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Kernels, Associated Structures and Generalizations

Matthias Hein and Olivier Bousquet

Abstract. This paper gives a survey of results in the mathematical literature on positive definite kernels and
their associated structures. We concentrate on properties which seem potentially relevant for Machine Learning
and try to clarify some results that have been misused in the literature. Moreover we consider different lines of
generalizations of positive definite kernels. Namely we deal with operator-valued kernels and present the general
framework of Hilbertian subspaces of Schwartz which we use to introduce kernels which are distributions. Finally
indefinite kernels and their associated reproducing kernel spaces are considered.

1 Introduction

Positive definite kernels are extremely powerful and versatile tools. They allow to construct spaces of functions
on an arbitrary set with the convenient structure of a Hilbert space. Methods based on such kernels are usually
very tractable because of the particular structure (reproducing property) of the space of functions. This has a
large number of applications, in particular for statistical learning, approximation or interpolation where one has to
manipulate functions defined on various types of data, see e.g. [1, 2, 3].

Our goal is to survey some of the results relevant for machine learning. Since the literature is scattered among
various fields of mathematics we believe that the learning community would benefit from a unified exposition of
the results and relationships between them. This work is a first attempt to go into that direction. Although the
theory can be quite technical, we want to shed light on its essence and convey several important messages that
anyone working with kernels and associated spaces should have in mind.

A first message is that there is an equivalence (in a strong) sense between several objects: positive definite kernels
(which are specific functions of two variables), Hilbert spaces of functions with a certain topological property,
Gaussian processes and a class of positive operators. A second message is that the mysterious "feature maps”
associated to kernels are not related to the Mercer property and they exist and can be defined in many different
ways as soon as the kernel is positive definite. A third message is that the integral operator associated to a kernel
has nice properties even if the kernel is not continuous. In particular it is tightly related to the covariance operator
(i.e. the population limit of a covariance matrix) as they have the same spectrum. A fourth message is that most
attempts to generalize kernels (e.g. to operator-valued or generalized functions) end up being special cases. This
may seem surprising but it easily seen by changing the point of view one adopts, going from sets to functions on
these sets. Finally, we recall that there exists a well-developed theory of indefinite kernels (i.e. kernels that are not
positive definite) and their associated structures, based on the notion of reproducing kernel Krein spaces.

2 Positive Definite Kernels and Associated Structures

We restrict ourselves to the real-valued case and denafe*bihe vector space of functions froii to R where

X is an arbitraryindexset and byR[*] the vector space of finite linear combinations of evaluation functionals

(i.e. of the form> " | a;d,,). We define a bilinear map froR[*! x RY toR as(>_ , @il flpin pr =

S aif(z;) wherezy, ...z, € X.

In this first section we shortly review the notion of positive definite (PD) kernels and its associated structures.
Indeed such a kernel can be associated to a space of functions, called reproducing kernel Hilbert space (RKHS), to
a linear operator called positive symmetric kernel (PSK) operator and to a Gaussian process in a natural way. The
following diagram illustrates the fact that all these notions are tightly related.

| PDkemnel | — | RKHS \
!
’ PSK operator ‘ — ] Gaussian Proces$

Yor also callednput space



2.1 Definitions
We now give the definitions of the four objects in the preceding diagram.

Definition 1 A real-valued symmetric functidn: X x X — R is called apositive definite (PD) kernelif for all
n>1x1,...,0p € X,c1,...,cnp €ER

zn: CiCjk(l‘i,l‘j) Z 0 (1)

i,j=1
The set of all real-valued positive definite kernels¥is denotede XX

Definition 2 A positive symmetric kernel (PSK) operator K is a linear operatork : R[*l — R¥ which is
symmetric
vvla w' e R[X]v <U/a Kw/>R[X] JRX = <w/7KU/>R[X]7]RX ,

and positive:ve’ € RIY, (v, Kv')gia; pa > 0.
The set of all such operators is denoted(R™Y).

Definition 3 A reproducing kernel Hilbert space (RKHS) H on X’ is a Hilbert space of functions froti’ to R
where all evaluation functionalg, : H — R, 6,(f) = f(x) are continuou$ equivalently for allz € X, there
exists all, < oo such that

The set of all such spaces is denot&ith(RY).

This definition stresses the fact, that an RKHS is a Hilbert space of pointwise defined functions, where norm
convergence implies pointwise convergence.

Definition 4 A centered Gaussian processdexed byX is a family X, z € X, of jointly normal random
variables, that is for each finite set, ..., z, € X, the vector X,,, ..., X, ) is centered Gaussidn
The set of all such processes is denatédt’).

Note that we restrict ourselves to centered Gaussian random variables. In principle the results can be transferred
to the non-centered case.

