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Navigation Strategies in Regionalized
Environments

Jan M. Wiener, Alexander Schnee, Hanspeter A. Mallot

Abstract. In this work three navigation experiments are reported that studied use and interaction of navigation
strategies both during the learning of a virtual environment and during subsequent route planning tasks. Special
interest concerned the role of regions within the environments. Results from experiment 1 suggest that the regions
are perceived and encoded in spatial memory very early during the process of learning an evironment. During
navigation such regional information could be used to ovecome missing or imprecise detailed spatial information.
Experiment 2 and experiment 3 studied the use and interaction of route planning strategies that are applied after an
environment has been learned. Results suggest that (i.) human route planning is based on region-connectivity and
not place-connectivity alone, (ii.) that route planning takes into account the distribution of multiple target locations
and (iii.) the complexity of alternative paths.

1 Introduction

”Traditionally, the path selection problem has been ignored or assumed to be the result of minimizing procedures
such as selecting the shortest path, the quickest path or the least costly path.” This statement by Golledge (1995)
is still true today. Very little work has been attributed to the question which mechanisms, strategies and heuristics
are applied during route planning that allow to derive the shortest path, the quickest path or the least costly path
from spatial memory. In this work three navigation experiments in virtual environments are reported that studied
the use and the interaction of different navigation strategies that are applied during the exploration and learning of
an environment and during subsequent route planning tasks.

Wayfinding and navigation behavior have been mainly used as a tool to study the underlying representation of
space. Aginsky, Harris, Rensink, & Beusmans (1997), e.g., monitored subjects spatial knowledge of an virtual
environment during the learning of a route through that environment. They found that only relevant spatial infor-
mation, i.e. information in the vicinity of choice points, was retained. In navigation experiments in virtual reality
Gillner & Mallot (1998) showed that subjects store local elements (i.e. places or views associated with movement
instructions and expected outcomes) in spatial memory. These local elements did not have to be globally consistent,
suggesting that representations of space are graph-like structures rather than map-like structures (see Schölkopf &
Mallot, 1995). Supporting evidence for graph-like representations of space also comes from navigation experi-
ments in virtual environments, containing both global and local landmark information (Steck & Mallot, 2000).
After learning the virtual environment the global and local landmark information were set in conflict. Surprisingly
subjects did not perceive nor report this conflict. Moreover, subjects who relied on global landmark information
in the conflict situation showed good wayfinding performance if only local landmark information was provided
and vice versa. Geographical slant has been shown to improve navigation and wayfinding performance as well as
directional judgments in a virtual environment setup, suggesting that slant or height information is integrated in
spatial memory (Steck, Mochnatzki, & Mallot, 2003; Restat, Steck, Mochnatzki, & Mallot, 2003).

Navigation and wayfinding procedures have also been used to evaluate the navigability of architectural spaces.
O’Neill (1992) demonstrated that wayfinding performance decreased with increasing plan complexity (for mea-
sures of floor plan complexity see O’Neill, 1991; Raubal & Egenhofer, 1998). Furthermore, Werner & Long (2003)
have shown that the misalignment of local reference systems impairs the users ability to integrate spatial informa-
tion across multiple places, suggesting that reference axes should be consistent throughout a building in order to
support navigability. Janzen, Herrmann, Katz, & Schweizer (2000) investigated the influence of oblique angled in-
tersections within an environment on wayfinding performance. When navigating arrow-fork intersections, subjects
error rate depended on which branch they entered the intersection (see also Janzen, Schade, Katz, & Herrmann,
2001).
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Figure 1: a: the unequal sides test by Gallistel & Cramer with a large and a small food patch; b: the dashed route is optimal,
when the starting position was not re-baited, the solid route is optimal if the starting position was re-baited; c: navigating from
start (s) to target (t), subjects preferred the last route number 3 above the alternative routes with equal metric length.

Numerous navigation experiments studied cognitive differences between genders, which are supposed to to be
one of the most reliable of all cognitive gender differences in humans (Moffat, Hampson, & Hatzipentalis, 1998).
Astur, Ortiz, & Sutherland (1998), e.g., have developed a virtual version of the Morris water maze task for humans.
Subjects were placed in a virtual pool that was surrounded by distal cues and were instructed to escape from the
water as quickly as possible by navigating towards a hidden platform. Results revealed a strong gender effect:
males swam for shorter time to find the platform, and after removing the platform males spent more time in the
quadrant where the platform has previously been. While this study suggested a gender difference favoring males
in spatial performance, other studies have reported the use of different aspects of the environment (e.g., global
and local landmarks) and the use of different orientation and navigation strategies between subjects (e.g., Lawton,
1994, 1996; Sandstrom, Kaufman, & Huettel, 1998; Lawton & Kallai, 2002), rather than fundamental performance
differences. Basically these studies state that male subjects rely more on global landmark configurations or global
reference systems, while female subjects tend to rely on local landmark information and route information. In
a neuroimaging study Grön, Wunderlich, Spitzer, Tomczak, & Riepe (2000) have reported gender differences in
brain activation as subjects searched their way out of a virtual three-dimensional maze. While there was as great
overlap of brain area activation between genders, including the right hippocampus, Grön et al. report specific
activation of the left hippocampus in males, and a specific activation of right parietal and right prefrontal cortex
for females.

Only few navigation experiments aimed at understanding the mechanisms and strategies that underly route
planning and navigation behavior. Gärling & Gärling (1988), e.g., investigated pedestrian shopping behavior with
respect to distance minimization in multi-stop shopping routes. Most shoppers, that minimized the distance of their
shopping routes, first chose the location farthest away, most probably to minimize effort to carry bought goods, and
then minimized distances locally between shopping locations (see also Gärling, S̈ais̈a, Böök, & Lindberg, 1986).
This so called locally-minimizing-distance (LMD) heuristics, also often referred to as the nearest neighbor (NN)
heuristic in artificial intelligence approaches (e.g. Golden, Bodin, Doyle, & Stewart, 1980), is known to generally
lead to optimal or near optimal solutions in traveling salesman problems of small sizes.

Gallistel & Cramer (1996) studied vervet monkeys ability to navigate the shortest route connecting multiple
locations, by arranging baited locations in a group of four to one side and a group of two to the other side (see
figure 1a). Note that the nearest baited location of both food patches were equidistant from the starting point. An
algorithm like the nearest neighbor algorithm (NN) predicts that the monkeys choose to first visit both of the food
patches equally often. However, the vervet monkeys first visited the richer food patch in all trials. Below we refer
to this strategy as ’cluster-strategy’. In a second experiment Gallistel & Cramer (1996) baited locations arranged in
a diamond shape. If the monkeys intended to return to the starting position, because it was baited after the monkey
left it, the monkeys generally chose the shortest route in this traveling salesman task (see solid route in figure 1b).
Here a NN strategy would predict that the monkeys followed a different non-optimal route (see dashed route in
figure 1b) for the first steps.Gallistel & Cramer (1996) concluded that the vervets’ route planning algorithm not
only takes the first step into account (as predicted by the NN), but is indeed planning three steps ahead (see also
Menzel, 1973).

