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Abstract. In bioinformatics, there exist multiple descriptions of graphs
for the same set of genes or proteins. For instance, in yeast systems,
graph edges can represent different relationships such as protein-protein
interactions, genetic interactions, or co-participation in a protein com-
plex, etc. Relying on similarities between nodes, each graph can be used
independently for prediction of protein function. However, since different
graphs contain partly independent and partly complementary informa-
tion about the problem at hand, one can enhance the total information
extracted by combining all graphs. In this paper, we propose a method for
integrating multiple graphs within a framework of semi-supervised learn-
ing. The method alternates between minimizing the objective function
with respect to network output and with respect to combining weights.
We apply the method to the task of protein functional class prediction in
yeast. The proposed method performs significantly better than the same
algorithm trained on any single graph.

1 Introduction

In bioinformatics, many types of genomic data are frequently represented by us-
ing graphs of which nodes correspond to genes or proteins, and edges correspond
to different relationships such as physical interactions of proteins (Schwikowski
et al., 2000; Uetz et al., 2000; von Mering et al., 2002), gene regulatory rela-
tionships (Lee et al., 2002; Ihmels et al., 2002; Segal et al., 2003), or similarities
between protein sequences (Yona et al., 1999). One application using a graph
representation is the prediction of protein functional class. It can be described as
a binary-class classification problem on an undirected graph (see Fig.1). A pro-
tein of known class is labeled either by ‘+1’ or ‘−1’ while a protein yet unknown
its class is marked as ‘?’. The goal is to predict the class of unlabeled proteins
relying on similarities between nodes. Prediction of protein functional class has
been studied by means of various methods such as diffusion kernel (Tsuda &
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Noble, 2004a), majority vote (Hishigaki et al., 2001; Schwikowski et al., 2000),
graph-based (Vazquez et al., 2003), Bayesian (Deng et al., 2003), and discrimi-
native learning methods (Vert & Kanehisa, 2002; Lanckriet et al., 2004a).

Fig. 1. The functional class prediction on a protein network graph: A protein of known
class is labeled either by +1 or −1, and edges represent similarities between proteins.
The task is to predict class of unlabeled proteins marked as ‘?’.

There can exist multiple descriptions of graphs for the same set of genes
or proteins. For instance, nodes of yeast proteins can be connected in many
different ways based on heterogeneous information such as protein-protein in-
teractions, or genetic interactions, or co-participation in a protein complex, etc.
Different graph sources are likely to contain partly independent and partly com-
plementary information about the problem at hand. Thus, one can enhance the
total information extracted by combining all graphs. Recently, there have arisen
several methods for integrating heterogeneous data sources in bioinformatics.
Most of them are based on kernel methods which represent data by means of
kernel matrices defined by similarities between pairs of genes or proteins (for
the kernel methods, refer to Schölkopf & Smola (2002)). Kernel matrices rep-
resenting heterogenous data types are then combined into a single matrix by
various techniques. Lanckriet et al. (2004c) exploit semi-definite programming
(SDP, see also Lanckriet et al. (2004b)) techniques to reduce the problem of
finding optimizing kernel combinations to a convex optimization problem. This
SDP-based approach yields satisfactory results when performed on genome-wide
data sets, including amino acid sequences, hydropathy profiles, gene expression
data, and known protein-protein interactions. On the other hand, Kato et al.
(2004) differentiate the worth of data sources such as ‘expensive’, which is data
that is informative but difficult to obtain, and ‘cheap’, which is data that is less
informative but abundantly available. Since the kernel matrix derived from the
expensive data often has missing entries, they attempt to complete them using
multiple cheap data. They use an expectation-maximization (EM) algorithm to
simultaneously optimize the combining weights of data sources and the missing
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entries of the incomplete kernel matrix (for the methodology about kernel ma-
trix completion, refer to Tsuda et al. (2004b)). This EM-based method shows
promising results when tested on supervised protein network inference and pro-
tein superfamily classification. The problem of multiple data sources (not only
limited to graph representation) is often described as “data fusion,” which is in-
tensely dealt with in the chapter 11–13 of the recent book of Schölkopf, Tsuda, &
Vert (2004). Other methods related to integration of data sources can be found
in Lanckriet et al. (2004a), Pavlidis et al. (2001), and Vert & Kanehisa (2002).