2.2 Properties and Connections

The fundamental and most important property of PD kernels is the relationship with inner product spaces. Often
the use of kernel methods is justified by the implicit mapping of the input spidneo a 'high-dimensional’ feature

space. As the next proposition shows, such a mapping exists as soon as the kernel is positive definite and actually
characterizes such kernels.

Proposition 1 A functionk : X x X — R is a PD kernel if and only if there exists a Hilbert spalgeand a map
¢: X — Hsuchthavz,y € X, k(z,y) = (¢(x), d(y)) 5

Note that this result has nothing to do with Mercer’s theorem (we will come back to this issue in section 3.1).
There exist many proofs of the above proposition and we will give one later.

We will now establish the connections between the four objects we have introduced in the previous section. Itis
well known (see e.g. [4]) thd&fx" is invariant under addition, multiplication by a non-negative number and
point-wise limits and has an order relationshig (= ko if k1 — ko is PD). It is less known that all the other

sets introduced aboved.( (RY), Hilb(R*) andG(X)) have a similar structure. Actually, the following strong
equivalence between these spaces and their structures holds.

Theorem 1 [5] There exist bijections which preserve the structure of ordered, closed convex cones between each
two of the following sets
RY*Y | Ly (RY), Hilb(RY), G(X).

An example how the order is transferred fr@f ** to Hilb(R¥) is the following.

Theorem 2 [4] Let ki,k, € RY*Y and Hy, M, their associated RKHS. Thel; C H,, and 1filly, =
I f1lly, » ¥V f1 € Hyifand only ifky < k.

2with respect to the topology induced by the norn#of
3equivalently, all linear combinatiors, «; X, are real Gaussian random variables with zero mean.



The remaining part of this section will show several of these bijections, but due to space limitations we are not able
to show all of them explicitly. Additionally we introduce in the appendix several objects associated to a Gaussian
Process. These objects become interesting if one is interested for example in sample path properties of a Gaussian
Process.

2.2.1 PD Kernels and PSK Operators

The bijection between kernels and kernel operators is made explicit in the following lemma.
Lemma 1 [6] Let k € RT**. The linear operatork : RI*1 — RY defined byK (6,) = k(z,-), is a PSK
operator. Conversely, giveR € L, (X), the function: defined as:(z,y) = (3, Kdy)p y) g« is @ PD kernel.

The above lemma indicates the close correspondence between the kernel function and its associated operator. In
particular, symmetry of one corresponds to symmetry of the other, while positive definiteness of the former one
corresponds to positivity of the latter.

2.2.2 PD Kernels and RKHS
The following fundamental theorems illustrate the link between RKHS and PD kernels.

Theorem 3 [4] Let H be a Hilbert space of functions froAi to R, H is a RKHS if and only if there exists a map
k: X x X — R such that

Vee X, k(z,-)€EH,
VfeH, <f()7k($>)>7-t :f(l‘)

If such ak exists, it is unique and it is a PD kernel.
The second property is called treproducing propertyf the RKHS andk is called the (reproducing) kernel &f.

Theorem 4 (Moore) If k is a positive definite kernel then there exists a unique reproducing kernel Hilbert space
‘H whose kernel ig.

Proof: We give a sketch of the proof (of both theorems above) which involves an important construction. The
proof proceeds in three steps. The first step is to consider the set of all finite linear combinations of the kernel:
G = Spar{k(z,.) : € X} and to endow it with the following inner product

<Zaik(mi,.),2bjk(ﬂcj,.)> :Zaibjk(wi,mj). (2)
i j g i

It can be shown that this is indeed a well-defined inner product. At this point we already have the reproducing
property ong. The second step is to construct the semi-norm associated to this inner product and to show (thanks
to the Cauchy-Schwarz inequality) that it is actually a norm. Hence, and this is the thirdjstep,pre-Hilbert

space which can be complefedto a Hilbert spacé{ of functions. Finally, one has to check that the reproducing
property carries over to the completion. It is then easy to show that any other Hilbert space with the same repro-
ducing kernel has to be isometric isomorphic. Namelykldbe another RKHS with reproducing kerriel It is

obvious thaf has to be a closed subspace®fThen/C can be decomposed intd = H & H+. Now let f € K,

but f ¢ H. Thenforallz € X

F@) = (kG N = (£ + k@) = (@)

Thereforef = f!I, which is a contradiction and we gét= H. O

HenceH is simply the completion of the linear span (i.e. finite linear combinations) of the functions)
endowed with the inner product (2).

2.2.3 PD Kernels and Gaussian Processes

It is well-known that a centered Gaussian process).cx is uniquely determined by its covariance function
E [X,X,], which is a positive definite kernel. Conversely any positive definite kernel defines a covariance function
and therefore a unique Gaussian process by Theorem 14.

