Max—Planck—Institut f Gr biologische Kybernetik
Max Planck Institute for Biological Cybernetics

MAX-PLANCK-GESELLSCHAFT

Technical Report No. 123

The MPI VideolLab - A system
for high quality synchronous
recording of video and audio

from multiple viewpoints

Mario Kleiner!, Christian Wallraven! &
Heinrich H. Bulthoff!

May 2004

! Department Biilthoff, Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tiibin-
gen, Germany.
E-mail: mario.kleiner@tuebingen.mpg.de

This report is available in PDF—format via anonymous ftp at ftp:/ftp.kyb.tuebingen.mpg.de/pub/mpi-memos/pdf/TR-123.pdf. The
complete series of Technical Reports is documented at: http://www.kyb.tuebingen.mpg.de/bu/techr/

The MPI VideoLab - A system for high quality
synchronous recording of video and audio from
multiple viewpoints

Mario Kleiner, Christian Wallraven & Heinrich H. Blthoff

Abstract. The MPI VideoLab is a custom built, flexible digital video- and audio recording studio that enables

high quality, time synchronized recordings of human actions from multiple viewpoints. This technical report
describes the requirements to the system in the context of our applications, its hardware- and software equipment
and the special features of the recording setup. Important aspects of the hardware and software implementation are

discussed in detail.

Keywords: multi-viewpoint video recording, distributed system

1

This report describes the MPI VideoLab, which is

a flexible system for high quality video and audio
recordings of human actions from multiple viewpoints.
There are a number of research areas where such a
setup can be applied:

Introduction e Computer Vision: Recognition of human ac-
tions and facial expressions. By recording and
annotating several controlled databases of human
actions and facial expressions, the setup allows
us to create training and testing sets for evaluat-
ing recognition algorithms from computer vision
and machine learning.

e Psychophysics:Studies on recognition of facial

expressions and human actions. By providing an- ® Computer Graphics: Baseline for computer an-

notated databases of facial expressions and hu- imation. Traditional computer animation, for
man actions, this setup can help to address funda- ~ €xample of three-dimensional facial expressions
mental questions of perceptual research in a con- ~ (avatars), relies crucially on a “ground truth”.
trolled experimental setting. This setup can provide not only a static base-

line from multiple viewpoints, but also a dynamic
Psychophysics: Studies on viewpoint general- baseline of how the facial features move between
ization in recognition tasks: How sensitive are two points in time.

humans tochangesin viewpoint when having

to recognize spatio-temporal patterns of human In this report, the focus is on describing tteehnical
actions (facial expressions, gestures, body lan-details- hardware as well as software - of the Video-
guage, etc.)? Lab, rather than going into more detail about possible
applications. From the above list, however, it becomes
clear that such a setup has to fulfill a number of im-
portant requirements in order to be a useful research
tool.

Psycholinguistics: Studies on multi-modal con-
text effects of facial expressions: How do sound
and vision interact during successful communica-
tion?

Computer Vision: Controlled capture of hu- 11 Generalrequirements

man actions from multiple viewpoints. This More specifically, from the list of applications, we can
can be used, for example, for dynamic, three- identify six critical technical requirements for the sys-
dimensional tracking and reconstruction of faces tem.

and gestures. The use of multiple cameras allows The first and most fundamental requirement is that
us to perform these tasks more efficiently, as mul- all cameras capture video frames synchronously in
tiple viewpoints introduce important constraints time, with synchronization maintained over extended
for interpreting the two-dimensional projections recording periods. The capture times of corresponding
of three-dimensional points. frames from different cameras must not deviate from

each other by more than a few microseconds in order toPAL standard) or 60 fields per second (NTSC stan-
be suitable for multi-view computer vision algorithms dard). Control of exposure time, focus or color gain is
and precise psychophysical investigations. In addition, usually handled by automatic black box circuitry, mak-
recorded sound should stay synchronized to the videoing it difficult to control for these parameters. Video

stream with millisecond precision. frames are usually not captured as full images, but in-

Second, to accomplish color based tracking and thestead as time-sequential pairs of even and odd fields:
creation of high-quality visual stimuli, the video im- One field only contains the even numbered scan lines,
ages need to be captured in color at a high imagethe successive field contains the odd numbered scan
resolution under well controlled lighting conditions. lines. This leads to unwanted interlacing artifacts, es-
The footage should be free of interlacing, motion blur, pecially when fast horizontal movements occur in the
video compression artifacts or image noise. scene.

Third, to capture and reconstruct the dynamics of Another problem of standard recording equipment is
human facial expressions or articulated movementsloss of image quality. Analog recording systems suf-
without motion blur, we need to have exposure times fer image degradation due to “pollution” of the video
below 5 milliseconds and sometimes frame rates Signal during transmission over long cables, quality
higher than the typical 25 full frames per second, that loss caused by aging of magnetic storage tapes and
are often used for conventional video recordings. loss caused by the analog to digital conversion pro-

Fourth, moving video stimuli for experiments are CesS during readout. Digital transmission and storage
usually presented on standard computer equipment, eisystems usually have a much higher signal to noise
ther as sequences of single images that are presentetio and better means of error correction by design,
with controlled timing, or as standard video files in but they have to apply lossy image compression algo-
MPEG, QuickTime or AVI format. Computer vision fithms to the video data to reduce storage space and
and image processing algorithms need digital input asPandwidth requirements, thereby artificially degrading
well. Therefore, in order to make handling and archiv- image quality. While the selected trade off between
ing of the video footage as easy and straightforward asimage quality and storage space is well suited for con-
possible, all video footage should be stored in a digital SUmer video applications and broadcast transmission
file format on regular computer filesystems instead of Over television channels with their limited bandwidth,
analog video tape. Fully digital storage also prevents it is not acceptable for our range of applications.
quality loss due to conversion from analog to digital))
footage and reduces the need for labor intensive and? System implementation

error prone human intervention in the conversion- and 1, arcome the restrictions of standard video equip-

postpro'cessmg'process'.) ment, we combined specialized video recording hard-
The fifth requirement is that the handling of the sys- \\are that is targeted to industrial machine vision appli-

tem should be easy to learn and the setup should b&gion with off-the-shelf computer hardware and cus-
easy to use, reliable and robust against operator errorgyy, video recording software to build a high perfor-
or technical error conditions. This is due to the fact .,-ce distributed video recording system.

that the recording setup will be often used by people
without a technical background in video processing, 2.1 Recording hardware

and typical regordmg Sessions often consist of up to Our system is designed as a distributed computer clus-
onelhundred smgle recordings.) . ter of video and audio recording nodes (see figire 1).

Finally, a desirable property is easy and relatively gach recording node consists of a specialized digital
cheap exten3|b|_llty of the setup to a higher number of | ;4o camera, a specialized frame grabber and - op-
cameras or audio channels. tionally - a sound card, which are attached to a stan-
dard Intel-x86 compatible PC with fast hard disks. The
computers of the nodes are connected with each other
Cameras and recorders for formats like VHS, S-VHS, and with a control computer as well as a file server
DV, DVCPro, Betacam or Digital Betacam, do not pro- via a standard 100 MBit Ethernet local area network.
vide all the technical features that are needed to meefThe frame grabbers of all nodes are connected to each
the requirements mentioned above. Most video cam-other for the transmission of an electronic trigger sig-
eras can not control the start of frame capture with mi- nal that allows for high precision synchronisation of
crosecond accuracy via an external trigger signal, mak-frame capture between the nodes. Distributed control
ing it very difficult to simultaneously control and syn- software (see secti¢n 2.2) presents the cluster as a sin-
chronize multiple cameras. They usually operate at agle unified system to the user and application program-
fixed frame rate of e.g., 50 fields per second (Europeanmer.

1.2 Limitations of common video equipment

-

o Integrated Infrared - Cut filter to mask out inci-
dent infrared light.

System control computer

0o
a—

LAN - Ethernet

The progressive scan CCD sensor reads out and trans-
mits images as full frames, thereby preventing any
kind of possible interlacing or tearing artifacts. As the
conversion of CCD sensor measurements from analog
to digital values is done by an internal converter in the
camera immediately after readout from the CCD chip,
transmission of video data from the cameras to the
frame grabbers already happens in digital form, mak-
ing the captured video data robust against degradation
by electronic noise in the cables. All relevant acquisi-
tion parameters of the cameras are programmable ei-
Figure 1: Overview of the video setup, showing a typical ther via the Channel Link video bus from the frame
arrangement of the cameras and lights and the connection@rabber or via a serial RS-232 link from the responsi-
between different recording nodes. ble computer. The high frame rate together with the
ability to select very small exposure times and high
Currently (as of April 2004), we use six recording Signal amplifier gains allows us to capture fast move-
nodes, each equipped with one camera. One of the siXN€Nts without significant motion blur.
nodes additionally contains a stereo sound card, giving Another option for animage sensor would have been
us the ability to record audio signals on two channels CMOS (complementary metal oxide semiconductor)
with compact disc audio quality. The system can be technology instead of CCD (charge coupled device)
extended to any number of cameras and audio channelééchnology. These imaging sensors are cheaper, allow

Channellink-Videobus

!
T

Slave-PC

m

Subject
Master-PC

by attaching additional recording nodes.

