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Consistency of Spectral Clustering

Ulrike von Luxburg, Mikhail Belkin, Olivier Bousquet

Abstract. Consistency is a key property of statistical algorithms, when the data is drawn from some underlying
probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering
algorithms. In this paper we investigate consistency of a popular family of spectral clustering algorithms, which
cluster the data with the help of eigenvectors of graph Laplacian matrices. We show that one of the two of major
classes of spectral clustering (normalized clustering) converges under some very general conditions, while the other
(unnormalized), is only consistent under strong additional assumptions, which, as we demonstrate, are not always
satisfied in real data. We conclude that our analysis provides strong evidence for the superiority of normalized
spectral clustering in practical applications. We believe that methods used in our analysis will provide a basis for
future exploration of Laplacian-based methods in a statistical setting.

1 Introduction

Clustering is a popular technique, widely used in statistics, computer science and various data analysis appli-
cations. Given a set of data points the goal is to separate the points in several groups based on some notion of
similarity. For example, for document retrieval applications it may be useful to organize documents by topic,
while an online store may be interested in separating customers in several groups, based on their preference profiles.

Assuming that the data is drawn from an underlying probability distribution, which seems to be a natural setting
for many applications of clustering, the overall goal is to find a partition of the data space satisfying certain
optimality criteria. To achieve this one has to answer two different questions:

e Assuming that the underlying probability distribution is known, what is a desirable clustering of the data
space?

e Given finitely many data points sampled from an unknown probability distribution, how to find a way to
approximate that optimal partitioning empirically?

Interestingly, while extensive literature exists on clustering and partitioning (e.g., see Jain et al. (1999) for
a review), very few clustering algorithms have been analyzed or shown to converge in the setting where the
data is sampled from a continuous probability distribution. Exceptions aré-theans algorithm (Pollard,

1981), the single linkage algorithm (Hartigan, 1981), and the clustering algorithm suggested in Niyogi and
Karmarkar (2000). Even these limited results are far from satisfactory. Pollard (1981) shows consistency of the
minimizer of the objective function fok-means clustering. However, most commonly usedeans algorithms

are local optimization techniques without any global performance or convergence guarantees. Hartigan (1981)
demonstrates a weaker notion of consistency, proving that the algorithm will identify certain high-density
regions, but does not prove a general consistency result. Finally, the algorithm in Niyogi and Karmarkar (2000)
minimizes an unusual objective function, and convergence is shown in the one-dimensional case only. This
lack of consistency guarantees is especially striking as many clustering algorithms are widely used in statis-
tics, computer science, and pattern recognition, where they are applied to various tasks of exploratory data analysis.

In this paper we investigate the limit behavior of a class of spectral clustering algorithms. Spectral clustering is
a popular technique going back to Donath and Hoffman (1973) and Fiedler (1973). In its simplest form it uses the
second eigenvector of the graph Laplacian matrix constructed from the affinity graph between the sample points
to obtain a partition of the samples into two groups. The main difference between spectral clustering algorithms is
whether they use normalized or unnormalized graph Laplacian. Different versions of spectral clustering have been
used for load balancing, parallel computations (Hendrickson and Leland, 1995), VLSI design (Hagen and Kahng,
1992) and sparse matrix partitioning (Pothen et al., 1990). Laplacian-based clustering algorithms also have found



success in applications to image segmentation (Shi and Malik, 2000), text mining (Dhillon, 2001) and as general
purpose methods for data analysis and clustering (Alpert and Yao, 1995, Kannan et al., 2000, Ding et al., 2000,
Ng et al., 2002). A nice survey on the history of spectral clustering can be found in Spielman and Teng (1996).

We establish consistency results and convergence rates for several versions of spectral clustering. To prove
those results, the main step is to establish the convergence of eigenvalues and eigenvectors of random graph
Laplace matrices for growing sample size. Interestingly, our analysis shows that while one type of spectral
clustering (“normalized”) is consistent under very general conditions, another popular version of spectral clus-
tering (“unnormalized”) is only consistent under some very specific conditions which do not have to be satisfied
in practice. We therefore conclude that the normalized clustering algorithm should be the preferred method in
practical applications.

While there has been some work on theoretical properties of spectral clustering on finite point sets (e.g.,Spielman
and Teng, 1996, Guattery and Miller, 1998, Kannan et al., 2000), we do not know of any results discussing the
limit behavior of spectral clustering for samples drawn from some continuous probability distribution. Related to
the question of convergence of graph Laplacians is the question of convergence of similarity matrices constructed
from sample points. The convergence of eigenvalues and eigenvectors of positive definite similarity matrices has
already attracted some attention in the machine learning community, as can be seen in Shawe-Taylor et al. (2002),
Bengio et al. (2003) and Williams and Seeger (2000). The authors build on work of Baker (1977) or Koltchinskii
(1998) and Koltchinskii and G&n(2000). However, those results cannot be applied for the case of unnormalized
spectral clustering. We note that methods of Baker (1977) are not valid in the case of randomly drawn data
points (an issue which has been ignored by the machine learning community so far). They were developed in
a deterministic setting, and it is not clear how they can be adapted to random kernel matrices (see Section 11.10
of von Luxburg (2004) for details). The results in Koltchinskii (1998) and Koltchinskii ance G2000) are
very general, and they apply to all reasonable similarity matrices on arbitrary sample spaces. However, for their
methods it is of vital importance that the operators under consideration are Hilbert-Schmidt, which turns out not to
be the case for the unnormalized Laplacian. In this paper we develop methods which also work for non-compact
operators. As a by-product we recover certain results from Koltchinskii (1998) and Koltchinskii aad2Bid0)
by using considerably simpler techniques.

There has been some debate on the question of whether normalized or unnormalized spectral clustering
should be used. Recent papers using the normalized version include Van Driessche and Roose (1995), Shi
and Malik (2000), Kannan et al. (2000), Ng et al. (2002), Meila and Shi (2001), while Barnard et al. (1995)
and Guattery and Miller (1998) use the unnormalized clustering. Comparing the empirical behavior of both
approaches, Van Driessche and Roose (1995) and Weiss (1999) find some evidence that the normalized version
should be preferred. On the other hand, there is a recent study (Higham and Kibble, 2004) which under certain
conditions advocates for the unnormalized version. It seems difficult to resolve this question theoretically from
purely graph-theoretic considerations as both normalized and unnormalized spectral clustering can be justified
by similar graph theoretic principles (see next section). In our work we now obtain the first theoretical results
on this question. They clearly show the superiority of normalized spectral clustering over unnormalized spectral
clustering from a statistical point of view.

It is interesting to note that several recent methods for semi-supervised and transductive learning are based on
eigenvectors of similarity graphs (cf. Chapelle et al., 2003, Belkin and Niyogi, 2004, and closely related Zhou
etal., 2004, Zhu et al., 2003). An algorithm for data representation (Laplacian Eigenmaps) based on eigenvectors
of the graph Laplacian and its connection to spectral clustering and differential geometry of probability distribu-
tions was introduced and discussed in Belkin and Niyogi (2003). We observe that our theoretical framework can
also be applied to investigate the consistency of these algorithms with respect to the unlabeled data.

This paper is organized as follows:

1. Introduction

2. Spectral clustering

we review the problem of graph partitioning and show how spectral can be obtained as a real-valued relaxation of
NP-hard discrete-valued graph partitioning problems.



3. Informal statement of the results

4. Prerequisites and notation

we introduce notations and certain results necessary for stating and proving our results

5. Convergence of normalized spectral clustering

6. Rates of convergence of normalized spectral clustering

7. The unnormalized case

we derive conditions necessary to ensure consistency of unnormalized clustering.

8. Non-isolated eigenvalues

we investigate the spectral properties of the limit operators corresponding to normalized and unnormalized spectral
clustering, point out some important differences, and show theoretical and practical examples where the conver-
gence conditions in the unnormalized case are violated.

9. Spectral clustering: from discrete to continuous

we discuss the problem of clustering in the case of continuous distributions and some directions of future research.
10. Conclusion

2 Spectral clustering

The purpose of this section is to introduce the statistical audience to the potentially unfamiliar problem of graph
partitioning and show how spectral clustering emerges as a simple and algorithmically compelling heuristic for
approximating various NP-hard bisectioning problems. We will not attempt to make these ideas fully precise or
discuss the more involved problem of multiway partitioning, referring the interested reader to the appropriate
literature cited in the introduction.

Informally speaking, the problem of graph partitioning is to cut a given graph in two (or more) parts which are
“as disjoint as possible”. The natural formulation is to try to partition the graph in parts which are of roughly the
same size and are connected by as few edges as possible. However, graph cut problems are often NP-hard and
therefore not feasible computationally. Even good approximations are difficult to obtain and are sometimes known
to be NP-hard as well (see Arora et al. (2004) for some recent work on complexity of approximations). It turns
out, however, that a good heuristic can be obtained by writing the cost function as a quadratic form and relaxing
the discrete optimization problem of finding the characteristic function of the cut to a real-valued optimization
problem. This relaxation leads to an eigenproblem, which can be easily solved using the standard numerical
techniques. We formalize these intuitions below.

Let G = {V, E} be an undirected graph with verticksand edgesZ. We assume that the edges are non-
negatively weighted with the weight matri%’. We will use[i] to denote the'th vertex and[i] ~ [j] when[i] is
adjacent tdj|. The corresponding edge will be denoted[hy]. Of course, the numbering of vertices is arbitrary.
The weightedlegreeof the vertex:] is defined to be

deg[z] = Z Wij-
[i]~ (4]

The number of vertices in some subsett V will be denoted by S|. Thevolumeof a subset of verticeS C V
is the total degree of all vertices in the subset

vol(S) = Z deg]i].
li]les

If S C Vis aset of vertices of/, we define itssdge boundary S to be the set of edges connectifigand its
complementS = V — S. Similarly, the volume 0b.S is defined as

VOl((;S) = Z Wij .

li,j]€E,i€S,j€8

This quantity is also known as tlexpansion of the cigiven by S, S.

Perhaps the simplest and the most direct way of partitioning a graph is to consider the minimum cut (mincut).
The problem is simply to find a partitio, .S, which minimizesvol(4S). It turns out that efficient algorithms can



be devised to minimize this quantity, e.g., see Stoer and Wagner (1997) and the discussion therein. However, in
practice mincut is often not a satisfactory partition. The problem is that no penalty is paid for unbalanced partitions
and therefore nothing prevents the algorithm from making single vertices “clusters”. An example of such behavior
is shown in Figure 1. We see that a more balanced partition is desirable. One standard way to define such partitions

S &

Minimum cut Better cut

Figure 1: Mincut often splits off single vertices. Instead, one prefers to get more balanced cuts.

is through the Cheeger constant (minimum conductance):

= aremin VOl((SS)
c(G) = Sgcv min(vol(S), vol(S))’

Another notion is theormalized cuproposed in Shi and Malik (2000). The authors define normalized cut as

o . vol(6S)  vol(dS)
n(G) :=argmin T8t + 0

Observing that fow,b > 0, min(a,b) < l}rl < 2min(a,b), we see that the Cheeger cut and the normalized

cut are closely related. Both problems fa;irebNP—hard, and therefore need to be approximated by computationally
feasible heuristics in practice.