4i.e. we add ta7 the pointwise limits of all Cauchy sequences of element$ of



3 Useful Properties

A quit useful relationship betweén ¢ Ri‘”‘ and the seft is thatk induces a semi-metric oft’ by dy(z,y) =
|\k(z,-) — k(y,-)|l,, - Many properties of the RKHS can be stated in terms of this (semi)-metric $gack ) as
we will later see in the study of the separability of the RKHS.

3.1 Feature Maps

Often Mercer’s theorem is mentioned as a necessary condition to have a feature map. The goal of this section
is to show, that it is a sufficient condition but it requires additional assumption® andk. As we have seen

in Proposition 1 a necessary and sufficient condition that such a feature map into a Hilbert space exists is that the
kernel is positive definite. Two questions can then be raised: Can such a map be constructed explicitly ? What is the
induced representation for the kernel ? Both questions have an affirmative answer without any further assumptions
on k as the following feature maphk : X — H show.

1. Aronszajn map
¢ : x> k(z,-), His the associated RKH®(z,y) = (k(x,-), k(y,))

2. Kolmogorov map
¢:x— Xy, H = Ly(RY, i) wherep is a Gaussian meastré(z,y) = E [ X, X,]

3. Integral map
There exists a sdf and a measurg onT such thatone hag: = — (T'y(t))ier, H = Lo(T, 1)®, k(z,y) =

JT(z, )T (y, t)dpu(t)

4. Basis map
given any orthornormal bagigf. ).cr of the RKHS associated t&, one hasp : = — (fo(2))acr, H =
62(1)8 andk(xay) = Zae] fa(x)fa(y)'

When infinite sums are involved like in the last case, it is important to specify in which sense the sum converges.
In general the convergence occurs for each @aiy). However, [7] shows one has stronger convergence, namely
uniform on every sefl x B C & x X, with A bounded and3 compact (w.r.t. the topology induced by).

Given additional structure of the kernel resp. the corresponding RKHS there exist other feature space interpreta-
tions. Mercer’s theorem is a special case of the basis map. It gives stronger convergence properties of the kernel
representation but needs additional assumption, nafidigs to be compact and the kerketontinuous.

3.2 Boundedness and Continuity

Because of the PD property and Cauchy-Schwarz inequality, there are relationships between thefunetion
k(xz,z) and(x,y) — k(z,y) when one considers boundedness or continuity properties of the kernel.

Lemma 2 For a PD kernelk the following two statements are equivalent
(i) «+— k(z,z) is bounded;

(i) (x,y) — k(x,y) is bounded.

Lemma 3 [8] A PD kernelk is continuous ori¥’ x X if and only if the following two conditions are fulfilled
(i)  — k(z,z) is continuous;

(i) for any fixedz the functiony — k(z,y) is continuous ay = .

These conditions are equivalent to the continuity of the funcgtion) — k(x,y) at every point of the diagonal
{(z,9) 2 =y}
Corollary 1 If k is continuous omt’ x X then the identity mapY’, d) — (X, dy) is continuous.

Ssee Appendix A for details.
®The Kolmogorov map shows that such a®eind a measurg always exist.

"such a basis always exists but may be uncountable, in which case, only a countable subset of the coordinates of any vector
are non-zero.

8space of square summable functionsfomith countable support



Proof: Follows directly fromd? (z, z,,) = k(z,x) — 2k(xp, ) + k(Tn, T0). O

Arelated question is: when does the RKHS consist of continuous functions ?i%incgbelongs to the associated
RKHS, this means thdt has to be at least separately continuous. The following theorem provides necessary and
sufficient conditions in a rather general setting.

Theorem 5 [6] Let X’ be a locally compact space an@(X’) the space of continuous functions dhwith the
topology of uniform convergence on compact subsets. The canonical injéctitfa — C(X) is continuous if
and only ifk(z, y) is separately continuous oki x X and locally bounded.

3.3 Whenis a Function in a RKHS ?

Let us suppose we are given a functipand want to know if it is contained in the RKHS associated to a PD kernel
k. Some mistakes have been made concerning this question in the Machine Learning literature. We give a general
result.

Lemma 4 [8] The functionf belongs to the RKH& associated t& if and only if there exists > 0 such that
Re(z,y) = k(z,y) —ef(x)f(y),

is a positive definite kernel. Equivalently this corresponds to the condition
>ier wif (i)

a;a;k(z;, M)) i

sup < 00.

[T|<o0, (ai)ic1€R, (zi)ic1 €EX (Zi,jel
If this is satisfied, one can compute the norm fofs the value of the above supremum, or g8y =
inf{1/y/e|e > 0, R = 0}.

A simple consequence of this lemma is that the RKHS associated to any bounded kernel cannot contain unbounded
functions.

3.4 Separability of the RKHS

Some convergence proofs of iterative algorithms require the separability of the RKHS. However, this is seldom
made explicit in the Machine Learning literature. The first result gives a necessary and sufficient condition for
separability.

