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Fast Binary and Multi-Output Reduced Set
Selection

Jason Weston & GokhanH.Bakir

Abstract. We propose fast algorithms for reducing the number of kernel evaluations in the testing phase for
methods such as Support Vector Machines (SVM) and Ridge Regression (RR). For non-sparse methods such as
RR this results in significantly improved prediction time. For binary SVMs, which are already sparse in their
expansion, the pay off is mainly in the cases of noisy or large-scale problems. However, we then further develop
our method for multi-class problems where, after choosing the expansion to find vectors which describe all the
hyperplanes jointly, we again achieve significant gains.

TR-132November 29, 2004

1 Introduction

Kernel algorithms like Support Vector Machines (SVMs) [1] and Ridge Regression (RR) [2] are popular tools for
classification and regression. The success of kernel algorithms is based on the representer theorem [3, 4], which
states that, under some mild conditions, the solution of an optimization problem of thk:form

N
w* =argmin Y (y;, zi,w) + Qf], (1)

w :
=1

can be expressed as linear combination of training points, i.e
N
w* T p(z) =w*Tx = Zaikz(xi,x). (2
=1

The representer theorem allows one to solvetinetionalminimization in (1) as a standafdnctionminimiza-
tion problem witha € RY as the variable. The representation in (2) is calleddiral with RY being the dual
space.

In general, the set of points; }¥ ; do not necessarily constitute a linearly independent family. This is always
the case for growingV whenk is a non-universal kernel [5]. However in practice, universal kernels like the
Gaussian kernel lead also to almost linearly dependent feature vectors due to decaying eigenvalues and finite
precision effects.

Due to this redundance, the same pairin version spacev € V can be expressed by multiple linear combina-
tions of z;. Note that this is in contrast to the convexity property of the involved optimization problem in (1), e.g.
in SVMs the solutionw is unique, but may have multiple representations in the dual space.

Of great practical interest is the sparsity property of the dual representation (2) of the final prediatoich
determines the number of necessary kernel compuations and thus prediction speed. For this reason, reduced set
techniques try to reduce the amount of points used in the dual representation to speed up prediction speed.

!In this paper, we denote t§y an arbitrary positive regularization functional (for examiple||?), by D := {z:, y: }i1 C
{x x Y} a training set consisting aV points, by/ the chosen loss function and thyand ¢ the kernel function and
corresponding feature mapping. The variable R denotes expansion coefficients of the original problem formulation. For
notation convenience we will usewhere we denote the mafped pairitc) in feature space.



In this paper we explore reduced set selection strategies to compress the linear eﬁpansi@f\’:ll a;x; to
W = Y72 B;x; where the ultimate goal is

Ny < N7 and ’UJ:’lf)(ﬁ)

However the goal can be relaxed by dropping the equality constraint and just demanding

Ny < N;  and n}jirl||w—lb(ﬁ)||2.

Essentially, such methods become useful in one of three scenarios: (i) if the predictor one wishes to compress is
already sparse, but the basis it chooses still has linearly dependdasettolinearly dependent examples, this is
true for SVMs in the presence abise[5], (ii) if the predictor was not sparse in the first place, e.g. with methods
such as Ridge Regression [2] and (iii) when one wishes to construct a multi-output predictor.

In the following sections, we review existing techniques and then propose new methods for the case of classi-
fication) = {+1,—1} and regressioy = R. The reduced set selection methods we propose generalize to the
d-output case) = {1,...,d} andy = R% with d > 1. Compared to existing methods, the methods proposed
are relatively faster to compute, yield similar or higher compression rates and are especially efficient in the multi-
output case. Finally we validate the introduced algorithms experimentally on several classification and regression
benchmarks, highlighting when reduced set selection proves useful, and then conclude.

2 Existing reduced set techniques

Approximations based on rank deficiency It can be shown that linear dependence betwBgn = {z;}Y ,
results in a rank deficient gram matrix.