Another possibility to split the graph is the balanced cut, where the clusters are forced to be of the same size.
We will distinguish weighted and unweighted versions of the balanced cut:

by (G) = argmin vol(4.5)
SCV, vol(S)=vol(S)

buw(G) = argmin vol(4S).
ScV, |S|=|9]

For the purpose of this introduction we simply assume that such balanced partitions exist (e.g., for the unweighted
version the number of vertices has to be even). For the general case one can easily modify the definition by
requiring the partition to be “almost balanced”, and this will lead to the same relaxed optimization problems in the
end. We observe that the unweighted version balances the number of vertices in each partition, rather than their
volumes. Both of these problems can also be shown to be NP-hard.

We will now define normalized and unnormalized spectral clustering and show how it can be obtained as a
relaxation of the weighted or unweighted balanced cut, respectively. By similar arguments, the Cheeger cut and
the normalized cut lead to the same relaxed optimization problem as the weighted balanced cut.

Given a grapiGG with adjacency matrixV, let D be the diagonal matrix with;; = deg[s]. This matrix is called
thedegree matriof the graph. We define thennormalized graph Laplaciato be

L=D-W
and thenormalized graph Laplacian

L'=D7*LD % =]-D :WD %,



L andL’ are the main objects in spectral graph theory (e.g., Chung, 1997, Mohar, 1991). Various graph invariants
can be estimated in terms of eigenvalues of these matrices. Similarly we will see that spectral clustering allows one

to replace difficult optimization problems with standard linear algebra. Given a vgcto(f1,..., f,.) € R",
the following key identity can be easily verified:
FLIY =2 )" wii(fi = f5)% 1)
[i]~[4]

Note that this equation shows thhtis positive semi-definite, and sinde'/? is positive definite the same also
holds forZ’. We will now see that clustering properties of the graph Laplacian follow directly from this property.
Given a subse$ C V, define the column vectdfs = (fs,, ..., fs,)’ € IR™ as follows:

B 1, [ijesS
fsi{_L ijeS

fsLfs = Y wij(fs; — fs;)? = 4vol(3S),
[i]~[]

It is immediate that

and for allS ¢ V we have

f§Dfs =Y wiy = vol(V).

ilev
Now consider the case of the weighted balanced cut. We dendter®ycolumn vector of all ones. We have
fiD1 = Z deg[i] — Z deg[i] = vol S — vol S.
[i]es [i]esS
Hence,f{D1 = 0 if and only if the cut corresponding t6 is volume-balanced, that i®l S = vol S. Therefore
we can reformulate the problem of computing the weighted balanced cut as

b (G) fLf.

= min
fe{-1,1}", fD1=0
Moreover, asf* D f has the constant valug'4 vol(V) for all f € {—1,1}", we can rewrite this as

1 . fILf
w == = | .
b (G) 1 vol(V) f€{71,r11;g,1fD1:0 fiDFf

Stated in this form, the discrete optimization problem admits a simple relaxation by Igttm¢ake real values
instead off —1, 1}. Noticing thatL1 = 0, a standard linear algebra argument shows that

R Ly
= nin
2 feJR}L,}Dlzo ftDf

)

where), is the second smallest eigenvalue of the generalized eigenvector proiflee\ D f. It is clear that the
smallest eigenvalug, of L is 0 and the corresponding eigenvectorlisMoreover, it is easy to show that for a
connected graph the second eigenvalue satidfies 0. Thus, the vectoy for which the minimum in Equation
(2) is attained is the eigenvector corresponding\to This line of reasoning leads directly to the following
bipartitioning algorithm as relaxation of the weighted balanced cut:

1. Compute the matrices and D.

2. Find the eigenvectarcorresponding to the second smallest eigenvalue of the following generalized eigen-
value problem:
Lf=ADf ®)

3. Obtain the partition:S = {[i] : e; > 0}, S = {[i] : e; < 0}.

This is the basic algorithm farormalized spectral clustering



Forunnormalized spectral clustering similar argument shows that

1 . fLf
by (G) = =V
(@) | |f6{—1r7111}127f1:0 ftf

)

and by relaxation we obtain an identical algorithm, except that the eigenproblem

Lf=Af (4)

is solved instead.

Note that in the normalized case, using the second eigenvector of the generalized eigenprbbteRD f is
equivalent to using the second eigenvector of the normalized LaplaéianD~= LD~ =. That is easily seen by
substitutingy = D%f into Eq. (3), which can then be rewritten A% = \v. SinceD is a diagonal matrix with
positive entries, the partition correspondingutis the same as the partition corresponding’toAn alternative
normalization of the Laplacian which is used sometimeg'is= D~'L = I — D~'W. As for L' it is clear that
eigenvectors of.” are solutions to Eq. (3). Whil&” is no longer symmetric, it is easy to see tfiat! W is the
stochastic matrix corresponding to the random walk on the gégphhere the probability of transition fromd]
to [4] is w;;/deg][i] if the vertices are adjacent adbtherwise.l — \o, the second largest eigenvaluelof W,
controls themixing rateof the random walk (see, e.g. Lasz, 1996). It is possible to derive certain properties of
normalized spectral clustering by studying the corresponding random walk on the graph, see for example Meila
and Shi (2001).

In most applications we are not given any apriori graph structure and have to construct the graph based on some
notion of similarity. This notion is typically represented by a symmetric similarity functign y) on the data
space. We assume thair, y) is large whenr andy are “similar” or “close”, and is small or zero otherwise. The
graph is then constructed as follows. The vertices of the graph correspond to the data points. Two vertices are
connected if the similarity of the corresponding data points is positive, and the edge weights are then given by the
similarity. A generic spectral bipartitioning algorithm for data analysis is summarized in the table below:

] | Spectral clustering \

Input: n data point{ X; }1_, B
Output: | Partition of the data sef, S.

Step 1 | » Choose a symmetric similarity functidr{z, y).

Step 2 | » Construct a graph with the data points as vertices and edge weights: k(X;, X;).
Step 3 | » Compute graph Laplacian:

L=D-W.

Step 4 | » Find the eigenvectos corresponding to the second smallest eigenvalue for one of the
following problems:

Lf=ADf normalized Lf = M\f unnormalized

Step 5 | » Obtain the partitionS = {[i] : e; > 0}, S = {[i] : e; < 0}.

Note that this algorithm represents the most basic form of spectral clustering, and the versions used in
practice can differ in various details. For example, often the eigenvectsrnot thresholded at 0 to ob-
tain the partition (as in step 5), but at some other real valwhich depends on the sample. Moreover, in
the case when one is interested in obtaining more than two clusters, one typically uses not only the second but
also the next few eigenvectors to construct a partition. For details we refer to the literature cited in the introduction.



To summarize, normalized and unnormalized spectral clustering construct a partition of a graph by computing
the first few eigenvectors of the normalized or unnormalized Lapladiaaad L’. The justification of those
algorithms lies in the fact that their solutions approximate the weighted or unweighted balanced cut, respectively,
of the graph. In the next sections we investigate behavior of these eigenproblems and the corresponding patrtitions
when pointsX; are randomly drawn from some underlying probability distribution.

3 Informal statement of the results

In this section we want to present our main results in a slightly informal but intuitive manner. For the mathematical
details and proofs we refer the reader to the following sections. The goal of this article is to study the behavior
of normalized and unnormalized spectral clustering on random samples when the samplésgigewing. In

Section 2 we have seen that spectral clustering partitions a given samjple X,, according to the coordinates

of the first eigenvectors of the (normalized or unnormalized) Laplace matrix. To stress that the Laplace matrices
depend on the sample size from now on we denote the unnormalized and normalized graph Laplaciabs by
andL/, (instead ofL andL’ as in the last section). To investigate whether the various spectral clustering algorithms
converge we will have to establish conditions under which the eigenvectors of the Laplace matrices “converge”.
To see which kind of convergence results we aim at consider the case of the second eigényectar, )’ of

L,. It can be interpreted as a functigh on the discrete spack, := {Xi, ..., X,,} by defining f,,(X;) := v;,

and clustering is then performed according to whetheis smaller or larger than a certain threshold. It is clear

that in the limit forn — oo, we would like this discrete functiofi, to converge to a functiofi on the whole data
spaceX such that we can use the values of this function to partition the data space. In our case it will turn out
that this space can be chosen(gsY), the space of continuous functions &h In particular, we will construct a
degree functiorl € C'(X') which will be the “limit” of the discrete degree vect@d;, ..., d,). Moreover, we will
explicitly construct linear operatofs, U’, andU” on C'(X') which will be the limit of the discrete operatofs,,

L/ ,andL!. Certain eigenvectors of the discrete operators are then proved to “converge” (in a certain sense to be
explained later) to eigenfunctions of those limit operators. Those eigenfunctions will then be used to construct a
partition of the whole data space.

In the case of normalized spectral clustering it will turn out that this limit process behaves very nicely. We
can prove that under certain mild conditions, the partitions constructed on finite samples converge to a sensible
partition of the whole data space. In meta-language, this result can be stated as follows:

Result 1 (Convergence of normalized spectral clustering)Jnder mild assumptions, if the first eigenvalues

A1, ..., A Of the limit operatorU’ satisfy \; # 1 and have multiplicity 1, then the same holds for the first
eigenvalues of/, for sufficiently largen. In this case, the first eigenvalues of.!, converge to the first eigen-

values ofU’ a.s., and the corresponding eigenvectors converge a.s. The clusterings constructed by normalized
spectral clustering from the firgteigenvectors on finite samples converge almost surely to a limit clustering of the
whole data space.

In the unnormalized case, the convergence theorem looks quite similar, but there are some subtle differences
that will turn out to be important.

Result 2 (Convergence of unnormalized spectral clusteringlJnder mild assumptions, if the firsteigenvalues

of the limit operatorV have multiplicity 1 and do not lie in the range of the degree funcfidhen the same holds

for the firstr eigenvalues of;Ln for sufficiently largen. In this case, the first eigenvalues of;Ln converge to

the firstr eigenvalues ol a.s., and the the corresponding eigenvectors converge a.s. The clusterings constructed
by unnormalized spectral clustering from the firgtigenvectors on finite samples converge almost surely to a limit
clustering of the whole data space.