Theorem 6 [9] H,, is separable if and only ifX, dy) is separable.

Proof: LetH; be separable, thel;, and every subset 6f/;. is second countable. Particularly the Bét’, ) :=
{k(z,) |z € X} is second countable and therefore separable. $iicé, ) is isometric to the sét( X, ), (X, di)

is separable.

We sketch the proof of the other direction. Sir{éé, dy,) is separablek (X, -) is separable. Then it is easy to show
that the span of (X, -) with rational numbers is dense in Spaft’, -) and sinceH, = Spark(X, -) we are done.
U

In the case of continuous kernels we get the following consequence

Theorem 7 [8] Let X be a topological spacé; a PD kernel which is continuous oti x X', and its associated
RKHS. IfX is separable, theft is separable.

As a result any continuous kernel &% induces a separable RKHS e.g. the RKHS associated to the RBF kernel
k(z,y) = exp(— ||z — y|| /o?) is separable. In the case, whéfg is separable, the basis feature map can be
written with a countable sum. Again, this does not require anything like Mercer’s theorem.

4 Integral and Covariance Operators

In general we assume in statistical learning theory that the spiaiseendowed with a probability measure
Then samplesX; are drawn according to this probability measiite These define then the empirical measure
P, = %Z?:l 6Xi'

In kernel-algorithms one uses the so-calleinel matrixK,, : L2(X, P,) — Lo(X, P,) defined ask,, =
L(k(X;,X;))i,j=1,....n and theempirical covariance operataf,, : H;, — Hy, defined ag, = - >°) | ®(X})
®(X}). These are under some conditions finite sample approximations of opekatofs (X, P) — Lo(X, P)



resp.C' : Hi — H;, defined for the whole probability measufe
We will study the properties of the operatdssandC' and the convergence of the empirical counterparts to the
true operators under the following assumptions on the kernel.

e k(z,y) is measurable,
e k(z,y) is a positive definite kernel,
o [, k(x,x)dP(x) < oc.

Note that the second assumption implies Lo (X x X, P ® P) by the Cauchy-Schwarz inequality. Also note
that in our setting we have no assumptions on the separabilfty@fL, (X, P).

Theorem 8 Leti : H — Lo(X, P) be the canonical injection. Then under the stated assumptisnsontinuous.
Moreoveri is a Hilbert-Schmidt operator withi|3;4 < [, k(z,z)dP(z).
Proof: Leti be the canonical injection: H — Lo (X, P). Then forallf € H,

i1, ey = / (@) PdP(z) = / (f ke, )2, dP() < |11, / Kz, 2)dP(z).

Thereforei is a bounded operator.
Denote by{e,, a € A} an orthonormal basis (possibly uncountableYgfX, P). i is Hilbert-Schmidt if and
only if 3 .4 IIiealliQ(X,P) < oo. For all finite sets” C A we have

S ol = [ 3 leal@PdP@) = [ 3 ea kol dPla)

aEFl aEF acF
[ k@ apa) = [ kea)ip)

where we have used Bessel's inequality. Let nS,,(A) = {P C A| P finite} be the directed set of finite
subsets ofd with the set inclusion as partial order. Since all summands are positive, the limit of the net of partial
sums can be computed as follows

S fieal? ep = 5L S licallyp F € Spin(A)} < / k(. 2)dP(x).

IN

acA acF X
O
The next proposition connects the canonical injectiaith the integral and the covariance operator:
Proposition 2 The integral operatoix
K& La(X,P) = La(X.P), (KN)@) = [ k) f)iP(). ©)
and the covariance operatdr
C:H—-MH, (f,Cg) = /f x)dP(x). (4)

are both positive, self-adjoint, Hilbert-Schmidt and trace-class. Moreover they can be decompdsed as*
and C = i*i and have the same spectrum, which implies thak’ = trC and |C||,¢ = [[K|ys =
Hk||L2(XxX,P®P)-

Proof: We showed in theorem 8 thats continuous. Therefore the adjoiiit : Lo(X, P) — H exists and is
defined forg € Ly(X, P) andf € H as(i*g, f>H = <g,if>L2(X P) In particular, choosing = k(z,-) € H we
see tha(i*g)(z) = (k(z,-),i*g), = (ik(x = [y Kk( y)dP(y), so thatK = i:*. As a consequence,
K is positive and self-adjoint. Moreover |t |s trace class smce