In the meantime, when data is represented as a graph, a more direct state-
of-the-art in learning methods is semi-supervised learning. In semi-supervised
learning, the labeled nodes provide information about the decision function,
while the unlabeled nodes serve to reveal the structure of the data or data man-
ifold by providing additional information (Chapelle et al., 2003b; Zhou et al.,
2004a; Seeger, 2000). However, the problem of utilizing multiple data sources
has yet to be explored in the framework of semi-supervised learning. In this pa-
per, we propose a method for integrating multiple graphs within a framework
of semi-supervised learning. The method alternates between minimizing the ob-
jective function with respect to network output and with respect to combining
weight. We apply the method to the task of protein functional class predic-
tion in yeast provided by the MIPS Comprehensive Yeast Genome Database
(CYGD-mips.gsf.de/proj/yeast). The proposed method performs significantly
better than the same algorithm trained on any single graph.

The remainder of this paper is organized as follows. In section 2, we briefly
introduce semi-supervised learning and review the recent literature. Section 3
gives a detailed explanation of our proposed method. In section 4, we show
experimental results. We conclude in section 5.

2 Semi-Supervised Learning

Let G = (V, E) denote a weighted graph where V = {x1, x2, ..., xn} is the
vertex set and E is the edge set. A weight matrix associated with E, denoted
as W , represents the magnitude of strength of linkage. W could be simply re-
garded as a non-negative similarity (or an affinity) matrix. The more similar
xi to xj , the larger a value of wij . Now suppose that p vertices of V are la-
beled (x1, y1), (x2, y2), . . . , (xp, yp) where yi ∈ {−1, 1}, and the remaining q
vertices xp+1, xp+2, . . . , xp+q=n are unlabeled. And accordingly, let us define
P = {1, 2, . . . , p} for the former and Q = {p + 1, p + 2, . . . , n} for the latter. The
goal of semi-supervised learning is to label those unlabeled vertices by exploiting
the structure of the graph under the assumption that a label of an unlabeled
vertex is more likely to be that of more adjacent or more strongly connected
vertex.
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To formulate the idea, let us define a function f : V → < on G that estimates
labels with this property. Then, (A) a label fi or f(xi) estimated from f should
not be too different from fj ’s of adjacent vertices (B) under the constraints
fi ≡ yi, i = 1, ..., p. One can obtain f by minimizing the following quadratic
function

∑

i∼j

wij(fi − fj)2 + µ
∑

(fi − yi)2, (1)

where i ∼ j means xi and xj are adjacent. The first term implies the “smooth-
ness” of (A) and the second term corresponds to the “loss function” of (B). Al-
ternative functions of smoothness or loss can be found in Chapelle et al. (2003a).
For technical convenience, a condition

∑
fi = 0 can be added to Eq.(1) (Belkin

& Niyogi, 2003a; Belkin et al., 2003b). Very often, the quadratic problem of
Eq.(1) is represented in terms of matrix,

min
f

fT Lf + µ (f − y)T (f − y), (2)

where y = [ yT
P yT

Q ]T , yp ∈ {−1, 1}, yq ∈ {0}, p ∈ P, q ∈ Q, and f =
[ fT

P fT
Q ]T , f ∈ <. µ is a parameter that trades off loss versus smoothness.

The Laplacian is defined as L = D − W where D = diag(di), di =
∑

j wij .
Instead of L, a ‘normalized Laplacian’, L̃ = D− 1

2 LD
1
2 can be used which has

many nice properties (Chung, 1997). The solution to the quadratic problem can
be obtained in a form

f = µ {L + µ I}−1
y

where I is an identity matrix.

There have been various semi-supervised learning algorithms, such as spectral
methods and clustering (Belkin & Niyogi, 2004; Chapelle et al., 2003a; Joachims,
2003; Ng et al., 2001; Seeger, 2000), graph s-t mincuts (Blum & Chawla, 2001)
or multi-way cuts (Kleinberg and Tardos, 1999), co-training (Blum & Mitchell,
1998), random walks (Szummer & Jaakkola, 2001; Zhou & Schölkopf, 2004b;
Zhu et al., 2003), and diffusion kernels (Kandola et al., 2002; Kondor and Laf-
ferty, 2002; Smola & Kondor, 2003). See also ‘transductive SVM’ introduced by
Vapnik (1998) which were later refined by Bennett (1999) and Joachims (1999).