On the first glance, both results look very similar: if first eigenvalues are “nice”, then spectral clustering con-
verges. However, the difference between Results 1 and 2 is what it means for an eigenvalue to be “nice”. For the
convergence statements to hold, in Result 1 we only need the condijtign1, while in Result 2 the condition
is \; € rg(d) has to be satisfied. Both conditions are needed to ensure that the eigexvalusolated in the
spectrum of the limit operator, which is a fundamental requirement for applying perturbation theory to the conver-
gence of eigenvectors. We will see that in the normalized case, the limit op&ralbars the formld — T where
T is a compact linear operator. As a consequence, the spectrithisivery benign, and all eigenvalugs# 1
are isolated and have finite multiplicity. In the unnormalized case however, the limit operator will have the form
U = M — S whereM is a multiplication operator anfl a compact integral operator. The spectrund/as not as



nice as the one df’, and in particular it contains the continuous intemygld). Eigenvalues of this operator will
only be isolated in the spectrum if they satisfy the conditiog rg(d). As the following proposition shows, this
condition has important consequences.

Result 3 (The condition\ ¢ rg(d) is necessary)
1. There exist examples of similarity functions such that there exists no non-zero eigenvalue ouggifle of

2. If this is the case, the sequence of second eigenvectérﬁ,ptomputed by any numerical eigensolver con-
verges tanin d(z). The corresponding eigenvectors do not yield a sensible clustering of the data space.

3. For a large class of reasonable similarity functions, there are only finitely many eigenvaluesyjsagide
the intervall0, min d(z)[. In this case, the same problems as above occur if the numifezigenvalues used
for clustering satisfies > ry. Moreover, we cannot determimg from a finite sample.

4. The conditior\ ¢ rg(d) refers to the limit case and hence cannot be verified on the finite sample.

This result complements Result 2. The main message is that firstly, there are many examples where the
conditions of Result 2 are not satisfied, secondly, in this case unnormalized spectral clustering fails completely,
and thirdly, we cannot detect on a finite sample whether the convergence conditions are satisfied or not.

To further investigate the statistical properties of normalized spectral clustering we compute rates of conver-
gence. Informally, our result is:

Result 4 (Rates of convergenceThe rates of convergence of normalized spectral clustering can be expressed in
terms of regularity conditions of the similarity functién For example, for the case of the widely used Gaussian
similarity functionk(z, y) = exp(—||z — y||*/o?) on IR* we obtain a rate 0O(1//n).

Finally, we show how our theoretical results influence the results of spectral clustering in practice. In particular,
we demonstrate differences between the behavior of normalized and unnormalized spectral clustering.

Our results show an important difference between normalized and unnormalized spectral clustering: under
standard conditions, normalized spectral clustering always converges, while for unnormalized spectral clustering
the same is only true if some non-trivial conditions are satisfied. Hence, from a statistical point of view we
recommend to use normalized spectral clustering rather than the unnormalized version.

4 Prerequisites and notation

Before we can start we would like to introduce some notation and and summarize some facts from spectral and
perturbation theory of bounded linear operators. In the rest of the paper we always make the faliemeng
assumptions: The data spaceéX is a compact metric spac# the Borelo-algebra onX’, and P a probability
measure or(X, B). Without loss of generality we assume that the suppof® ebincides withX. The sample
points(X;),cw are drawn independently according f& The similarity functiork : X x X — IR is supposed to

be symmetric, continuous, and bounded away from 0 by a positive constant, that is there exists a tonstant

such thatk(x,y) > [ forall z,y € X.

The affinity graph of a given finite sampl¥,, ..., X,, has the sample points as vertices, and the efig¢s
are weighted by the similarit¥(X;, X;). As in Section 2 the degree of vert@x will be denoted bydeg[i]. In
the following we will denote the degree and the similarity matrices’hyand K, that isD,, is the diagonal
matrix with entriesdeg[i] on the diagonal<,, the matrix with entries:(X;, X,;). Similarly we will denote the

unnormalized and normalized Laplace matricedhy= D,, — K,, andL!, = D;l/anD,fl/z. The eigenvalues
of the Laplace matrice8 = A\; < Ay < ... < A, will always be ordered in increasing order, respecting
multiplicities. The term "first eigenvalue” always refers to the trivial eigenvalue= 0. Hence, the interesting
eigenvalues are the second, third, and so on.

For a real-valued functiorf we always denote the range of the functiontgyf). If X is connected ang
is continuousrg(f) := [inf f(z),sup f(x)]. The restriction operatas,, : C(X) — IR™ denotes the (random)



operator which maps a function to its values on the firdata points, that is,, f = (f(X1), ..., f(X»)).

Now we want to recall certain facts from spectral and perturbation theory. For more details we refer to Chatelin
(1983), Anselone (1971), and Kato (1966). B§I") we denote the spectrum of a bounded linear opefBton
some Banach spadé. We define thaliscrete spectrumyg to be the part of(T') which consists of all isolated
eigenvalues with finite algebraic multiplicity, and thssential spectrumiesd T') = o(T") \ o4(T'). The essential
spectrum is always closed, and the discrete spectrum can only have accumulation points on the boundary to the
essential spectrum. Itis well known (e.g., Theorem I1V.5.35 in Kato, 1966) that compact perturbations do not affect
the essential spectrum, that is for a bounded opefatord a compact operatdt we haveres{ T+ V') = 0esdT).
A subsetr C o(T) is called isolated if there exists an open neighborhdbd: € of = such thav (T) N M = 7.
For an isolated part C o(T) the spectral projectioRr is defined as;l- [.(T — AI)~'d\ whereT is a closed
Jordan curve separatingfrom the rest of the spectrum. In particularrif= {\} for an isolated eigenvalug,
thenPr, coincides with the projection on the invariant subspace relatéd tb \ is a simple eigenvalue (i.e., it
has algebraic multiplicity 1), then the spectral projecfian coincides with the projection on the eigenfunction
corresponding to.

In the following we will consider different types of convergence of operators:

Definition 5 (Convergence of operators)Let (F, || - |z) be an arbitrary Banach space, arl its unit ball. Let
(Sn)n be a sequence of bounded linear operatorgsn

e (S,), converges pointwisalenoted bys,, 23, if ||Snz — Sz||g — Oforall z € E.

(S,)n converges compactlylenoted bys,, -5 S, if it converges pointwise and if for every sequeficg),, in
B, the sequenceS — S,,)z,, is relatively compact (has compact closurelH, | - || g)-

(S»)n converges in operator norrdenoted bys,, -y S, if ||Sn, — S|| — 0 where|| - || denotes the operator
norm.

(Sn)n is calledcollectively compacif the set ), S, B is relatively compact ifE, || - || ).

(S,)n converges collectively compactlgenoted bys,, <5 S, if it converges pointwise and if there exists
someN € IN such that the operatorsS,, — S),,~ are collectively compact.

Both operator norm convergence and collectively compact convergence imply compact convergence. The latter
is enough to ensure the convergence of spectral properties in the following sense (cf. Proposition 3.18. and Sections
3.6. and 5.1. in Chatelin, 1983):

Proposition 6 (Perturbation results for compact convergence)Let (E, || - ||g) be an arbitrary Banach space
and(T;,),, andT bounded linear operators of with 7,, - T. Then:

1. Upper semi-continuity:Let 7 C ¢(T") be an isolated part o&(7") and A,, € o(T,,) N M a converging
sequence with limit point. Then\ € 7.

2. Lower semi-continuitylLet A € o(7T) be an isolated eigenvalue &fwith finite algebraic multiplicity. Then
there exists some neighborhodfl C @ of A such that for larger, o(T,,) " M = {\, }, and(\,,),, converges
to \.

3. Convergence of spectral projectionet A € ¢(7T) an isolated eigenvalue with finite multiplicity ang <
o(T,) a sequence of isolated eigenvalues with finite multiplicity suchXhat- A. LetPr,, and Pr be the
corresponding spectral projections. Then, % Pr.

4. Convergence of eigenvectordJnder the conditions of Part (3), X is a simple eigenvalue, so akg, for n

large enough. Then the corresponding eigenfunctifnsonverge up to a change of sign (i.e., there exists a
sequencéa,,),, of signsa,, € {—1,+1} such that, f,, converges).

Proof. See Proposition 3.18. and Sections 3.6. and 5.1. in Chatelin (1983). ©

To prove rates of convergence we will also need some quantitative perturbation theory results for spectral pro-
jections. The following theorem can be found in Atkinson (1967):



Theorem 7 (Atkinson) Let (E, | - ||g) be an arbitrary Banach spacd3 its unit ball. Let(K,,),cn and K be
compact linear operators o such thatk’,, <5 K. For a nonzero eigenvalug € (k) denote the corresponding
spectral projection byPry. Let(\,), € o(K,) a sequence of eigenvalues with — X, and (Pr, ), the
corresponding spectral projections. Then there exists a conétant0 such that for every: € Pry E

[ = Pry, zl| < C(|(Kn — K)a|| + [l (K = Kn)Knl) -

The constan€ is independent of, but it depends on ando (K).

Later we will need some basic tools from empirical process theory to prove certain uniform convergence state-
ments. For a probability measuReand a functionf € C(X') we introduce the abbreviatidff := [ f(z)dP(x).
Let (X, ), a sequence of iid random variables drawn according,tand denote by, := E?:l dx, the corre-
sponding empirical distributions. A st C C(X) is called a Glivenko-Cantelli class if

sup |Pf— P,f| = 0 as.
fer

Finally, the covering number¥ (F, ¢, d) of a set totally bounded séf with metricd are defined as the smallest
numbern such thatF can be covered with balls of radius:.

5 Convergence of normalized spectral clustering

In this section we present our results on the convergence of normalized spectral clustering. We start with an
overview over our methods and tools, then proceed to prove several propositions, and finally state and prove our
main theorems at the end of this section. The case of unnormalized spectral clustering will be treated in Section 7.

5.1 Overview over the methods

On a high level, the approach to prove convergence of spectral clustering is very similar in both the normalized and
unnormalized case. In this section we focus on the normalized case. To study the convergence of spectral clustering
we have to investigate whether the eigenvectors of the Laplacians construcieshople points “converge” for

n — oo. For simplicity, let us discuss the case of the second eigenvector. FoealN, letv,, € IR™ the second
eigenvector ofL/ . The technical difficulty for proving convergence (@f, ). is that for different sample sizes

n, the vectorsy,, live in different spaces. Thus standard notions of convergence cannot be applied. What we want
to show instead is that there exists a functjoe C(X) such that the difference between the eigenvegtoand

the restriction off to the sample converges to 0, that|is, — p.. ||« — 0. Our approach to achieve this takes

one more detour. We replace the veatgrby a functionf,, € C(X) such thaw,, = p,, f,,. This functionf,, will

be the second eigenfunction of an operdffyracting on the spac€(.X’). Then we use the fact that

Hence, it will be enough to show thgf,, — f|l.c — 0. As the sequencg, will be random, this convergence will
hold almost surely.

Step 1: Relating the matricesL/, to linear operators U,, on C(X). First we will construct a familfU) ),.c v
of linear operators oi'(X') which, if restricted to the sample, “behaves’ @s,),c: for all f € C(X) we
will have the relatiorp, U/, f = L! p, f. In the following we will then study the convergence(éf,),, on C(X)
instead of the convergence @f.,)...