Christenfeld (1995) studied human subjects’ preference to choose a certain route from a series of almost identical
routes. In all conditions (route choice from artificial maps, from street maps or in real world environments) subjects
had the choice between a number of routes that were identical with respect to metric length, target point and the
number of turns. The only difference between the routes was when along the route subjects had to make a turn.
In all conditions subjects delayed the turning decision as long as possible (see figure 1 C). Christenfeld speculated
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that this effect results from subjects tendency to minimize mental effort, that is to say subjects do not worry about
where to turn until they have to turn. This strategy offers a possible explanation for the fact that peoples route
choices are often asymmetric; i.e. subjects choose different routes from A to B than from B to A (e.g. Stern
& Leiser, 1988). On the basis of results from route planning from maps Bailenson, Shum, & Uttal (1998, 2000)
extended Christenfeld’s findings and suggested that subjects, when choosing between alternative routes from maps,
prefer routes with the longest initial straight segment (Initial Segment Strategy - ISS), in order to leave the starting
region as fast as possible (Route Climbing Principle).

This work also studies mechanisms and strategies underlying human route planning behavior. Here route plan-
ning is defined as the process of selecting and navigating a path from a given starting location to a single or to
multiple target locations, that are beyond the sensory horizon of the agent. The spatial information needed to plan
the route therefore has to be retrieved from spatial memory. Human spatial memory has a certain property, namely
its hierarchical organization, that is important for this work.

Environments that are divided into different regions are known to produce systematic errors and distortions in
distance- and directional-judgments, spatial priming and memory recall procedures. Stevens & Coupe (1978), e.g.,
have shown that directional judgments between locations are distorted towards the spatial relations of the states
they reside in. Wilton (1979) has shown faster directional judgments between locations that reside in different
regions, as compared to locations the reside in the same region. In a speeded recognition task McNamara (1986)
revealed stronger priming, that is faster recognition times, when prime and target were objects from the same region
of a previously learned layout than when prime and target were objects from different region of the same layout
(see also McNamara, Ratcliff, & McKoon, 1984; McNamara & LeSueur, 1989; McNamara, Hardy, & Hirtle,
1989). Hirtle & Jonides (1985) have shown that subjects underestimated relative distances between landmarks
from the same subjective region, while they overestimated absolute distances between landmarks from different
subjective regions. Among others, these results have led to the hierarchical theories of spatial representations
stating that spatial memory contains nested levels of detail. Such a memory structure can be expressed in graph
like representations of space in which locations are grouped together and form super ordinate nodes, e.g., places
are grouped together and form regions. Spatial relations among regions can then be represented at the region level.

Wiener & Mallot (2004) studied the influence of regions within an environment on human route planning be-
havior. In a virtual reality setup subjects learned environments that were divided into different regions in the
ego-perspective. After learning the environments subjects were asked to either find the shortest route to a single
target-place or to find the shortest route for visiting three places within the environment. Subjects (i.) minimized
the number of region boundaries they crossed during a navigation and (ii.) preferred paths that allowed for fastest
access to the region containing the target. These findings suggest that human route planning takes into account
region-connectivity and is not based on place-connectivity alone. Wiener & Mallot proposed the ’fine-to-coarse
planning heuristic’, a cognitive model that describes this simultaneous use of differently detailed spatial informa-
tion during route planning. The core of this ’fine-to-coarseheuristic’ is the “focal” representation that is generated
from hierarchical representations of space by using fine space information (place-connectivity) exclusively for
the current location and the close surrounding and coarse space information (regions-connectivity) exclusively for
distant locations. In this focal representation the shortest path to the next target (target-place or target-region) is
planned. Planning a route in such a focal representation results in a detailed plan for the close surrounding, allow-
ing for immediate movement decision, while for distant locations only coarse spatial information are given. The
route plan therefore has to be refined during navigation. By updating the focal representation and by re-planning
the route, a detailed plan for the next movement decisions is available at all times along the route. By using spatial
information at different levels of detail for close and distant location not only memory load is reduced, but also the
complexity of the planning task itself. Additionally memory load for the route plan is minimized, since steps are
planned only one at a time.

Other route planning schemes that make use of hierarchical representations of space have been suggested in
computational models of spatial cognition. Chown, Kaplan, & Kortenkamp (1995), e.g., suggested that higher
abstraction levels of the representation are used to first generate coarse route plans. Such plans are simple, easy
to compute and rule out a large umber of suboptimal paths. However, in order to allow for movement decision
at choice point these plans have to be broken down and fine route plans have to be generated. Usually such
planning schemes, in which first a coarse route plan is generated that is then successively refined, are referred to
ascoarse-to-fineplanning schemes.

This paper is divided into two parts. In the first part we present an experiment investigating the formation of
hierarchical components in human spatial memory. We will argue that regional information is formed early during
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Figure 2: Experimental setup with the 180 deg projection screen and the bicycle trainer.

the process of learning an environment and that this information is used in simple search tasks. In the second
part we present two experiments that study navigation- and route planning-strategies employed after learning a
regionalized environment.

The focus of this work concerns the use and interaction of three navigation strategies: (i.) it will be tested
whether the ’cluster-strategy’ (explained above, Gallistel & Cramer, 1996) is also used by human navigators, (ii.)
the use of the ’fine-to-coarseplanning’ heuristic is further investigated(Wiener & Mallot, 2004), (iii.) the influence
of the complexity of alternative paths on human route planning and navigation behavior is studied. It is proposed
that human navigators plan their routes in order to minimize the complexity of the planned path, this strategy is
referred to as the ’least-decision-loadstrategy’. It will be argued that all three navigation strategies are applied by
human navigators, and that subjects path choice behavior in these experiments can be predicted by a simple linear
combination of the three navigation strategies.

2 General Material & Methods

All experiments presented in this work were conducted using virtual reality technology. Subjects actively navigated
through virtual environments in the ego perspective and executed a series of navigation tasks.

The use of virtual reality technology for navigation experiments has two major advantages as compared to real
world experiments. Firstly it allows for exact control of the visual stimuli presented and secondly one can carry
out the experiments in environments created to exactly match the experimental demands.

2.1 The experimental setup

Experiments were conducted in the Virtual Environments Laboratory of the Max Planck Institute for Biological
Cybernetics. For all experiments we designed a particular virtual environment that was created using the software
Multigen Creator (MultiGen-Paradigm). A detailed description of the virtual environments is given in the methods
sections of each experiments (see sections 3.2.1, 4.2.1 and 5.2.1).

The visual scenery was rendered on a three-pipe Silicon Graphics Onyx2 InfiniteReality II (Silicon Graphics
Inc., Mountain View, CA), running a C++ Performer simulation software that we designed and programmed. The
scenery was then projected by means of three CRT projectors (Electrohome Marquee 8000; Electrohome Limited,
Kitchener, Ontario, Canada) on a large half-cylindrical screen (7 m diameter and 3.15 m height) with a rate of 36
frames per second and an overall resolution of approximately 3500x1000 pixels.

Subjects were seated in front of this screen (see figure 2) either at a table or on a bicycle trainer. The experimental
setup allowed for a 180 deg horizontal and a 50 deg vertical field of view. The simulation software guided subjects
through the experiments, presented pictures of the navigation goals on the projection screen, and recorded the data.
A detailed description of the setup can be found in van Veen, Distler, Braun, & Bülthoff (1998).