3 Method of Combining Graphs

Given a single graph G, we can predict f q with (2) after transforming G into
a Laplacian L or a normalized Laplacian L̃ . Now, consider the case where a
set of graphs G = {G1, G2, . . . , Gk} is given, each of which containing different
aspects of the data (see Fig.2).
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Fig. 2. Multiple graphs: Consider the case where a set of graphs G = {G1, G2, . . . , Gk}
is given, each of which depicts a different aspect of the data. Each graph can solely
predict the label of the unlabeled nodes marked as ‘?’, depending on its own similarity
measure between nodes. However, since different graphs contain partly independent
and partly complementary pieces of information about the problem at hand, one can
enhance the total information extracted about the problem by combining those graphs.

To integrate multiple graphs, we consider parameterized combinations of
graphs. In particular, we form the linear combination of Laplacians

L(β) =
K∑

k=1

βkLk, (3)

where the weights βk are constrained to be positive to assure that each Laplacian
contributes to prediction of f . Inserting (3) into (2), we obtain

min
β, f

K∑

k=1

βkfT Lkf + µ (f − y)T (f − y),

s.t. β ≥ 0, (4)

where β = [β1 β2 . . . βk]T . However, since each Lk is positive definite, the value
β = 0 is trivially optimal. This can be avoided with the additional constraint
βT 1 = δ, which yields

min
β, f

K∑

k=1

βkfT Lkf + µ (f − y)T (f − y),

s.t. β ≥ 0, βT 1 = δ, (5)
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where 1 = [1 1 . . . 1]T . Nonetheless, the solution for β may still be more sparse
than desired in that case. Namely, we always get only one non-zero weight, and
all the others are zero, β = [0 0 . . . δ 0]T . To get a reasonable set of weights, we
consider to add an extra regularizer such that the term f>L(β)f penalizes all
the directions more equally. If the eigenvalues of L(β) are λ1, . . . , λn, our aim is
to regularize L(β) such that all the eigenvalues become less variant. One way to
achieve this is to penalize large eigenvalues so that they are pulled toward zero.
We design the regularization term as

− log det(I − L(β)) = −
n∑

i=1

log(1− λi).

Other choices might be possible, but our basic idea is to regularize the eigenvalues
instead of the weights βk’s. Then, the optimization problem becomes

min
β, f

R(β, f) =
K∑

k=1

βkfT Lkf − log det(I −
K∑

k=1

βkLk) + µ (f − y)T C(f − y),

s.t. β ≥ 0, βT 1 = δ, (6)

where δ < 0.5. In the third term corresponding to the loss function, a diagonal
cost matrix C is incorporated which allows different misclassification costs, i.e.,
c1 for yi = +1, and c2 for yj = −1, i, j ∈ P .

The objective function of (6) is not jointly convex, but has nice properties:
by fixing β, the objective function is convex with respect to f , while conversely,
fixing f it is convex with respect to β. Now, we can jointly minimize the ob-
jective function on β and f . We bisect the solution process similar to ‘E-step’
and ‘M-step’ of EM algorithm, and alternatively optimize both steps (Dempster
et al. (1977); McLachlan & Krishnan (1997)). Here, we denote them instead as
‘β-step’ and ‘f -step,’ respectively. The algorithm is presented in Fig.3.

Solution of [f-step] When β is fixed, the solution f can be obtained by

∂R(β, f)
∂f

∣∣∣
(β=βi)

=

{
K∑

k=1

βkLk + µ C

}
f − µ C y = 0,

where C is a (n × n) diagonal cost matrix. Standard linear algebra leads to a
solution of the form

f = µ C

{
K∑

k=1

βkLk + µ C

}−1

y (7)
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(1) Initialize �i (i = 0) with random value under the constraints
(�i)T 1 = δ.

(2) [f -step] Given �i, find f i by minimizing R(�,f) with
respect to f .

(3) [�-step] Given f i, find �i+1 by minimizing R(�,f) with
respect to �.

(4) Return f i and �i if
���R(�i+1, fi+1)−R(�i, fi)

R(�i, fi)

��� < ε,

i = i + 1 and go to step-(2) otherwise.

Fig. 3. Algorithm: By alternating ‘�-step’ and ‘f -step’, the optimal solution of the
combining weights and the output can be found simultaneously.

