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Abstract

The data in many real-world problems can
be thought of as a graph, such as the web,
co-author networks, and biological networks.
We propose a general regularization frame-
work on graphs, which is applicable to the
classification, ranking, and link prediction
problems. We also show that the method can
be explained as lazy random walks. We eval-
uate the method on a number of experiments.

1. Introduction

In many real-world problems, the data can be repre-
sented as a graph. Each vertex of the graph corre-
sponds to a datum, and the edges encode the pairwise
relationships or similarities among the data. A typical
example of graph data is the web. The vertices are just
the web pages, and the edges denote the hyperlinks.
In market basket analysis, the items also form a graph
by connecting any two items which have appeared in
the same shopping basket. More examples include
co-author relationships, terrorists networks, biological
networks and so on.

One problem addressed in this paper is classification.
Specifically speaking, some of the vertices are labeled,
and the task is to classify the remaining unlabeled ver-
tices. A toy classification problem is shown in Figure
1. Two vertices of the graph are labeled as positive
and negative respectively. A real-world example is to
classify the web pages into different categories given
some manually classified instances. Obviously, a good
classifier should effectively exploit the relations among
the data.

Appearing in Workshop on Statistical Relational Learning
at International Conference on Machine Learning, Banff,
Canada, 2004. Copyright 2004 by the first author.

The other problem investigated here is ranking. This
problem generally can be understood as finding the
vertices of most interest. For instance, given a terror-
ist network, detect the people who are the core of the
criminal community. Another ranking problem is to
find the vertices most relevant to some given vertices
(Figure 3), which are often called quires. We call this
problem relative ranking as distinct from the absolute
ranking without quires. The example of relative rank-
ing in terrorist networks is to discover the criminals
who have strong connections to some given criminals.

A problem closely related to ranking is link prediction
(Figure 3). For example, given a co-author network,
predict which two scientists are most likely to collab-
orate in the future. Link prediction is essentially the
relative ranking problem. In fact, we can compute the
pairwise relevance between any two unconnected ver-
tices, and then pick up the pair of vertices which are
most relevant.

Recently there has been considerable research on these
problems. Here we try to introduce a general regu-
larization framework on graphs as a new approach to
these problems. Our idea is very simple. First de-
velop discrete calculus on graphs, and then naturally
shift classical regularization from the continuous case
to graph data.

2. Regularization Framework

A graph Γ = (V,E) consists of a set V of vertices and
a set of pairs of vertices E ⊆ V × V called edges. A
graph is undirected if for each edge (u, v) ∈ E we also
have (v, u) ∈ E. Edge e is incident on vertex v if e
contains v. Suppose that Γ is connected, i.e., there is a
path from every vertex to every other vertex. Suppose
further that Γ has no self-loops or multiple edges. A
graph is weighted if it is associated with a function



Figure 1. Classification problem on a graph. Two vertices

are labeled as +1 and −1 respectively. The goal is to clas-

sify the remaining unlabeled vertices.

w : V × V → R satisfying

w(u, v) > 0, if (u, v) ∈ E, (2.1)

and

w(u, v) = w(v, u). (2.2)

The degree function d : V → R is defined to be

d(v) =
∑

u∼v

w(u, v), (2.3)

where u ∼ v denotes all vertices u connected to v by
the edges (u, v).

Let L2(V ) denote the Hilbert space of real-valued func-
tion f : V → R endowed with the usual inner product

〈f, g〉 =
∑

v

f(v)g(v), (2.4)

i.e., the functions are thought of as column vectors.

Let e denote the edge between vertices u and v. The
edge derivative of function f along e at the vertex u is
defined to be
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See Appendix A for the reason of adopting such a def-
inition. Clearly
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The local variation of f at each vertex v is then defined
to be
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where e ` v denotes the set of the edges incident with
vertex v. The smoothness of f is then naturally mea-
sured by the sum of the local variations at each vertex:

S(f) =
1

2

∑

v
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2
. (2.8)

The learning problems on graphs generally can be
thought of seeking for a function f, which is smooth
and simultaneously close to another given function y.
This view can be formalized as the following optimiza-
tion problem:

arg min
f∈L2(V )

{

S(f) +
µ

2

∥

∥f − y
∥

∥

2
}

. (2.9)

The first term in the bracket measures the smooth-
ness of the function f, and the second term measures
its closeness to the given function y. The trade-off
between these two terms is captured by a nonnega-
tive parameter µ. Later we will show how this general
framework fits into the learning problems introduced
in Section 1.