WK = Y (oK casyq = 2 Iealle = 18°1s < [ Kaa)dP(a),

acA a€cA



where we use the fadt|| ;¢ = [|7*|| ;-
Moreover, forf,g € H, (f,i"ig)y, = (if,i9),(x.p) = E[f(X)g(X)] so thatC is positive, self-adjoint and
C = i*i. It follows easily thatC' is trace-class with

trC = Z (ea;Cea)y = Z ||wa||L2 (x,P) — = [|4 ”HS

a€cA acA

Both C' and K are trace-class and therefore compact, which implies that they only have a discrete spectrum.
Moreover they have the same spectrum and all non-zero eigenvalues have the same multiplicity.bé&etn
eigenvalue of and denote by\,, the corresponding finite-dimensional eigenspace. Then

i Ay = AnAy = (i%0)i* Ay = Api* Ay (5)

that isi*A,, is an eigenspace @ to the corresponding eigenvalug and the same argumentation holds in the
other direction. Alsalim A,, = dim i*(A,,) since it follows from (5) that\,, ¢ Ker(i*) andi*(A,,) € Ker(i)

It is a classical result thak € Ly(X x X, P ® P) implies that K is Hilbert-Schmidt and||K||,¢ =
|\k||L2(XXx7P®P), see [10] ( note that this is true, everli§ (X', P) is not separable). Since a compact self-adjoint
operator is Hilbert-Schmidt if and only ~, \? < c it follows directly from the equality of the spectra thétis
Hilbert-Schmidt with(|C| ;¢ = [ K| g = 1kl 1, (x xx,pep)- O

Corollary 2 If Ker(i) = 0thenH = i*(L2(X, P)) and’H is separable.

Proof: If Ker(i) = 0 thenRan(i*) = Ker(i)* = H. Sincei* is compact,Ran(i*) is separable and therefore
‘H is separable. O

In other words if the zero function is the only function in the RKHSwhich is zeroP-almost everywhere then
the image of the integral operatér is dense in the RKHS and the RKHS is automatically separable.

Corollary 3 If H is separable thelﬁiuis =trC =tr K = [, k(z,2)dP(x).
Proof: Let{e,}52, be a complete orthonormal basisf Then

hm Z||Zen||L2(XP) = hm Z/ len (2)|?dP(z) = hm Z/ | (k(z,), en)qy [*dP(z)

nl

_ /th (k(x, ), en)p, [2AP(2) /||k: )2, dP(x) /kxzdP

where the fourth step follows from the monotone convergence theorem and fifth step is Parseval’s identity.

12
léll7:5

The next corollary establishes a feature mapigX’, P).
Corollary 4 If k € Lo(X x X, P ® P), then there exists an orthonormal systéfn ) in Ly (P) such that

2,9) =D At (2)én(y) 6)

neN

where)\,, > 0 and the convergence of the sum occur& X’ x X', P ® P). The associated feature map is thus

= (\/Ed)n(x))nEN

Proof: That is a classical result in functional analysis, see e.g. [11]. O

The remaining question is how the empirical counterpAitsandC,, are related to the operatak§ andC.

Proposition 3 Let K be the integral operator defined {8) and X; an i.i.d. set of random variables drawn from
P. Forall f € Ly(X, P) we have:

n

Jm K ) ey = Jmon™ S0 FO)SXDRXG X)) = [ 5@ @)k y)dP)dP)
ij=1

([ Kf)pyx,p) @S



Proof: The proof is essentially an application of a result in [12]. Given an i.i.d. set of random vari-
ablesX; € X drawn from P and a measurable symmetric functigfiz,y) : X x X — R it states that
lim,, oo n 2 >oij=19(Xi, X;) = Eg(X,Y) almost surely ifE|g(X,Y)| < oo and E+/|g(X, X)| < co. Let

now g(z,y) = f(z)f(y)k(z,y), then the conditions require thit., f(x)f(y)k(z,y)dP(x)dP(y) < co and

S 1f(x)|\/k(2, 2)dP(z) < co. The second condition implies the first one and we have

/ (@)K 2)dP(z) < / (@) PdP(z) / Kz, 2)dP(z) < o,
X X X

since|| fl L, x,p) < /1l Jx k@, 2)dP(). O
The next statement relatés, andC"

Proposition 4
<fa Cng>7—¢k CL_5> <f7 Cg>7—(k ) vfag € Hk

Proof: The proof is a simple application of the strong law of large numbers. O

As a final remark we would like to note thatfifis bounded then all the assumptions are fulfilled and the theorems
of this section apply for any probability measure

5 Generalizations

Now that we have the general picture in mind, we investigate possible generalizations of the presented notions.
We consider the generalization of kernel functions to operator-valued functions and of the RKHS to Hilbertian
subspaces. We will show that they are both special cases of the general theory above.

5.1 Operator-Valued Kernels

Recently there was interest in the machine learning community to extend real-valued kernels to operator-valued
kernels in order to learn vector-valued functions [13]. This concept is not new in the mathematics literature. It can
at least traced back to the paper of [14].