3 Formation of Hierarchies in Spatial Memory (experiment 1)

3.1 Purpose

As stated in the introduction, there is convincing evidence that human spatial memory is hierarchically structured.
Here a navigation experiment is reported that studied the perception and encoding of environmental regions, i.e.
the formation of hierarchical components in spatial memory, during the learning of an environment. The exper-
iment was motivated by the assumption that regional knowledge that arose early during the process of learning
an environment, provided additional information about the environment that could be used to facilitate learning
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Figure 3: a: birds eye view of the virtual environment, the 16 showcases were arranged on a regular grid; b: subjects’
perspective with a show case and global landmarks (hills in the background).

regionalized environment unregionalized environment

Figure 4: left: schematic map of the regionalized environment. The circles represent the positions of the 16 showcases, the 4
different shades of grey represent the 4 different object categories of the landmarks. Landmarks belonging to the same category
were neighboring each other, thus forming 4 semantic regions within the regionalized environment; right: schematic layout of
the unregionalized environment. The landmarks were pseudo-randomly distributed about the environment.

and to compensate for missing or imprecise detailed spatial knowledge. For example, the search for specific lo-
cations could be restricted to the appropriate regions. By executing search tasks, subjects either learned a virtual
environment that was divided into different regions or a virtual environment that did not contain predefined re-
gions. Subjects’ navigation behavior in the regionalized and in the unregionalized environment was monitored and
compared in order to study the perception, encoding and use of regional information.

3.2 Method

3.2.1 The Virtual Environment
An open space virtual environment was created that contained 16 showcases in its center. The showcases were

arranged on a 4×4 squared grid with a mesh size of 100m (see figure 3). Each showcase was placed on a circular
ground plate with a radius of 7.5m. If subjects moved on the ground plate a single object within the showcase
became visible. The objects are therefore referred to as pop-up landmarks, the corresponding ground plates are
referred to as the landmarks’ catchment areas. While its associated landmark uniquely specified each showcase,
the landmarks were grouped into four different semantic groups according to the object category (4 cars, 4 animals,
4 buildings, 4 flowers). Two versions of the virtual environment were created that only differed in the arrangement
of the objects within the showcases. While objects from the same object category were neighboring each other
in the regionalized environment, the objects were pseudo-randomly distributed about the 16 positions in the unre-
gionalized environment. Figure 4 demonstrates the arrangement of the objects within the environment for the two
experimental environments. Four global landmarks were placed in the far distance of the environment to make sure
that subjects could always localize themselves (see figure 3). By averaging all distances from all places to all other
places carrying objects from the same category, a distance measurement was obtained that described the order of
the environment. Mean order for the regionalized environment was 113.8m, mean order for the unregionalized
environment was 247.5m.

3.2.2 Procedure
Subjects were randomly assigned to one of two experimental conditions. Subjects from the ’regionalized’ condi-

tion conducted the experiment in the regionalized environment, while subjects from the ’unregionalized’ condition
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conducted the experiment in the unregionalized environment. Subjects were seated on a bicycle trainer and could
freely move through the environment by pedaling (translation) and tilting (rotation) the bicycle. They were re-
peatedly asked to search for showcases containing a specific object. The target object was presented as an image,
that was superimposed on the projection screen. By actively navigating through the virtual environment, subjects
searched for the showcase containing the target object. The trial ended when subjects entered a non-visible cir-
cular area of 3.5 m radius surrounding the showcase that contained the target object. Subjects were instructed to
complete the navigation task using the shortest possible path. In each of two experimental blocks, subjects had to
visit each of the 16 objects once. Table 1 presents the sequences in which subjects had to search for the objects,
the numbers correspond to the number of the showcases in the virtual environment and are independent of the
experimental condition (see figure 4). Three different sequences (s1, s2, s3) were introduced to control for specific
effects elicited by the sequence in which target locations were visited.

trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S1 4 15 2 9 16 7 13 11 5 14 3 12 1 8 10 16

S2 10 1 12 14 3 9 7 16 6 13 11 4 5 15 2 13

S3 6 4 14 1 7 9 16 3 10 8 2 11 14 13 5 15

trial 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S1 9 7 14 5 4 11 2 8 15 6 13 12 1 10 3 16

S2 11 1 8 10 3 16 9 7 14 5 15 4 6 12 2 13

S3 8 1 10 16 7 14 5 11 4 6 13 12 3 9 2 15

Table 1: Table of the three search sequences (s1, s2 and s3). The numbers refer to the positions of showcases in figure 4.

3.2.3 Variable of Interest & Predictions

Variable of Interest. Subjects’ trajectories were recorded during the navigation tasks. For each navigation task
also the shortest possible path between starting place and target place was computed. By dividing the length of
the traveled trajectory through the length of the shortest possible path and subtracting 1 an overshoot value was
obtained. By multiplying the resulting value with 100 the overshoot in percent was obtained. An overshoot of
100% therefore corresponded to a path that had twice the length of the shortest possible path. The overshoot
values were analyzed as a function of the trials, thus representing subjects’ learning of the virtual environment.
The main interest concerned the comparison of overshoot values between the two experimental groups. From
the recorded trajectories also the number and identity of places visited by the subjects was reconstructed for each
navigation task.

Predictions. If regions within an environment were perceived early during the process of learning that environ-
ment, it was expected that subjects from the regionalized condition encoded the regional information as soon as
possible. That is, because (i.) regional knowledge structures the environment, thus the learning of that environ-
ment should be facilitated, and (ii.) regional knowledge allows to apply search strategies that could compensate for
imprecise fine spatial knowledge. For example, the search for a specific landmark could be restricted to the region
containing landmarks of the same objects category. Taken together, it was expected that subjects from the region-
alized condition, once they had perceived and encoded the regions, showed better searching and faster learning
performance than subjects from the unregionalized condition.

3.2.4 Participants

44 subjects were randomly assigned to one of two experimental groups, with 22 subjects in each group. The
groups were balanced with respect to gender. Subjects were mostly students from the University of Tübingen and
were paid 8 Euro an hour.

3.2.5 Statistical Analysis

Data were analyzed using the open source statistics software ’R’ (www.r-project.org) and the Unix program
ANOVA. The error-bars of all data plots in this experiment display standard errors of the mean (s.e.m.).
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Figure 5: left: subjects’ overshoot values as a function of the trials for both, the regionalized and the unregionalized condition.
The solid lines display the exponential fits; right: subjects’ overshoot values for the experimental groups and the experimental
blocks.

3.3 Results

Overshoot. Figure 5 represents subjects’ overshoot performance for both of the experimental groups as a func-
tion of the trials. By pooling over all 32 search trials a single overshoot value for each of the two experimental
groups was obtained. The average overshoot for the regionalized group was 72.0%, the overshoot for the unregion-
alized group was 142.3%. The average overshoot of block 1 (trial 1-16) was 108.4% for the regionalized group
and 207.7% for the unregionalized group. In block 2 (trial 17-32) the average overshoot was 37.7% for the re-
gionalized group and 76.9% for the unregionalized group. An analysis of variance (ANOVA) revealed a significant
main effect of the experimental conditions (regionalized and unregionalized [F(1, 40)=18.9, p<.001]), a significant
main effect of the experimental blocks [F(1, 40)=166.9, p<.001] and a significant groups x blocks interaction [F(1,
40)=13.6, p=.001]. No effect of gender could be found (male overshoot: 94.3%, female overshoot: 120.0%) [F(1,
40)=2.5, p=.12], nor an effect of the different sequences [F(2, 41)=1.2, p=.40].