Solution of [β-step] To find the solution of β when given f , we use the
gradient descent method for minimizing R(β, f) with respect to β. The current
βi is updated to βi+1 as follows:

βi+1 = βi − αiPdβi (8)

where dβi is the gradient vector,

dβi =
∂R(β, f)

∂β

∣∣∣
(f=f i, β=βi)

,

whose kth element is

∂R(β, f)
∂βk

∣∣∣
(f=f i, β=βi)

= fT Lkf + tr
[
(I −

K∑

j=1

βjLj)−1Lk

]
. (9)

In (9), tr
[
(I −

K∑
j=1

βjLj)−1Lk

]
is the derivative of ∂

∂βk

(
log det(I −

K∑
k

βkLk)
)

given by the following algebra. Let A be a matrix of which each element is
parameterized with respect to t. The derivative of ∂

∂t

(
log det A

)
can be drawn

by

∂
∂t

(
log detA

)
=

∑

i,j

∂

∂Aij

(
log det A

)
× ∂Aij

∂t
(10)

=
∑

i,j

A−1
ij

∂Aij

∂t
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where
∑
i,j

∂
∂Aij

(
log det A

)
= ∂

∂A

(
log detA

)
= A−1. And if A and B are sym-

metric, then
∑
i,j

AijBij = tr
[
AB

]
. Thus (10) becomes

∑

i,j

A−1
ij

∂Aij

∂t
= tr

[
A−1 ∂A

∂t

]
.

By replacing A and t with (I −
K∑

k=1

βkLk) and βk, respectively, we find the

derivative

∂

∂βk

(
log det(I −

K∑

k=1

βkLk)
)

= tr
[
(I −

K∑

j=1

βjLj)−1(−Lk)
]
.

Going back to (8), the projection matrix P is defined as

P = I − 1
K

11T (11)

where 1 = [11 . . . 1]T . The matrix P enables the next solution of βi to satisfy
the constraint βT 1 = δ so that

(βi+1)T 1 = (βi +∇)T 1 = δ

where ∇ = −dβi. Since (βi)T 1 = δ, ∇ should satisfy

1T∇ = 0 (12)

which implies ∇ has to be projected onto an orthogonal space to 1T . A general
formula of orthogonal projection to A when A∇ = 0 is

P = I −AT (AAT )−1A.

Equation (11) results from specifying A with 1T in the formula. With precondi-
tioning of ∇ with P , we now can assure (12),

1T (P∇) = 1T (I − 1(1T 1)−11T )∇ = 0.

The αi in (8) determines the learning rate during the update. We begin with
αi set to the maximum value under the condition βi+1

k ≥ 0, ∀k, and gradually
reduce the magnitude as the iterations increase.



9

4 Experiments

4.1 Experimental Design

Our goal is to determine functional classes of yeast proteins. We used as a gold
standard, the functional catalogue provided by the MIPS Comprehensive Yeast
Genome Database (CYGD-mips.gsf.de/proj/yeast). The top-level categories in
the functional hierarchy produce 13 classes (see table 1). A protein can belong
to several functional classes. In a total of 6355 yeast proteins, however, only
3588 have class labels. The remaining yeast proteins have uncertain function
and are therefore not used in evaluation. We dealt with the prediction problem
as ‘one class-versus-all others’ classification tasks, one for each functional class.
See Lanckriet et al. (2004b) for more detail.

Table 1. 13 CYGD functional Classes

Classes

1 metabolism
2 energy
3 cell cycle and DNA processing
4 transcription
5 protein synthesis
6 protein fate
7 cellular transportation and transportation mechanism
8 cell rescue, defense and virulence
9 interaction with cell environment

10 cell fate
11 control of cell organization
12 transport facilitation
13 others

The input is four different types of protein interaction graphs with proteins
as nodes and interactions as edges. The graphs are represented as mostly binary
matrices having non-zero entry if there is interaction between the row and column
proteins, 0 otherwise. The followings are the input matrices:

W1 : protein-protein interactions (MIPS physical interactions),
W2 : genetic interactions (MIPS genetic interactions),
W3 : co-participation in a protein complex (determined by tandem affinity pu-

rification, TAP), each entry is a count of the number of times two proteins
appear together in a complex,

W4 : co-participation in a protein complex, each entry is non-zero if and only if
there is a bait-prey relationship.

There are proteins which show no interactions with others. For instance, W2

of Fig.4 has 2769 (=1529+1240) proteins with no interaction, thus only 819
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(=3588-2769) are available for semi-supervised learning. And no results for the
2769 proteins remaining. Similarly, this situation arises in other graphs when
they are considered individually. In contrast, using a combined graph, a protein
can be used if it has at least one non-zero interaction from any graph. It amounts
to the size of the union of all proteins with non-zero interaction in all graphs. In
the problem at hand, 1529 of 3588 proteins have no interactions in any of the
graphs. Consequently, 2059 (=3588-1529) proteins are preserved for learning.
Combining graphs is also advantageous for proteins with non-zero interactions
particulary when individual graphs cannot reach an accord with each other.