Step 2: Relation betweers(L;,) and o(U},). In Step 1 we replaced theperatorsL], by operatordJ;, on
C(X). But as we are interested in te@envectorsf L], we have to check whether they can actually be recovered
from the eigenfunctions df’/. By elementary linear algebra we can prove that the “interesting” eigenfunctions
f= and eigenvectors,, of U/ andL!, are in a one-to-one relationship and can be computed from each other by the
relationv,, = p, f,. As a consequence, if the eigenfunctigfsof U/ converge, the same can be concluded for
the eigenvectors af!,.

Step 3: Convergence ofJ; — U’. In this step we want to prove that certain eigenvalues and eigenfunctions
of U] converge to the corresponding quantities of some limit operdtor For this we will have to establish
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a rather strong type of convergence of linear operators. Pointwise convergence is in general too weak for this
purpose; on the other hand it will turn out that operator norm convergence does not hold in our context. The type
of convergence we will consider is compact convergence, which is between pointwise convergence and operator
norm convergence and is just strong enough for proving convergence of spectral properties. The notion of compact
convergence has originally been developed in the context of (deterministic) numerical approximation of integral
operators. We adapt those methods to a framework where the spectrum of a linear dpes@pproximated

by the spectra ofandomoperatorsU/. Here, a key element is the fact that certain classes of functions are
Glivenko-Cantelli classes: the integrals over the functions in those classes can be approximated uniformly by
empirical integrals based on the random sample.

Step 4: Assembling all piecesNow the main work has been done and we just have to put together the different
pieces. In Step 1 we replaced the operafdysy the operator#’!, which does not affect the spectra according
to Step 2. The operatofg/, are shown in Step 3 to converge compactly to some limit opet&totUnder certain
conditions on the spectrum &f’ this leads to the convergence of the first eigenfunctions of the spectrg, of
which implies the convergence of spectral clustering.

Now we will implement the program outlined above in detail.

5.2 Step 1: Construction of the operators orC(X)
We define the following functions and operators, which are all supposed to &gttt The degree functions

dn(z) == /k(:c,y)dpn(y) e C(X)

da) = [ kzp)iP() € C)
the multiplication operators,

My, :C(X) — C(X), My, f(z) :=dn(z)f(x)
My : C(X) = C(X), Maf(z) := d(z)f(z)

integral operators

and the corresponding differences

U, :C(X)— C(X), Upf(z) := Mg, f(x) — Spf(x)
U:C(X) = CX), Uf(z) := Maf(z) = Sf(x)

The operatoré/,, andU will be used to deal with the case of unnormalized spectral clustering. For the normalized
case we introduce the normalized similarity functions,

ha(2,y) = k2, y)//dn(2)dn(y)
h(z,y) := k(z,y)/v/ d(x)d(y)

integral operators
T, : C(X) — C(), Tuf(w) = [ hle.)f)dP.(v)
1,5 C(X) = C), /1) = [ halo) /)Py
T C(X) - C(), Tf() = [ he.)fW)aPw)

11



and the differences

UT’L ::I—T/I
U .=1-T

We summarize the properties of those operators in the following proposition. Recall the definition of the restric-
tion operator,, of Section 4.

Proposition 8 (Relations between the operatorsUnder the general assumptions, the functiefysand d are
continuous, bounded from below by the constant0, and from above bk || ... All operators defined above are
bounded, and the integral operators are compact. The operator norm&;of My, S,,, and.S are bounded by
|l%|| s, the ones of !, T;,, andT by ||k|| - /I. Moreover, we have the following relations:

1 1 1
*Dnopn:pnonn *Knopn:pno‘sn *Lnopn:pnoUn L;Opn:pnkolL
n n n

Proof. All statements follow directly from the definitions and the general assumptions. Note that in the case of the
unnormalized Laplaciafi,, we get the scaling factdr/n from the1/n-factor hidden in the empirical distribution

P,. Inthe case of normalized Laplacian, this scaling factor cancels with the scaling factors of the degree functions
in the denominators. ®

The main statement of this proposition is that if restricted to the sample pbintbehaves as’%Ln andU], as
L!.. Moreover, by the law of large numbers it is clear that for fiyed C'(X) andz € X the empirical quantities
converge to the corresponding true quantities, in partidijaf(x) — U f(x) andU] f(x) — U’ f(x). Proving
stronger convergence statementstfgrandU;, will be the main part of Step 3.

5.3 Step 2: Relations between the spectra

The following proposition establishes the connections between the speétraaofiU,. We show that thal// and
L! have more or less the same spectrum and that the eigenfun¢tafiis/, and eigenvectors of L/, correspond
to each other by the relatian= p,, f.

Proposition 9 (Spectrum ofU)))

1. If f € C(X)is an eigenfunction df’/, with the eigenvalug, then the vector = p,, f € IR" is an eigenvector
of the matrixL!, with eigenvalue\.

2. Let) # 1 be an eigenvalue df;, with eigenfunctiory € C(X), andv := (v1,...,v,) := pnf € IR™. Then

f is of the form
1y N
fla) = nz#x/\)(ﬂ)“ﬂ )

3. Ifvis an eigenvector of the matrik/, with eigenvalue\ # 1, thenf defined by equatio(d) is an eigenfunc-
tion of U}, with eigenvalue\.

4. The spectrum df}, consists of at most countably many non-negative eigenvalues with finite multiplicity. The
essential spectrum consists of at most one point, namglfU) = {1}. This is also the only possible
accumulation point of(U},). The same statement is true 6.

Proof. Part (1): Follows directly from Proposition 8.

Part (2): Follows directly from solving the eigenvalue equation.

Part (3): Definef as in Equation (5). It is well-defined becausds an eigenvector O%Ln, and f is an
eigenfunction of/,, with eigenvalue\.

Part (4): AsT) is a compact integral operator according to Proposition 8, its spectrum consists of at most
countably many eigenvalues with finite multiplicity, and the only accumulation point is 0. Thg0ses the
essential spectrum @f. The spectruna(U},) of U, = 1T, is given byl — ¢(T). The non-negativity of the
eigenvalues follows from the non-negativity of the eigenvalue&/pfand Parts (1)-(3) of the proposition. The
analogous statements also hold &8t ©
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This proposition establishes a one-to-one correspondence between the eigenvalues and eigeniécamc of
U, provided they satisfy # 1. The condition\ # 1 needed to ensure that the denominator of Equation (6) does
not vanish. As a side remark, note that the{dédtis the essential spectrum &f,. Thus the conditiorh # 1 can
also be written as ¢ oesdU},), which will be analogous to the condition on the eigenvalues in the unnormalized
case. This condition ensures thais isolated in the spectrum.

5.4 Step 3: Compact convergence

In this section we want to prove that the sequence of random opefafocenverges compactly t&" almost

surely. First we will prove pointwise convergence. Note that on the sp&a8, the pointwise convergence of a
sequencé/] of operators is defined d&/) f — U’ f|| — 0, that is for eaclf € C(X), the sequencd/}, f),, has

to converge uniformly ovek’. To establish this convergence we will need to show that several classes of functions
are “not too large”, that is they are Glivenko-Cantelli classes. For convenience we introduce the following sets of
functions:

K :={k(x,-); z € X} (wherek is the given similarity function)
H = { (z,-); € X} (whereh is the normalized similarity function as defined above)
g-H:={g() h(z,"); € X} (forsomeg € C(X))

H-H:= {h((I}, )h( 7'); T,y € X}
Proposition 10 (Glivenko-Cantelli classes)Under the general assumptions, the claskgsH, and g - H (for
arbitrary g € C(X)) are Glivenko-Cantelli classes.

Proof. As k is a continuous function defined on a compact domain, it is uniformly continuous. In this case it is
easy to construct, for each> 0, a finitec-cover with respect tdl - ||, of K from a finite 6-cover of X¥. Hence

K has finite|| - || o-covering numbers. Then it is easy to see tiailso has finitg| - ||, p)-bracketing numbers

(cf. van der Vaart and Wellner, 1996, p. 84). Now the statement about thetclaslsws from Theorem 2.4.1. of

van der Vaart and Wellner (1996). The statements about the ctasaesg - H can be proved in the same way,
hereby observing thdt is continuous and bounded as a consequence of the general assumptions. @)

Note that it is a direct consequence of this proposition that the empirical degree fufictionverges uniformly
to the true degree functiafy that is

lldr, — d||co = sup |dn(z) — d(z)| = sup | P k(z, ) — Pk(z,-)| — 0a.s.
TeX reX

Now we can establish the convergence of the integral operafors
Proposition 11 (I"! converges pointwise tdl" a.s.) Under the general assumptiorig, 2. T almost surely.
Proof. For arbitraryf € C(X) we have
||T7/L.f - Tf“oo S HTrlzf - Tnf”oc + ”Tnf - Tf”oo-

The second term can be written as

[T f = Tflloo = Sup | Po (R, ) () = P(h(z, ) f ()] = Sup, [Png — Py

which converges to 0 a.s. by Proposition 10. It remains to prove the almost sure convergence of the first term
(which we prove in a slightly more technical way than necessary because it can then be used in Section 6):

Hﬂf—ﬂﬂhéHmmwp/W@w%WM%ww&@)
reX

1 1
< fllool[Flloo sup |

ruex /A (@d(y)  /A@)dy)
< 11 5 s |V - V)
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H/flloo |dn () dn(y) — d(x)d(y)]
re \/An(@)dn(y) + v/A@)d(y)

D |dn(2)dn(y) — d(z)d(y)|

= [Iflloo

213 z ye

< lloe

To bound the last expression we use

sup |dy (z)dn(y) — d(z)d(y)| < sup_|dn(x)dn(y) — dn(x)d(y)| + |dn(z)d(y) — d(x)d(y)|

T,yeX r,yeX

< Sup, |dn ()] |dn(y) = d(y)| + d(Y)] |dn(z) — d(2)]
< 2|klloc sup |dn () — d(2)]

= 2||k||so sup | Ppg — Py|
geK

Together this leads to

1% H2

||T/f T/f”oo < Hf”oo SUE‘Png_Pﬂ
ge

which converges to 0 a.s. by Proposition 10. ©

Proposition 12 (! converges collectively compactly td" a.s.) Under the general assumptions,, =T al
most surely.

