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The three-dimensional structure of a protein provides crucial information for pre-

dicting its function. However, as it is still a far more difficult and costly task to

measure 3D coordinates of atoms in a protein than to sequence its amino acid com-

position, often we do not know the 3D structures of all the proteins at hand. Let us

consider a kernel matrix that consists of kernel values representing protein similar-

ities in terms of their 3D structures where some of the entries are missing because

structural information about some proteins are not available whereas their amino

acid sequences are readily available. This chapter proposes to estimate the miss-

ing entries by means of another kernel matrix derived from amino acid sequences.

Basically, a parametric model is created from the sequence kernel matrix, and the

missing entries of the structure’s kernel matrix are estimated by fitting this model

to existing entries. For model fitting, we adopt two algorithms: single e-projection

and em algorithm based on the information geometry of positive definite matrices.

For evaluating and demonstrating the performance of our method, we performed

protein classification experiments by using support vector machines (SVMs). Our

results show that these algorithms can effectively estimate the missing entries.

1.1 Introduction

One of the major issues in bioinformatics is the functional annotation of proteins.

Proteins are molecules which play a variety of important roles (functions) in everyProtein structure

and sequence living organism. The function of a protein is determined by its shape, which is

usually called a 3D or tertiary structure, or more simply, structure. Therefore,

protein structure is one of the major factors for investigating the mechanisms of
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proteins. The constant growth of a protein structure database such as the protein

data bank (PDB) (Berman et al., 2000) might be proof of its importance. However,

the protein structures are not always available because measuring 3D coordinates

of every atom of a nano-scale molecule requires very expensive and intensive

experiments. On the other hand, protein amino acid sequences are abundantly

available, as shown by the rapid growth of databases such as Swiss-Prot (O’Donovan

et al., 2002). We can find this fact with a very simple comparison: there are 129,463

sequences in Swiss-Prot and 19,375 structures in PDB as of this writing. Thus,

ongoing research is endeavoring to achieve practical prediction of protein structures

from their amino acid sequences (see figure 1.1 for a brief description of the relation

between sequence and structure of a protein). Although varieties of prediction

methods have been proposed, the prediction of an exact tertiary structure remains

one of the most difficult problems because mechanisms behind the relation between

structure and sequence are not fully clarified yet. Nevertheless it is highly probable

that a sequence contains certain information to infer its structure.

In this chapter, we estimate the relation between two structures instead of

estimating the structure itself, following the ideas in Tsuda et al. (2003). As in other

chapters of this book, we represent n proteins by an n × n kernel matrix, which

is a positive definite similarity matrix where the (i, j)th entry is the similarity

between the ith protein and the jth protein. When we do not have structures

for all proteins, we have to leave the entries of the kernel matrix for unavailable

structures as missing. Obviously, due to missing entries, kernel learning algorithms

such as support vector machines cannot be applied. Our aim is to complete the

missing entries so that the learning algorithms can work on the completed kernel

matrix. Basically we create a parametric model from another kernel matrix derived

from sequences, and fit the model to the existing entries to complete the missing

ones. Our algorithm is derived from a mathematical theory known as information

geometry (Amari, 1995). Finally, we show promising results in protein classification

experiments.

This chapter is organized as follows: Section 1.2 describes some definitions used

in our algorithm. Section 1.3 introduces the information geometry to the space of

positive definite matrices. Based on the geometric concepts, two algorithms for

matrix approximation are presented in section 1.4. Then the protein structure

classification experiment is described in section 1.5. We present our conclusions

in section 1.6.

1.2 Kernel Matrix Completion

Let us consider a kernel function as the similarity measure between two proteins.