Before solving this optimization problem, we introduce
the Laplace operator ∆ : L2(V )→ L2(V ) defined by
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We can show that ∆ is linear and symmetrical. In fact,
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The last equality is usually used as the definition of
the graph Laplacian in many literatures, such as [2].

It is not hard to show

fT ∆f = S(f). (2.11)



Note that this also shows that ∆ is positive semi-
definite.

Theorem 1. The solution of the optimization problem
(2.9) satisfies ∆f + µ(f − y) = 0.

Proof. By Equality (2.11), we have

(∆f)(v) =
∂S(f)

∂f
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∣
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v

.

Differentiating the cost function in the bracket of (2.9)
with respect to f completes the proof.

Let us introduce another operator S : L2(V )→ L2(V )
by

(Sf)(v) =
∑

u∼v

w(u, v)
√

d(u)d(v)
f(u). (2.12)

Then ∆ can be rewritten into

∆ = I − S, (2.13)

where I is the identity operator.

Corollary 2. If y 6= 0 and µ > 0, the solution of the
optimization problem (2.9) is

f = (1− α)(I − αS)−1y, (2.14)

where α = 1/(1 + µ).

Proof. By Theorem 1 and Equality (2.13), we have

(I − S)f + µ(f − y) = 0,

which can be transformed into

f − 1

1 + µ
Sf − µ

1 + µ
f = 0.

Note the definition of α. Then

(I − αS)f = (1− α)y,

It is not hard to see that the eigenvalues of S are at
most equal to 1. Hence I − αS is invertible, and we
have

f = (1− α)(I − αS)−1y.

(2.14) is in fact the algorithm proposed by [7], where it
was applied to semi-supervised learning problems with
vectorial data.

For large-scale datasets, we can consider using the fol-
lowing iteration to compute f :

f(v)← α(Sf)(v) + (1− α)y, ∀v (2.15)

with the initial value f(v) = y(v). We can intuitively
understand the iteration as the process of information
diffusion on graphs. In each round, every vertex up-
dates its value by linearly combining its neighbor’s cur-
rent values with the initial value of itself. The positive
parameter α ∈ (0, 1) specifies the relative amount. It
is not hard to show that the iteration converges to
(2.14)[7]. The iteration can be expected to converge
quickly when the graph is sparse (for instance, the web
graph).

Corollary 3. If y = 0 or µ = 0, the non-zero solu-
tion of the optimization problem (2.9) is the principle
eigenfunction of S.

Proof. In the case of y = 0, by Theorem 1, we have
∆f + µf = 0 . Substituting (2.13) into the equality,
then we obtain Sf = (1 + µ)f, which means that f
is one of the eigenfunctions of S. Note that the eigen-
values of S are at most equal to 1. This requires that
1 + µ ≤ 1. Since µ ≥ 0, we have µ = 0. Hence f is the
eigenfunction corresponding to the largest eigenvalue
1, i.e. the principle eigenfunction.

3. Lazy Random Walks

The regularization framework can be interpreted as
lazy random walks. Let D denote the diagonal ma-
trix with the (u, u)-entry equal to d(u), and let W de-
note the matrix with the (u, v)-entry equal to w(u, v)
if (u, v) ∈ E and 0 otherwise. A lazy random walk on
graph Γ is decided by the transition probability ma-
trix P = (1 − α)I + αD−1W, where α is a parameter
in (0, 1). This means, with the probability α, following
one link incident with the vertex of the current posi-
tion and is chosen with the probability proportional to
the weight of the link, and with the probability 1−α,
just staying at the current position.

Assume there are n vertices. There exists a unique
stationary distribution π = [π1, . . . , πn] for the lazy
random walk, i.e. a unique probability distribution
satisfying the balance equation

π = πP. (3.1)

Let 1 denote the 1× n vector with all entries equal to
1.