Proof. We have already seen the pointwise convergém:eﬂ T in Proposition 11. Next we have to prove
that for someN € IN, the sequence of operatof, — T'),~n is collectively compact a.s. A is compact
itself, it is enough to show thdfl’),),,~n is collectively compact a.s. This will be done using the Arzela-Ascoli
theorem. First we fix the random sequericg,),, and hence the random operatcéﬂS’L)n. By Proposition 8
we know that||T), || < ||k||~/l for all n € IN. Hence, the functions igJ, 7, B are uniformly bounded by
sup,en fep IThflle < [lkllo/l- To prove that the functions i), . 5 7, B are equicontinuous we have to
bound the expressid(xz) — g(z’)| in terms of the distance betweerandz’, uniformly ing € (J,, 7}, B. For
fixed sequencéX,,),c v and alln € IN we have that for alk, 2’ € X,

sup |TLf (@)~ TLf@) = sup | / o(2) — (' 9) F ) AP ()
feB,nelN fEB,nEIN
< sl / (2, 4) — (@ 9)] dPa(y) < o (2,7) — Prn(a, ) oo

Now we have to prove that the right hand side gets small whenever the distance betwvekri gets small.

dp(x)

k
suplhn (z,y) — hn(2',y)| = sup
Y Yy

Vo (@)dy (2)dn (y)
< e (wc(:c,ywm N nra

+ |k x y + V ’VL k x y Vv '!L |)
< zi/ (1/nlscllb e, ) = ko', oo + Kl /@) — /)]

k| o ,
< g (L2100, ) = hGo e+ ) = )1
- | l3H/2 [k(z, ) —k’(ﬂfl,')Hoo-i-
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”3‘5‘) (Idn(@) = d(@)| + |d(x) - d(@")] +|d(x") — du(a")])

< Cullk(x, ) = k(@',)lloe + Cald(x) — d(2')] + Cslldn — dl|o

As X is a compact space, the continuous functibr{en the compact spack x X) andd are in fact uniformly
continuous. Thus, the first two (deterministic) terffig(z,-) — k(2', )|l and|d(z) — d(2’)| can be made
arbitrarily small for allz, ' whenever the distance betweerandz’ is small. For the third termid,, — d|| o,

which is a random term, we know by the Glivenko-Cantelli properties of Proposition 10 that it converges to O a.s.
This means that for each giver> 0 there exists som& € IN such that for alh > N we have||d,, — d|lec < €

a.s. (in particularN can be chosen simultaneously for@hdomoperatorsl’,). Together, these arguments show
that J,,. 5 7, B is equicontinuous a.s. By the Arzela-Ascoli theorem we then know that, 77, B is relatively
compact a.s., which concludes the proof. ®

Proposition 13 U/, converges compactly tdJ’ a.s.) Under the general assumptioris;, S U as.

Proof. This follows directly from the facts that collectively compact convergence implies compact convergence,
the definitions oV}, to U’, and Proposition 12. ®

5.5 Step 4: Convergence of normalized spectral clustering

Now we have collected all ingredients to state and prove our convergence result for normalized spectral clustering.
The following theorem is the precisely formulated version of the informal Result 1 of the introduction:

Theorem 14 (Convergence of normalized spectral clusteringfssume that the general assumptions hold. Let
X # 1 be an eigenvalue df’. Then there exists sonié € IV and some neighborhoatd C @ of A such that for
n> N,o(L))N M = {\,}, and()\,),, converges to\ a.s. Moreover, lePr!, : C(X) — C(X) be the spectral
projection corresponding ta,,, andPr the one corresponding tv € o(U’). ThenPr/, % Pra.s. If\ is a simple
eigenvalue, then also the eigenvectors converge a.s. up to a change of signs ithe eigenvector of!, with
eigenvalue\,,, v, ; its i-th coordinate, andf the eigenfunction of eigenvalueof U’, then there exists a sequence
(an)new Witha; € {+1,—1} suchthasup,_; _,, lanvn,;— f(X;)| — 0a.s. Inparticular, for allb € IR, the sets
{anfn > b} and{f > b} converge, that is their symmetric difference satisfé¢sf > b} A{a, f, > b}) — 0.

Proof. In Proposition 9 we established a one-to-one correspondence between the eigenvaliesf L/ and
U/, and we saw that the eigenvaluesf U’ with A # 1 are isolated and have finite multiplicity. In Proposition

13 we proved the compact convergencdjjfto U’, which according to Proposition 6 implies the convergence
of the spectral projections of isolated eigenvalues with finite multiplicity. For simple eigenvalues, this implies
the convergence of the eigenvectors up to a change of sign. The convergence of g set$} is a simple

consequence of the almost sure convergence,of;, ). ©)

6 Rates of convergence of normalized spectral clustering

In this section we want to prove statements about the rates of convergence of normalized spectral clustering. Our
main result is the following:

Theorem 15 (Rate of convergence of normalized spectral clusteringynder the general assumptions, let#

0 be a simple eigenvalue @fwith eigenfunction, (\,,), a sequence of eigenvaluesKjf such that\,, — A, and
(un), a corresponding sequence of eigenfunctions. Define K U w - H U H - H. Then there exists a constant
C’ > 0 (which depends on the similarity functién the spectrunw(7"), and the eigenvalug) and a sequence
(an)n Of signsa,, € {+1, —1} such that

llantu, — ulloo < C"sup |P,f — Pfl.
feF

Hence, the speed of convergence of the eigenfunctions is controlled by the speed of convergence of
Supfe]_— |P,Lf — Pf|
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This theorem shows that the rate of convergence of normalized spectral clustering is at least as good as the
rate of convergence of the supremum of the empirical process index&d By determine the latter there exist a
variety of tools and techniques from the theory of empirical processes such as covering numbers, VC dimension,
Rademacher complexities, see for example van der Vaart and Wellner (1996), Dudley (1999), Mendelson (2003),
Pollard (1984). In particular it is the case that “the nicer” the kernel funétisr(e.g.,k is Lipschitz, or smooth, or
positive definite), the faster the rate of convergence on the right hand side will be. As an example we will consider
the case of the Gaussian similarity functiétr, y) = exp(—||z — y||?/0?), which is widely used in practical
applications of spectral clustering.

Example 1 (Rate of convergence for Gaussian kernellet X be compact subset ofR? and k(z,y) =
exp(—||z — y||?>/o?). Then the eigenvectors in Theorem 15 converge with@te/ \/n).

For the case of unnormalized spectral clustering it is possible to obtain similar results on the speed of conver-
gence, for example by using Proposition 5.3. in Chapter 5 of Chatelin (1983) instead of the results of Atkinson
(1967) (note that in the unnormalized case, the assumptions of Theorem 7 are not satisfied as we only have com-
pact convergence instead of collectively compact convergence). As we recommend to use normalized rather than
unnormalized spectral clustering anyway we we do not discuss this issue any further. The remaining part of this
section is devoted to the proofs of Theorem 15 and Example 1.

6.1 Some technical preparations

Before we can prove Theorem 15 we need to show several technical propositions. With the background from the
previous sections, all of them are rather straight forward but a bit lengthy to prove.

Proposition 16 (Bound on||T), — T;,]|) Assume that the general conditions are satisfied. Then:

|| n n” = 3 sup| nf_ fl
fex

Proof. In the proof of Proposition 11 we have already seen that for eferyC'(X'),

412,
TS~ TSl < 1o o0 sup g — P,
gerK

This also proves Proposition 16. ©

Proposition 17 (Bound on||(7,, — T)g|l- ) Assume that the general conditions are satisfied. Then for every
g € C(X) we have

||(Tn _T>g||oo < sup |Pnf _Pf‘
fegH
Proof. This proposition follows directly from the definitions:

|(To = T)glloe = sup| / Wz 1)g(y)dPy (y) / h(x.y)g()dP)| = sup [Puf — Pf|
TeEX feg™H

Proposition 18 (Bound on||(T" — T,,)T.,||) Assume that the general conditions are satisfied. Then:

(T =TTl < sup |P.f— Pfl.
fEH-H
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Proof. By Fubini’s theorem and the symmetry fof

(T =TTl = sup sup|[TTf (@) — TuTof (@)

[fllco<lzEX
= s ] e.2) [ ) AP )APE) ~ [ 1la,2) [ 1) f)iPa @)
= Hfs\|1;p§1ilelg| fly) (/h(a:,z)h(z,y)dP(z) — /h(l,z)h(z,y)dpn(z)> dP,(y)]
< sup | [ h(z,2)h(z,y)dP(z) — /h(m,z)h(z,y)dPn(z)\
T, yeX

— sup |P.f - P,
fEH-H

Proposition 19 (Convergence of one-dimensional projections)et (v, ), be a sequence of vectors in some Ba-
nach spaceE, || - ||) with |jv,|| = 1, Pr,, the projections on the one-dimensional subspace spanneg,and
v € FE with ||v]| = 1. Then there exists a sequer(es),, € {+1, —1} of signs such that

lanvn — v < 2||v — Pr,v|.

In particular, if ||v — Pr,, v|| — 0 thenv,, converges ta up to a change of sign.
Proof. By the definition ofPr,, we know thatPr,, v = ¢, v, for somec,, € IR. Definea,, := sgn(c, ). Then

lan —cn| = |1 = lenl | =] lv]| = |en| - lvall | < |lv = cnvnll = |lv — Pry o
From this we can conclude that

v = anvn|l < [[v = cpvnll + llcnvn — anvnll = lv — cpvnll + |en — anl - [Jvnl| < 2[Jv — Pry, v]|.

6.2 Proof of Theorem 15

First we fix a realization of the random variableX,,),,. From the convergence of the spectral projections in
Theorem 14 we know that X € o(T) is simple, so are\,, € o(T},) for largen. Then the eigenfunctions,, are

uniquely determined up to a change of orientation. In Proposition 19 we have seen that the speed of convergence
of u,, to u coincides with the speed of convergence of the expreggienPr,, u|| from Theorem 7. As we already

know by Section 5, the operatdfg andT satisfy the assumptions in Theorem 7. Accordingty— Pr,, u| can

be bounded by the two termi$7,, — T)u|| and||(T" — T,)T} ||. It will turn out that both terms are easier to bound

if we can replace the operat®}, by T,,. To accomplish this observe that

T = )Tl < ITT, =TTl + [ TTn = ToTo |l + [ TnTn — T, T, |
SITINTw = Toll + T = T)Toll + 1T T — Tu Ty || + 1 T0 T, — T, T
< TN+ 1Tl + 1T IDITn = Toll + (T = To) T |

£l o0
<3—
- l

1T — TRl + (T = To) T |
and also
(T, = Tulles < (T}, = To)ulloo + [(Tn — T)ullo < [lullool| Ty, = Toll + [(Tn — T)ull o

At this point, note thafl,, does not converge t& in operator norm (cf. page 197 in Section 4.7.4. of Chatelin,
1983). Thus it does not make sense to bollf¥d, — T")u|| oo bY [| T, — T'||||tt|| oo OF (T —T,) T || bY || T =T ||| T || -
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Assembling all inequalities, applying Proposition 19 and Theorem 7, and choosing the,sigs# the proof of
Proposition 19 we obtain

lantu, — vl < 2||u—Pry, ul|
<2C(I(T,, = T)ull + (T = T;)T,|)

<20 (A= sy, - 201 410 - Dl + N =TT ) = )