Theorem 2.1. The maximum linear independent subBgt, C D constitutes of ranl points, wherek is the
matrix of inner products<;; = z, z;.

Proof. We give a constructive proof. Writ& in its spectral formK = >._, AN v;v,”. Obviously rankk
equals the number of nonzero eigenvaldesurthermore one can show that the eigenvectaf K encodes the

. .. . . . T N
eigenvector; of the empirical correlation matri€' with C;; = E[x;]E[z;] " by 2z, = ijl vi;x;. Therefore, an
eigenvalue larger then zero means that there must be at least one goifty with "z, > 0. For all nonzero
eigenvalues\; select one point: with 27z, > 0 = Z?’:l vija:Ta:,» > 0. We can only select rank points and
sincez; Tz; = 0 for all ¢ # j we have selected r linear independent points. Since the remaining eigenvalues are

zero, any further point must be in the span of the selected points since its in the span of the eigefvectolrs

This property was used in Downs et al [7] (see also [8]) to select a subset of siz&rafike subset was
selected by computing the row echelon form#ofand discarding points which lead to zero rows. Once the subset
En, = {xl(i)}f.\fl € Dy is chosen, the expansion coefficiegtsan be calculated by

B = KE}V? Kpy,,Dyn 3)
with
KEN2 = (Kij = k<$1(i)7331(j))),
and
Kgy,,py = (Kij = k(210), 7).

The problem with rank based techniques is their computational cost. The rank is very expensive to calculate
for bigger samples since computation complexit@igV?3) (row echelon form, eigenvector decomposition, etc.).
Furthermore, the compression rates may not be as one would like as it is lossless, e.g. for RBF kernels which give
kernel matrices of full rank [9] no compression is possible

2A related, but more difficult task is that of reduced setstruction In that task one searches for weighBisand vector;,
wherez; are not necessarily in the training set. This results in algorithms which give higher compression rates, but are much
slower and more difficult to optimize, see e.g. [6].

3Apart from finite precision effects on computers. This may explain why Downs et al. [7] reported a reduction in SVs for
RBF kernels. 5



Using additional penalizers In contrast, the/; penalization method suggested in [10, sect. 18.4.2] simply at-
tempts to construct a sufficiently good approximationudfy solving

w— Zﬁixi

where parametek trades accuracy versus spar&itySimplifying expression (4) yields a numerically tractable
guadratic programming problem. This formulation, although elegant also has the disadvantage to be a quadratic
programming problem with cubic complexity in the number of patterns,@&N?3). The weightsc; specify a

prior on the importance of reducing the weight of examplene could simply choose = 1,7 = 1,..., N.

In [8] it is suggested to take = 1/«; in order put more emphasis on reducing smaller weights. In that case, one
can simply ignore the points with; = 0 which for the SVM method gives a complexity cubic in the number of
support vectors, i.eO(#SV?3). In practice, however, it is difficult to adjustto control the approximation error

Hw - Zz 52X1H2
The same concept was used for a multiple output/class scenario which leads to an algorithm with complexity
O((N + 2Nq)?) where N is number of examples apds number of outputs:

arg minz wl — Zﬁgxi
55 -

arg min

2
; +AZcz—|ﬂi| (4)

2
+ A Z ci&i 5)

subject to .
1B <&, & >0.
However, this is clearly prohibitive when eithgor NV are large.

3 Fast Reduced Set Selection

In this section we detail two novel algorithms for achieving faster reduced set selection: hyperplane matching
pursuit, and minimization of the so called zero-norm. In particular, we then focus on generalizations of these
methods that are especially efficient in the multiple-output case.

3.1 Hyperplane Matching Pursuit

We propose a greedy forward selection approach to choosing a reduced set approximationtieé spirit of
matching pursuit. The matching pursuit approach has been used before in the machine learning community to
greedily train kernel classifiers [11] and to greedily approximate kernel matrices [12]. The general approach
works by adding one training example on each iteration, usually by choosing the optimal improvement to an error
measure, e.g. squared loss or matrix norm in the previous two examples. In the following we simply adapt the

”

same approach to the pursuit af”, minimizing the norm ofj|w — @||?> wherew is our approximation.