2.1.1 The cameras

for smaller cameras, as the analog to digital convert-
ers are already integrated into the sensor, and require
less electric power (Seel[2] for an in-depth explanation

Our current system uses A302bc cameras from theand comparison of the two technologies). Another in-
German company Baslér|[1]. This camera model hasteresting feature is the ability to have random access to

the following properties:

e A single chip, progressive scan 1/2” CCD sensor,
using a Bayer color filter maskl[4] for color inter-
polation.

Maximum image resolution 782 x 582 pixels.
Square pixels of size 8,3m by 8.3um.

Programmable 8 or 10 Bit analog to digital con-
version in the camera with programmable gain
and offset.

Programmable region of interest (ROI).

Programmable exposure time between 10 mi-
croseconds and 1000 milliseconds.

Programmable frame rate of up to 60 full frames
per second.

Digital output of CCD sensor intensity measure-
ments over a Channel Link video bus.

Exposure interval and readout of the CCD chip
can be triggered by attached frame grabber.

C-Mount connector for standard optical lenses.

sensor pixels or regions of the chip: If one is only inter-
ested in small portions of an image, one can just read
out that areas instead of having to read out a full frame
like with CCD chips. This allows for higher frame
rates. Their big disadvantage with respect to CCD sen-
sors is a smaller sensitivity to light and a higher noise
level.

As we wanted to have the highest possible image
quality and a high light sensitivity for recordings with
short exposure times, CMOS sensors were ruled out in
favor of CCD sensors.

2.1.2 The frame grabbers

The frame grabbers are “microEnable MXA36”
from the German company Silicon Softwalré [3]. Each
frame grabber is attached to its recording computer via
a standard 32 Bit, 33 Mhz PCI bus and to the cameras
via a Channel Link video bus cable of 5 meters length.
The frame grabber has 512 KB of SDRAM mem-
ory and a “Xilinx XC4036XLA" Field programmable
gate array (FPGA). The FPGA circuitry on the frame
grabber is freely programmable in the “Very high
speed integrated circuit Hardware Description Lan-
guage” (VHDL). The implementation and behavior of
the frame grabber hardware is therefore not hard-wired
as on conventional frame grabbers, but only deter-

Line Y The most important advantage is a reduction in the
trev1 | [R][6] RI[G][RI[G] RIERIE am_ount of required.disk storgge space as well as re-
Line Y-2 qwreq h_ard disk write bandwdth by avoiding the de-
tne 3 | [R][G][R] [G][R] RIEE mosaicking step: Single chip CCD cameras only have
Line Y-4 one sensor element per captured image pixel. At each
tnev5 | [R][G][R][G][R] RI[GI[R] image pixel location, they can only measure either an

intensity value in the “red” part of the spectrum, or
in the “green” part of the spectrum, or in the “blue”
part of the spectrum, depending on the color filter in
front of the sensor element (see Figlife 2 for the dis-
tribution of color filter elements over the CCD ma-

Line 6 trix of our cameras). As each output pixel in the final
wres | [R][G][R][G][R][c] captured image needs to have a red-, green- and blue-
Line 4 component, the two missing color values for a specific
tre3 | [R][G][R][G][R][G] pixel location are calculated as a weighted sum over
Line 2 the appropriate color component intensity values that
tre1 | [R][G][R][G][R] [RI[G][R] are measured at neighboring sensor locations. Let us
TR XARTNL: X illustrate this interpolation, e.g., for the output pixel

that is computed for the 3rd column in the 2nd line
Figure 2: The Bayer color filter array mounted on our cam- of the CCD sensor array: As can be seen in figure
eras CCD chip. R=Red filter, G=Green filter, B=Blue filter. Q7 the sensor element at position,y) = (3,2) is
(Picture from the A302bc camera users manual.) equipped with a green color filter, therefore provid-

ing a direct measurement (denoted/as, y)) for the

)) value of the green componeti(z,y) of the output

mined by Fhe VHDL firmware (called “Hardware ap- ¢gjor, soG(z,y) = I(z,y). The value of the blue
plet”) that is downloaded to the frame grabbers FPGA component is interpolated by taking the average over
during system initialization by our recording software. he measurements of the neighboring sensor elements
With an appropriate hardware applet, the frame grab- 5¢ positiongz—1, y) and(z+1, y), because these sen-
ber can act as a realtime image preprocessor for lowgq g gre equipped with blue color filters, Béz, y) =
level image processing operations like e.g., image con-1(z—1.y)+I(z+1y) The red component is computed as

volut|0n: low-pass filtering, edge detection and color average over the sensor readings at positieng — 1)
conversions.

and(z,y + 1), where red color filters are installed in
front of the sensors, sB(x,y) = HEy=UHzytl)
Depending on the positiof:, y) of the output pixel

The vendor-supplied default hardware applet would (¢ Position even or oddy position even or odd) one
use the FPGA to perform on-the-fly computation of €ncounters four different configurations of color filters
RGB pixel color values by interpolation from the raw in the three by three neighborship, therefore four dif-
pixel intensity measurements, a technique known asferent sets of equations for color interpolation are re-
demosaicking (se&][5] for a comparison of different de- duired. The equations given for our example position
mosaicking techniques). It would also perform color (#,¥) = (3,2) apply for all pixels with oddz posi-
correction before transmitting the video data to the tion and every position. Equations for the other cases
computers for writeout to the hard disks. Similar func- ¢an be easily derived from figuf¢ 2 and are left as an
tionality is hard-wired into standard video cameras and €Xercise to the reader.

conventional frame grabbers. The demosaicking step outputs three color val-
We use the programmability of the frame grabbers uesR(z,y), G(z,y), B(x,y) for each physically mea-

to preventany kind of image preprocessing of the mea- sured value of pixel intensity(z, y), effectively trip-
sured CCD pixel intensity data by the camera or frame licating the amount of image data that needs to be
grabber hardware. Thatis, our hardware applet ensureprocessed and stored to disk. If we would write out
that the original CCD pixel intensity data recorded by the demosaicked digital video data stream at our high-
the cameras is left unaltered by the frame grabber, soest image resolution and frame rate to the hard disks,
our recording software is able to store this raw data we would have to write out a data volume of 782 *
to the hard disks of the attached recording computer.582 pixels * 3 color components per pixel (Interpo-
Storing raw data has two important advantages for ourlated RGB color values) * 1 Byte per component *
application: 60 frames per second = 78.2 Megabytes per second,

Lossless data compression:

which is not feasible, because conventional hard disks
are not fast enough to write out a data stream at 78
MB/s. High-end RAID arrays could handle such a
writeout bandwidth, but they would be very expensive
to buy and maintain, especially if one needs a RAID
unit for each video recording node.

Storing the unfiltered data to the hard disks reduces
the required disk write bandwidth to 26.05 MB/s plus
additional 0.1 MB/s for each recorded audio channel if
sound recording is enabled. Our specially configured
fast IDE hard disks (see Sectipn 2]3.2) are able to sus-
tain an average write data rate of 39 MB/s for multiple
hours, allowing for very long uninterrupted recordings.
As a side effect of storing the unfiltered data, we also
save a factor of three of storage space.

The second advantage of using raw sensor data as
our native video data storage format is the possibil-
ity to reapply different postprocessing algorithms e.g.,
color calibration, as an offline postprocessing step any
time after acquisition of the video data. See sections

[2.4.2 and 2.4]3 for examples of postprocessing algo-
rithms.

Accurate camera synchronization:

The start of frame capture of each frame grabber
can be triggered externally by a digital synchronisa-
tion signal and each frame grabber can act as a signal
generator for the creation of such sync signals. We
use this capability to ensure accurate synchronisation
of frame capture between all recording nodes: One of
the frame grabbers (the “master”) is programmed by
our recording software to act as a sync signal gener-
ator. Whenever the master frame grabber starts cap-
ture of a new video frame, it generates and distributes
a sync signal via a dedicated cable to all other frame
grabbers. These “slave” frame grabbers start capture
of their next video frames upon arrival of the exter-
nal sync signal. This way, capture of corresponding
video frames happens simultaneously on all recording
nodes with a maximum jitter of frame capture timing
between the different nodes of less than 1 microsec-
ond. This accuracy is sufficient for even the most de-
manding computer vision and graphics applications.

2.1.3 Computer system

The underlying computer system of the video setup
consists of off-the-shelf hardware, driven by a cus-
tomized version of the free GNU/Linux operating sys-
tem.

Operating system:
We have chosen to run the computers with differ-
ent versions of the free GNU/Linux operating system

Flexibility and transparency: It was easy to un-
derstand and customize all relevant aspects of the
working of the Linux operating system even at
a low level, because all components are either
available as source code (e.g., operating system
kernel, device drivers) or implemented as eas-
ily modifiable shell scripts and human readable
text configuration files (e.g., bootup-, control- and
shutdown scripts). Easy access to the inner work-
ings of the system, together with very detailed
technical documentation that is available on the
Internet, allowed us to modify the system to fit
our special needs and was especially helpful for
debugging and fine-tuning the application.