There are two types of such functions: kst for structure similarity and ksq forKernel matrices

for structure and

sequence

sequence similarity. We define the two matrices as follows:

Structure kernel matrix D: [D]ij = kst(xi, xj), i, j = 1, · · · , l
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A chain of amino acids

forms secondary structures 
e.g. α-helices (coils)

then folds into a 
particular shape
i.e. 3D structure

Figure 1.1 An overview of protein folding, which illustrates how an amino acid sequence
folds into a protein molecule. A chain of amino acids is a product of translation of
messenger RNA. The sequence forms secondary structures such as α helices (coils) or
β sheets during its folding process. The secondary structure is the fundamental element
of a protein structure. Finally, the sequence folds further into a specific shape which is the
key property in determining the function of the protein. The shape of a protein is called
its 3D structure.

Sequence kernel matrix M : [M ]ij = ksq(xi, xj), i, j = 1, · · · , l

where [M ]ij is the (i, j)th element of a matrix M and xi denotes the ith protein.

The two matrices are assumed to be positive definite such that they are compatible

with kernel methods.

Now the task is to estimate the missing entries of the structure matrix using

the sequence matrix. We create a parametric model of admissible matrices from

the sequence matrix, and estimate missing entries by fitting the model to existing

entries. According to our previous paper (Tsuda et al., 2003), we define the

parametric model as all spectral variants of the sequence matrix which have the

same eigenvectors but different eigenvalues (Cristianini et al., 2002).

In order to fit a parametric model, the distance between two matrices has to be

determined. A common way is to define the Euclidean distance between matrices

(e.g., the Frobenius norm) and make use of the Euclidean geometry. Recently

Vert and Kanehisa (2003) tackled the incomplete matrix approximation problem

by means of kernel canonical correlation analysis (CCA). Also Cristianini et al.

(2002) proposed a similarity measure called “alignment,” which is basically the

cosine between two matrices. In contrast to these methods, which are based onKullback-Leibler

divergence Euclidean geometry, this chapter follows an alternative way: we define the Kullback-
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Leibler (KL) divergence between two kernel matrices and make use of Riemannian

information geometry (Ohara et al., 1996). The KL divergence is derived by

relating a kernel matrix to a covariance matrix of Gaussian distribution. The primal

advantage is that the KL divergence allows us to use the em algorithm (Amari, 1995)

to approximate an incomplete kernel matrix. The e and m steps are formulated as

convex programming problems; moreover, they can be solved analytically when

spectral variants are used as a parametric model.

1.3 Information Geometry of Positive Definite Matrices

In this section, we introduce the information geometry of the space of positive

definite matrices. Only necessary parts of the theory are presented here, so the

reader is referred to Ohara et al. (1996) and Amari and Nagaoka (2000) for details.

Let us define the set of all d× d positive definite matrices as P. The first step isGaussian

distribution to relate a d × d positive definite matrix P ∈ P to the Gaussian distribution with

mean 0 and covariance matrix P :

p(x|P ) =
1

(2π)d/2 detP 1/2
exp

(

−
1

2
x>P−1x

)

. (1.1)

It is well known that the Gaussian distributions form an exponential family. AnExponential

family exponential family is a set of distributions that can be written in the following

canonical form:

p(x|θ) = exp(θ>r(x) − ψ(θ)),

where r(x) is the vector of sufficient statistics, θ ∈ <ρ is called the natural

parameter, and ψ(θ) is the normalization factor. When (1.1) is rewritten in the

canonical form, we have the sufficient statistics as

r(x) = −

(

1

2
x2

1
,
1

2
x2

2
, . . . ,

1

2
x2

d, x1x2, x2x3, . . . , xd−1xd

)>

,

and the natural parameter as

θ =
(

[P−1]11, [P
−1]22, . . . , [P

−1]dd, [P
−1]12, [P

−1]23, . . . , [P
−1]d−1,d

)>
.

From the viewpoint of information geometry, the natural parameter θ provides aθ-coordinate

system coordinate system (Amari and Nagaoka, 2000) to specify a positive definite matrix

P , which is called the θ-coordinate system (or the e-coordinate system). On the

other hand, there is an alternative representation for the exponential family. Let us

define the mean of ri(x) as ηi: For example, when ri(x) = xsxt,

ηi =

∫

xsxtp(x|θ)dx = Pst.
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This new set of parameters ηi provides another coordinate system, called the η-

coordinate system (or the m-coordinate system):η-coordinate

system
η = (P11, P22, . . . , Pdd, P12, P23, . . . , Pd−1,d)

>
.