1DP = 1D[(1− α)I + αD−1W ]

= (1− α)1D + α1DD−1W

= (1− α)1D + α1W

= (1− α)1D + α1D

= 1D.



Let vol Γ denote the volume of the graph, which is
defined to be the sum of vertex degrees. Then the
stationary distribution can be written as

π = 1D/vol Γ. (3.2)

Note that π does not depend on α. Hence π is also the
stationary distribution of the random walk with the
transition probability matrix M = D−1W. In addition,
the matrix S = D−1/2WD−1/2 can be rewritten in
terms of stationary distribution:

S(u, v) = π1/2
u M(u, v)π−1/2

v , (3.3)

which also shows that S is similar to M.

Let Xt denote the position of the random walk at time
t. Write T (u, v) = min{t ≥ 0|Xt = v,X0 = u, u 6= v}
for the first hitting time to v with the initial position u,
and write T (v, v) = min{t > 0|Xt = v,X0 = v}, which
is called the first return time to v [1]. Let H(u, v)
denote the expected number of steps required for a
random walk to reach v with an initial position u, i.e.
H(u, v) is the expectation of T (u, v). H(u, v) is called
the hitting time [1]. Let C(u, v) denote the expected
number of steps for a random walk starting at u to
reach v and then return, i.e. C(u, v) = H(u, v) +
H(v, u). C(u, v) is called the commute time between
u and v. Clearly, C(u, v) is symmetrical, but H(u, v)
may be not. Let G denote the inverse of the matrix
D − αW. For distinct vertices u and v, the commute
time satisfies [3]:

C(u, v) ∝ G(u, u)+G(v, v)−G(u, v)−G(v, u), (3.4)

and [1]
C(u, u) = 1/π(u). (3.5)

The relation between G and C is similar to the inner
product and the norm in Euclidean space. In other
words, we can think of G as a Gram matrix which spec-
ifies a kind of inner product on the dataset. The com-
mute time is the corresponding metric derived from
this inner product [3].

Note that H(u, v) is quite small whenever v is a node
with a large stationary probability π(v). Thus we can
consider normalizing H(u, v) by

H̄(u, v) =
√

π(u)π(v)H(u, v). (3.6)

Accordingly, the normalized commute time is

C̄(u, v) = H̄(u, v) + H̄(v, u). (3.7)

Let Ḡ denote the inverse of the matrix I − αS. Then
the normalized commute time satisfies

C̄(u, v) ∝ Ḡ(u, u)+ Ḡ(v, v)− Ḡ(u, v)− Ḡ(v, u). (3.8)

Noting Equality (3.5), we have

Ḡ(u, v) =
G(u, v)

√

C(u, u)C(v, v)
, (3.9)

which is similar to the normalized Euclidean product
or cosine.

4. Bayesian Interpretation

There is a simple Bayesian interpretation for the reg-
ularization framework inspired by [6]. Let p(f) denote
the prior probability of f, and let p(y|f) denote the
conditional probability of y given f. Then the MAP
estimation is given by

arg max
f∈L2(V )

{

log p(y|f) + log p(f)

}

. (4.1)

A general model for the prior distribution p(f) is given
by

p(f) =
1

Zr
exp

[

− S(f)

µ

]

, (4.2)

where Zr is a normalization constant. Further, the
conditional probability is given by

p(y|f) =
1

Zc
exp

(

− ‖f − y‖
2σ2

)

, (4.3)

where Zc is another normalizing constant. Thus the
MAP estimator (4.1) yields

arg min
f∈L2(V )

{

S(f) +
µ

2

∥

∥f − y
∥

∥

2
}

. (4.4)

5. Applications

In this section, we apply the general framework to the
learning problems introduced in Section 1, including
classification, relative ranking, and link prediction. In
all experiments, the regularization parameter α is sim-
ply fixed at 0.90. In our future research, we will ad-
dress how to choose a suitable α.

5.1. Classification

Assume partial vertices are labeled as positive or neg-
ative. We want to predict the labels of the other
vertices. Define y(v) = 1 or −1 if u is labeled as
positive or negative and 0 otherwise. Then compute
f = (I −αS)−1y, and classify the unlabeled vertices v
as y(v) = sgn(f(v)).

