior distributions and priors
PlotPsychoPosterior(SineMCMC,SineSetUp,which=1,ylim=c(0,20),xlim=c(0,0.25))
PlotPsychoPosterior(SineMCMC,SineSetUp,which=2)
PlotPsychoPosterior(SineMCMC,SineSetUp,which=3)

# plots of the psychometric functions
PlotPsi(SineML,SineSetUp,col=’green’,lty=5,lwd=2)
PlotPsi(SineMean,SineSetUp,col=’red’,lty=1,lwd=2,hold=TRUE)
PlotPsi(SineMAP,SineSetUp,col=’blue’,lty=4,lwd=2,hold=TRUE,

MCMCOutput=SineMCMC)
PlotData(SineSetUp,hold=TRUE)

To see the difference that the priors made we did the same analysis again with flat priors and compared
the results.

SineSetUp2 <- PsychoSetUp(PsychoFunSineData,
plPrior="flat",
t1Prior="flat",
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t2Prior="flat",
type = "gumbel",
chance = 0.5,
alpha = 0.1)

SineMCMC2 <- MCMCSampling(SineSetUp2, 3000, 100, c(0.1,0.01,0.05))

# check sampling
acf(SineMCMC2$Samples)
PlotMCMCSamples(SineMCMC2)
SineQuantiles2 <- SummaryPsychoSamples(SineMCMC2, SineSetUp2,

burnIn = 100, quantiles = c(0.05, 0.5, 0.95))

# compare flat vs. nice priors (specified prior blue, flat prior green)
# The lapse parameter is the first column of SineMCMC$Samples
# -- we convert the samples into a density and plot the density
plot.density(density(SineMCMC$Samples[,1]),

col="blue",xlim=c(0,0.25),ylim=c(0,20),xlab=expression(pi[l]))
d <- density(SineMCMC2$Samples[,1])
lines(d$x,d$y,col="green")

# the threshold
plot.density(density(SineMCMC$Samples[,2]),col="blue",xlab=’m’)
d <- density(SineMCMC2$Samples[,2])
lines(d$x,d$y,col="green")

# and the width
plot.density(density(SineMCMC$Samples[,3]),col="blue",xlab=’w’)
d <- density(SineMCMC2$Samples[,3])
lines(d$x,d$y,col="green")

Finally, we analysed the pulse condition and compared it to the sine condition.

data(PsychoFunPulseData)
PsychoFunPulseData[,1] <- log10(PsychoFunPulseData[,1])
PulseSetUp <- PsychoSetUp(PsychoFunPulseData,

plPrior="beta",
plPriorParameters=c(2,50),
t1Prior="normal",
t1PriorParameters=c(-1,1),
t2Prior="normal",
t2PriorParameters=c(1,1),
type = "gumbel",
chance = 0.5,
alpha = 0.1)

PulseMCMC <- MCMCSampling(PulseSetUp, 3000, 100, c(0.2,0.05,0.1))
acf(PulseMCMC$Samples)
PlotMCMCSamples(PulseMCMC)
PulseQuantiles <- SummaryPsychoSamples(PulseMCMC, PulseSetUp,

burnIn = 100, quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95))

# estimators for the function
PulseMean <- c()
PulseMean$pLapse <- PulseQuantiles[1,6]
PulseMean$theta <- PulseQuantiles[c(2,3),6]
PulseMAP <- MAPEstimation(PulseSetUp)
PulseML <- MLEstimation(PulseSetUp)

# plots of the psychometric functions
PlotPsi(PulseML,PulseSetUp,col=’green’,lty=5,lwd=2)
PlotPsi(PulseMean,PulseSetUp,col=’red’,lty=1,lwd=2,hold=TRUE)
PlotPsi(PulseMAP,PulseSetUp,col=’blue’,lty=4,lwd=2,hold=TRUE,

MCMCOutput=PulseMCMC)

28



PlotData(PulseSetUp,hold=TRUE)

# Compare conditions -- first the lapse posteriors
plot.density(density(PulseMCMC$Samples[,1]),

col="red",xlim=c(0,0.15),ylim=c(0,25),xlab=expression(pi[l]))
d <- density(SineMCMC$Samples[,1])
lines(d$x,d$y,col="blue")

# then the thresholds
plot.density(density(PulseMCMC$Samples[,2]),

col="red",xlim=c(-2,-1.4),ylim=c(0,12),xlab=’m’)
d <- density(SineMCMC$Samples[,2])
lines(d$x,d$y,col="blue")

# then the widths
plot.density(density(PulseMCMC$Samples[,3]),

col="red",xlim=c(0,2.5),ylim=c(0,2.5),xlab=’w’)
d <- density(SineMCMC$Samples[,3])
lines(d$x,d$y,col="blue")
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