Fig. 4. The number of proteins available to learning: Dark gray indicates the number of
proteins with no interaction in any of the graphs, hence unavailable to learning. Light
gray indicates the number of the proteins in which there is no interaction in the specific
graph but available in at least one of the other graphs. These are thus not available to
learning in the specified graph but available to that of the combined graph. For each
graph, the number of proteins used for learning is depicted in white.

All the matrices Wk (k = 1, ..., 4) were transformed to ‘normalized’ Lapla-
cian Lk’s with dimensions of 1342, 819, 1079 and 1051, respectively. Individual
Laplacians composing the combined graph, columns and rows were zero-padded
up to 2059 after transformation. Hereafter, we indicate each graph with Lk

(k = 1, ..., 4) and the combined graph with Lcom.

The performance of Lcom was compared with those of individual Lk’s with
the receiver operating characteristic (ROC) score, TP1FP, TP10FP, and error
rate. The ROC score is the area under ROC curve (see Fig.5) that plots true
positive rate (sensitivity) as a function of false positive rate (1-specificity) for
differing classification thresholds (Gribskov & Robinson, 1996; Hanley & McNeil,
1982). It measures the overall quality of the ranking induced by the classifier,
rather than the quality of a single value of threshold in that ranking. An ROC
score of 0.5 corresponds to random guessing, and an ROC score of 1.0 implies
that the algorithm succeeded in putting all of the positive examples before all of
the negatives. TP1FP and TP10FP are the rates of true positives at the point
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that yields 1% and 10% false positive rate on the ROC curve, respectively. Error
rate is a conventional performance measurement with a fixed value threshold.
Five-fold cross-validation (CV) was conducted for every class, and repeated five
times in order to estimate the variance of the measurement values.

4.2 Results

A typical ROC curve is shown in Fig.5. The closer the curve follows the left-
hand border and then the top border of the ROC space, the more accurate the
classifier. The figure therefore illustrates that Lcom is more accurate than any
other single Lk. Fig.6 presents the average ROC score of each class on its test

Fig. 5. ROC curve: Protein functional class 3. The closer the curve follows the left-hand
border and then the top border of the ROC space, the more accurate the classifier.

set when performing five-fold CV five times. The height of the stem indicates to
the ROC score. Within each group of stems, a thinner stem corresponds to an
individual graph in due order, such as L1, L2, L3, and L4, respectively while a
thicker one to Lcom. Across the 13 classes, the combined graph Lcom outperforms
any given single Lk. Overall, Lcom yields an ROC score of 0.8313 that surpasses
all those of individual Lk’s, 0.7777, 0.7836, 0.7310, and 0.7238, respectively (see
Fig. 7(a)). The performances of TP1FP and TP10FP are depicted in Fig.7(b)
and Fig.7(c). Among TP1FP’s of Lk’s, 26.87% of L2 is the most comparable
to 30.07% of Lcom, but the gap between the best and the second best becomes
larger in TP10FP by 70.15% of Lcom and 61.22% of L2. In Fig.7(d), the pro-
portion of the colored bars indicates the relative weights of the different graphs
when combined. Fig. 8 presents the error rates of 13 classes. A dot stands for
the error rate of Lk, and the number beside it identifies the individual such as
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Fig. 6. ROC score for 13 functional protein classes: The height of the stem indicates
to the ROC score. Within each group of stems, a thinner stem corresponds to an
individual graph in order of such as L1, L2, L3, and L4, respectively while a thicker
one corresponds to Lcom. Across the 13 classes, the combined graph Lcom outperforms
any single Lk.

k = 1, ..., 4. The error rate of the combined graph is depicted as a square. The
performance of Lk differs ‘class by class’, and the difference between the best
and the worst, which is represented as a line, changes significantly as well. There-
fore, it is not appropriate to put them in the order of performance. Moreover,
since the difference is also large a wrong choice of graph may lead to the worst
performance in specific class. On the other hand, the error rate of the combined
graph is always lower than any of those of individual graphs. In addition, one
does not need to take the risk involved in the choice of graphs.