While subjects from both experimental groups showed comparable navigation performance in the first trial
of the experiment (overshoot regionalized: 450.5%, overshoot unregionalized: 487.4%, t-test: t = -.392, df =
41.988, p-value = .697), already in the second experimental trial, subjects from the regionalized condition showed
better navigation performance than subjects from the unregionalized condition (overshoot regionalized: 151.7%,
overshoot unregionalized: 326.7%,t-test: t = -2.3647, df = 33.58, p-value = .02).

In order to further quantify the difference between the experimental groups, subjects’ learning behavior was
described by an exponential function of the form:

l(t) = l0 + (l1 − l0) ∗ e−
t−1

τ

with:
t = trials
l1 = overshoot measured at trial 1
l0 = residual overshoot after prolonged learning (after 32 trials)
τ = learning rate;

By fitting l0 andτ separately for both data sets,τ -values of 0.86 (regionalized) and 4.18 (unregionalized) and
l0-values of 52.5 (regionalized) and 85.7 (unregionalized) were obtained. The corresponding fits are displayed in
figure 5.

The difference ofl1 andl0 was defined as the learning range during the experiment. From the learning rateτ ,
the timet0.5 can be calculated after which half of the overshoot reduction is achieved:

t0.5 = 1 + τ ∗ ln 2
Calculating the timet0.5 required for half of the overshoot reduction for both of the experimental groups, allowed

to compare learning performance, independent of the initial overshoot (l1) and the residual overshoot (l0). For
the regionalized groupt0.5 was 1.6, for the unregionalized groupt0.5 was 3.9. That is to say, subjects from
the regionalized condition required only 1.6 trials for half of the overshoot reduction, while subjects from the
unregionalized group required 3.9 trials.

Showcases visited. During the first trial of the experiment, subjects from the regionalized condition have visited
9.9 different showcases, while subjects from the unregionalized condition have visited 10.3 different showcases.

7



0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

O
v
e
rs

h
o

o
t 

in
 %

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

O
v
e
rs

h
o

o
t 

in
 %

Overshoot in trial 2

match no-match

regionalized condition

unregionalized condition

Figure 6: Overshoot in the second trial for the regionalized and the unregionalized group depending on whether or not subjects
have visited the target of the second trial during their search in the first trial.

That is, on average subjects from both of the experimental conditions have seen comparable proportions of all
showcases within the environment in the first trial of the experiment (regionalized condition 61.9%, unregionalized
condition 64.4%). However, subjects from the regionalized condition showed significant lower overshoot-data in
the second trial as compared to subjects from the unregionalized condition. A possible explanation for this effect
is, that subjects from the regionalized condition had an improved memory for the exact positions of showcases
they had visited in the first trial. If the target of the second trial has already been visited in the first trial, subjects
from the regionalized condition would then show better navigation performance.
The second trials of all subjects were therefore split in two groups, depending on whether or not the target of the
second trial had already been visited in the first trial. The ’match group’ contained all second trials of which the
target had already been visited in the first trial. The ’no-match group’ contained all second trials of which the
target had not been visited in the first trial. Figure 6 displays subjects’ overshoot data for both of the experimental
conditions and for the ’match group’ and the ’no-match group’. Neither subjects from the regionalized nor from the
unregionalized group benefited from visiting the second trial’s target place in the first trial (see figure 6). Subjects
from the regionalized group showed an overshoot performance of 147.8% in the ’match’ trials and 158.6% in
’no-match’ trials (Wilcoxon rank sum test: p=.62). Subjects from the unregionalized group showed an overshoot
performance of 302.2% in the ’match’ trials and 343.7% in ’no-match’ trials (Wilcoxon rank sum test: p=.85)

3.4 Discussion

The results of this experiment have shown faster learning- and better searching performance for subjects who had
learned a virtual environment that was divided into different regions as compared to subjects who had learned
a very similar virtual environment that did not contain regions. While in the first trial subjects from both of
these experimental groups have shown comparable searching performance, already in the second trial, subjects
from the regionalized condition showed better performance than subjects from the unregionalized condition. It
is important to note that subjects’ performance in the second trial did not depend on whether or not they had
already visited the second trial’s target during the first trial. This demonstrates that the difference in performance
between the experimental groups did not result from faster learning of the exact positions of single objects within
the regionalized environment. It is rather suggested that already during the first trial, in which subjects from
both of the experimental conditions have visited more than 60% of the environment, the regionalized group has
perceived and encoded the regions within the environment. Such regional knowledge structures the space and could
therefore facilitate the learning of the environment. Moreover, the existence of regional knowledge allows to apply
navigation- and search strategies in order to overcome missing or imprecise information about the environment.
For example, in this experiment regional knowledge allowed to assign a target location to a region by simply
analyzing the target’s object category, even if that target had not been visited before. In order to find the target,
subjects now could limit their search space to the appropriate region.

The results of this experiment suggest one function of hierarchies in spatial memory for navigation: hierarchal
organization of spatial memory facilitates the learning of an environment by (i.) structuring space and (ii.) by
providing the basis for search strategies, that could overcome missing or imprecise spatial information.

8



Figure 7: left: Schematic map of the virtual environment. Places are displayed as numbered circles, streets and bridges
are represented by lines, the gray rectangles represent the islands or regions, respectively; middle: bird’s eye view of the
environment; right: subjects’ perspective with a pop-up-landmark

4 Interaction of Navigation Strategies I (experiment 2)

4.1 Purpose

In experiment 1 the formation of hierarchical components, i.e. regional information, in human spatial memory was
studied by simple search tasks in a regionalized environment. Here the use and interaction of different navigation-
and route planning strategies that are applied after learning a regionalized environment when solving navigation
tasks with multiple targets are studied. It is proposed that in such complex navigation tasks, comparable to shopping
routes, different navigation- and route planning-strategies interact.

This experiment particularly concentrated on the use and interaction of two navigation strategies: (i.) Gallistel
& Cramer (1996) have shown that vervet monkeys, when having the choice to first visit a rich or a poor food patch,
always go for the rich food patch first (see introduction). Here it is studied whether such a navigation strategy,
which is referred to as thecluster-strategy, is also employed by human navigators when faced with a similar task;
(ii.) Wiener & Mallot (2004) developed the ’fine-to-coarseplanning heuristic’, a cognitive model of region-based
route planning. Essentially thefine-to-coarseheuristic states that during route planning, fine spatial information
(e.g. places) is used for nearby locations only, while coarse spatial information (e.g. regions) is used for distant
locations and distant places (see introduction).
The predictions of thecluster-strategy and thefine-to-coarseplanning heuristic for the navigation-tasks in this
experiment are explained below.

4.2 Methods

4.2.1 The Virtual Environments

The virtual environment consisted of 4 islands containing 4 places each. The places were interconnected by
roads and bridges and could be identified by associated, unique landmarks (see figure 7). The landmarks of the four
islands were of four distinct categories. While the landmarks of one island were of the category cars, the landmarks
of the other islands were of the categories flowers, animals and buildings. The clustering of landmarks belonging
to the same category, as well as the existence of four separated island, ought to facilitate subjects’ learning of the
environment and ought to establish environmental regions within subjects’ spatial memory. Landmarks were only
visible when subjects were in close proximity, i.e. at the corresponding place, and are therefore referred to as
pop-up landmarks. Subjects’ movements were restricted to roads and bridges.