Algorithm 3.2 (Matching pursuit on w). Given stopping criteria, a kernel matrixi<, w = > . a;x; and training
pointsDy = {X, Y}V,

Initialization
1. i=1, w' =w,a' = a

While||w'||? = o' ' Ko > €

2. Letk* = arg min||w® — axx||?> = arg max|“—%k| = arg max| L2
kjgaelR I kll gk ‘ =zl | gk | /7Kkk|
:wiT X, * K;’k*ai’

_ : i 2
3.a" = argerglnﬂw”” — axp-|| EE Ko

“When the original classifier also has a threshold (constant term), the author’s suggest to optimize this by choosing the
threshold with minimal training error. 3



.- i - )
4, wt = w' — a*xpe, Oé?: =qap« —a”
5.i=1+1.

Final approximation ofw is given byw = Zj(a} — a’)x; which is sparse.

We have written each step of the algorithm in both the primal and dual forms. In step (2) the example is added
to the reduced set which results in the largest decreaséin ||w —||? in a greedy forward selection manner. In
step (3) the resulting multipliex is set. This process can be repeated until either one achieves a certain tolerance
llw — w||*> < e or alternatively one could measure error rate (which is what one is really interested in) on a
validation set.

We now discuss possible improvements to the basic algorithm.
Backfitting The decreasev; at each step can be improved considerably by optimally adjusting;ah the

currently selected examples, rather than just the new incoming example. This approach is called backfitting, which
is a standard trick in adaptive filtering [13] and was also used for kernel matching pursuit [11]. To do this one

solves
min 1> aixi =Y Bixs,
4 4

whereg are the new expansion coefficients for the so far chosen examples indexeiitiy results in:

? (6)

B=K 'K« ()

where K is the kernel matrix between examples indexed; only, andK; . is the kernel matrix betweenand

all other examples. This clearly has a higher computational cost per iteration than step (3) of the basic algorithm.
Backfitting costsO(|s|?) for a single matrix inversion. However, even in this case it is more efficient than
minimization which has complexit@ (N?3) as|s| < N.

Efficient Backfitting ~ Since the expansion is increasing, the main cost of backfitting is calculation of the inverse.
One can update the invergé; ! since the change in the dictionary is the addition of one new pairtb the
existing basis set. For this reason we can use the old imlésr‘éeto calculateK ;. This can be implemented by

the Cholesky factorization of terms appearing in the matrix inversion lemnig, ¥ < Ko ki ) then

k' kil
1 Ko+ ki \ 7'
KS - ( k}r kll ) (8)
_ Kb+ MK kk K33 AR kg ©)
Ak K A ’
with A = m This can be further optimized by performing a Cholesky factorizatio pt = R/ R,
T s\t
which leads to the final recursion equation
B Ry 0

B = ( VK 'k VA > (10)

Probabilistic Search A further speed-up is possible using the "59-trick” of [12]. This suggests that by solving
around 60 one dimensional minimization problems for randomly chosen examples, examples can be chosen which
are probabilistically in the top 95th percentile. We could thus limit step (2) of our basic Hyperplane Matching
Pursuit Algorithm to searching only a small random subset of the training examples.

Optimizing the real-valued output We currently minimize|w — @||*> however we are not so much interested
in this difference as the difference in prediction of the two rules. From the Cauchy-Schwarz equation the latter is
only an upper bound to the generalization error, namely:

e = Eullw'x — @ x||* < sup [|x||?|Jw — @[
4 X



While we try to minimize the right hand side, we could try to minimize the left hand side by the empirical estimate
of e,, namelyé, = = SN | |lw x; — @7 x;||> which is the squared difference of the predictions on the training
set. Interestingly, thg which minimize (6) are equivalent to thiewhich minimize:

||

1
m E [|wTx,, — " xq,
s

i=1

wheres are the indices of the currently selected examples, as the minimizer of (11) is also (7). This shows that the
||[w — ||* minimizer is suboptimal in terms of prediction as it only minimizes the difference in prediction on a
subsebf the examples.