Robust realtime behavior: Our application makes
challenging demands onto the operating system
regarding consistent disk write throughput and
consistent maintenance of tight application tim-
ing deadlines (see Sectin 2]3.1 for details).
Missing this deadlines even by a few millisec-
onds would lead to loss of time synchronization
between the different recorded video- and audio
streams or to dropped video frames. Our cus-
tomized Linux system, albeit using a standard
Linux 2.2.16 kernel without special realtime ex-
tensions, showed very reliable timing, with no
dropouts at all, during uninterrupted test record-
ings of up to 3 hours. Simple benchmarks under
Microsoft Windows NT indicated that it would
have been difficult at best, to reach the same level
of realtime reliability.

If standard Linux would have been unable to
meet the realtime demands of our application,
we could have used a hard realtime version of
Linux, e.g., “Realtime Linux” from FSMLab$§[7],

or Microsoft Windows CE 3.0, a realtime ver-
sion of Microsoft Windows. Both systems, ac-
cording to their distributors, provide fully deter-
ministic thread scheduling and worst case laten-
cies for thread scheduling and interrupt handling
of less than 50s on comparable hardware. A
problem with such systems would have been lack
of device driver support for the frame grabbers,
requiring costly porting of the device drivers by
our venddf, and a more complex design of our
recording application due to the more involved
programming models of these realtime operating
systems.

Stability and robustness: Stable operation of the
system for multiple hours under very high load

As of May 2004, our frame grabber vendors provide de-

[6], because Linux has several advantages as a realtim@jce drivers for Realtime Linux, but in 2001, when we started

cluster operating system.

development of the system, this was not the case.

is crucial for typical recording sessions with our
setup. Debugging a distributed parallel sys-
tem, like our application, is challenging as well.
Therefore it is important to have an operating sys-
tem that works reliably under high loads and that
is very robust against operator errors and applica-
tion malfunctions. Linux has a very good reputa-
tion in this area and fulfilled our expectations.

e Ease of maintenance: All important management
tasks, even system installation on new hardware,
can be easily automated via scripts. One can per-
form all system administration tasks from a re-
mote console over the network, without the need
to attach keyboards or displays to the single ma-
chines.

¢ No licensing costs: Linux can be downloaded,
installed on as many computers as required free
of charge, and customized in accordance with the
GPL licensel[11].

The exact type of Linux systems and necessary mod-
ifications to the system are described in more detalil
below, together with the description of the computer
hardware.

Computer hardware:

The computer hardware currently consists of six
identical recording nodes, one system control com-
puter for the user and a dedicated fileserver for per-
sistent storage of the recorded data and data postpro-
cessing.

e Our recording computers are standard Intel PCs
with Intel Pentium-IIl processors, running at 800
Mhz clock speed with 256 MB of RAM. The
computers use 100 MBit ethernet adapters to con-
nect to the control computer and fileserver. Each
computer is connected to its associated frame
grabber and - optionally - a standard sound ard
via the built-in PCI bus, and to its associated cam-
era via a standard RS-232 serial link. The ma-
chines are “headless”, they are completely con-
trolled, including powerup and shutdown, via net-
work without any need for a keyboard, mouse
or display. Each computer contains a fast IBM
DTLA-307075 75 GB IDE hard disk drive and a
IBM Deskstar IC35L120AVVA07-0 115 GB hard
disk driv§, which was added later to improve

2Currently, we use a single Soundblaster compatible “En-
soniq 5880 AudioPCI” sound card with two channels, but the

write performance and to increase storage capac-
ity by combining both drives into a virtual RAID-

0 drive (see Sectidn 2.3). The local storage capac-
ity for video data on each node is currently 180
GB, allowing for uninterrupted video recordings
of up to 2 hours at maximum image resolution
and frame rate.

The operating system is a customized version of
RedHat-Linux 7.0, running Linux kernel version
2.2.16. The system has been modified to sim-
plify maintenance of the recording cluster and
to guarantee the good realtime performance and
high disk write throughput crucial for our appli-
cation. See Sectign 3.3 for a detailed explanation
of performance enhancements.

The system control computer is a standard In-
tel Pentium-4 system running at 2.2 Ghz clock
speed. It is equipped with 1 GB of system RAM
and a GeForce 4 graphics card. It is used to dis-
play the graphical user interface for control of
the recording setup by the user. The operating
system is a standard Linux distribution, currently
RedHat-Linux 7.2, running Linux kernel 2.4.20.

The fileserver is a Dell PowerEdge 2550 server,
equipped with two Pentium-IIl Xeon processors,
each running at 1.1 Ghz clock speed. It has 1 GB
of onboard system memory. The operating sys-
tem is RedHat-Linux 7.2, running Linux kernel
2.4.20. The fileserver is used for reliable per-
sistent backup of recorded video data from the
video recording nodes and for providing the data
to in-house client computers. Currently it uses a
hardware RAID level 5 high performance SCSI -
disk array from Dell with a disk capacity of 600
GB for data storage. The current RAID-5 con-
figuration protects data integrity in case of hard-
ware failure of one drive. Redundant internal
power supplies, a connection to an uninterrupt-
ible power supply and the Linux Ext3 journal-
ing filesystem provide protection against possible
data loss or data corruption in case of power out-
age, unclean system shutdowns or hardware fail-
ures. The RAID array is made available via the
Linux Logical Volume Manager (LVM) to allow
for easy extensibility of the storage capacity, if
needed. The fileserver runs multiple server pro-
cesses to export the video data to client comput-
ers:

system would also support high-end multichannel PCI sound Any other combination of modern IDE drives with the same
cards, if needed. or better specifications regarding minimum, maximum and

3The exact model names are provided simply as a refer-average data throughput and minimum capacity should work
ence for a drive combination that is known to work reliably. as well.

— A NFS V2 and V3 server daemon for serv-
ing in-house, Unix compatible client sys-
tems like Linux, FreeBSD, SGI-Irix and Ap-
ple MacOS-X.

— Version 2 of the Samba SMB servér [15] for
data access from Microsoft Windows client
systems.

2.2 Software framework

The software of the VideolLab currently consists of
multiple applications which will be described in more
detail in the following sections:

e The distributed recording software “vigui” for
multi-view video- and audio recording, using the
video setup. This is an interactive application
with a graphical user interface for online control
of the distributed setup during preparation and
running of the recording sessions.

A specialized movie player “vimovieplayer” for
playback of the recorded video streams, giving
access to the special properties of the multi-view
video- and audio streams. It is completely con-
trolled with a GUI and also allows for online se-
lection and transcoding of the video streams into
standard movie file formats like e.g., MPEG and
AVI for export into common video editing, play-
back and postprocessing applications.

A postprocessing tool “vlvideofile2ppm” for dif-
ferent kinds of video- and audio postprocessing
operations. This is a command line tool for batch
processing of large amounts of data, controlled by
shell scripts.

Specialized applications for camera calibration,
face tracking, facial texture extraction and ma-
nipulation from recorded video. These applica-
tions are mostly used for the generation of spe-
cial stimuli for psychophysical investigation of
human face perception. A discussion of this ap-
plications is beyond the scope of this report, see
[20] for some details.

All applications are written either in the C or C++ pro-
gramming language for the GNU/Linux operating sys-
tem on Intel x86 compatible hardware. Applications
that use the VideoLab, or data recorded with the Vide-
oLab, do so by linking against the “libvideolabbase”
library, our custom system library of C++ classes for

control of the video setup and access to the video data.

The following sections will give an overview of the
“libvideolabbase” library, a detailed explanation of the
working of the parallel distributed recording process
and an overview of the different postprocessing appli-
cations.

2.2.1 The libvideolabbase - library

All functionality for control of the distributed video
recording system and for access to - and manipulation
of - recorded video- and audio data is implemented as
a collection of C++ classes in the libvideolabbase li-
brary. The library is a shared library, VideoLab appli-
cations are dynamically linked against the latest ver-
sion of the library at application startup, therefore the
implementation of the library can be improved (e.g.,
performance enhancements or bug fixes) without the
need to recompile the different applications that use
the library.

Encapsulating system control functions and data ac-
cess functions into a library of C++ classes has three
advantages:

o Ithides complexity from the application program-
mer: Application programmers do not need to
know much about the data format of the video-
and audio files on the filesystem or about the
technical implementation of the recording setup.
They are presented with a clean, consistent and
easy to learn C++ programming interface for per-
forming low level operations like e.g., starting the
recording hardware, selecting and setting up cam-
eras and audio channels for a recording, setting
up exposure time or frame rate, starting or stop-
ping of a single recording and creation, reading
and writing of video files.

Functionality that is potentially useful or neces-
sary for multiple applications can be shared by
implementing it in the library.

System developers are able to make changes “un-
der the hood” of the system, e.g. bug fixes and
performance enhancements, without affecting the
behavior of previously written applications.