Let X be a set ang a Hilbert spac& The goal is to generate a (generalized) RKHS whose functions arefrom

to G (instead ofY — R). We define a (generalized) notion of positive definite kernel:

Definition 5 A functionk : X x X — L(G)°such thatk(z, y) = k(y, z)* is called a positive definite operator-
valued kernel functionifforall n > 1, z1,...,z, € X,c1,...,¢c, € G, EZj:l (cik(xs,z5),¢) >0

This seems to generalize the PD kernels we introduced before, and indeed, several papers deal with the notion of
operator-valued kernels. However, a slight change of point of view allows to recast operator-valued kernels in the
standard setting of real-valued ones, showing their great generality. We have the following result.

Proposition 5 Letk be a PD operator-valued kernéf x X — L(G). Definel as the function ofX x G) such
that {((=, f), (y,9)) = (f, k(x,y)g)g. The mapk — ¢ thus defined, is a bijection between PD operator-valued
kernels¥ x X — L(G) and real-valued PD kernelgY, G) x (X,G) — R which are bilinear ong x G1. If

G is finite dimensional, ding = d, one can also defin¢;) being an orthonormal basis &, ¢((z, ), (y,7)) =

(ei, k(z,y)e;), such thatt — ¢ is a bijection to real-valued PD kernels ¢&’, {1, ...,d}).

Proof: We prove the above proposition in the finite dimensional case (the general case has a similar proof). Let
¢((x,1), (y,7) be a PD kernel oiX, {1,...,d}). Define a bilinear form ofR¢ by defining the matrix(x,y) :
R¢ — R? as

kij ((E7 y) = <ei7 k($7 y)ej>]Rd = f((;{;, Z)7 (yvj))
%the same theory can be developed for Banach spaces or locally convex spaces.

set of bounded linear operators n
Hie. k((z, 1), (y, g2)) is bilinear ing:, go.



wheree; denotes a basis iR?. Conversely given the PD operator valued kerkgt, i), define by the above
expression the kernel functidi(z, ), (y, 7)). Then we have withy,,, € {1,...,d}

n

M=

aimajn kvm Un (177 5 Ij)
1

n d
Z Z Oéimajng((xi,’l}m,), (I']”Un)) = -

i,j=1m,n=1 i,j=1m,

3
&l

n d
E E Qimen,, , k(Zs,2;5) § Qjneo,
i,7=1 \m=1 n=1

- Z (Cis k(z4,25)c;)

ij=1

with ¢; = Zizl aimes,, . Now if £ is positive definite then consider the index set of sizegiven by z;,,, =

(x4, vm) Which gives the above expression and implies #at y) is a PD operator-valued kernel, since we can
express any vectar € R? in the formzﬁ@:1 ame,,, . Conversely lek(x, y) be a PD operator-valued kernel and
take as vectors; = «a;e,,, thené((z, i), (y, 7)) is a PD kernel function since we can express all index sets in the
form 2, = (l‘i7 Ui)- ]

The meaning of the above proposition is that at the price of changing the index set, one can simply work with real-
valued kernels, and the positive definiteness of these kernels implies the positivity of the corresponding operator
valued kernels. Moreover one can use the properties of the real-valued kernels to derive the properties of the
operator-valued one.

5.2 Hilbertian Subspaces

Instead of trying to generalize the PD kernels, one may, as in the work of Schwartz [6] generalize the notion of
RKHS and kernel operator. The idea is to consider instead of Hilbert spaces of real-valued functions, that is a
Hilbertian subspace dk*, subspaces of quit general spaces equipped with the structure of a Hilbert space that
may not even contain functions. The framework of Schwartz is formulated in the very general setting of locally
convex topological vector spaces (l.c.s.), see [11, 15] for an introduction. Not®thatith the topology of
pointwise convergence is a complete l.c.s.. This topology is equivalent to the weak topology induced by the duality
map(-, ->R[X]’RX defined above. In the following denotes a complete I.c.s.

Definition 6 A linear subspacé{ C F is called aHilbertian subspaceif
(i) itis provided with(:, -),, and’H is a Hilbert space.
(i) The injection ofH into E is continuous; that is convergencehimplies convergence ify.

Definition 7 A kernel operator K is a linear, symmetric map from E'*3 into E. K is said to bepositive if for
all e’ € F', (e’,Ke’)E,’E > 0.

The following theorem gives the analogue of the bijection between positive definite kernels and RKHS.

Theorem 9 [6] There is a one-to-one correspondence between the closed convex cone of Hilbertian subspaces
and the positive kernel operatof§. ToH corresponds the kernel operatéf = j o 0 o j', wherej : H — E'is

the natural injectiony’ : £/ — H’ its adjoint andd : H' — 'H the canonical isomorphism. Moreover given a
positive kernel operatok, the Hilbert space is given iy = K E’ with the inner product ok E’ defined as

(Ke', Kf/>H = <6/aKf/>E',E .

The inner product iri{ defined in the above way reproduces’ the value’asn any element of contained irf+.