? (11)

3.2.1 Multiple-Hyperplane Matching Pursuit

In multi-class classification one typically finds a solution which is a combination of binary classifiers, e.g. in the
one-vs-the-rest or one-against-one approaches [14]. Such a setting is also applicable to multiple output regression.
For example in one-vs-the-rest classification one traitiassifiers fop classes, where thé" hyperplane is learnt
with examples labeled positively if they are in clgsand negative otherwise. This gives a final classifier:

f(x) = arg max(w] x;)
J
wherew’ = 25.’:1 a{xi. To use reduced set methods, we could compress each hyperplapendently How-
ever, the main computational cost we are trying to reduce is in the calculation of kernel functions, and so we would
rather minimize the union of expansion vectpfs: >-7_, |a]| > 0}| than the sum}="_, [{i : |a]| > 0}].

We thus wish to couple the compression steps to compress the hyperplanes all at once. We can do this in the
matching pursuit framework by choosing the nextto minimize

argmkinminz l|wj — ajx||?
C a

For a givenx, the optimal:; for the above equation are given by:

0, X (12)
a; =
]
which gives the optimak as
T 2
- 1z (X
xf‘,ig:i??m; (sl = =) (13)

To perform Multiple Hyperplane Pursuit, we thus replace step (2) and (3) in Algorithm 3.2 with equations (13)
and (12).

3.3 /¢y-norm Reduced Set Selection

Our central goal is to approximate the vectowith a new sparse vectagt, ideally minimizing the number of
nonzero coefficients g, denoted ag§g||o, i.e. we would like:

min
in |3l

subject to
||Zaixi—26ixi|\2:0 (14)

Use of the so-called zero-norm (which isn’t really a norm) has been researched before in the field of feature
selection [15, 16]. In [15] it was shown how the above problem is related to the following problem:

mﬁin;ln@ +18i)

subject to (14). This can be solved by gradient descgnt, resulting in the following iterative procedure:



Algorithm 3.4 (¢,-minimization). Given a kernel matri¥{, w = ", a;x; and training pointsDy = {X, Y},

1. Set; = 1.
2.
A= arg;mn” 21: ;X — 21: AiBixi||?
which gives
/\* — (K1)71K2O{
whereK}!; = Bi(x;,x;) and K7 = 3,05 (xi,%;).
3. Rescale datag; «— \!j;

4. Go back to 2, until convergence.

This procedure typically converges in 10-20 steps. So far this minimization will give lossless compression. To
extend to lossy compression, we simply use the same trick as i -timénimization, and replace step (2) with:

arg m/\in I Z X; — Z NiBixi||2 + Z AiBi

This gives a fixed deviation that is minimized across iterations. Lik-iminimization, one is required to set the
parametety a priori.

The computational complexity of this optimization is higher tifarmminimization because one is required to
solve multiple iterations of compression, rather than just one. However, on each successive iteration, there are
less variables as one can remove the variables which have already obitainegdl Moreover, when we come to
solve multiple-output compression we will see that comparedtminimization via equation (5) the complexity
is greatly reduced.

3.4.1 Multi-output £5-minimization

To compress multiple hyperplanes, we generalize the previous algorithm. We simply Ieéﬁnfor‘ ea(j,h
hyperplanej, where we wish to minimizé (3_; 137])|]0- To do this one replaces step (3) with < (>, M DB
That is, we perform the following algorithm.