Let us consider the following curve θ(t) connecting two points θ1 and θ2 linearly in

θ coordinates:

θ(t) = t(θ2 − θ1) + θ1.

When written is the matrix form, this reads

P−1(t) = t(P−1

2
− P−1

1
) + P−1

1
.

This curve is regarded as a straight line from the exponential viewpoint and is called

an exponential geodesic or e-geodesic. In particular, each coordinate curve θi = t,

θj = cj (j 6= i) is an e-geodesic. When the e-geodesic between any two points in ae-flat

manifold S ⊆ P is included in S, the manifold S is said to be e-flat. On the other

hand, the mixture geodesic or m-geodesic is defined as

η(t) = t(η2 − η1) + η1.

In the matrix form, this reads

P (t) = t(P2 − P1) + P1.

When the m-geodesic between any two points in S is included in S, the manifoldm-flat

S is said to be m-flat.

In information geometry, the distance between probability distributions is defined

as the KL divergence (Amari and Nagaoka, 2000):

KL(p, q) =

∫

p(x) log
p(x)

q(x)
dx.

By relating a positive definite matrix to the covariance matrix of Gaussian (1.1),

we have KL divergence for two matrices P,Q:

KL(P,Q) = tr(Q−1P ) + log detQ− log detP − d. (1.2)

With respect to a manifold S ⊆ P and a point P ∈ P, the projection from P to S is

defined as the point in S closest to P. Since the KL divergence is asymmetric, there

are two kinds of projection:

e-projection: Q∗ = argmin Q∈SKL(Q,P ).

m-projection: Q∗ = argmin Q∈SKL(P,Q).

It is known that the m-projection to an e-flat submanifold is unique, and the e-

projection to an m-flat manifold is unique (Amari and Nagaoka, 2000).
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1.4 Approximating an Incomplete Kernel Matrix

In this section, we describe the em algorithm to approximate an incomplete kernel

matrix (Tsuda et al., 2003). Let x1, . . . , x` ∈ X be the set of samples of interest. In

supervised learning cases, this set includes both training and test sets; thus we are

considering the transductive setting (Vapnik, 1998). Let us assume that the data

are available for the first n samples, and unavailable for the remaining m := `− n

samples. Denote byKI an n×n kernel matrix, which is derived from the data for the

first n samples. In our experiments, KI is derived from the protein 3D structures.

The incomplete kernel matrix is described asIncomplete kernel

matrix

D =

(

KI Dvh

D>
vh Dhh

)

, (1.3)

where Dvh is an n ×m matrix and Dhh is an m ×m symmetric matrix. Since D

has missing entries, it cannot be presented as a point in P. Instead, all the possibleData manifold

kernel matrices form a manifold

D = {D | Dvh ∈ <n×m, Dhh ∈ <m×m, Dhh = D>
hh, D � 0},

where D � 0 means that D is strictly positive definite. We call it the data manifold

as in the conventional EM algorithm (Ikeda et al., 1999). It is easy to verify that

D is an m-flat manifold; hence, the e-projection to D is unique.

Next let us define the parametric model to approximate D. Here the model isSpectral variants

derived as the spectral variants of KB , which is an ` × ` auxiliary kernel matrix

derived from another information source. Let us decompose KB as

KB =
∑̀

i=1

λiviv
>
i ,

where λi and vi are the ith eigenvalue and eigenvector, respectively. Define

Mi = viv
>
i , (1.4)

then all the spectral variants are represented as

M = {M | M =
∑̀

j=1

βjMj , β ∈ <`, M � 0}

We call it the model manifold (Ikeda et al., 1999). For notational simplicity, weModel manifold
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Figure 1.2 Information geometric picture of em algorithm. The data manifold
�

cor-
responds to the set of all completed matrices, whereas the model manifold

�
corresponds

to the set of all spectral variants of a auxiliary matrix. The nearest points are found by
gradually minimizing the KL divergence by repeating e- and m- projections.

choose a different parametrization of M 1:

M = {M |M = (
∑̀

j=1

bjMj)
−1, b ∈ <`, M � 0}, (1.5)

where bj = 1/βj . It is easily seen that the manifold M is e-flat and m-flat at the

same time. Such a manifold is called dually flat.