The library currently contains the following classes:

e VLE: Aclass for the static definition of status- and
error codes. The VideoLab library has extensive
self diagnostic routines and error handling func-
tions to guard against operator errors and hard-
ware problems. In case of error, it writes detailed
error descriptions into system log files to aid sys-
tem developers in debugging. It also provides hu-
man readable error messages, as well as step by
step troubleshooting tips, to the calling applica-
tion. These messages are preformatted and in-
tended for presentation to the user, e.g. via out-
put into dialog boxes. The library also returns
symbolic error- and status codes for high level er-
ror handling routines in the calling applications.
These codes are defined in the VLE class.

e VLProject The VLProject class is a “container”
for all settings that apply globally to all views of
a single multi-view recording. It provides meth-
ods for querying and changing such global set-

plemented as a mixture of hand optimized C++
and Pentium-MMX assembler c@ffjes it is cru-
cial for the performance of all postprocessing ap-
plications.

tings like e.g., frame rate, number and selection
of cameras for the respective recording and to-
tal frame count for the current recording. It con-

tains methods for creating, cloning, deleting and
accessing recordings as a whole, for simultane-
ous seek operations in all video files of a video

recording and - most importantly - for accessing

the single video files of the different cameras of a
multi-view recording.

e VLRecorder The VLRecorder class is the ap-
plication programmers interface to the recording
hardware. It provides all necessary methods for
querying the state of the recording hardware, set-
ting up and controlling the recording hardware
during a recording session. It also implements the
single central control instance that communicates
with all recording nodes of the cluster, thereby
enabling the cluster to present itself as a single

e VLVideofile The VLVideofile class represents unified system to the application programmer.

and implements all properties and procedures that

are not global to a multi-view recording, but local
to a single video file created by a specific cam-
era. That is, the settings that are not shared be-
tween all cameras and video streams of a multi-

All classes except th&LRecorderclass are written

in a portable way, so postprocessing applications that
use the library can be easily ported to other operat-
ing systems like Unix, Windows or MacOS-X. Only

: : : the core recording functionality implemented in the
view recording, but that are usually different for VLRecorderclass is dependent on special features of

different cameras of the r_ecordmg. Exam_ples of GNU/Linux and therefore not easily portable to other
such per-camera or per-videostream settings and

; . operating systems.
methods are e.g., exposure time, camera ampli-
fier gains, color calibration parameters, region of 2.2.2 Filesystem structure of projects

interest or the sound settings of associated sound The VideoLab stores recorded video data, audio data
channels like volume, sampling rate and number and meta information of each recording (referred to as
of sound channels. a single ‘project) in a hierarchy of directories and

The most important method for all data postpro- files, that changes between the recording stage of a
cessing applications is tlgetFrame()method: It project and the offline processing stage of a project, be-

reads unfiltered raw data for a single video frame cause these stages have different requirements on the
from a video datafile on the hard disk drive, ap- storage place and format:

plies different post processing operations to it and
returns the video frame as a standard 24 Bit per
pixel, RGB true color bitmap image for display or
further processing by the calling application. As
our system stores video data in a space-efficient

e During the recording stage, highest possible disk
write performance has top priority: Each camera
produces up to approximately 27 MB/s of data per
second. To allow such a high writeout rate for ex-

raw data format (see Sectipn 2]1.2), the first step
is conversion of the raw data into the standard
RGB pixels format, where each image pixel is

represented as a sequence of three one-byte num-

bers, each number encoding the intensity of one
of the color channels. This is done by a software
implementation of a demosaicking color inter-
polation algorithm in the VLVideofile class (see
Section[2.1.p for a basic explanation of the al-
gorithm). The same routine performs on-the-fly
color correction of images, checks for saturated
pixels due to over- or underexposure of single

camera sensor elements and applies a “deflick-

ering” operation to video data, if required (see
Sectior{ 2.4.2). Another feature is on-the-fly im-

tended amounts of time, the video data needs to
be stored on fast local hard disks that are installed
in each single recording computer. The hard disks
and filesystems need to be specifically tuned to
allow for consistently high throughput (See sec-
tion[2.3). This tuning leads to reduced protection
against data loss in case of system malfunctions.
Distributing data across multiple computer nodes
also makes data backup and access by secondary
applications more difficult.

The offline processing stage has three important
requirements:

— Easy data access: Data should be struc-
tured in a format that allows easy access by

age rotation by 90 degrees to allow for recordings “When compiling this class for target operating systems

in portrait format by tilting the camera by 90 de- other than Linux, the MMX assembler code gets replaced by
grees around its optical axis. The routine is im- slower, but portable C++ code.

secondary applications (e.g., video players, the single recording computers, while the local record-
video converters), to simplify the design and ing machines contain the video data on their local hard
implementation of this applications. Storing disks for fast write access.

all data in a central place facilitates simple ,

data access. File layout after recording stage:

— Data protection: As recording sessions are At the end of a recording session, a backup script is
potentially expensive and time consuming started, which moves the video data directories from

special care has to be taken to protect the the local recording computers into subdirectories of
recorded data against potential loss or cor- the project directory on the fileserver and adapts some
ruption e.g., due to system malfunctions or meta information to take the new data layout into ac-

user errors. count. . o
— Flexibility: VideoLab recordings produce a After the backup operation, all data of a project is
huge amount of data, e.g., over 9 GB per stored in a central location - on the fileserver - in a

minute, when recording with six cameras at directory hierarchy that allows easy access to - and
full frame rate and resolution. Working with backup of B the recorded data: The prOJect.as a wholg
such large amounts of data poses challeng-(?a_n be easily apcessed by secondary qpphcgﬂons, uti-
ing problems in managing the data. It should lizing theVLProjectclass. The whole project directory
be easy to move the data around between dif- COUI(_j be movgd or _backed up_to other computgrs_ and
media. If one is not interested in the whole multi view
recording, but only in video data of a single camera,
one can easily access a single cameras data with the
Our system implements two different file layouts for help of theVLVideofileclass. Single view data can be
the recording- and postprocessing stage with an auto-moved or backed up to other locations just by moving
matic conversion procedure from the recording layout the data subdirectory of a camera that is contained in

ferent storage places for backup and archiv-
ing purposes.

to the postprocessing layout. the project directory.
File layout during recording stage: 2.2.3 Implementation of the distributed
When a new recording project is created, the system recording software

creates a distributed hierarchy of directories and files. The following paragraphs provide some details on
the implementation of the distributed recording soft-

e On the fileserver, a project directory with the ware.

name of the recording project is created in a loca-
tion selectable by the user. Metafiles are createdSystem control architecture

in the project directory, which store information The videoLab recording software is organized as a
global to the recording and not specific to a sin- gjstriputed parallel system. It consists of a single mas-
gle camera, e.g. all the information contained in ter process that runs on the VideoLab control computer
the VLProjectclass is stored in a file with exten- gng interacts with the user, and multiple slave pro-
sion..viprojectfile cesses, one slave process running on each computer

e On the local hard disks of each recording com- node in the recording cluster. L
puter, a subdirectory is created, whose name con- 11€ master process can be any C or C++ application
sists of the project name and an unique identi- that is linked against the libvideolabbase - library. This
fier for the camera to which the computer is at- @PPlication has to implement some form of high level
tached. The subdirectory contains one header fileCoNtrol logic for running a recording session, possibly
that stores all settings that are specific to a single 9uided by interaction with the system operator. Ac-
cameras recording, such as exposure time, regiorfions of the recording setup, for example, change of
of interest - all the information that is represented active camera set, modification of recording parame-
by the VLVideofileclass in the running applica- ters, creation and management of video files, or start
tion. During recording, the recorded video- and and termination of video- and audio recordings, are
audio data is written to files in that subdirectory: réauested by calling the appropriate methods of the

The recorded data is split up into numbered files VLRecorder class with appropriate parameters. These
of a maximum size of 2GB. methods check the requested operation and its param-

eters for validity, taking the current state of the record-
The metadata files on the fileserver therefore containing setup into account, and issue correspondéngote
a high level description of the recording, as well as procedure calls (RPCbpver the network to the slave
the information to localize the actual recorded data on processes of all relevant recording computers. Once

started, each slave process passively waits for RPChasic RPC operations, and two additional threads that
requests from the master in an loop until application implement the realtime recording loop.
shutdown. After processing a request, a status code is The control thread is started at startup @im-
returned to the master, confirming successful comple-recorder. After basic initialization and establishment
tion of the request, possibly returning some additional of the network connection to the remote master pro-
status information about the recording node. If a re- cess, it enters a command receive loop that is only left
quest fails on a recording node due to some local errorat termination of thegvmrecorder It waits - blocked
condition, the node’s slave process performs error han-- for receipt of RPC requests from the master process.
dling to get the node back into a well defined and safe If a RPC is received, it acknowledges receipt of the
state if possible, and returns an error code to the masteRPC to the master process, executes the corresponding
process to allow it to perform high level error handling, routines on the local recording computer, returns some
if necessary. status information back to the master process and reen-