Algorithm 3.5 (Multi-output ¢y-minimization). Given a kernel matrix<, p hyperplanesv? = >~ of'x; and
training pointsDy = {X, Y}

1. Setd) =1, j=1,...,p.
2. . o
argmin”Za?xi—Z)\gﬁfxi||27 i=1,...,p
A i i

which gives
N o= (Kjl)_lKanj, j=1,...,p

whereK7! = 37(x,,x,) and K2 = (751 (x,,%,).
3. Rescale datas! « (3, [\])3

4. Go back to 2, until convergence.

Again, one can then easily extend this to the Ioss%compression case.



Name Inputs  Outputs  Train Test

German 20 1 700 300

Waveform 21 1 1000 4000
Banana 2 1 1000 4300
Image 18 1 2000 300

USPS 256 10 7329 2000
Letter 17 26 16,000 4000
Abalone 8 1 3133 1044
Kin-32nm 32 1 3000 5192

Table 1: Datasets used in the experimentsAll the datasets are classification problems, apart from Abalone and Kin-32nm
which are treated as regression problems.

3.6 Chunking Method: handling large datasets

In this subsection, we explore a chunk-based reduced set selection strategy. The linear expansion of the solution
can be grouped without changing the result, namely:

N
w = Z ;X5

=1
Ny No N

= Z ;X + Z QX Z QiXq,
=1 i=Ni+1 i=Np_1+1
n

= D
j=1

with w; = fijN,_l a;x;. The idea is to apply any of the previously described technigied{ or Matching

Pursuit) to a smaller problem, keeping only a subset of the variables active that we wish to compress, and leaving
the rest fixed. We then move the active set to another subset, and iterate through the subsets. This means we never
face an optimization problem larger than a fixed size, of our choice. (However, if the chunk size is set too small
compression will not be easy to perform as linearly or nearly linearly independent points may not exist in the active
set.) Essentially, the basic Hyperplane Matching Pursuit algorithm 3.2, where no backfitting is performed, is an
instantiation of this with a chunk size of 1.

4 Experiments

We conducted experiments on four types of data: (i) artificial data, (ii) two-class classification problems, (iii)
multi-class classification problems and (iv) regression problems. The summary of the datasets we use, apart from
the artificial one of Section 4.1, are given in Table 1. For each dataset we describe the machine learning algorithm
that is used for learning, along with its parameters, in Table 2. These are the models we would like to perform
reduced set selection on. The parameters selected for German, Image, Waveform and Banana come from [17]. For
USPS and Letter we tried to choose parameters which matched the test error quoted elsewhere [1, 18]. For the
regression datasets, Abalone and Kin-32nm, we tried to pick the best possible parameters on the test set. Apart
from the first toy dataset, in all cases we used RBF kernels. Although attempting reduced set selection on kernels
that are not full rank such as polynomial kernels can result in compression with exactly the same decision rule, we
decided to stick to the more difficult case of approximating a kernel with full rank.

The compared methods are all implemented in Matlab. The source code and datasets are aatilplile at
www.kyb.tuebingen.mpg.de/bs/people/weston/rss . In our experiments with hyperplane matching
pursuit, we perform backfitting, and optimize the criterigm — «||?. For all methods we also optimize the
threshold for the classification tasks by minimizing LPe training error.



Name Algorithm SVs Test Err
German SVM ¢ = 5.24,C = 3.16) 400 0.2570
Waveform SVM ¢ =3.16,C = 1) 331 0.0917
Banana SVM§ = 0.7,C = 316) 220 0.1016

Image SVM ¢ = 3.9, C = 500) 216 0.0281
USPS SVM ¢ = 128,C = 1000) 1526 0.0416
Letter SVM @ = 4,C = 1000) 4522 0.0373

Abalone RR& = 15,7 =1le —5) 3133 0.410
Kin-32nm  RR ¢ = 20,y = 0.005) 3000 0.6187

Table 2: Predictors used in the experiments Included are the parameters of the initial trained predictors we are trying to
compress. The error rates for the first four datasets are averaged over ten splits. The last two datasets, Abalone and Kin-32nm,
have error rate measured using mean squared error (after normalizing the outputs).