To bound(x) we now apply Propositions 16, 17, 18 and in the last step merge all occurring constants to one larger
constantC’ to obtain

3k so k|I?
(1) <20 (( Wlloe o )% 1By — PFI 4 sup [Puf — P+ sup IPnf—Pf|>
! I* rex feuH FEHM

<c’ sup |Pof — Pf|.
FERUu-HUH-H

As all arguments hold for each fixed realizatiox, ),, of the sample points, they also hold for the random variables
themselves almost surely. This concludes the proof of Theorem 15. @)

6.3 Rate of convergence for the Gaussian kernel

In this subsection we want to prove the convergence@die’\/n) stated in Example 1 for the case of a Gaussian
kernel functionk(x, y) = exp(— |z —y||*/o?). In principle, there are many ways to compute rates of convergence

for terms of the formsup; |Pf — P, f| (see for example van der Vaart and Wellner, 1996). As discussing those
methods is not the main focus of our paper we choose a rather simple covering number approach which suffices for
our purposes. We will use the following theorem, which is well known in the empirical process theory (nevertheless
we did not find a good reference for it; it can be obtained for example by combining Section 3.4. of Anthony, 2002,
and Theorem 2.34 in Mendelson, 2003):

Theorem 20 (Entropy bound) Let (X, A, P) be an arbitrary probability spaceF a class of real-valued func-
tions on X’ with || f||lc < 1. Let(X,)newn @ sequence of iid random variables drawn accordingitpand

(Pn)nev the corresponding empirical distributions. Then there exists some constan0 such that for all
n € IN with probability at leastl — §,

c o0 1 2
P.f—Pfl<-2 log N(F.z, Ly(P,)) d ~ log =.
;ggl f flf\/ﬁ/0 Vieg N(F,e,Ly(P,)) de + 5. 108 5

We can see that if,;” \/log N(F, s, La(P,)) de < oo, then the whole expression scales@&l/\/n). As a
first step we would like to evaluate this integral for the function cleiss= K. As L (P, )-covering numbers are
difficult to estimate, we replace the; (P, )-covering numbers in the integral by the|| ..-covering numbers. This

is valid because we always ha§(K, e, Ly(P,,)) < N(K,¢, || - |l«). Moreover, we can replace the upper limit
oo in the integral by 2. The reason is that for the Gaussian kerradl functions inkC satisfy||k(z, -)|| < 1 and
consequenthylog N (K, ¢, || - ||«) = 0 for all ¢ > 2. Finally, in case of the Gaussian kernel, tight bounds for the
I - || cc-covering numbers of have been obtained for example in Zhou (2002). There it was proved thatfey

for a certain constant, > 0 only depending to the kernel width the covering numbers satisfy

1
log N (K, &, || - [loo) < 32(log g)z-

(to see this we chosB = 1 andn = 1 in Proposition 1 of Zhou, 2002). Plugging the covering numbers in our
integral we get

[e’e) 2
/ JIog N (K, 2, Lo(By)) de < / Vg N e ) de
0 0
co 1 2
S\/ﬁ/ logg de—i—/ VIeg N(K, e, ]| - |loo) de
0 Co

< V32¢0(1 —log co) + (2 — co)/Iog N(K, co, || - lse) < 0.
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According to Theorem 15, we have to use the entropy bound not only for the functiorClass, but for the
classF = KUwu-H UH - H. To this end we will bound thé - ||..-covering numbers o€ Uwu - HUH - H in
terms of the covering numbers &f

Proposition 21 (Covering numbers of{) The covering numbers &{ satisfy
N(H, e[ [loc) < N(K, 52, [| - [loo)
wheres — [Elleet2y/UlElloe

212
Proof. The main work consists in bounding the norm between two functioféliy the one of the corresponding
functions inkC. This is not difficult but lengthy.

. k(z,z)  k(y,2)
||h(x,~)—h(y,-)Hoo—zeg\\/d(z)d(z) Vdy)d(z)

_ 173/2(Slelg Vd(y)k(z, z) — V/d(@)k(y, 2)))
< 17 (sup | Vdly)(, 2) = VK, 2)| + |VA)k G, 2) = )k, 2))
< U2 (Rlloo|V/d(y) = V()| + K24 sup k(a, 2) = k(y, 2))

- d(y) — d(z)]
<173/2(||k m'——&— k }Xéqup k(x,z) — k(y, z
(I%] F+F ([l ZEX\ (x,2) = k(y,2)])
_ koo
<12 [ ko) - k(w2 1P) + 19122 sup e 2) — b3 )
) / zeX
372, [[lloo 1/2
<G T Ikl )bup\k(ar z) = k(y, 2)|
= s|k(z,) = k(y, )l
Now the statement about the covering numbers is easy to see. ©

Proposition 22 (Covering numbers ofF) Letu € C(X). Then the covering numbers fét:= KUu-HUH-H
satisfy

N(F;& | - lloo) < 3N(K, ge, | - [loo)

where the constantis given asy := min{1, [|u|.s, 1¥]= s} with s as in Proposition 21.

Proof. Because ofjufi — ufalloo < ||t]|oollf1 — f2||OO it is easy to see that
N(u-He | - lloo) < N(H, lulloce; || lloo)-
Similarly, because for ahq, ho, h3 € H we have

koo
s — Basll < el — hiyloe < 1200

A2 — h3lloo
we can conclude that

N(H-H,e |- o) < N(H, & |+ [loo)-

Together with the result of Proposition 21 and the fact that the covering number of a union of sets is bounded by
the sum of the covering numbers we obtain

N(F, & [l lloo) < N(K, &, [ - lloo) + N(u-Hy e, [ - [loo) + N(H - He, || - [loo)

k|0
< VK&, - lloe) + N, e, - 1) + N0, Py

k|l o
< N2 o)+ VO, s | - o) + N0, e 1)

<3N (K, gz, || - [l)

£l
]
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where the constafgtis given as stated in the proposition. ©

This proposition shows that the covering numbersFotoincide with the ones ok up to a multiplicative
constant inc. Finally, to compute the rate of convergence for the Gaussian kernel we evaluate the integral in
Theorem 20 for the clas = K Uw - H U H - ‘H and obtain

/ Vg N(F.2. Lo (Po) deg/ V108 3NTK, g, - ) de < oo.
0 0

This shows that the rate of convergencese s ~ | P, f — Pf|is O(1//n), and by Theorem 15 the same now
holds for the eigenfunctions of normalized spectral clustering.

While it is not immediately obvious, the fact that the Gaussian ketiiekmooth and positive definite plays an
important role in this proof as these properties are of vital importance in the proof of the covering number bounds
in Zhou (2002).

7 The unnormalized case

Now we want to turn our attention to the case of unnormalized spectral clustering. It will turn out that this case is
not as nice as the normalized case as the convergence results will only hold under strong conditions only. Moreover,
those conditions are often violated in practice. In this case, the eigenvectors do not contain any useful information
about the clustering of the data space.

7.1 Convergence of unnormalized spectral clustering

The main theorem about convergence of unnormalized spectral clustering (which was informally stated as Result
2 in the introduction) is as follows:

Theorem 23 (Convergence of unnormalized spectral clusteringhssume that the general assumptions hold.
Let A\ ¢ rg(d) be an eigenvalue dff. Then there exists sonlé € IN and some neighborhool/ C @ of A
such that forn > N, a(%Ln) NM = {\,}, and(\,), converges to a.s. Moreover, lePr,, : C(X) — C(X) be

the spectral projection corresponding4dU,,) N M, andPr the one corresponding to € o(U). ThenPr,, 2 Pr

a.s. If A is a simple eigenvalue, then also the eigenvectors converge a.s. up to a change ofsjgstlife eigen-
vector of%Ln with eigenvalue\,,, v, ; its i-th coordinate, and’ the eigenfunction d with eigenvalue\ ¢ rg(d),
then there exists a sequen@e, ),ev With a; € {+1,—1} such thatsup,_; _,, lanv,: — f(X;)] — 0 as. In
particular, for all b € IR the sets{a, f,, > b} and{f > b} converge, that is their symmetric difference satisfies
P{f > bv}A{anfn > b}) — 0.

This theorem looks very similar to Theorem 14. The only difference is that the conditén of Theorem 14
is now replaced by ¢ rg(d). Note that in both cases, those conditions are equivalent to saying thast be
an isolated eigenvalue. In the normalized case, this is satisfied for all eigenvalves=but asU’ = Id — T"
whereT” is a compact operator. In the unnormalized case however, this condition can be violated as the spectrum
of U contains a large continuous spectrum. Later we will see that this indeed leads to serious problems regarding
unnormalized spectral clustering.

The proof of Theorem 7 is very similar to the one we presented in Section 5. The main difference between both
cases is the structure of the spectrd/ofandU. The proposition corresponding to Proposition 9 is the following:

Proposition 24 (Spectrum ofU,,)

1. If f € C(X) is an eigenfunction ol/,, with arbitrary eigenvalue), then the vector = p,,f € IR" is an
eigenvector of the matri%Ln with eigenvalue\.

2. Let) ¢ rg(d,,) be an eigenvalue df,, with eigenfunctiory € C(X), andv := (v1,...,v,) := ppof € IR".
Thenf is of the form
o 711 Zj k(“La Xj)vj

flo) = 2 ®)
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3. If v is an eigenvector of the matri%gLn with eigenvalue\ ¢ rg(d,,), thenf defined by Equatiof6) is an
eigenfunction ol/,, with eigenvalue\.

4. The essential spectrum &f, coincides with the range of the degree function, thatds(U,,) = rg(d,).
All eigenvalues ot/,, are non-negative and can have accumulation points onlygiid,,). The analogous
statements also hold for the operatgr

Proof. The first parts can be proved analogously to Proposition 9. For the last part, remember that the essential
spectrum of the multiplication operatdd,, consists of the range of the multiplier functialy. As S, is a

compact operator, the essential spectrun/pf= M, — S, coincides with the essential spectrum/Mf; as

we have already mentioned in the beginning of Section 4. The accumulation points of the spectrum of a bounded
operator always belong to the essential spectrum. Finally, to see the non-negativity of the eigenvalues observe that
if we consider the operatdr,, as an operator oh, (P, ) we have

Wt f) = [ [ (@) = s s @ g)aP)aPate) =5 [ [(H@) = 1)K )dPu0)dP (@) = 0

ThusU is a non-negative operator din(P,) and as such only has a non-negative eigenvalues. As we have
C(X) C Ly(P) by the compactness &f, the same holds for the eigenvaluedbés an operator o6'(X).
©

This proposition establishes a one-to-one relationship between the eigenvaﬂ/l,eauﬂ%Ln, provided the
condition\ ¢ rg(d,,) is satisfied. Next we need to prove the compact convergencg td U:

Proposition 25 (U,, converges compactly td/ a.s.) Under the general assumptiorig, — U a.s.