Requests for operations that affect multiple record- ters its command receive loop.
ing nodes are sent out and handled by the VLRecordetWhen asked by the master to start recording, it sets
class in a parallel, non-blocking fashion. This asyn- up the recording hardware, creates and sets up the two
chronous RPC mechanism - although requiring more parallel recording threads and triggers start of their
complex error handling - makes it possible to par- recording operation. Termination of a recording is
allelize expensive operations between all recording performed by signaling the recording threads to stop
nodes involved. The total time needed for perform- their operation, waiting for them to finish, terminating
ing an operation is therefore kept independent of thethe recording threads, resetting the recording hardware
number of recording nodes involved, enabling the sys-and performing related cleanup work.
tem to scale up to a potentially unlimited number of As the actual capture and data writeout operations
cameras. are done by the parallel recording threads, dbetrol

The basic infrastructure for communication between thread stays responsive to RPC requests from the mas-
the master process and its slave processes and for mari€r process while a recording is in progress, e.g. for
agement of the distributed software system (startupStatus queries and stop requests.
and termination of slave processes on the recording The continuous recording operation is split up into
cluster nodes, cluster management, application healtfwo independent threadsgeabberthread and avriter
monitoringf) is provided by theCPPVM-Library[8]. thread:
This C++ library is available as free software under

the LGPL-License10]. It implements a C++ inter- . Thegrapberthread is responsible for direct com-
face to the populatParallel Virtual Machine” PVM- munication with the data capture hardware - the
Library [9] for parallel distributed computing, which frame grabber and the sound card. It commu-
is also available as free software under the LGPL. nicates with the sound hardware via typen
Sound System (OS&)dio device drivers that are
Implementation of a single recording node part of the standard Linux kernel and that al-

low fine-grained control of most available sound
cards. Communication with the frame grabber
hardware is done via a proprietary, binary only,
device driver that is supplied by the frame grab-
ber vendor. The implementation of the thread is
basically an endless loop that consists of the fol-

As mentioned above, each recording computer is
controlled by one slave process that is initiated by the
CPPVM-Library at startup of the controlling master
process. This slave process, calfdnrecorderim-
plements the realtime video- and audio recording pro-
cess by controlling the hardware of the system and disk

, lowing steps:
writeout of the recorded data.

Pvmrecordeiis internally split up into three parallel 1. Wait for arrival of video frames in the small
threads of execution - one control thread for communi- circular memory buffer of the frame grab-
cation with the remote master process and handling of ber. The thread sleeps for half the expected

duration of a frame, then gets woken up

SOur system performs permanent periodic health checks, by a timer interrupt of the system realtime
using CPPVM'’s diagnostic functions, to make sure that all clock. It polls the frame grabber driver for
nodes, processes and the network connections work prop- new video frames in its circular memory

erly. If one of the processes or computers would crash or the buffer and for error conditions. If neither
communication would fail, all non-affected processes would .

detect this condition and shut themselves down in a grace- of these events .happen, it sleeps for another
ful way to prevent data loss or uncontrolled operation of the half frame duration and then repeats step 1.
system. The frame grabber driver allocates a small

10

memory buffer with a maximum capacity of To summarize, the main task of the grabber thread

eight video frames at startup. After start of is reading out video- and audio data from the sep-
video capture, the frame grabber hardware arate, hardware driven, small DMA ring buffers,
automatically captures video frames on ar- merging the video- and sound data blocks into
rival of external sync signals and transfers single data blocks and transferring them into the
their data into this ring buffer, usintDi- larger memory ring buffer. Due to the limited ca-
rect Memory Access” (DMAransfers with- pacity of the hardware driven DMA ring buffers,
out involvement of the systems CPU. The this process has to be very fast to prevent the

grabber thread has to read out and process small buffers from overflowing.

new frames from this small buffer before the

buffer overflows. While the grabber thread

has to be fast enough to handle new frames e The writer thread performs writeout of the data

in a time span of less than 16 milliseconds from the big 100 MB memory ring buffer into
on average, the ring buffer can compensate data files onto the local hard disks of the record-
for single, isolated interruptions of grabber ing node. Video data files are split up into chunks
thread operation of up to 128 millisecofids of a maximum size of 2 GB. Whenever a data file
Such short interruptions can happen e.g., if has filled up with 2 GB of data, it is closed and an
the operating system has to perform internal additional file is created for writeout of the next
book keeping work or if thecontrol thread up to 2 GB data chunk. This splitting is neces-
has to process RPC requests that arrive from sary, because many common operating systems,
the master process over the network. filesystems, network protocols and applications

do not support access to data files of a size bigger
than 2 G@ Thewriter thread gets notified by the
grabberthread whenever new content is available
in the memory ring buffer. It then issues write
requests to the operating system to trigger write-
out of the new data from the ring buffer. The 100
MB ring buffer can compensate for short, isolated
interruptions - or a drop in writeout bandwidth -
of disk writeout operations of up to 3.8 seconds
at maximum recording frame rate. Such inter-
ruptions can occur, if the operating system has
to perform some internal book keeping and man-
agement operations, if meta information about the
newly written data needs to be updated on the

2. When the first frame of a recording arrives,
the sound recording hardware is started. As
we use standard sound hardware, no hard-
ware based synchronisation can be done. In-
stead we start sound recording after capture
of the first video frame. We measured a lag
between arrival of the first video frame and
start of sound recording below 1.2 millisec-
onds, which is sufficient for our purpose.
After start of sampling, the sound hard-
ware uses DMA operations to store sampled
sound data into a ring buffer, allocated by the
sound driver.

3. Read out frame data from the frame grab- disks, or if the disk drives have to recalibrate their
ber's ring buffer. Read out corresponding mechanics and electronics to account for changes
audio data from the DMA ring buffer of the in operating temperature.
sound driver. Reassemble it into one single
data block.

4. Copy the data block into the next free slot of The multi-threaded producer-consumer implementa-
an in-memory ring buffer with a capacity of tion of the recording process with multiple ring buffers
100 MB (approximately 230 frames). allows for decoupling operations with very strict re-

5. Notify the writer thread that new data has qL_Jirements on prpcessing latency, like communication
arrived in the big ring buffer. with the DMA driven capture hardware, from oper-

N ~ ations with less strict timing requirements, like data
6. Check for error conditions and abort with \yriteout to disk.

proper error handling, if so.

7. Repeat with step 1 for processing of next

frame. ’Some examples of operating systems and filesystems

with this limit are e.g., standard Linux version 2.2, FAT
- filesystems like the ones used on Microsoft DOS, Win-
5These numbers apply to the maximum recording frame dows95/98/ME as well as on most USB memory sticks, Mi-
rate of 60 fps. At 60 fps, a single frame lasts 16 ms, 8 frames crosoft SMB network shares, HFS filesystem on MacOS,
last 128 ms. Under normal operating conditions, processing AFP Apple file sharing protocol, NFS version 2, and the ISO
of a single frame by the grabber thread takes less than 8 ms.9660 filesystem for CD-ROM’s.

11

== VLG - AVIGatalcOmicZ003/MAEMZTO_happy/MAEMZTO_happy viprojectiile

exposure time and signal gain, color calibration,
...). A preview display shows live video from
each camera, transmitted over the network, to al-
low for online change of parameters, adjustment
of camera field of view, focus and the like.

The output of the wizard is a template project -
comparable to template documents in a word pro-
cessor - that contains all the settings for creation
of new recording projects by cloning of the tem-
plate project. The template project does not con-
tain video data.

Figure 3: A screen shot of thdgui main application win-
dow. e Project creation by cloning of previously created

project templates.

-~ Camera 2 [cardamon.kyb Jocal]:

e Live preview from all cameras by transmission of
video over the network. All camera parameters
can be customized by use of control dialogs (Fig-
ure[4 shows the control dialog for a single cam-
era).

e Control of the actual hard disk video- and audio
recording. Inspection, repetition and simple edit-
ing of the recorded video tracks (Figure 3 shows
the main application window).

Figure 4: A screen shot of the parameter setup dialog for e Backup of the recorded projects to the fileserver.

a single camera. One can see the controls for ROI selec-

tion, exposure time, manual and automatic color gain setup,

amplifier gain and sound setup, as well as the live preview e System management tasks like e.g., deleting old

window. recordings, data backup, system startup and shut-
down via network.

2.2.4 Application software

This section gives some detail about the applications
and tools that are currently available for work with the
video setup and its data.

e Interactive error handling: In case of operator er-
rors or system malfunctions, the application in-
teractively guides the user through the necessary

Interactive recording application “vigui” Our troubleshooting steps.
main application for interactive video- and audio

rgcording sessions is called “vigui”. _It runs on the The application is written in C++ for Linux. It uses
VideoLab control computer and provides the human ¢ i igeolabbase - library for project management
operator with a convenient, easy to use, graphical usern ¢onirol of the cluster hardware and - via use of
interface (GUI) for performing all steps involved in @ e \/| Recorder class - implements the Master-Process
recording session. Specifically it provides the follow- of the distributed recording system during recording
ing features: sessions, as described in Secfion 2.2.3.

e A project setup wizard: This graphical assis- For implementation of the graphical user interface,
tant guides the user through all steps involved in we use theQT-3 library from the software company
preparing the setup for a new series of recordings, Trolltech [12]. This library of C++ classes provides
like selection of recording frame rate, selection a very powerful and convenient toolkit for the imple-
of the subset of cameras used for a recording, andmentation of user interfaces in a platform independent
setup of all parameters of all cameras (e.g., regionway. It is available freely on Unix/X11 compatible
of interest, image format - portrait or landscape, systems like Linux, FreeBSD or MacOS-X for use in

12

-~ VLMoviePlayer 0.4 IVidatalcomicZ003/MAEMZTS_happy/MAEMZ7_happy viprojectiiie

e Export of video loops and camera views as se-
guence of pictures in standard image formats like
e.g., Microsoft Bitmap, JPEG, GIF, PNG.