Figure 1: Reduced Set Selection on Atrtificial data. The number of SVs increases linearly for SVM duentuise points
becoming SVs, but is constant for RSS methods sudh-asinimization.

4.1 Artificial Problems

We first constructed artificial data, by generating two classes from two Gaussian clouds in 10 dimensions with
means(1,1,1,1,1,0,0,0,0,0) and(-1,—-1,—1,—1,-1,0,0,0,0,0) and standard deviation 4 following [19].

We trained a linear SVM for differing amounts of training points. This is an unrealistic case, as one can represent
the data in primal form by calculating in this case, nevertheless it serves to show that SVM do not optimally
compress in dual space. In this case, any of the reduced set selection methods (with appropriate hyperparameter
choice) will choose 10 SVs with no loss in accuracy. The results are given in Figure 1 usifygrtieimization

method withA = 0. Note the linear increase in number of SVs for SVM compared to the fixed number of SVs
independent of training set size for reduced set methods. This is due to the face that all mislabeled points become
SVs in SVM, and for large datasets this has a signficant effect on computation time. Indeed the fraction of SVs in
SVM is lower bounded by the number of training errors, and hence assymptotically by the Bayes error, as pointed
outin [5].

4.2 Two-class Classification

We took four different datasets and trained SVMs with the parameter choices quoted in [17]. We then compared the
error rate to compression ratio of the competing methdgds: minimization, £,— minimization and hyperplane
matching pursuit. Fof; — and/y,— minimization we chose an array of parameter choices fand then computed

the error rate for hyperplane matching pursuit with the same number of obtained SVs. We averaged the results over
ten splits, linearly interpolating between points as the paramatees not give the same number of SVs each time.

The results, reported in Table 2 indicate similar performance between the methods, although hyperplane matching
pursuit yields slightly lower test error for higher compression rates.

The time given for ten parameter choices for each of the methods is given in Table 3. We show this for ten
parameter choices because to find a good loss to compression ratio a hyperparameter search is necessary. For
example, one can evaluate accuracy using a validation set. As hyperplane matchng pursuit essentially gives all
parameter choices at no extra cost through a single run of greedy minimization, it yields much faster execution
times. Moreover, the hyperparametein the other two methods is difficult to control - it is difficult to know
which value yields which number of SVs. We also analyzed the training error and value of the objective function
for all three algorithms, this can be seen for the Waveform dataset in Table 3. We found the objective function
and training error were lower for hyperplane matching pursuit particularly in the case of high compression rates,
mirroring its test error performance. 8



german image

waveform banana

Figure 2: Comparison of Reduced Set Selection Methods for Two-Class Classificatidrhe three reduced set selection
methods perform similarly, but the Hyperplane Matching Pursuit method yields lower test error for high compression rates on
Waveform and Image.

Figure 3: Training Error and Objective Function Value on the Waveform Dataset The training error (left) and value of
the objective function|w — || (right) are both lower for the Hyperplane Matching Pursuit method relative to the other two
methods.

Note that it is easier to compress the expansions on the problems with higher error rates (Image, which has the
smallest test error, is the hardest to compress.) This corroborates the results found with artificial data in Section
4.1.

Table 3:Calculation Time of Reduced Set Selection Methods for Two-Class Classification for ten parameter choices.