We applied this classification method to the toy prob-
lem shown in Figure 1 and obtained the result shown



Figure 2. Classification on a toy graph. The two shaded

circles are the initially labeled vertices. Note that the

nodes can not be classified correctly if the classification

only naively depends on the shortest paths to the labeled

nodes.

in Figure 2. Apparently, the classification is consis-
tent with our intuition. If we simply classify the un-
labeled vertices by comparing the minimal distances
from them to the labeled vertices, i.e., the length of
the shortest paths, then some vertices can not be cor-
rectly classified.

5.2. Relative Ranking

Given a vertex (query) of interest in a graph, rank the
remaining vertices with respect to their relevances to
the given vertex. This can be viewed as an extreme
case of classification problem, in which only positive
examples are available. In other words, in some sense,
relative ranking can be regarded as one-class classi-
fication problem [5]. Hence, similarly, define y with
y(v) = 1 if v is the query and 0 otherwise and compute
f = (I − αS)−1y. Then rank the vertices v according
with f(v) (largest ranked first) [8].

We address a toy ranking problem shown in the top
panel of Figure 3. This toy network was first suggested
by [4] for the problem measuring betweenness central-
ity in social networks. Assume that A is the query.
The task is to rank the remaining vertices with re-
spect to A. According with our intuition, D should be
most similar to A because they are in the same group.
Next should be B. Let us imagine that the vertices
respectively in the left and right groups communicate
with each other by passing their messages through the
links. Then both A and B will be quite busy exchang-
ing messages from the two opposite groups. Next C,
which can be regarded as a redundant vertex in the
context of communication. Hence the idea ranking list
should be A → D → B → C → E. If we simply rank
the vertices according with shortest paths, then the
vertices D,B and C are similar to A at the same level.
The ranking cores given by our method is as follows:

D E

A B

C

D E

A B

C

Figure 3. Ranking on a toy network. Top panel: ranking

the vertices according to their relevances to the vertex A.

Bottom panel: link prediction problem, in which the edge

between the vertices A and B is removed.

B C D E
A 0.99 0.87 1.33 0.56

This ranking list is consistent with our intuitive anal-
ysis.

5.3. Link Prediction

This problem is essentially as same as ranking: choos-
ing each vertex as the query and ranking the other
vertices with respect to it, then adding a link between
two most relevant vertices. This is equivalent to com-
pute the matrix (I−αS)−1 and choose the entry which
corresponds to the maximal value.

We investigate the toy network shown in the bottom
panel of Figure 3, in which the link between A and B
is removed with respect to the network shown in the
top panel. The goal is to predict this removed link.

The relevance scores among unconnected vertices are
the following:

(A, B) (A, E) (D, B) (D, E) (C, E)
0.48 0.29 0.29 0.18 0.52

This means the most possible link in the future is be-
tween C and E ( and symmetrically the link between
C and D as well). Unfortunately, this is not consistent
with our setting. However, if we choose α = 0.95, then

(A, B) (A, E) (D, B) (D, E) (C, E)
1.27 0.93 0.93 0.69 1.16

Now the next link predicted by the scores is between
A and B. Different from the previous experiments, the
result is sensitive to the choice of α. This shows how
to choose a suitable α is a very important problem.
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A. Laplacian in Euclidean Space

Let f denote a differentiable function defined on
R

m. Then the gradient of function f at point x =
[x1, . . . xm]T is the vector

∇f(x) =

[

∂f

∂x1
, · · · , ∂f

∂xm

]T

,

and

∥

∥∇f(x)
∥

∥ =

√

√

√

√

m
∑

i=1

(

∂f

∂xi

)2

.

The smoothness of f is generally measured by

S(f) =
1

2

∫

∥

∥∇f
∥

∥

2
dx,

which is usually called the Dirichlet form or energy
function.

The Laplacian in the continuous case is a second-order
differential operator defined by

∆f =
m

∑

i=1

∂2f

∂2xi
.

The connection between the Laplacian and the gradi-
ent is expressed by

∫

f(∆f)dx =

∫

∥

∥∇f
∥

∥

2
dx,

which is exactly parallel to (2.11). In this sense, it is
reasonable to think of (2.5) as the derivative on graphs
and further use (2.8) to measure the smoothness of
functions.
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