The player is implemented in C++, using the libvideo-
labbase library for data access and the QT-3 library for
the graphical user interface (Figure 5 shows a screen
shot). OpenGL is used for fast display, zooming and
panning of video. Although it is currently only used
on Linux systems, it is portable to other operating sys-
tems like MacOS-X or Microsoft Windows, given one
has access to the QT-3 library for that sys@ms

Commandline postprocessing tool “vlvide-
ofile2ppm” If one has to perform similar - or
identical - editing or postprocessing tasks on a large
Figure 5: A screen shot of the GUI sfmovieplayer number of different video recordings, for example ,
“deflickering” a video sequence (see Sectjon 2.4.2),
color correction, image postprocessing or conversion

Lt o] O e S

conformance with the GPL_”CE@{M], and for Mi- to MPEG movies, it is often more convenient to write
crosoft Windows systems via a commercial license. a shell script that performs this tasks without human
interaction.

Videoplayer “vimovieplayer” As soon as the video
data of a recording project has been backed up to the,
fileserver, the user can use the vimovieplayer applica-
tion for reviewing the recorded video content. It cur-
rently has the following features:

For this purpose, we have developed a tool called
vlvideofile2ppm?”, which is controlled solely via com-
mandline arguments. It provides access to the recorded
video- and audio data, implements several frequently
needed postprocessing operations on the video footage
e Realtime playback of video content with se- and exports the processed video data as a stream of

lectable frame rate in 1 fps steps. If the process- Pitmap images in the widely portable PPM image for-

ing power of the display computer is not hight Mat, as well as the audio data in standard WAV file
enough, image quality can be reduced via sub- format. The too_l can be connected with other flex-
sampling to allow realtime playback at reduced ible postprocessing tools, that are able to take PPM
resolution. image streams as input, using the powerful concept of
Unix command pipelines, to form complex processing
e Frame accurate navigation in the videos and in- workflows on video footage.

stantaneous switching between the different cam- The tool is implemented in C, using the libvideo-

era views of a recording. labbase library for data access and is fully portable to

. . other operating systems.
¢ Definition of video loops and frame ranges for

video editing. 2.3 Performance optimizations
As mentioned in previous sections, realtime hard disk
recording of video- and audio data requires two key
¢ Zoom and pan functions for zooming and panning properties of the recording system as a whole:

into the video footage.

e Manual color calibration and correction.

e The multi-threaded recording application has to

e Export of video loops and camera views as movie respond to the arrival of new audio- and video
files in standard MPEG-1, MPEG-2 or AVI file data from the capture hardware within a strictly
formats, that can be played back in standard video bounded and very short time span, because the
players. hardware supplied DMA memory buffers can

_ store data only for a few milliseconds before it

8You are allowed to write applications with no restric- —
tions for internal use. If you want to distribute your applica- 9C++, OpenGL and the libvideolabbase (except the VL-
tion commercially or freely to third parties, you are required Recorder class, which is only needed for recording applica-
to provide the source code of your application and grant all tions) library are fully portable to other operating systems.
rights specified in the GPL license, including the right to use, QT-3 is available for all variants of Unix, including MacOS-
modify and redistribute the application and source code un- X and Windows, but running QT-3 on Windows requires a
der the GPL. commercial license.

13

gets overwritten by more recent data (See Section
[2.2.3). This means that only short and isolated re-
sponse delays of the application can be compen-
sated. Because the synchronization between au-
dio and video is done purely in software by start-
ing the sound capture hardware as fast as possible
after arrival of the first video frame, delays in pro-
cessing the first video frame of a recording would
immediately translate into unwanted lag between
audio and video content.

e Eachrecording computer has to consistently write
out a datastream of 27 MB/s on average. Only
short and isolated reductions in writeout data rate
can be compensated by the 100 MB memory data
buffer.

This section introduces some measures and modifica-
tions to the recording software, operating system and
hardware that were done to ensure these constraints are
met. These modifications only affect the computers
and software of the single recording nodes of the clus-
ter. There is no need to modify the master application,
as the control protocol for the recording cluster in com-
bination with the hardware based synchronization be-
tween the recording nodes guarantees by design, that
the cluster is free oface conditionfs} as long as the
single recording nodes meet their timing constraints.

2.3.1 Ensuring short processing latencies

The recording work-loop of our application is driven
by the hardware timer interrupt of the realtime clock
chip (RTC), that is part of all Intel PC compatible com-
puters. Latencies in delivery and handling of hard-
ware interrupts therefore translate into processing la-
tencies of the recording thread. Execution of the criti-
cal code paths of our application could get delayed or
interrupted by the operating system itself or by other
applications running in parallel. We take a couple of
measures to prevent this:

e While standard applications and system processes
are executed under normal scheduling priority,
using the standard Linux timesharing scheduler,
the threads of our application are run wits-
altime priority, using the Linux RTFIFO real-
time scheduler. This way, threads of our applica-
tion preempt other running system processes and
applications immediately, as soon as a hardware
interrupt is delivered to them. This scheduling

10A race condition is a flaw in a system or process where
the output exhibits unexpected critical dependence on the rel-
ative timing of events. The term originates with the idea that
two signals are racing each other to be the first to cause the
output.

14

mode also guarantees that none of our applica-
tions threads can be interrupted in its execution
by normal system processes or applications, un-
less it voluntarily releases the CPU, e.g. to wait
for arrival of the next video frame or completion
of a disk write request.

The threads of the recording application also get
different realtime priorities assigned, so a higher
priority realtime thread can preempt a lower pri-
ority one:

— The control thread for handling network
RPC requests from the master process has
the highest priority, so handling RPC re-
quests from the controlling application al-
ways takes precedence over the actual
recording work-loop. This is done as a
safety and error handling measure to ensure
that the recording computers always stay re-
sponsive to control commands of the mas-
ter computer, so that recordings could be
stopped at any time by the master applica-
tion, even in case of a heavy system overload
situation due to some hardware fault or soft-
ware bug.

This doesn'’t negatively affect response be-
havior of the recording workloop, because
all RPC handling routines, that could be pos-
sibly called while a recording is in progress,
are written to ensure bounded and very short
processing times.

The grabberthread has the second highest
priority, allowing it to respond as fast as pos-
sible to the arrival of new data in the DMA
buffers and transfer this data quickly into the
big memory buffer.

The writer thread has lowest priority, be-
cause writeout requests could be safely de-
ferred by a couple of hundred milliseconds,
as long as this only happens seldomly, while
the grabber thread has to respond in time
spans of a few milliseconds.

o All pages of the virtual memory of the recording
process gdbckedinto physical memory, prevent-
ing the operating system from paging them out
to the systems swap partition in case of memory
shortage. If we wouldn't lock process memory,
other applications could indirectly impair the re-
altime behavior of our recording process by allo-
cating memory. This could lead to shortage of
physical memory. The operating system could
then page out portions of the memory of the
recording process onto hard disk storage. The
recording process would then get delayed for an

unpredictable amount of time, possibly hundreds 8 milliseconds, with an average duration of approx-
of milliseconds, when trying to access pages of imately 6 milliseconds, which is sufficient by a safe

its memory that have been paged out.

All system applications and services not essen-
tial to the recording task (for example, graphical
user interface, file- and network servers and sys-
tem management routines) are disablgtliring
recording sessions, to free up as many processor
and memory resources for the recording applica-
tion as possible.

To prioritize the handling of network and timer
interrupts, that are crucial for quick responses of
the control and grabber threads, over interrupts
from the disk subsystem (IDE disk controllers),
interrupt unmaskings enabled in the Linux IDE
disk subsystem: Standard Linux configurations
disable the handling and delivery of other higher
priority hardware interrupts, while a hardware in-
terrupt signal from the disk controllers is pro-
cessed. This is done to increase system stabil-
ity and data integrity, because some combina-
tions of hard disk drives and IDE disk controllers
are sensitive to small deviations in timing during
handling of disk controller interrupts. Such con-
trollers could malfunction and corrupt data on the
disk drives. Fortunately, the IDE controllers and
disk drives used in our recording computers work
reliably with interrupt unmaskingnabled.