Example: [Hilbertian subspaces @*] We have defined in a previous section a positive symmetric kernel operator

K : RI* — R¥. SinceR¥ is a complete |.c.s., it is also a positive kernel operator in the sense of Schwartz.
Additionally by Theorem 4, the associated reproducing kernel Hilbert spaces are Hilbertian subsfatesSaf

we do recover the standard RKHS as a special case of Schwartz’s theory. The setting of Schwartz seems at first

2Note that a linear, symmetric map is weakly continuous.
13E’ denotes the topological dual spaEe



much to general for machine learning tasks. However as we will see soon it provides us with the right setting
to deal with distribution valued kernels, which is a generalization of the usual kernel function. One could ask at
this point why it is a good idea to consider kernels on functions instead of kernels on points. One can argue that
because of the limited precision of the measurement device measurements of real-valued physical quantities can
never be made with arbitrary precision. This measurement error can be modelled by considering, instead of points,
functions with compact support which are concentrated on the measured points. The width of the function then
models the uncertainty in the measurement. This means we smear the points before we compare them with the
kernel function. The following famous theorem characterizes the form of the kernel operator when one considers
Hilbertian subspace of distributions.

Theorem 10 (Schwartz kernel theorem)The topological vector space of continuous linear map®R”") —
D'(R™)*, with the strong topology, is canonically isomorphic to the topological vector spaR™ x R™).

This theorem guarantees that we have again a unique correspondence between the kernel operator and a generalized
kernel function as in the case of usual positive definite kernels. Indeed, in the abstract framework of Hilbertian
subspaces, it is not clear that a function of two variables is naturally associated to a subspace. However, thanks
to this result, it is true in the case of Hilbertian subspaces of distributions: they are naturally associated to a
(generalized) kernel function which is actually a distribution®h x R™. We give a simple yet illustrative

example of this phenomenon.

Example: [L2(R™) as a Hilbertian subspace &f (R")] Let K = §(z — y) € D’'(R™ x R™). Then we have for

all f € D(R™), (Kf)(x) = [g. 6(z —y)f(y) = f(x) and the inner product o D(R™) is defined as:

(Kf,Kg) = (K[, g>D’(R"),D(]R") = - f(@)g(x)dz.

SinceD(R") is dense inL?(R™) and the above inner product induces an isometry betwieBriR") and L2 (R")
restricted toD(R™) we get the desired result that (R") is isometrically isomorphic to the Hilbertian subspace
KD(R") C D'(R™).

Remark: The example on Hilbertian subspacesRof suggests that the framework of Hilbertian subspaces is

a generalization of the Aronszajn framework of RKHS. But one can always see the elements of the Hilbertian

subspacd! C E as linear functions on the duél’ acting viah(e') = (¢’, h), . SOH can be considered as

a Hilbertian subspace @ . SinceE’ must have a special structure, whereas the Aronszajn approach works for
any setX, from this point of view Hilbertian subspaces are actually less general. For example the framework of
distributions can be seen as a RKHS®H. The problem of the Aronszajn approach is that the special properties
of the underlying se&’ play no role and are 'forgotten’. In general it seems that from the structural point of view
the framework of Schwartz is better, from the practical point of view the framework of Aronszajn is maybe easier
to handle.

5.3 The General Indefinite Case

In general it is not easy to check if a given symmetric function is a positive definite kernel. In some cases like
k(z,y) = tanh(a (z,y) + ) it is even known that the associated kernel matrix can have negative eigenvalues.
Nevertheless it is sometimes used in support vector machines. Naturally the question arises if there still exists
something like reproducing kernel spaces, such that we can interpret this non-positive definite kernel as an indef-
inite inner product in these space. The theory of reproducing kernel spaces with indefinite inner products was to
our knowledge first explored by Schwartz [6] in the framework of hermitian subspaces. A more explicit treatment
following Aronszajn was done by Sorjonen [16].

5.3.1 Reproducing Kernel Pontryagin Spaces

Definition 8 A symmetric kernel functioA (s,t) : X x X — R is said to have: negative squares: a nonnega-
tive integer, itV n > 1, and allz+, . .., z,, € X the matrix(k(x;, z;); j=1,....») has at mosk negative eigenvalues
and at least one such matrix has exactlpegative eigenvalues.

Now we define a generalization of Hilbert spaces.

14p’(R™) denotes the distributions d&™ and D(R™) the space of smooth functions & with compact support with the
strict inductive limit topology.
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Definition 9 A Krein spaceis an inner product spacé{, which can be written as the orthogonal st =
H, @ H_ of a Hilbert spaceH, and the antispacdé H_ of a Hilbert space. If the antispack_ is finite
dimensional therH is calledPontryagin space

This decomposition is not unique, but the resulting spaces are all isomorphic. The dimendibnaiaf indepen-
dent of the choice of the decomposition and are called positive and negative indig¢es of

Definition 10 A reproducing kernel Pontryagin space (RKP$j on X’ is a Pontryagin space of functions from
X to R with a reproducing kernet(z,y) on X x X such that

VeeX, k(z,-)eH
VfGH, <f()7k(x’)>7-t :f(l‘)

The RKPS are very similar in their structure as the following two theorems show.