Our approximation problem is formulated as finding the nearest points in two

manifolds: Find D ∈ D and M ∈ M that minimize KL divergence KL(D,M).

In geometric terms, this problem is to find the nearest points between e-flat and

m-flat manifolds. It is well known that such a problem can be solved by an alternat-

ing procedure called the em algorithm (Amari, 1995). The em algorithm gradually

minimizes the KL divergence by repeating the e-step and m-step alternately (fig-

ure 1.2).

In the e-step, the following optimization problem is solved with a fixed M : Find

D ∈ D that minimizes KL(D,M) using (1.2). This is rewritten as follows: Find

Dvh and Dhh that minimize

Le = tr(DM−1) − log detD, (1.6)

1. M>M−1 = ( � βjMj)
>( � 1/βjMj) = � βj/βjM

>

j Mj = � M>

j Mj = I.
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subject to the constraint that D � 0. Notice that this constraint is not needed,

because

log detD =
∑̀

i=1

logµi,

where µi is the ith eigenvalue of D. Here log detD is defined when all eigenvalues

are positive. So, at the optimal solution, D is necessarily positive definite, because

the KL divergence is infinite otherwise. As indicated by information geometry, this

is a convex problem, which can readily be solved by any reasonable optimizer.

Moreover the solution is obtained in a closed form: let us partition M−1 as

M−1 =

(

Svv Svh

S>
vh Shh

)

. (1.7)

The solution to (1.6) is directly obtained by filling the missing entries in the matrix

D with following forms:

Dvh = −KISvhS
−1

hh , (1.8)

Dhh = S−1

hh + S−1

hh S
>
vhKISvhS

−1

hh . (1.9)

In the m-step, the following optimization problem is solved with D being fixed:

Find M ∈ M that minimizes KL(D,M). This is rewritten as follows: Find b ∈ <`

that minimizes

Lm =
∑̀

j=1

bjtr(MjD) − log det(
∑̀

j=1

bjMj) (1.10)

subject to the constraint that
∑`

j=1
bjMj � 0. Notice that this constraint can be

ignored as well. When {Mj}
`
j=1

are defined as (1.4), the closed-form solution of

(1.10) is obtained as

bi = 1/tr(MiD), i = 1, . . . , `. (1.11)

For detailed derivation of (1.8), (1.9), and (1.11), the reader is referred to Tsuda

et al. (2003).

1.5 Protein Structure Classification Experiment

We perform protein classification experiments by using our kernel completion

algorithms. Here we use a fully curated database of protein structures called

SCOP (Murzin et al., 1995), where proteins are classified into categories such

that both structural and evolutionary relatedness are reflected. The categories are

organized hierarchically as the following levels: class, fold, superfamily, and family.

At the finest level, a family contains proteins with clear evolutionary relationship.
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A set of proteins in a superfamily is considered to have the same evolutionary origin

but it is not detectable at the level of sequences. Those in the same fold have major

structural similarity, but evolutionary origins may be different. In this experiment,

we used the following three superfamilies: NAD(P)-binding Rossmann-fold domains

(6 families, 105 proteins) and (trans)glycosidases (4 families, 62 proteins). We

classified the proteins in a superfamily into families by using our algorithms. In the

case of (trans)glycosidases, 62 proteins are classified into 6 classes. Additionally, we

used TIM beta/alpha-barrel protein fold (4 superfamilies, 90 proteins), where each

protein is classified into one of superfamilies.