Proof. We consider the multiplication and integral operator part&pfseparately. Similarly to Proposition 12
we can prove that the integral operatéis converge collectively compactly t6 a.s., and as a consequence also
S, — S a.s. For the multiplication operators we have operator norm convergence as

1M, — Mal| = o ldnf = dflloc < lldn = dfloc — O as.
o<1

by the Glivenko-Cantelli Proposition 10. As operator horm convergence implies compact convergence we also
haveM, - M, a.s. Finally, it is easy to see that the sum of two compactly converging operators also converges

compactly. Hencel/,, = U a.s. ©)

Now we can prove the convergence Theorem 23 similarly to Theorem 14:
Proof of Theorem 23.In Proposition 24 we established a one-to-one correspondence between the eigenvalues
A & rg(dy,) of 1L, andU,,, and we saw that the eigenvaluesf U with A ¢ rg(d) are isolated and have finite
multiplicity. In Proposition 25 we proved the compact convergencE,pfo U, which according to Proposition
6 implies the convergence of the spectral projections of isolated eigenvalues with finite multiplicity. For simple
eigenvalues, this implies the convergence of the eigenvectors up to a change of sign, and the convergence of the
sets{ f,, > b} is a simple consequence of the almost sure convergenes, 6f) .. ©

8 Non-isolated eigenvalues

The most important difference between the limit operators of normalized and unnormalized spectral clustering is
the condition under which eigenvalues of the limit operator are isolated in the spectrum. In the normalized case
this is true for all eigenvalues # 1, while in the unnormalized case this is only true for all eigenvalues satisfying

A € rg(d). In this section we want to investigate those conditions more closely. We will see that especially in the
unnormalized case, this condition can be violated, and that in this case spectral clustering will not yield sensible
results. In particular, the condition ¢ rg(d) is not an artifact of our methods, but plays a fundamental role. It is

the main reason why we suggest to use normalized rather than unnormalized spectral clustering.
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8.1 Theoretical results

Firstly we will construct an example where all non-trivial eigenvaldgs\s, ... lie inside the range of the degree
function.

Example 2 (A2 ¢ rg(d) violated) Consider the data spac® = [1,2] C IR and the probability distribution given
by a piecewise constant probability density functicon X with p(z) = sif 4/3 <z < 5/3 andp(x) = (3—s)/2
otherwise, for some fixed constang [0, 3] (for example, fos = 0.3 this density has two clearly separated high
density regions, cf. Figure 2). As similarity function we chobée, y) := xy. Then the only eigenvalue of
outside ofrg(d) is the trivial eigenvalue 0 with multiplicity one.

Proof. First note that in this example the general conditions are satistidd:compact, and is symmetric and
> 1onXxX. The degree function in this case is

2 4/3 g _ 5/3 2 g_
d(z) = zyp(y)dy = x( ¥y dy + ysdy + dey) = 1.5z
1 J1 4/3 5/3

(independently of) and has rangl .5, 3] on X'. Afunction f € C(X) is eigenfunction with eigenvalue ¢ rg(d)
of U if the eigenvalue equation is satisfied:

Uf(o) = d(@)f(2) == [ uf)plo)dy £ \f(a), ™

Defining the real numbes := [ yf(y)p(y)dy we can solve Equation (7) fof(x) to obtain f(z) = d(ff_k.
Plugging this into the definition gf yields the condition
! y?

= [ — dy. 8

1 /d(y)_)\p(y) Y (8)

Hence,\ is an eigenvalue of/ if Equation (8) is satisfied. For our simple density functigrthe integral in this
condition can be solved analytically. It can then been seerythat:= | %p(y)dy = 1is only satisfied for
A = 0, hence the only eigenvalue outsidergfd) is the trivial eigenvalue 0 with multiplicity one. ©®

In the above example we could see that there indeed exist situations where there the bpaoatonot possess
a non-zero eigenvalue with & rg(d). The next question is what happens in this situation.

Proposition 26 (Clustering fails if Ay & rg(d) is violated) Assume that#(U) = {0} Urg(d) with the eigenvalue

0 having multiplicity 1. Assume that the probability distributiBnon X’ has no point masses. Then the sequence
of second eigenvalues &fL,, converges tenin,cx d(z). The corresponding eigenfunction will approximate the
characteristic function of some € X with d(x) = min,cy d(x) or a linear combination of such functions.

Proof. Itis a standard fact (Chatelin, 1983) that for eadnside the continuous spectrug(d) of U there exists

a sequence of functiortg,,),, with || f,,|| = 1 such that|(U — A1) f,,|| — 0. Hence, for each precisian> 0 there
exists a functionf. such that|(U — AI)f.|| < e. This means that for a computer with machine precisiothe
function f. appears to be an eigenfunction with eigenvaludhus, with a finite precision calculation we cannot
distinguish between eigenvalues and the continuous spectrum of an operator. Intuitively it seems clear that this
also affects the eigenvalues of the empirical approximdltigrof U. To make this precise we want to construct a
sequencéf, ), such that for alk > 0 there exists somé > 0 such that for alj > .J we have||(U, — A1) f,|| <e.

For given\ € rg(d) we choose some),, € X with d(x)) = A. DefineB,, := B(x}, %) as the ball around), with
radius1/n (note thatB,, does not depend on the sample), and choose ggn®e C(X) which is constant 1 on
B,, and constant 0 outsidB,,_;. Then|| f, |l = 1, the sequencéf,,), converges pointwise to the characteristic
function atz, and||(U f,, — AT)|| — 0. Now we obtain:

< sup |dn($) - d(x)\)| + 522' k(m,y)dPn(y)\

TEBp 1 B,
< sup |dn(z) —d(z)|+ sup |d(z)—d(@r)]+ [[kllcc P (Br)

- zEB, 1 rEB, _1
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The termsup,.p | |dn(x) — d(x)| converges to 0 a.s. becaulé, — d||. — 0 a.s., and the expression
sup,ep, , |d(xz) — d(zx)| converges to zero by the continuity @f It remains to prove that the last tetR) (B,,)
converges to 0 a.s. For given> 0 fix someM € IN suchthatP(B),) < ¢ (this is always possible as we assumed
that P does not have any point measures). For this fixedsgtwe know thatP, (By;) — P(Bys) a.s., thatis
for eache and eachV/ there exists som& € IN such that for allh > N we have| P, (By;) — P(Buy)| < e as..
By the choice ofM we can conclude tha?, (Bys) < 2¢ a.s. foralln > N. As B,,, C By, forallm > M by
construction we geP, (B,,) < 2¢ a.s. for alln > N andm > M. In particular, if we set/ := max{N, M} then
for all j > J we haveP;(B;) < 2¢ a.s. Consequently, (B,) — 0 a.s..

Now we have seen that for each machine precisitimere exists somé&’ € IN such that fom > N we have
(U, — A1) f,|| < € a.s., and by Proposition 8 we can conclude that then also

G Ly = AD(F(X), SV < € as.

Consequently, if the machine precision of the numerical eigensolvertigen this expression cannot be distin-
guished from 0, and the vect¢f (X1), ..., f(X,,))" appears to be an eigenvectorbf.,, with eigenvalue. As

this construction holds for each € rg(d), the smallest non-zero “eigenvalue” discovered by the eigensolver
will be Ay := min,cx d(z). If z,, is the unique point int with d(z,,) = A2, then the second eigenvector of

%Ln will converge to the delta-function at,,. The clustering constructed from the second eigenvector is not a
sensible clustering as thresholding the second eigenvector will result in a trivial clustering that only separates a
neighborhood of:», from the rest of¥. If there are several points€ X’ with d(z) = Aq, then the “eigenspace”

of o will be spanned by the delta-functions at all those points. In this case, the eigenvec'%)lsl afiill
approximate one of those delta-functions, or a linear combination thereof. @)

As a side remark, note that as the above construction holds for all eletentss(d), eventually the whole
interval rg(d) will be covered by eigenvalues &fL,,. For this it also does not make a difference whether there
actually exists some proper eigenvalue insigigl) or not.

So far we have seen that there exist examples where the assumptiong(d) in Theorem 23 is violated
and that in this case the corresponding eigenfunction does not contain any useful information for clustering.
This situation is aggravated by the fact that the conditiogd rg(d) can only be verified if the operat@f, and
hence the probability distributioR on X, is known. As this is not the case in the standard setting of clustering,
it is impossible to know whether the condition ¢ rg(d) is true for the eigenvalues in consideration or not.
Consequently, not only spectral clustering can fail in certain situations, but we are unable to check whether this
is the case for a given application of clustering or not. The least thing one should do if one really wants to use
unnormalized spectral clustering is to estimate the critical regigd) by [min; d; /n, max; d; /n] and check
whether the relevant eigenvalues%nbn are inside or close to this interval or not. This observation then gives an
indication whether the results obtained can considered to be reliable or not.

Finally we want to show that such problems as described above do not only occur in pathological examples, but
they can come up for many similarity functions which are often used in practice.

Proposition 27 (Finite discrete spectrum for analytic similarity functions) Assume thak’ is a compact subset
of IR™, and the similarity functiork is analytic in a neighborhood ot x X. Let P be a probability distribution
on X which has an analytic density function. Assume that théset X'; d(z*) = mingex d(z)} is finite. Then
o(U) has only finitely many eigenvalues outsigéd).

Proof. This proposition is special case of results on the discrete spectrum of the generalized Friedrichs model
which can be found for example in Lakaev (1979), Abdullaev and Lakaev (1991), and Ikromov and Sharipov
(1998). In those articles, the authors only consider the case whéer¢he uniform distribution, but their proofs

can be carried over to the case of analytic density functions. ©

The assumptions in this proposition are for example satisfied in one of the “default” clustering settings where
the probability distribution is a (truncated) mixture of Gaussians and the similarity function used is the Gaussian
kernelk(z,y) = exp(—|z — y|?/o?). The proposition now tells us that in this case there are only finitely many
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eigenvalues below the essential spectrum. We have experimental evidence (see below) that “finitely many” is
usually a rather small number, say 2 or 3. If we now use more than those 2 or 3 eigenvectors of the unnormalized
Laplacian, we immediately run into the problems we described above: the eigenvectors carry no information about
the clustering of the data space, and hence we get misleading results. Moreover, again we have the problem that
we do not know how many eigenvaluesidfare belowrg(d). Again we suggest that the least thing one should do

is to estimateg(d) by rg(d,,) on the sample and use only those eigenvectors whose eigenvalues are not too close
torg(d,).

8.2 Empirical results

To illustrate what happens for unnormalized spectral clustering if the conditignrg(d) is violated, we want
to analyze several empirical examples and compare the results of unnormalized and normalized spectral clustering.