Dataset German Image Waveform Banana
£1-min 613 secs 152secs 290 secs 136 secs
£o-min 645 secs 260secs 250 secs 131 secs
M-Pursuit 21 secs 16 secs 10 secs 2 secs

4.3 Multi-Class Classification

We then performed reduced set selection on multi-class problems. In this setting, one might expect to achieve
a greater gain if the reduced set selection is coupled across the different classifiers. We tested the compression
of SVM solutions using the one-against-the-rest method [14] on two datasets: USPS Digit Recognition and the
Letter database, comprising of letter recognition - there are 10 and 26 classes respectively. We péiformed
minimization on SVM solutions for a range of different values\athe compression parameter.) The results are
given in Figure 4. We performed Matching Pursuit using the same number of SVs for each hyperplane as the
£1 method to enable direct comparison. Again, although SVs produce sparse solutions, these can be compressed
considerably by methods such @sminimization or the Matching Pursuit method. The latter again outperforms

the former for higher compression rates. Finally, we then evaluated the "coupled” Multi-hyperplane Matching
Pursuit method which finds SVs which are relevant to all hyperplanes (for each class) at once. The compression
rate is significantly improved. We did not compare with the algorithm given in (4) because it was too slow to
compute, however in [8] the authors do report a single run of this system with an error ta%dfor 570 SVs

which they compare t©0.8% using the/; -minimization of equation (5) approach which does not take into account

the multi-class problem.

We can expect these results to carry over to other similar settings, such as regression with multiple outputs.
Moreover, we can expect larger gains on other multi-class methods such as one-vs-one or error correcting codes
[14] which use more support vectors.

4.4 Regression

We performed experiments on two datasets in a regression setting. We attempted to compress the solution of Ridge
Regression in dual variables [2] which does not give sparse solutions, hence the potential gain here should be much
greater. We found that was indeed the case. We normalized both input and outputs to have mean zero and standard
deviation one, and quote the mean squared error on the normalized outputs. Figure 5 shows the error rate for
differing compression rates using Hyperplane Matching Pursuit as the RSS method, using the probabilistic search
method to further speed up computation. The resudlts show that compressing RR solutions can give significant



postal letter

Figure 4:Comparison of Reduced Set Selection for Multi-Class ClassificatiorThe Hyperplane Matching Pursuit Algorithm
designed for Multi-Class problems reduced the number of kernel computations required on the USPS Postal Database (left) and
UCI Letter Database (right) compared to binary classification-based compression.

Abalone Kin-32nm

Figure 5: Comparison of Reduced Set Selection for Regressioithe Hyperplane Matching Pursuit Algorithm reduced the
number of kernel computations required on the Abalone (left) and Kin-32nm (right) problems compared to standard Ridge
Regression, which is not sparse.

efficiency gains, and we expect this result to hold for other non-sparse predictors as well, such as the Nadaraya-
Watson Estimator or Parzen’s Windows [14], to name two.

5 Discussion

Reduced set techniques fall into two categories: reduced set selection and reduced set construction. Reduced
set construction tries to reduce the amount of kernel points, by constructing a new set of points which are not
necessarily subset of the training data. In contrast, reduced set selection methods try to reduce the amount of
points byselectinga linear independent subset of the training data. Often the compression factor in reduced set
selection is worse than in reduced set construction but in general reduced set selection methods are more efficient
and numerically stable than reduced set selection techniques.

We have reviewed and proposed new optimization strategies for reduced set selection. Our initial goal was
to find more efficient techniques of achieving compression, and while both Hyperplane Matching Pursuit and
£o-minimization present viable novel alternatives we prefer the former for (1) its basic computational properties,
(2) the ability to compute every compression level in one training run rather than relying on retraining with new
parameter choices, and (3) its good performance with high compression rates. However, the main finding of
this work is that in the multi-class case, significant gains can be made in terms of compression by coupling the
compression of all trained hyperplanes at once. This led to high compression levels in the USPS and Letter datasets.
We expect these results to also carry over to other predictors with multiple hyperplanes, such as the multi-output
regression case (some preliminary experiments on artificial data, not shown, confirmed this). This result suggests
one could gain significant speedups in the training phase also by performing such coupling, if one could design an
algorithm which does that. The most straight-forward way of achieving such a goal would be to adapt the kernel
matching pursuit algorithm for direct multi-class classification. This is the subject of our future research.
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