4.2.2 Procedure

Subjects had to go through an exploration- and a training-phase before entering the test-phase. During the 10
minute exploration phase subjects could explore the environment. Subjects were instructed to move around in
the environment, pay attention to the landmarks and learn the layout of the environment and the positions of the
landmarks. The training phase was introduced to ensure that subjects had learned the environment before they
entered the test phase. Subjects were therefore asked to complete six navigation tasks taking the shortest possible
routes. For each training-route subjects were teleported to the starting place of the route. The target place was
specified by presenting a picture of the landmark associated with the target place. The image was superimposed
on the screen. If subjects failed to find the shortest possible route, an error was recorded and the navigation task
was repeated until subjects solved the task taking the shortest possible route. Note that in the current environment
training tasks had multiple solutions.
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type A type Ctype B

Test routes

Distractor routes

Figure 8: Upper row: Type A, type B and type C test routes: the black square represents the starting place, the black circles
represent the target places; Type A routes always started from one of the four inner-places (start place was 3, 6, 9 or 12), type
B routes always started from one of the outer-places (start place was 0, 5, 10 or 15) and type C routes started from one of the
intermediate places (start place was 1, 2, 4, 7, 8, 11, 13 or 14); lower row: Distractor routes, displayed are two examples of the
distractor routes.

During the test-phase subjects were repeatedly asked to navigate the shortest possible route connecting their
current position with three places in the environment. According to the spatial configuration of the starting place
and the three target places, the navigation tasks were classified as belonging to either the test-routes (see figure
8 and table 2) or to the distractor-routes (see figure?? and table 2). While two of the three target places of the
test-routes were neighboring each other, thus forming a spatial cluster, the remaining target place was sole. The
test-routes could additionally be assigned to one of three subtypes, depending on the position of the starting place.
Test-routes of type A always started from one of the four inner-places (start place was 3, 6, 9 or 12; see figure 7),
test-routes of type B always started from one of the outer-places (start place was 0, 5, 10 or 15; see figure 7) and
test-routes of type C started from one of the intermediate places (start place was 1, 2, 4, 7, 8, 11, 13 or 14; see
figure 7). Note that the spatial configuration of starting- and target-places was identical for routes of type A, B
and C. By rotating and mirroring the configuration of starting- and target-places eight different test-routes for each
route type were generated. All test routes allowed for alternative solutions of equal length. A detailed description
of all test routes can be found in table 2.

The distractor-routes were introduced to impede subjects’ learning of the spatial configuration of start- and
target-places of the test-routes. Distractor routes had a single optimal solution only, not allowing for alternative
solutions of equal length. Again, by rotating and mirroring the configuration of start- and target-places a total of
sixteen different distractor-routes were generated. A detailed description of all distractor routes can be found in
table 2.

Subjects were randomly assigned to one of two experimental groups. While subjects of experimental group
1 navigated type A and type B test-routes, subjects of experimental group 2 navigated type A and type C test-
routes. In addition both groups also navigated all 16 distractor-routes. In each of two experimental blocks subjects
navigated four test-routes of type A, four test routes of type B (experimental group 1) or four routes of type A and
four routes of type C (experimental group 2), respectively, and eight distractor routes.

After subjects completed a test-route they were teleported to the start-place of the subsequent test-route. For
each test route multiple solutions of equal length were possible, whose initial directions differed by 90◦. The
initial heading of the subjects was in the middle of the route alternatives which therefore appeared at visual angles
45◦ left and 45◦ right.
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Table 2: The table lists all test-routes and all distractor-routes. The starting place is followed by the three target places (in
brackets). The numbers correspond to the place numbers in the schematized drawings of the environment (see figure 7).

4.2.3 Variable of Interest & Predictions
Variable of Interest. As stated above, all test-routes allowed for alternative solutions of equal metric length.
One of the main characteristics discriminating these alternative solutions was whether subjects first passed by the
clustered target-places or the sole target-place. Subjects’ tendency to first pass the spatially clustered targets was
evaluated. Since only correct navigations were included in the analysis, chance level with respect to first passing
the clustered targets was 50%.

Predictions. The proposedcluster-strategy and thefine-to-coarseplanning heuristic made different predictions
for the navigation tasks.

The ’cluster’-strategy states that subjects preferred to visit as many targets as fast as possible. This strategy
predicted that subjects first visited the spatially clustered targets in all types of test routes (type A, type B and type
C). On might expect a modulation of the effect size between type A, type B and type C routes. In type A routes
the spatially clustered targets are distributed about two islands and might therefore be less apparent as compared
to type B and type C routes.

As stated in the introduction, thefine-to-coarseplanning heuristic proposes that route planning takes place in
a focal representationthat represents both, fine space information (place-connectivity) for the current and close
locations and coarse space information (region-connectivity) for distant locations. Figure 9 demonstrates how such
a focal representationis generated from hierarchical reference memory for routes of type B and routes of type C.
In focal representations places located in distant regions are represented by super-ordinate entities (e.g. regions).
The actual route planning algorithm does not distinguish between places and regions, but plans towards the closest
target (place or region). For all three route types the clustered and the sole target places were equidistant from the
starting place. However, the region containing the clustered targets is closer than the region containing the sole
target for routes of type C only (see figure 9). For routes of type A and type B both target regions were equidistant
from the starting point. Thefine-to-coarseheuristic therefore proposed that subjects first passed the clustered
targets in routes of type C, while thefine-to-coarseheuristic predicted that subjects performed at chance level for
routes of type A and for routes of type B.

Note that coarse-to-fine route planning schemes do not predict any systematic effect, since first a coarse plan is
generated solely at the region level, that is then refined. However, at the region-level routes of type A,B and C do
not differ (see figure 9, for routes of type A and C).

4.2.4 Participants
Forty subjects were randomly assigned to one of two experimental groups, with 20 subjects per group. Both

groups were balanced with respect to gender. Subjects were mostly students of the University of Tübingen, they
were paid 8 Euro per hour.

4.2.5 Statistical Analysis
Data were analyzed using the open source statistics software ’R’ (www.r-project.org). The data were obtained

in a repeated measures design. With single data points being binary variables, even after pooling across single
trials a normal distribution was not given. Therefore the non-parametric Wilcoxon’s signed rank test was applied
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Figure 9: Generating a focal representation for routes of type B (upper row) and routes of type C (lower row). Left column:
Superimposed on the hierarchical reference memory is a navigation task of type B and type C: the black rectangle represents
the observer or starting position, respectively, the black circles represent the target places; Right column: The black edges and
the black circled nodes in the right column represent thefocal representationsexisting in working memory in which the route
is planned. Only places from the current region are represented at the finest resolution, while distant locations are represented
by the region they reside in. Distant target places are also represented by their region. Note that in thefocal representationof
type B routes, both target regions were equidistant from the starting place, while for type C routes the target regions were not
equidistant.
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Figure 10: left: subjects’ performance in experimental block 1 and experimental block 2. Here the percentage of correct
navigations are displayed; middle: subjects’ performance for male and female subjects; right: subjects’ preference to first pass
by the spatially clustered targets for the three test routes (type A, type B and type C).

to the data when comparing to a given chance level and the Wilcoxon rank sum test was applied for comparison be-
tween groups. Using the ’exactRankTests’-package for R it was corrected for ties (available from: http://cran.au.r-
project.org).