Theorem 11 [16] A Pontryagin spacé+ of real-valued functions oft admits a reproducing kerné{ (s, ¢) if and
only if all evaluation functionals are continuous. In this cakés, ¢) is unique, and it is a hermitian kernel having
K negative squares, whetfeis the negative index 6.

Theorem 12 [16] If K (s,t) is a hermitian kernel ot x X havingx negative squares, then there is a unique
Pontryagin spacé{ of functions onY’ with dim H~ = « havingK (s, t) as reproducing kernel.

5.3.2 Reproducing Kernel Krein Spaces

The following theorem gives necessary and sufficient conditions for a symmetric function to be a reproducing
kernel of a Krein space.

Theorem 13 [6] If k(z,y), z,y € X, is a symmetric function with values R, the following assertions are
equivalent

(i) kis the reproducing kernel of a Krein spag#; of functions on¥'.
(i) There exists ad € RT*¥ such that-¢ < k < ¢.
(i) k= k; — k_ for somek,,k_ € RT*Y.

Unfortunately there exist counterexamples of symmetric functions which do not fulfill these conditions, but when
the above conditions are satisfied, the reproducing kernel Krein space (RKKS) is characterized in the following
way.

Proposition 6 [6]If k = k. —k_ withk, k_ € ]R;‘fxx, then one can chooge, andk_ such that the associated
RKHS ofk, andk_, H respectivelyi{_, fulfill H, (H_- = {0}. In this case the RKKS associateditoonsists

of the functionsf = f, + f_, f+ € Hy, f— € H_ with the indefinite inner produdtf, g] = <f+,g+>H+ —

<f—7 g—>H7 .
6 Conclusion

We have tried to extract, from the huge and scattered mathematical literature on kernels, the basic facts that are
relevant to the researchers in Machine Learning working with kernel methods. The motivation for such a work
came from noticing that these concepts were sometimes misused or ignored by the community. In particular, if
one wants to develop generalizations of these concepts, it should be clear that there already exist several points of
view for such generalizations and that, changing the point of view they can be cast in the same framework.

Finally, we have to say that this work is far from being complete and there exist many other notions to be explored
(and made accessible to the community). We hope to be able to provide an extended and more comprehensive ac-
count (covering for example Gaussian measures, generalized stochastic processes, group representations in RKHS,
spectral decompositions of kernels, regularization theory and various results of applications in approximation, in-
terpolation etc.) in the near future.
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A Structures Associated to a Gaussian Process

In this section we introduce extra objects that are naturally associated to a Gaussian process (hence to a PD kernel).
We refer to [17] for additional details.
We denote by an arbitrary locally convex space.

Definition 11 A Borel probability measurg on E is a Gaussian measuréf eache’ € E’, regarded as a random
variable defined on the probability spagE, i) is Gaussian.

Definition 12 A random variableX with values inE is a Gaussian vectorif the real-valued random variable
(¢, X) g p Is Gaussian for every' € E, or equivalently, if the distribution ok is a Gaussian measure dn.

Theorem 14 (Kolmogorov extension theorem)Let Q@ = R¥, whereX is an arbitrary index set, and leF be
the producto-field BY on . Suppose that for every finite sub3etC X', we are given a (consistent) probability
measurePy, on RY; then there exists a unique probability measure®h such that the projection ont&Y
inducesPy, for every finite) .

It follows from this theorem that all the objects introduced before are tightly related.

Proposition 7 Every Gaussian proce$(,, ). x defines a unique Gaussian measuréRkohand a unique random
vector X with values inR* .

We now give the construction of a feature map via the Kolmogorov theorem [18]. Given a PD kemél define

for any finite subsey = z4, ..., z, a probability measure which is centered Gaussian and has covariance matrix
(k(zi,x;))i,;.- By Theorem 14 there exists a measuren R and it is Gaussian. If we consider the Hilbert space
Ly (R¥, 1) and defineX,, := f(z), f € RY (wheref has the distribution), thenX, is an element of o (R¥, ;1)

andE (X, X,] = [ f(z)f(y)du(f) = k(z,y). Moreover one can check that the completion of the subspace of
Gaussian random variable§, in Ly (R¥, ;1) still consists only of Gaussian random variables. Therefore it is
calledGaussian Hilbert space It is shown in Janson [17] that the Gaussian Hilbert space is isometric isomorphic
to the RKHS associated to the PD kerhel
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