We first start with Example 2 of Section 8.1. We draw n=100 sample points according to the piecewise constant
density on the spac& = [1,2] as given in the example (with parameter= 0.3). This density is shown in
the left panel of Figure 2. As similarity function we use the linear similarity funckén, y) = zy as in the
example. The middle panel shows all eigenvalues of the unnormalized Laplace Epé);;bordered according
to magnitude (i.e., we platversus);). We can see that apart from the trivial eigenvalyeall eigenvalues lie
inside the range of the empirical degree functibn(indicated by the dashed lines). The right panel shows the
coordinates of the second eigenvector%cmn, plotted versus the corresponding data points (i.e., for sample
X1, ..., X, and eigenvector = (vy, ..., v, ) we plotX; versusy;). As we predicted in Section 8.1, this eigenvector
approximates a Dirac function. Thus it does not contain any information about the clusters in the data space, and
hence unnormalized spectral clustering fails.

While the example above is a bit artificial we now want to show that the same problems can occur in situations
which are highly relevant to practical applications. As data space we clivaeselR with a density which is a
mixture of four Gaussian distributions where all Gaussians have the same standard déviatind are well
separated from each other (the means are 2,4,6, and 8). A histogram of this distribution is shown in Figure 3.
This distribution a prototypical example, and every clustering algorithm should be able to identify the clusters in
this toy example. As similarity function we choose the Gaussian kernel funktian)) = exp(—||z — y||?/c?),
which is the similarity function most widely used in applications of spectral clustering. In this situation it is
difficult to prove analytically how many eigenvalues will lie belaw(d); by Proposition 27 we only know
that they are finitely many. However, in practice it turns out that “finitely many” often means “very few”, for
example two or three. In the following we show plots of the eigenvalues and eigenvectors of the normalized and
unnormalized Laplacians, for different values of the kernel width paransetéiVe will see in all those plots
that in the unnormalized case, as soon as an eigenvalue gets close to the range of the degree function, its shape
approximates a Dirac delta function.

We start with the kernel parameter= 0.5 (which is the true width of the Gaussian densities), cf. Figure 4.
In the plot of eigenvalues of the unnormalized Laplacian (first row, left panel of Figure 4) we can see that the
second, third, and fourth eigenvalues are close to 0, while the fifth eigenvalue already is close to the range of
the degree function. The eigenvectors reflect this observation (second row of 4): the second, third, and fourth
eigenvectors contain useful information about the clustering, while the fifth only contains few information and
the sixth no information at all. All higher eigenvalues are containeg(d,,). A similar situation can be found
for the eigenvectors of the normalized Laplacian (third row of 4). Hence, in this example, both normalized and
unnormalized spectral clustering work equally good.

Now consider what happens if we increase the kernel width. In general one can observe that all eigenvalues
move towards the range of the degree function. Consider thescase?, cf. Figure 5. We can see that in the
unnormalized case, only the second and third eigenvalues are below the range of the degree function, and only the
second and third eigenvectors carry information about the clustering of the data space. The remaining eigenvectors
approximate Dirac functions. In case of the normalized Laplacian however, all eigenvectors carry information
about the clustering. This situation gets even more extreme if we further increase the kernel widthipocf.

Figure 6, or even to the ridiculous valae= 50 (Figure 7). In the unnormalized case, only the second eigenvalue
and eigenvector are informative, and the other eigenvectors are approximately Dirac. In the normalized case we
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have at least four informative eigenvectors and can recover all clusters perfectly.

One the one hand, one could explain the failing of unnormalized spectral clustering in the cases wghere
chosen too large by the inappropriately chosen paranaetédn the other hand, normalized spectral clustering
is able to cope with this situation and can recover the correct clusters even if the paranseset to the value
of ¢ = 50. In practice, one often does not know the number of clusters in the data, and it is not clear how the
kernel widtho has to be chosen. As we have illustrated, normalized spectral clustering gives good results for a
very wide range of, while unnormalized spectral clustering only works for the “correct” value. The failing in the
other cases occurs exactly in the way we have proved it in previous sections: the eigenvalues are not isolated in
the spectrum and hence the corresponding eigenvectors do not contain information about the clustering. The fact
that this can be reproduced in a toy example for clustering where the density is a simple mixture of Gaussians and
the similarity function is the Gaussian kernel shows that our findings have to be taken very serious for practical
applications.
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Figure 2: This figure corresponds to Example 2 of Section 8.1. The left panel shows the density function with parameter
s = 0.3. The middle panel shows the eigenvalues of the unnormalized Laplacian, ordered according to magnitude. The right
panel shows the second eigenvector of the unnormalized Laplacian. This eigenvector approximates a Dirac function.
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Figure 3: Histogram of a sample drawn according to a mixture of four Gaussians.

[y

[

N

R

25



0.25 14
maxdto 1.2
i
o8l ¥
o6l
. 0.4
005F--------"“"-""“""""“"—"——"-"-~——- min d(x)
¢ 0.2
00 50 100 G0 50 100
Eigenvalues (unnorm) Eigenvalues (norm)
0.2 0.2 1
0.1 0
0.1 : 0.1
0 0 0 0.5
-0.5
-0.1 -0.1 -0.1
_ _ 0
-0.2 0.2 0.2 1
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
eigvec 2 (unnorm) eigvec 3 (unnorm) eigvec 4 (unnorm) eigvec 5 (unnorm) eigvec 6 (unnorm)
0.2 0.2 0.2 1 0.5
0 0 0 0.5 0
. - 0 _
02 0.2 0.2 0.5
-0.4 -0.4 -05 1

2 4 6 8
eigvec 2 (norm)

2 4 6 8
eigvec 3 (norm)

2 4 6 8
eigvec 4 (norm)

2 4 6 8
eigvec 5 (norm)

2 4 6 8
eigvec 6 (norm)

Figure 4: Eigenvalues and eigenvectors of unnormalized and normalized Laplacians for kernet widitb. The first row
shows all eigenvalues of the unnormalized (left side) and the normalized (right side) graph Laplacian. The second row shows
the first eigenvectors of the unnormalized Laplacian, the third row the eigenvectors of the normalized Laplacian. See text for

more details.
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Figure 5: Eigenvalues and eigenvectors of unnormalized and normalized Laplacians for kernel widthSee text for more

details.
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9 Spectral clustering: from discrete to continuous

In Section 2 we introduced spectral clustering as an approximation of a balanced graph cut. On discrete sets,
this gives a nice and intuitively plausible explanation why spectral clustering constructs desirable clusterings.
This justification, however, is no longer satisfactory when we consider the limit clustering on the whole data
space. In this section we would like to discuss why also the limit clusterings represent desirable partitions of the
probability space. We will suggest a method for bipartitioning a general probability distribution and will outline its
connections with spectral clustering. We well keep this section short and informal as a comprehensive discussion
of this subject goes beyond the scope of this paper.

Given a probability distribution” supported on some compact manifold or domain we would like to
partition this domain in two “clusters” satisfying some geometric properties. Similarly to graph partitioning, we
want the size of the boundary to be minimized, while keeping the sizes of parts roughly equal.

One natural formulation of this problem wheénis a manifold is due to Cheeger (1970), who introduced the
isoperimetric constant (Cheeger constant) for a compact manifold as the following optimization problem. Given
a compach-dimensional Riemannian manifol consider a partitioo\t = M; U M3, My = M — M; into
two submanifolds with boundaiy = 0 M, = § M. The isoperimetric constant was defined by Cheeger as

W — g vol" ' B
M= p25M, min (vol" (My), vol" (M — My))

wherevol™” ! B denotes the: — 1 dimensional volume of the boundary. We will call the partition corresponding
to the Cheeger constant (assuming it exists) the Cheeger patrtition.

Cheeger then observed then that this partition is closely related to properties of the Laplace-Beltrami operator
A on M. This relation parallels the relation between the Laplacian of a graph and its Cheeger (or balanced) cut.
Thus the zero set of the second eigenfunctiod\dé an approximation of the Cheeger cut, which is depicted in
Figure 8 (taken from Belkin and Niyogi, 2004).

oM,

Ae=\e P %Itcluster

Figure 8: The Cheeger partition of a manifold is induced by the second eigenfunction of the Laplace-Beltrami operator.

What we need, however, is a more general weighted version of the Cheeger constant, when the manifold is
considered together with a probability density functigiz). The volumes are then weighted using the)
function and the Cheeger partition is appropriately modified, but the conceptual picture does not change. It is
now possible to construct a corresponding weighted Laplace-Beltrami opétater % div(pV f), wherediv is
the divergence operator ol. Eigenfunctions ofA, are analogous to the eigenvectors of the normalized graph
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Laplacian and provide a clustering of the probability distribution, approximating the weighted Cheeger partition
(cf. Chung et al., 2000).

While much work remains to be done to make these intuitions precise, there are strong indications that these
eigenfunction can be approximated from the graph Laplacian with a Gaussian kernel. Results in that direction
have recently been obtained in Belkin (2003), where pointwise convergence of the unnormalized graph Laplacian
to the Laplace-Beltrami operator is shown for the case of the uniform distribution on an embedded Riemannian
manifold, in Bousquet et al. (2004), where it is shown for a probability distribution on a Euclidean domain, and
in Lafon (2004), where the general case of an arbitrary probability distribution on a manifold is considered.

We think that those results together with the results obtained in this paper may put us within reach of the general
theory of spectral bisectioning for continuous spaces and its empirical approximations.

10 Conclusion

In this article we investigated consistency of spectral clustering algorithm by studying the convergence of
eigenvectors of the normalized and unnormalized Laplacian matrices on random samples. We demonstrated that
under standard assumptions, the first eigenvectors of the normalized Laplacian converges to eigenfunctions of
some limit operator. In the unnormalized case, the same is only true if the eigenvalues of the limit operator satisfy
certain properties, namely if these eigenvalues lie below the continuous part of the spectrum. We showed that
in many examples this condition is not satisfied. In those cases, the information provided by the corresponding
eigenvector is misleading and cannot be used for clustering.

This leads to two main practical conclusions about spectral clustering. First, from a statistical point of view it
is clear that normalized rather than unnormalized spectral clustering should be used whenever possible. Second,
if for some reason one wants to use unnormalized spectral clustering, one should try to check whether the
eigenvalues corresponding to the eigenvectors used by the algorithm lie significantly below the continuous part of
the spectrum. If that is not the case, those eigenvectors need to be discarded as they do not provide information
about the clustering.

From a mathematical point of view our contribution is to combine different tools to prove results about
convergence of spectral properties of random graph Laplacians. While by themselves these tools are not new,
they lead to a new method of analysis, which is significantly simpler and easier to understand than previous
approaches. While the results obtained in Koltchinskii anceG2000) and Koltchinskii (1998) are stronger than
our results (for example, they also prove central limit theorems and uniform convergence results), their methods
are also much more involved and allow only for analysis of Hilbert-Schmidt operators. That makes them unsuit-
able for analysis of unnormalized spectral clustering, where the resulting operators are not of Hilbert-Schmidt type.

Finally, our framework can be extended to analysis of various Laplacian based methods other than clustering.
We believe that more systematic statistical analysis of various algorithms in computer science may yield new
insights into their properties.
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