4.3 Results

Training routes. If a training route was not completed using the shortest possible route, the trial was recorded as
an error and the trial was repeated. Subjects’ performance during training was measured by counting the repetitions
of training trials. On average subjects made 2.2 errors during the training phase. The experimental groups did not
differ in their error-rate (experimental group 1: 2.0 errors, experimental group 2: 2.5 errors; Wilcoxon rank sum
test: p=.14) and were therefore pooled. Male subjects produced less errors during the 6 training trials than females
(male errors: 1.2; female errors: 3.15; Wilcox rank sum test: p=.002).

Subjects’ overall Performance. Subjects navigated 74.9% of the navigations in the test-phase error-free, that
is to say subjects have found one of the alternative optimal routes. Female and male subjects did not differ in
their performance during the test phase (females: 71.8% correct navigations, males: 77.9% correct navigations;
Wilcoxon rank sum test: p=.28, see figure 10). Subjects’ overall performance increased in the second experimental
block as compared to the first experimental block (block 1: 68% correct navigations, block 2: 81.8%, Wilcox rank
sum test: p=.002, see figure 10).

Subjects navigated correctly in 82.0% of the test-routes and in 67.8% of the distractor-routes (Wilcoxon rank
sum test: p=.08). Below only error-free test-routes were evaluated.

Test Routes (type A, type B & type C routes). Both of the experimental groups navigated test-routes of type A
during the test phase. A comparison of subjects’ tendency to first pass by the clustered targets in type A routes did
not differ between experimental group 1 and experimental group 2 (49.5%, 51.7%, p=.73). Test-routes of type A
were therefore pooled across experimental groups.

Subjects performed at chance level with respect to first passing the spatially clustered targets when navigating
routes of type A and type B. (type A: 50.6%, Wilcoxon signed rank test against 50%: p=.93; type B: 51.8%,
Wilcoxon signed rank test against 50%: p=.67). On the other hand, subjects clearly preferred to first pass the
spatially clustered targets when navigating routes of type C (type C: 78.6%, Wilcoxon signed rank test against
chance level (50%): p<.001, see figure 10).

While a comparison of subjects’ navigation behavior between the different route types did not reveal a difference
for type A and type B routes (Wilcoxon rank sum test: p=.76), it revealed a significant difference for both, type A
and type C comparison and type B and type C comparison (type A routes vs type C routes: Wilcoxon rank sum
test: p<.001, type B routes vs type C routes: Wilcoxon rank sum test: p=.001).

Subjects’ preference to first pass by the clustered targets when navigating type C routes did not differ between
experimental blocks (block 1: 77.9%, block 2: 77.1%; Wilcoxon rank sum test: p=.9), nor between gender (female:
80.1%; male: 77.1%, Wilcoxon rank sum test: p=.70).
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Table 3: Comparison of alternative optimal paths to solve type C routes. The first column indicates whether the clustered or the
sole targets are visited first. The last column shows the sum of all possible movement decisions. The intermediate columns list
the places along the routes, the number of possible movement decisions at the corresponding place are specified in brackets.

4.4 Discussion

This experiment was designed to study the influence of environmental regions and the distribution of targets within
an environment on human route planning behavior. Although all types of test route had two spatially clustered and
a sole target, subjects chose to first visit the clustered targets in only one of the test route types. In both of the
other types of test routes subjects’ preference to first visit the clustered targets did not differ from chance level.
Also subjects’ preference was not modulated depending on whether the clustered targets were distributed about
two regions or located on the same region. These results suggest that the existence of spatially clustered targets
did not influence subjects’ route planning behavior in this experiment.

Subjects preferred to first pass the spatially clustered targets in routes of type C only. While in all route types
the clustered targets and the sole target were equidistant from the starting place, only in routes of type C the region
(the island) containing the clustered targets was closer than the region containing the sole target. This suggests
that subjects planned their routes in order to enter the closest target region first, irrespective where exactly the
targets were located within that region. These results are in line with the predictions of thefine-to-coarseplanning
heuristic (see section 4.2.2), while they contradict coarse-to-fine planning schemes. As pointed out in section 4.2.3
coarse-to-fine planning schemes first generate a coarse route plan at a high abstraction level of the representation
that is refined successively. No route plan generated solely at the region level of the representation takes into
account the subject’s position within the starting region, therefore a coarse-to-fine planning scheme would not
predict any systematic effect for routes of type A,B and C.

However, the results provide additional evidence for the notion that human route planning is not based on place-
connectivity alone, but takes into account region-connectivity.

An alternative explanation for the observed effect is given when comparing the complexity of alternative optimal
solutions for routes of type C. In contrast to the ICD-complexity measure by O’Neill (1991), that measures the
complexity of an entire environment in order to compare it to a second environment, here the complexity of
alternative routes within the same environment was of interest. A rather crude measure of complexity for routes
was used, by simply adding up the possible movement decisions along a path. A lower complexity therefore refers
to a path that allows for fewer movement decisions. Optimal paths that first passed the clustered targets provided
fewer possible movement decisions than paths that first visited the sole target (see table 3). That is to say, routes
that first passed by the target cluster might have been judged as being less complex than routes that first passed by
the sole target. If during route planning subjects took the complexity of alternative routes into account, e.g., in order
to reduce the risk of getting lost during navigation, subjects preferred routes along the border of the environment.
The strategy to minimize the complexity of a path during route planning is referred to as theleast-decision-load
strategy.

Since in this experiment the navigation tasks did not allow to discriminate between thefine-to-coarse- and
least-decision-load- strategy, one also has to consider that both strategies discussed above (fine-to-coarse- and
least-decision-load-strategy) could account for the observed effect, by, e.g., a linear combination.

5 Interaction of navigation strategies II (experiment 3)

5.1 Purpose

In experiment 2 a systematic effect in subjects’ navigation behavior for routes of type C was revealed. Two
navigation strategies have been described that could have accounted for the observed effect. This experiment is
a modification of experiment 2. By changing the shape of the islands while keeping the absolute positions of
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Figure 11: left: Schematic map of the virtual environment. Places are displayed as numbered circles, streets and bridges are
represented by lines, the gray triangles represent the islands or regions, respectively; middle: bird’s eye view of the environment;
right: subjects’ perspective with a pop-up-landmark

Table 4: The table lists all test-routes and all distractor-routes. The starting place is followed by the three target places (in
brackets). The numbers correspond to the place numbers in the schematized drawings of the environment (see figure 11).

the start- and target places of the test routes constant, the influence of thefine-to-coarseplanning heuristic and
the least-decision-load-strategy could be studied separately, as well as a possible interaction of these navigation
strategies (as explained in detail in section 5.2.3).

5.2 Methods

5.2.1 The Virtual Environment

The virtual environment used in this experiment was similar to the environment used in experiment 2. The only
difference was the shape of the islands, which were changed from a squared outline to triangle outlines (see figure
11). The landmarks were moved accordingly, such that still all landmarks of one island were of the same object
category. As in experiment 2, the landmarks were only visible when subjects were in close proximity, i.e. at the
corresponding place.

5.2.2 Procedure

After the exploration- and training-phase (identical to experiment 2, see section 4.2.2) subjects entered the test-
phase. During the test phase subjects navigated exactly the same routes as subjects from the experimental group 2
of experiment 2 (see 4.2.2). That is to say, single routes had the same starting place and the same target places in
experiment 3 as in experiment 2, irrespective of the shape of the islands (see figures 12). Changing the form of the
islands resulted in a subdivision of the 2 types of test-routes (type A and type C) from experiment 2 into 4 types
of test-routes in this experiment (see figures 12 and table 4). Again distractor routes were introduced to impede
subjects’ learning of the spatial configuration of start- and target-places of the test routes. The same distractor
routes were used that had already been used in experiment 2.