To test the significance of the difference between the combined graph and
individual ones, McNemar’s test was conducted (Dietterich, 1998). In principle,
McNemar’s test is used to determine whether one learning algorithm outperforms
another on a particular learning task. This non-parametric test could be seen
as a Sign-Test in disguise. Fig.9 shows p-value distribution of McNemar’s test.
The smaller p-value indicates the better the combined graph is than an individ-
ual graph, while a p-value of 1 means no statistical difference between them. A
pairwise test between the combined graph and each of four graphs is conducted
during five repetitions of five-fold cross-validation for 13 classes, which amounts
to 1300 (= 4×5×5×13). For most of 1300 experiments the combined graph out-
performs the individual graphs. And in 504 out of 1300 McNemar’s tests, there
is a statistically significant difference between them (significance level α=0.05).

To do the comparison justice, we have only taken into consideration the pro-
teins which are available to learning both for an individual graph and for the
combined graph. For instance, when we compared Lcom with Lk, we reported
performance only on 1342 proteins (see Fig.4). However, in the combined graph,
we are still able to obtain the results for another 717 proteins – that is to say,
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(a) ROC score

(b) TP1FP

(c) TP10FP

(d) Weight

Fig. 7. Overall performance: (a), (b), and (c) corresponds to ROC score, TP1FP and
TP10FP, respectively. The height of bars indicates the average value of the measure-
ments on five-fold CV repeated five times across 13 classes, and the error bar indicates
the standard error. Seeing the results of (a), (b), and (c), the combined graph yields
a better performance. In (d), the proportion of the colored bars indicates the relative
weights of the different graphs when combined.
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Fig. 8. Error rate for 13 functional protein classes: A dot stands for the error rate of Lk,
and the number beside it identifies the individual, k = 1, ..., 4. The difference between
the best and the worst is represented as a line. The error rate of the combined graph is
depicted as a square. The performance of Lk differs ‘class by class’, and the difference
changes significantly. On the other hand, the error rate of the combined graph is always
lower than any of those of individual graphs. Moreover, one does not need to take the
risk involved in the choice of graphs that may lead to the worst performance in specific
class.

Fig. 9. p-value distribution of McNemar’s test: The smaller p-value indicates a more
statistically significant difference between the combined graph versus any single graph,
while a p-value of 1 indicates no statistical difference between them. A pairwise test be-
tween the combined graph and each of four graphs is conducted during five repetitions
of five-fold cross-validation for 13 classes, which amounts to 1300 (= 4×5×5×13). For
most of 1300 experiments the combined graph outperforms the individual graphs. In
504 out of 1300 McNemar’s tests, there is a statistically significant difference between
them (at a significance level of α=0.05).
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the results of the proteins which are not available in an individual graph but
available in the combined graph. Table 2 shows both error rates of the combined
graph, ‘Error A’ for the former and ‘Error B’ for the latter. Error B is slightly
larger than Error A, since it contains the proteins of which output is produced
with fewer input graphs. Nonetheless, Error B values are still reasonable.

Table 2. Error rates of the combined graph: ‘Error A’ is an error rate for the proteins
which are available to learning both for an individual graph and for the combined
graph. ‘Error B’ contains more proteins which are not available to an individual graph
but available to the combined graph. Although Error B is slightly larger than Error A,
due to the relative lack of input information, it is nonetheless still a reasonable figure
as an error rate.

Functional Protein Classes
(%)

1 2 3 4 5 6 7 8 9 10 11 12 13 Avg.

Error A 16.32 8.23 17.08 11.39 7.92 14.42 8.29 11.11 6.65 14.98 20.18 6.70 8.49 11.67

Error B 20.39 9.98 19.46 19.71 12.99 17.52 12.85 14.26 10.71 18.19 21.12 7.29 11.24 15.05

5 Conclusion

In this paper, we have presented a novel method for combining multiple graphs
within a framework of semi-supervised learning. Similar to the EM algorithm,
the method alternates between minimizing the objective function with respect
to network output and with respect to combining weight. When applied to the
task of functional class prediction of yeast proteins, the proposed method per-
formed significantly better than the same algorithm trained on any single graph.
The proposed method can also be used as an alternative to the model selection
process. Given a single data source, it is likely to be represented in various ways
by means of different parameters, i.e., different similarity measures, leading to
different performances. Thus, instead of the tedious process of choosing one out
of the candidate parameters, one can combine them with this method. From
preliminary testing on standard data sets – Breast Cancer and Pima Indian
Diabetes (from UCI Repository), we have also obtained promising results. Al-
though the method shows good performance, it has not yet been compared with
the other similar approaches such as Lanckriet et al. (2004a). Investigating the
merits against Lanckriet et al. (2004a) will be the focus of future research.
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