1.5.1 Kernels

We now describe how to obtain the n × n incomplete matrix KI and the l × l

auxiliary matrix KB in this experiment.

The Incomplete Matrix KI The incomplete matrix is obtained by structural

similarities of proteins. The structural similarities are computed using results of

MATRAS (Kawabata and Nishikawa, 2000) which is a software to measure a

structural similarity of proteins. MATRAS yields several values to measure the

similarity. We use values of Rdis which is the normalization (ranges from 0 to

100) of ScDIS, a similarity score for inter residual distances. We compute Rdis for

every pair of proteins, which gives an n × n similarity matrix SI . Since SI is not

positive definite, we modified SI to be positive definite by cutting off non-positive

eigenvectors (Roth et al., 2003). Let λi, νi denote the ith eigenvalue and eigenvector

of SI , respectively. Then, KI is obtained as

KI =
∑

i:λi>0

λiνiν
>
i .

The Base Matrix KB As the base matrixKB, we use the second-order marginal-

ized count kernel (MCK) (Tsuda et al., 2002) in which the entry represents sequence

similarities between two proteins. MCK is a general framework that includes Fisher

kernel (Jaakkola and Haussler, 1999). Second-order MCK is shown to be more ef-

ficient than Fisher kernel for the protein structure classification problem (Tsuda

et al., 2002). MCK exploits parameters of a latent variable model for its kernel

computation. The latent variable model is used to represent implicit features of

proteins such as secondary structures (i.e. α helices and β sheets). Here we use a

hidden Markov model (HMM) which has a tri state full-connection network. Al-

though such a network is not supported by any biological knowledge, it is supposed

to capture implicit features of proteins. In order to build a kernel matrix derived

from a homogeneous probability distribution, we train the HMM with all the pro-

tein sequences. Therefore, no class-specific information is explicitly given to the

HMM.
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1.5.2 Kernel Completion Methods

Other than the em algorithm presented in the previous section, we applied two

simpler methods, namely single e-projection and k-linear interpolation. Let us

describe details of them.

Single e-Projection The method single e-projection performs only one e-

projection from KB to the data manifold D; it does not do m-projection. So

D can be obtained very fast since the method needs no iterations. However, we

found that this method does not work well when the diagonal elements of D and

M differ significantly. So we normalize KI as follows:

K ′
I := AKIA (1.12)

where A is the n× n diagonal matrix with entries

[A]ii =

√

[KB ]ii
[KI ]ii

. (1.13)

The transformation in (1.12) adjusts the norms of feature vectors while the angles

between feature vectors are kept the same. Notice that the em algorithm does not

need normalization, because additional variables bi can automatically absorb the

difference of norms.

k-Linear Interpolation As an alternative method, we make use of the nearest

sequences for completing missing entries. Suppose the structure is missing for the

r-th protein (n+ 1 ≤ r ≤ `), and let us estimate the entries of the structure kernel

dri for i = 1, . . . , n. First, we identify the k-neighbors of protein r in terms of the

sequence kernel M , that is, sort the entries mrj (j = 1, · · · , n) and take the k

largest ones. Let us denote the identified indices as j1, · · · , jk. Then, the structure

kernel dri is determined as

dri =

{

1

k

∑k
a=1

dja,i i = 1 · · ·n
1

k2

∑k
a=1

∑k
b=1

dja,idjb,i i = n+ 1 · · · `

This amounts to estimating the feature vector of protein r as the center of gravity

of other feature vectors corresponding to j1, · · · , jk. We call this method k-linear

interpolation. In the following, we chose k = 3 as a result of preliminary cross-

validation experiments.