As in experiment 2 subjects navigated 32 routes during the test phase of this experiment; 16 routes were test-
routes (4 of each test route type, see table 4), 16 routes were distractor routes. In each of two experimental blocks
subjects navigated 2 routes of each of the 4 test route types and 8 distractor routes.

After subjects completed a test-route they were teleported to the start-place of the subsequent test-route. For
each test route multiple solutions of equal length were possible, whose initial directions differed by 90◦. The
initial heading of the subjects was in the middle of the route alternatives which therefore appeared at visual angles
45◦ left and 45◦ right.
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Figure 12: The test routes: the black square represents the starting place, the black circles represent the target places. Depicted
on the left is route type A and route type C of experiment 2. By changing the form of the islands and by mirroring the route
along the diagonal centerline, type A1 and type A2 routes and type C1 and C2 routes were obtained. Thecluster-strategy and
fine-to-coarse-planning heuristic and theleast-decision-load-strategy made different predictions for type A1, A2, C1 and C2
routes (see predictions).

5.2.3 Variable of Interest & Predictions

Variable of Interest. As in experiment 2 all test-routes allowed for alternative solutions of equal metric length.
Again subjects’ tendency to first pass the spatially clustered targets was evaluated. Since only correct navigations
were included in the analysis, chance level with respect to first passing the clustered targets was 50%.

Predictions. Changing the shape of the island in this experiment as compared to experiment 2, while keeping the
absolute positions of start- and target-places constant, allowed to study the influence of thefine-to-coarse-planning
strategy and theleast-decision-loadstrategy separately, as well as an interaction of both of these strategies. While
for routes of type C in experiment 2 thefine-to-coarse-planning strategy and theleast-decision-load-strategy pre-
dicted that subjects first passed by the clustered targets, in this experiment thefine-to-coarse-planning- and the
least-decision-load-strategy made different predictions for routes of type C1, type A1 and type A2, as explained
below.

Since both regions containing targets were equidistant from the starting place and in adjacent regions, in routes
of type C1, thefine-to-coarsestrategy did not predict any systematic effect; theleast-decision-load-strategy, on
the other hand, predicted that subjects navigate along the border, therefore first passing the clustered targets.

For routes oftype A1 andtype A2, theleast-decision-load-strategy did not predict any systematic effect. Paths
with the same ’decision-load’, i.e. the same number of possible movement decisions, were available, irrespective
of whether subjects first passed the clustered or the sole target. However, for type A1 routes thefine-to-coarse
strategy predicted that subjects first passed by the clustered targets, while for routes of type A2 thefine-to-coarse
strategy predicted that subjects first passed by the sole target. In type A1 routes the clustered targets, and in type
A2 routes the sole target, could be reached by crossing a single region boundary, while two region boundaries had
to be crossed in order to reach the other targets (i.e., the sole target for type A1 routes and clustered targets for type
A2 routes; see figure 12).

For routes oftype C2, theleast-decision-load-strategy as well as thefine-to-coarse-planning strategy both pre-
dicted the same navigation behavior. Theleast-decision-load-strategy predicted that subjects navigate along the
border of the environment, therefore first passing the clustered targets. Thefine-to-coarse-planning strategy pre-
dicted that subjects first passed by the clustered targets, because one of the corresponding targets resides in the
starting region, while two region boundaries had to be crossed in order to first visit the sole target. If theleast-
decision-load- and thefine-to-coarse-planning strategy were linearly combined (as discussed in section 4.4) a
stronger preference for the clustered target was expected as compared to routes of type C1 in which only the
least-decision-load-strategy predicted that subjects first pass by the clustered target places.
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Figure 13: left: subjects’ performance in experimental block 1 and experimental block 2. Here the percentage of correct
navigations are displayed; middle: subjects’ performance for female and male subjects; right: subjects’ preference to first pass
by the spatially clustered targets for the four types of test routes (type A1, type A2, type C1 and type C2).

Obviously, thecluster-strategy predicted that subjects first pass by the clustered targets for all route types.

5.2.4 Participants

Thirty subjects participated in the experiment. Subjects were balanced with respect to gender. Most subjects
were students of the University of Tübingen, they were paid 8 Euro per hour.

5.2.5 Statistical Analysis

See section 4.2.5.

5.3 Results

Training Routes. On average subjects made 1.8 errors during the training phase. Female and male subjects did
not differ in their training performance (average male errors: 1.4, average female errors: 2.2; Wilcoxon rank sum
test: p=.22).

Subjects’ overall Performance. In the test-phase subjects produced 81.3% error-free trials, that is to say subjects
found one of the alternative optimal routes. Female and male subjects did not differ in their performance (female:
75.4% correct navigations, male: 87.1% correct navigations; Wilcoxon rank sum test: p=.07). Subjects’ overall
performance increased in the second experimental block as compared to the first experimental block (block 1:
74.2% correct navigations, block 2: 88.3%, Wilcox rank sum test: p=.004). Subjects navigated 91.8% of the
test-routes correctly and 70.6% of the distractor-routes (Wilcoxon rank sum test: p<.001). Below we evaluate the
error-free navigations of the 4 types of test-routes only.

Test Routes. Table 5 and figure 13 summarize subjects’ preference to first pass the spatially clustered targets for
the different route types. Subjects significantly preferred to first pass the target cluster in routes of type A1, type
C1 and type C2, while they performed at chance level (50%) for routes of type A2. A comparison of subjects’
preference to first pass the target cluster between type A1 and A2 routes revealed a significant difference (Wilcoxon
rank sum test: p=.01), a comparison of type C1 and C2 routes did not reveal a significant difference (Wilcoxon
rank sum test: p=.13). Since subjects only navigated two routes of each test route type per block, performance for
the experimental blocks was not analyzed separately.

Table 5 also summarizes the effects of gender. Only for routes of type C1 a marginally significant differences
between female and male subjects was found.

Comparison of results from experiment 2 & Experiment 3. Experiment 2 and experiment 3 only differed
with respect to the shape of the island in the virtual environment. The configuration of start place and target places
of the navigation tasks in the test phase was identical between experimental group 2 of experiment 2 (the group
that navigated type A and type C routes) and the experimental group of experiment 3. Therefore it was decided to
analyze the data from both experiments together by comparing subjects’ navigation behavior with the predictions of
the three proposed navigation strategies (cluster-strategy,least-decision-load-strategy andfine-to-coarse-strategy).

Table 6 summarizes subjects’ tendency to first pass the clustered targets for all route types of experiment 2
and 2b. Additionally the predictions of the three route planning strategies are listed and whether these planning
strategies predict that subjects first pass the clustered targets (1), the sole target (0), or whether they do not predict

17



Table 5: left: the table summarizes subjects’ preference to first pass by the spatially clustered target for the different route types
and the p-values for the Wilcoxon signed rank test against chance level (50%); right: the table summarizes female and male
navigation behavior separately.