Busmaster-DMA (Direct memory access) is en-
abled on the IDE disk controllers, significantly
reducing the workload of the operating system:
To write out the content of a data buffer onto hard
disk, the operating system only needs to set up
the disk controller to perform the task and then
start the write operation. The write operation is
done automatically by the disk controller, while
the main processor can perform other work in par-
allel, for example, executing thgrabberthread

of our application. Without DMA, the disk driver
of the operating system would have to manually
drive data transfers to the hard disk, preempting
our applications threads from working in parallel
and therefore significantly increasing response la-
tencies of theontroller andgrabberthreads.

This combination of measures leads to a good response
behavior of our application. Typical response latencies
to timer interrupts are less than 1 millisecond. Process-

2.3.2

margin, as the video- and audio DMA buffers could
compensate for isolated processing delays of up to 128
milliseconds. The operations of theriter thread are
usually performed in less than 6 milliseconds.

Improving disk write throughput

The following measures ensure a consistently high
disk write throughput:

e We use the Linux Ext2 filesystem for data storage

instead of the Ext3 journalling filesystem. While
Ext3 provides a very high level of data protec-
tion in case of a system crash, and shorter re-
covery time@. it would implicate a much higher
overhead for managing and writing the internal
journal file. In two years of production use we
have never had any system crash, and all data is
backed up to our fileserver with its data protec-
tion mechanisms after each recording session, so
special protection against crashes isn't a big pri-
ority. Therefore we use the faster, but less protec-
tive Ext2 filesysteffi]

The IDE controllers of our hard disks are fine-
tuned for maximum throughput. We bench-
marked different adjustable settings of the Linux
disk subsystem to find the settings that give max-
imum write throughput with minimal process-
ing overhead by the operating system. Enabling
Busmaster-DMA in UltraDMA-Mode 2 with un-
masked interrupts, 32 Bit data transfers and mul-
tiple sector transfers per interrupt proved to be
most effective. This is enabled on both IDE con-
trollers with the following command, that is exe-
cuted during system bootup:

hdparm -d1X66 -c3 -m16 -ul /dev/hda

Tuning the IDE controllers and using Ext2 as
filesystem allows data writeout rates of up to 31
MB/s, but only when the disk drive is nearly
empty and therefore data is written to files on the
outermost tracks of the hard disk.

The reason for this is the way that hard drives
are organized: Hard disks are “filled up” during
write operations starting at the outer tracks and
proceeding to the inner tracks. Outer tracks on

2Filesystem checks on our hard disks take about 20 min-

ing of a single frame of combined video and audio data utes with Ext2. A journalling filesystem usually takes only a
by the grabber thread normally happens in less than few seconds for filesystems of the same size.

130n the few occasions where we had system crashes dur-

"This is implemented by switching from the normal Unix ing the development phase, the Ext2 filesystem was always
multiuser runlevel to a special runlevel, that defines the mini- able to repair itself without data loss during reboot, at the
mum set of services needed to run our recording application.cost of annoyingly long check times.

15

the disk have a bigger circumference and there-
fore a bigger storage capacity than inner tracks.
Because disk drive platters rotate at a fixed angu-
lar velocity, an outer track, which contains more

data, is written in the same amount of time as an
inner track, which contains less data, leading to a
higher effective write- and read data rate. There-

Figure 6: Linear write data rates of the IBM DTLA-307075 disk drive (left figure) and of the IBM IC35L120AVVAQ7 drive
(right figure), plotted as functions of written amount of data. Plots and benchmarkd from [13].

hard disk to achieve a sustained minimum linear
write datarate of approximately 39 MB/s, safely

exceeding the required minimum average video
write data rate of 27 MB/s that is needed by our
application, although each physical drive has an
average sustained writeout datarate of only ap-
proximately 20 MB/s when it is nearly full.

fore, write data rate of a drive is a monotonically L
decreasing function of write position on the drive 2-4 Lighting

- and therefore a monotonically decreasing func- The lighting of our video studio also needs to meet
tion of increasing fill-level. Figurg]6 shows plots specific requirements. We want the lights to be freely
of data rates versus occupied capacities for ourcontrollable in intensity over a wide range and we want
models of disk drives (benchmarks and plots from them to be freely moveable and adjustable in orien-
Storageview([133]), nicely illustrating the drop in tation, so that we are able to select the best tradeoff
write bandwidth as a function of disk fill level. between selected light intensity and exposure time for
To utilize the full capacity of our disk drives by a given scene and the most suitable configuration of
ensuring a sufficiently high write data rate over lights. During most recording sessions, especially dur-
the full capacity, we installed two IDE drives in ing facial recordings, we want to obtain views of the
each computer. We use the Linux software RAID target subject that are bright enough to allow for the
subsystem to combine these two physical drives short exposure times necessary for blur-free recording
into a RAID level 0 (“Striping configuration”) of facial motion, while avoiding strong shadows, spec-
virtual disk drive: Data written out to this vir- ular highlights or non-diffuse light distributions. The
tual drive is transparently split up by Linux into scene should also have a natural appearance - colors
chunks of 64 KB size. Successive chunks are should look as expected under daylight illumination.
written to the drives in parallel in an alternating

fashion, e.g., while the i-th chunk is written to o
drive 1, the i+1-th chunk is written at the same ~ Currently we have 4 studio lights, model HD20

time to drive 2. This way, the virtual RAID-0 ©f the German company “Hedler-Systemlicht” [14].
drive achieves a storage capacity and write dataEach lightis equipped with two light bulbs of a max-
rate that is the sum of the capacities and write datalMum power of 1000 W. These can be switched on
rates of the two physical drives. For this to work, @nd off separately and they are freely dimmable, al-

it is important that each drive is connected to its lowing us to select light emission intensities between
own dedicated IDE controller, so that the drives Z€r0 and up to 2000 W at a color temperature between

can handle parallel read and write requests with- 1800 Kelvin and 3200 Kelvin, depending on selected

out competing with each other for IDE channel light intensity. The lights can be left on for long peri-

bandwidth. Our striping RAID allows the virtual ods, because they are equipped with cooling fans. The
lights have a flexible mounting that allows them to be

2.4.1 Lighting equipment

16

oriented freely. They are attached to poles, so they 2. Our postprocessing algorithm calculates the mean

can be moved easily to different locations and heights,
giving us the necessary freedom in selection of light
arrangement for specific shots.

To handle the heat emissions of such powerful
lights, the studio is equipped with a powerful air-
conditioning unit.

2.4.2 Removing image flicker

The lights of our video studio are powered by reg-
ular alternating current with a frequency of 50 Hz,
because electric rectifiers that can convert alternating
current into directed current with an output power of
2000 W would have been prohibitively expensive for
us to install and maintain. As a consequence, the light
sources do not output a constant light intensity, but
the light intensity is sinusoidally modulated with a fre-
quency of 50 Hz. Therefore, the mean luminance of
the scene changes during the exposure interval of each
video frame.

If the selected recording frame rate divides evenly
into 50 Hz, e.g., 50fps, 25fps, 10fps, 5fps, then the
same portion of each period of the sinusoidal intensity
curve is integrated over the exposure interval. There-
fore the recorded mean scene luminance stays the same
for each captured frame, so the recorded video is free
of any flicker.

Temporal aliasing problems arise if the recording
frame rate doesn’t evenly divide 50 Hz, e.g., at our
maximum frame rate of 60 fps. Now, a 50 Hz sinu-
soidal light modulation curve is “sampled” by a 60 Hz
exposure function: Each consecutive video frame in-
tegrates luminance over a different part of the 50 Hz
light intensity curve, leading to a different mean lumi-
nance in each recorded video frame. This results in
strong image flicker.

As we want to be able to record at frame rates
as high as 60 fps without image flicker, we apply
the following procedure as a postprocessing step to
the recorded video footage, in order to “measure” the
flicker and compensate for it:

1. We select a rectangular subregi@rin one of the
views of one of the recorded video streams. This
image region needs to contain a part of the scene
that doesn't change its appearance due to dynam-

over the intensity values of all image pixels con-
tained inR for each frame of the recording: Let
I;(z,y) be the intensity value of the pixel at po-
sition (x, y) of video framet. Then we compute
the mean intensitft of framet as:

i _ Zayerli®y)
e R

As R is supposed to be a part of the constant
scene background, any change of values in the se-
riesly, I, ... is caused by the sampling of the 50
Hz light intensity modulations and is therefore a
measurement of image flicker over t{fle

3. The mean over all intensity measurements of a

recording withn framesI = 1 3°" | I, is com-
puted from the per-frame measuremefts In

a flicker-free recording/ = I, Vt = 1,...,n
would hold. Therefore we choose the mean over
the whole sequence as reference intensity and
compute a per-frame intensity correction facfpr
for each frame of the recording via:

. The time serieg; of correction factors is com-

puted once for each recording project as an of-
fline processing step by our commandline batch-
processing toolvlvideofile2ppmand stored as
part of the project file structure on the fileserver.
This time series can now be used for on-the-
fly flicker correction: Whenever a video frame
with an indext of the video recording is ac-
cessed from some application by a call to ¢jed-
Frame()method of the/LVideofileclass (see Sec-
tion[2.2.1), the corresponding flicker correction
factor f; is multiplied toall color components of
all pixels of the video image, assuming that the
measurement of mean intensity modulatigrof

the reference regioR in each image is represen-
tative for the intensity modulation of the whole
image:

It,new(xay) = ftIt,Old(x’ y) V(LE, y)

ically changing scene content, occlusion or shad- If the reference regiork for a specific scene is chosen

ows. The 50 Hz light intensity modulation ha
to be the only source of change in pixel intensity
values of the regiomR. A typical choice forR
would be a portion of the static scene backgroun
The selection of an appropriate region is done in-
teractively in the user interface of our recording
applicationvigui.