1.5.3 Experimental Design

For evaluating the performance of kernel completion methods, we observe the

accuracies of the SVM in the following experiments. Given a complete kernel

matrix of structures, we remove randomly chosen rows/columns. The fraction of

removed rows/columns is changed from 10% to 90% by a 10-point step. After
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completing the missing entries with one of the completion methods, the whole

set of samples is randomly shuffled and divided into 50% training and 50% test

sets. The accuracies of SVM are computed on these training and test sets. The

regularization parameter C is determined through five fold cross-validations on the

training set. When there are more than two classes, the classification problem is

interpreted as several two-class problems by means of the one-against-all scheme,

then several different classifiers are joined based on the largest-score-wins criteria.

Each experiment is iterated 100 times to average random effects. Classification

accuracies solely using the sequence kernel KB are computed to serve as references

for comparing the algorithms discussed here.

1.5.4 Results

Several kernel matrices are illustrated in figure 1.3 so that the reader can grasp a

visual intuition of how the kernel matrix is completed by the different algorithms.

The SVM accuracies of the three completion algorithms on each task are shown

in figure 1.4. The em algorithm performs the best when the fraction of missing

entries is relatively small (< 50%). In two data sets, namely the NAD(P) and TIM

barrels, it significantly outperforms single e-projection. However, as the fraction

of missing entries increases, the accuracy suddenly falls down. The reason is

deemed as overfitting, because the increase in missing entries also increases the

number of parameters. Single e-projection performs constantly well on all three

data sets. It shows its best performances when the missing fraction is very large.

However, when the missing fraction is small, it performs poorer than em algorithm.

This is considered as the effect of early stopping. As often observed in neural

network training, stopping the optimization before convergence sometimes avoids

overfitting (Haykin, 1998). Finally, the k-linear interpolation performed quite well in

two data sets [NAD(P) and glycosidases], although it is a simple heuristic. However,

its accuracy was always worse than one of the two other principled methods.

Dotted flat lines in the figures show the accuracies of the sequence kernels.

Thus the completion does not make sense if the accuracy is lower than this level.

In all three experiments, the accuracies of completed matrices are better than

that level until the 80% to 90% missing fraction. Obviously it is promising result

because it implies that only partial information of structure can enhance the whole

classification performance significantly.

1.6 Conclusion

In this chapter, we presented an algorithm for compensating an incomplete kernel

matrix by utilizing a base kernel matrix of another information source. The algo-

rithm is based on information geometry which provides metrics for the space of

kernel matrices. Our algorithm can be a powerful tool in many situations where

one information source is precise but expensive and the other source is noisy but
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cheap. Thanks to our algorithm, we can get a better kernel matrix by combining a

cheaper complete matrix with a more precise incomplete matrix. One such situation

is proteins, from which we can extract the sequences easily but the structures are

costly. The experimental results on the protein data set reveal a remarkable per-

formance of our method. Nevertheless, it is worth noting other parametric models

for the model manifold M. For example, since all eigenvalues are fixed in single

e-projection while all eigenvalues are adaptive in em algorithm, the other model

might be one that permits a part of eigenvalues to be adaptive.

Although we only discussed the case in which two information sources were

available, it is interesting to consider a method which utilizes more information

sources than two. For example, we may be able to make use of other information

sources like class labels. In future works, we look forward to developing information

geometric methods to combine multiple kernel matrices.



(a) (b)

(c) (d)

(e) (f)

Figure 1.3 Raster of 62×62 kernel matrices for (trans)glycosidases. (a) Complete matrix
of structure similarity (Dc). (b) Complete matrix of sequence similarity (M). (c) D with
50% missing elements. (d) D where missing elements are filled by using single e-projection.
(e) Another D filled by using em algorithm. (f) The ideal kernel matrix showing three
classes of this protein superfamily.
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Figure 1.4 Classification accuracies for NAD(P)-binding Rossmann fold domains (top),
(trans) glycosidases (middle), and TIM beta/alpha-barrels (bottom). The horizontal axis
represents fraction of missing values. Three curves are shown in each figure: square,
em algorithm; star, single e-projection; and triangle, 3-linear interpolation. The solid
horizontal line indicates the accuracy without missing values. The dashed line indicates
the accuracy using sequences only.
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