Table 6: The table displays the predictions of the proposed’cluster’ - , least-decision-load- and fine-to-coarse- strategy
concerning whether or not subjects first pass by the target cluster (1=yes, 0=no, 0.5=no prediction) for the different route types
from experiment 2a and experiment 2b. Also the average of the three hypothesis is displayed, as well as subjects’ measured
preference to first pass the target cluster.

a systematic preference at all (0.5). In figure 14 subjects’ preference to first pass by the target cluster is plotted
according to the predictions of the three strategies. Assuming the most simple combination of the three navigation
strategies (a linear combination with equal weights) the predictions of the three navigation strategies were averaged.
Subjects’ navigation behavior strongly correlated with the averaged predictions of the three navigation strategies
(r=.92, p<.01).

5.4 Discussion

Subjects showed a significant preference to first pass by the spatially clustered targets in routes of type A1, type
C1 and type C2, while they performed at chance level in routes of type A2. A comparison between subjects’ navi-
gation behavior and the predictions of the proposed navigation strategies reveals that none of the three navigation
strategies alone could account for the empirical data, as explained below:

Least-decision-load-strategy: the least-decision-load-strategy predicted that subjects first passed by the spa-
tially clustered targets in routes of type C1 and type C2, while no systematic effect was predicted for routes of type
A1 and type A2. The predictions matched the results for type A2, type C1 and type C2 routes, but did not match
results for type A1 routes.
Cluster-strategy: thecluster-strategy predicted that subjects first visited the spatially clustered targets in all route
types. These prediction matched the result of type A1, type C1 and type C2 routes, but did not match results of
type A2 routes.
Fine-to-coarseplanning heuristic: The fine-to-coarsestrategy predicted that subjects first passed the spatially
clustered targets in routes of type A1 and routes of type C2, while thefine-to-coarsestrategy predicted that sub-
jects first passed the sole target in routes of type A2. For routes of type C1 no systematic effect was predicted.
The predictions matched results for type A1 and type C2 routes, but did not match results for type A2 and type C1
routes.

Since none of the above navigation strategies alone could account for the results of the current experiment,
and since no other navigation strategy was evident that could describe the effects, an interaction between multiple
navigation strategies had to be assumed.
This is best demonstrated by an comparison between subjects’ behavior when navigating routes of type A1 and
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Figure 14: The figure displays subjects’ tendency to first pass by the clustered targets depending on the predictions of the three
proposed navigation strategies (cluster, least-decision-loadandfine-to-coarse). For each navigation strategy and for each route
type the predictions are quoted (1=first clustered targets, 0=first sole target, 0.5=no prediction)

A2. Thefine-to-coarsestrategy predicted contradictory outcomes for routes of type A1 and type A2, while the
least-decision-load-strategy did not predict any systematic effects for these route types. If target clusters did not
influence subjects’ route planning behavior (as suggested in experiment 2) and if subjects planned their routes in
order to enter the closest target region first (as suggested by thefine-to-coarseplanning heuristic; see experiment
2), they should have first passed by the clustered targets in routes of type A1, while they should have first passed
by the sole target in routes of type A2. In fact, results for type A1 routes matched the above predictions, while
results for type A2 routes did not. Rather than preferring to first pass by the sole target when navigating routes of
type A2, subjects behaved at chance level, choosing to first pass the sole and the clustered targets equally often.

The discrepancies between predictions and results could be accounted for if one assumed that in the current ex-
periment thefine-to-coarseplanning heuristic, thecluster-strategy and theleast-decision-load-strategy interacted.
Linearly combined, thecluster-strategy and thefine-to-coarseplanning heuristic would add up in routes of type
A1, while they would cancel each other out in routes of type A2, exactly predicting the empirical data. Theleast-
decision-load-strategy made no prediction for routes of type A1 and type A2.
In routes of type C1 and C2 subjects preferred to first pass by the target cluster. Again, linearly combined, the
cluster- and least-decision-load-effect add up in routes of type C1, both predicting that subjects first passed by
the target cluster, while thefine-to-coarse-strategy did not predict a systematic effect. In type C2-routes all three
navigation strategies (cluster-, least-decision-load-andfine-to-coarse-strategy) predicted that subjects first passed
by the target cluster. In fact, although not statistically reliable, in routes of type C2, in which all three strategies
predicted a preference to first pass by the clustered targets, the results revealed a stronger effect than in type C1
routes, in which only two strategies predicted a preference to first pass by the clustered targets. Again, this trend
indicates that all three strategies are combined.

It is therefore argued that in experiment 3 thecluster-strategy did influence subjects’ navigation behavior, while
the cluster-strategy did not influence subjects’ navigation behavior in experiment 2. Such a strategy shift is in
line with earlier results of Golledge (1995), who has shown that human navigators use different route selection
criteria in different environments and on different routes. A possible explanation for this strategy shift is given by
Werner & Long (2003) who have shown that the misalignment of local reference systems does result in wayfinding
problems and difficulties to understand the overall layout of the environmental structure. In their study Werner &
Long investigated the structure of the town hall in Göttingen. The layout of the corresponding floor plan reveals
that the elevator is rotated about 45◦ with respect to the gangways in the floor. That is to say, the salient main axes
of the elevator are misaligned with the salient axis of the floor. An user might therefore choose a spatial reference
system upon exiting the elevator that is not appropriate for the rest of the floor. Werner & Long argued that the
misalignment of different parts within an environment makes integration of spatial knowledge very difficult. In
experiment 3 the main axes of the islands were rotated about 45◦ with respect to the street grid. Although this
misalignment of spatial reference systems did not impede subjects’ wayfinding performance, understanding the
overall structure of the environment was more difficult in experiment 3 than in experiment 2 (informal interviews
with subjects after the experiments). These facts could account for the use of different navigation strategies, or a
different weighting of the three navigation strategies, respectively, in experiment 3 as compared to experiment 2.
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However, if all route types of experiment 2 and experiment 3 are analyzed together with respect to the average
prediction of the three navigation strategies, a highly significant correlation was found. That is to say, a simple
linear combination of thecluster-, the least-decision-load- and thefine-to-coarse-strategy with equal weights is
sufficient to closely predict subjects’ navigation behavior in both experiments.

6 Conclusions

In this work 3 navigation experiments were presented that investigated the use of navigation strategies both during
the learning of an environment and during subsequent route planning tasks. Special interst concerned the role of
environmental regions for human navigation.

From the results of experiment 1 it was concluded that regions were perceived and encoded very early during the
process of learning an environment. Such regional knowledge not only structures space but also allows to employ
search strategies in order to overcome missing or imprecise spatial knowledge, revealing a possible functional role
for hierarchies in spatial memory.

In experiment 2 and 3 the interaction of multiple navigation strategies was studied. In addition to thefine-
to-coarseplanning heuristic, two other navigation strategies were identified that influenced subjects’ navigation
behavior, thecluster-strategy and the least decision load strategy. Thecluster-strategy predicts that human route
planning takes into account the distribution of target locations within an environment. The least decision load
strategy states that subjects, when having the choice between alternative routes, choose the path that minimizes
the number of possible movement decisions. Such a strategy could be employed, because the risk of getting lost
is smaller on less complex routes. Experiment 2 and experiment 3 also allowed to discriminate between different
hierarchical route planning schemes.

The supporting evidence for the use of thefine-to-coarseplanning heuristic confirms the notion that route plan-
ning is based on region-connectivity and not place-connectivity alone (Wiener & Mallot, 2004), suggesting a
second function of hierarchies in spatial memory, the reduction of complexity of route planning tasks.
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