17

s Properly, this on-the-fly correction effectively elimi-
nates image flicker. More powerful correction algo-
rithms could be used if needed, as the original raw data
d. never gets changed, but the deflicker procedure is only
applied during readout of video frames from the video
files.

1This assumes that sensor noise is independent of time.

2.4.3 Color correction

Color correction of the recorded video material is
another important post processing step. Since they use
halogen bulbs, our studio lights emit light with signifi-
cantly more power in the “red” (long wavelength) part
of the spectrum than in the “blue” (short wavelength)
part of the spectrum. This gives all recorded footage
a reddish appearance. To reduce this effect, we mount
daylight filters in front of all lights to reduce part of the
light emission in the “red” part of the spectrum. Each
camera has an integrated Infrared-Cutoff filter to block
out incident light in the infrared part of the spectrum.

Additionally, we apply the following linear color
correction algorithm to the video footage to remove
remaining reddishness:

1. A white uniform sheet of paper is placed into the
field of view of each camera and a short calibra-
tion video recording is made of this white paper.

2. Arectangular subregioR of the recorded video
image, which only contains the white paper, is se-
lected by the user in thegui recording applica-
tion.

3. The calibration algorithm computes the mean in-
tensity over the red, green and blue color com-
ponents of alln pixels in regionR over all k
recorded images:

k
fn= 30 Y Lnley)

t=1 (z,y)€R

- 1<

Ie=7-> > Ilc@y
t=1 (z,y)ER

- 1<

IB:%Z Z I 5(z,y)
t=1 (z,y)€R

4. The regionR - by selection - only contains pix-
els that should appear “white”, therefore a video
recording with perfectly color calibrated cameras
should fulfill the constraintipr = I = Ip
IRes. We definel gy = fetlotle and compute
color correction gain factors for each color com-

5. These color gain factors are stored as part of the

project configuration files of all recordings made
with the given light and camera setup. They are
applied on-the-fly to images, by thgetFrame()
method of the/LVideofileclass, whenever an ap-
plication requests a specific image of a recorded
video sequence. Each color component of each
pixel of the RGB image is multiplied by the cor-
responding gain factor to produce the color cor-
rected output image:

Iout,R(xa y) - fRIin,R(xv U) V(Tv y)

Iout,G(xv y) = ,fGI’in,G(Iv y) V(l', y)
IOut,B('Iv y) = fBIin,B(Iv y) V(l’, y)

Although this algorithm can only perform a simple lin-
ear color correction, it has been sufficient for our pur-
poses up to now. As the recorded raw video data is
never touched, but the color correction is applied as an
on-the-fly postprocessing step during readout of video
data, more advanced algorithms could be applied any
time later after recording.

2.5 Lenses

Our cameras can be used with any type of lenses that
have a standard C-Mount adapter for connecting to the
camera and that are useable with a 1/2 inch CCD sen-
sor. Currently we have two sets of lenses:

e For facial recordings, we use narrow angle lenses,
model “Xenoplan” from the German company
“Schneider Kreuznach Optik”, with a fixed focal
length of 23mm and an aperture range of 1.4 to
11. They are well suited for sharp facial record-
ings at a distance between face and cameras of
approximately 1.5 m.

e For full body recordings of human actions, we
have wide angle lenses, model C60402 from
“Cosmicar/Pentax” with a fixed focal length of
4.2 mm and an aperture range of 1.6 to 16.

Conclusions

In this report we have described the technical details

ponent to equalize the mean red, green and blueof the MPI VideoLab as a high performance synchro-

intensity to the reference valug, ;:

_ IRef
fR - I~R
IRy

fG - I~G
IRef
fB= 7

18

nized, multiple camera recording setup. Instead of a
detailed summary, we rather want to provide a short
list of references to projects that have been success-
fully completed since the VideoLab became opera-
tional in May 2002.

Up to now, video recordings in the VideoLab were
done on human facial expressions, head gestures and
simple actions. While some of the video material was
used “as is” for presentation to human subjects as part

of experiments on face and action perception (see e.g.[13] Homepage
[16] and [17]), some experiments required the applica-
tion of computer vision and computer graphics algo-

rithms to the video footage as a postprocessing step.[14]

Typical examples are the removal of head movements

from video footage, video based manipulation of fa-
cial expressions and video based manipulation of parts

of the face (see e.gl,_[18] and [19]). These postpro-

[15]

of
/Istoragereview.com

Storageview: http:
Hedler Systemlicht:http://www.hedler.

Homepage of Samba, the free SMB fileserver
software:http://www.samba.org

cessing steps involve algorithms for high precision 3D [16] Cunningham, D.W., M. Breidt, M. Kleiner, C.

tracking of head movements (e.d.,[20]) and for video

based texture extraction and manipulation.

This project was funded by the Max Planck Society.

We would like to thank lan Thornton for initially proposing
this project and Barbara Knappmeyer for helping to design
the studio lighting. We would also like to thank lan Thorn-
ton, Quoc Vuong and Martin Breidt for useful comments on
this technical report.

References

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

Basler Vision Technologies: http://www.
baslerweb.com

Jensick, J., “Dueling Detectorsemagazine -
The monthly publication of The International So-
ciety for Optical Engineering, Vol. 2;February
2002.

Silicon Software:
silicon-software.de

http://www.

B. E. Bayer, “Color imaging array”,United
States Patent 3,971,065976.

R. Ramanath, W. Snyder, G. Bilbro and W.

[17]

(18]

[19]

Sander, “Demosaicking methods for bayer color [20]

arrays”,Journal of Electronic Imaging, Vol 11-3,
pp. 306-315July 2002.

Linux online:|http://www.linux.org
FSMLabs:http://www.fsmlabs.com

Homepage of CPPvm:
Informatik.uni-stuttgart.de/
Ipvr/bv/cppvm/

http://www.

Homepage of PVM: http://www.csm.
ornl.gov/pvm/

LGPL license textihttp://www.gnu.org/
copyleft/lesser.html

GPL license text: http://www.gnu.org/
licenses/gpl.htmi

Homepage of Trolltech, provider of the QT li-
brary: http://www.trolltech.com

19

Wallraven and H.H. Blthoff, “How Believable

are Real Faces: Towards a Perceptual Basis for
Conversational Animation”Proceedings of the
16th International Conference on Computer Ani-
mation and Social Agents, IEEE Computer Soci-
ety, ISBN 0-7695-1934-2003.

Pilz, K., I.M. Thornton and H.H. Blthoff,
“Matching and Searching for Moving Faces”,
Third annual meeting of the Vision Sciences So-
ciety, Sarasota (Florida), Journal of Vision, Vol
3-9, ISSN 1534-7362003.

Cunningham, D.W., M. Breidt, M. Kleiner, C.
Wallraven and H.H. Blthoff, “The inaccuracy
and insincerity of real faces”Proceedings of
Visualization, Imaging, and Image Processing
2003, Vol 1, ACTA Press, ISBN 0-88986-382-2,
2003.

Schwaninger, A., D.W. Cunningham and M.
Kleiner, “Moving the Thatcher lllusion”,10th
Annual Workshop on Object Perception and
Memory 2002, Psychonomic Society Publica-
tions, 2002.

Kleiner, M., “Ein stereobasiertes Verfahren
zum dreidimensionalen Tracking von Mark-
ern in menschlichen Gesichtern'Diplomar-
beit, Wilhelm-Schickard-Institutif Informatik,
Lehrstuhl fir Graphisch-Interaktive Systeme,
Universifat Tubingen,2001.

http://www.baslerweb.com
http://www.baslerweb.com
http://www.silicon-software.de
http://www.silicon-software.de
http://www.linux.org
http://www.fsmlabs.com
http://www.informatik.uni-stuttgart.de/ipvr/bv/cppvm/
http://www.informatik.uni-stuttgart.de/ipvr/bv/cppvm/
http://www.informatik.uni-stuttgart.de/ipvr/bv/cppvm/
http://www.csm.ornl.gov/pvm/
http://www.csm.ornl.gov/pvm/
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.trolltech.com
http://storagereview.com
http://storagereview.com
http://www.hedler.de
http://www.hedler.de
http://www.samba.org

	Introduction
	General requirements
	Limitations of common video equipment

	System implementation
	Recording hardware
	The cameras
	The frame grabbers
	Computer system

	Software framework
	The libvideolabbase - library
	Filesystem structure of projects
	Implementation of the distributed recording software
	Application software

	Performance optimizations
	Ensuring short processing latencies
	Improving disk write throughput

	Lighting
	Lighting equipment
	Removing image flicker
	Color correction

	Lenses

	Conclusions

