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Behaviour and Convergence of the Constrained
Covariance

Arthur Gretton, Alexander Smola, Olivier Bousquet, Ralf Herbrich, Bernharélgchf, and
Nikos Logothetis

Abstract. We discuss reproducing kernel Hilbert space (RKHS)-based measures of statistical dependence,
with emphasis on constrained covariance (COCO), a novel criterion to test dependence of random variables. We
show that COCO is a test for independence if and only if the associated RKHSs are universal. That said, no
independence test exists that can distinguish dependent and independent random variables in all circumstances.
Dependent random variables can result in a COCO which is arbitrarily close to zero when the source densities are
highly non-smooth, which can make dependence hard to detect empirically. All current kernel-based independence
tests share this behaviour. Finally, we demonstrate exponential convergence between the population and empirical
COCO, which implies that COCO does not suffer from slow learning rates when used as a dependence test.




1 Introduction

Tests to determine the dependence or independence of random variables are well established in statistical
analysis. Some approaches require density estimation as an intermediate step ([9] is a classic study);
while others assume a parametric model of how the variables were obtained from independent random
variables, as in blind source separation [8]. In this paper we propose a non-parametric independence
criterion, which relies on the fact that the random variables' x,y are independent if and only if

E.[f(¥)]Ey[9(y)] = Exy[f(x)g(y)]- (L.1)

for bounded, continuous functions f,g (see for instance [10, 14]). The proposed criterion works by
maximising the discrepancy between the empirical estimates of the LHS and RHS of (1.1) over pre-
specified function classes f € F and g € G, and comparing the discrepancy to the amount of deviation
that can be expected from the fact that we are dealing with empirical estimates rather than expectations.
We call our criterion the constrained covariance (COCO).?

The results presented here build on recent work published on the subject of kernel based dependence
measures. In particular, the canonical correlation between functions in a reproducing kernel Hilbert
space (KCC), defined in [1] for a variety of kernels and in [11] for splines, can be used as a test of
independence. Indeed, in the Gaussian case, Bach and Jordan show the KCC to be zero if and only
if its two arguments are statistically independent. In Section 3, we characterise all reproducing kernel
Hilbert spaces (RKHSs) for which this property holds (both for COCO and KCC): these are required
to be universal (the RKHS must be dense in the space of continuous functions [17]). Specifically, the
Gaussian and Laplace kernels are universal, as are many exponential-based kernels; polynomial kernels,
however, are not universal.

We next demonstrate in Section 4 that for a fixed-size, finite sample of dependent random variables,
there exists no test that can reliably detect that the random variables are dependent. To clarify how
this might affect our criterion, we prove that the population COCO can be made arbitrarily small when
certain smoothness assumptions on the density are violated, which makes it difficult to detect dependence
on the basis of a finite sample. This is also true of other related kernel dependence measures, including
the kernel mutual information (KMI) in [5], and kernel generalised variance (KGV) in [1], both of which
were shown in [5] to be upper bounds near independence on the Parzen window estimate of the mutual
information. Thus, as in all dependence tests, any inference made is subject to certain assumptions
about the underlying generative process - the present work describes these assumptions explicitly for the
first time, in the case of kernel-based tests.

Next, we give two bounds, based on Rademacher averages, which describe exponential convergence
between the population and empirical COCO. The first assures us that the population COCO is small
when the empirical COCO is small; the second shows that the population COCO is large when the em-
pirical COCO is large (both statements apply with high probability). These results are very interesting,
in that they illustrate a broader phenomenon: slow learning rates do not occur in dependence testing,
even though they are unavoidable in regression and classification [4, Ch. 7]. This might appear surprising
in the specific case of COCO, since this criterion is optimised in the course of kernelised PLS regression
(assuming a kernelised output space: see the discussion in [2]). Another important consequence of the
bounds is that any dependence between the random variables will be detected rapidly as the sample size
increases, even though perfect dependence detection is impossible for fixed sample size.?

2 Definitions and Background

Before presenting our main results, we begin our discussion with some relevant definitions and background
theory, covering both classical independence criteria and RKHSs.* Let (12, A, Py ) be a probability space.

I1We write random variables sans serif.

2Tn [5], this was called the kernel covariance (KC).

3This technical report is intended as a technical supplement to [6], which was submitted to AISTATS 2005. Proofs in
this report, which were given only in sketch form in [6], include Sections 4.2, 5.1, and 5.2.

4See [10] and [16] for more detail on these topics.



Consider random variables x : (2, 4) — (U,U) and y : (2, A) — (V,V), where U and V are complete
metric spaces, and I/ and V their respective Borel o-algebras. The covariance between x and y is defined
as follows.

Definition 1 (Covariance). The covariance of two random variables x,y is given as
cov(x,y) = Exy[xy] — Ex[x|E,y]. (2.1)

For our purposes, the notion of independence of random variables is best expressed using the following
characterisation:

Theorem 2 (Independence). The random variables x andy are independent if and only if cov(f(x), g(y)) =
0 for each pair (f,g) of bounded, continuous functions.

This theorem suggests the following definition as an independence test.

Definition 3 (Constrained Covariance (COCO)). Given function classes F,G we define the con-
strained covariance as
COCO(Py 7,G) = sup_[eov(7(), 9] 22)
fEF,9€G
(when F and G are unit balls in their respective vector spaces, then this is just the norm of the covariance
operator mapping G to F: see [13]). Given n independent observations z := ((z1,%1),-.-, (Zn,yn)) C
(X x V)™, its empirical estimate is defined as

n n

C0COwmp(: F,G) = sup |~ > F@i)glys) — % > F@i)d gy

fer.ged | Mo i=1 j=1

It follows from Theorem 2 that if F,G are the sets of continuous functions bounded by 1 we have
COCO(Py,; F,G) =0 if and only if x and y are independent. In other words, COCO and COCQOem, are
criteria which can be tested directly without the need for an intermediate density estimator (in general,
the distributions may not even have densities). It is also clear, however, that unless F, G are restricted in
further ways, COCOemp will always be large, due to the rich choice of functions available. A non-trivial
dependence measure is thus obtained using function classes that do not give an everywhere-zero empirical
average, yet which still guarantee that COCO is zero if and only if its arguments are independent. A
tradeoff between the restrictiveness of these function classes and the convergence of COCOemp to COCO
can be accomplished using standard tools from uniform convergence theory (see Section 5). It turns
out (Section 3) that unit-radius balls in universal reproducing kernel Hilbert spaces constitute function
classes that yield non-trivial dependence estimates. To demonstrate this, we will use certain properties
of these spaces [15]. A reproducing kernel Hilbert space is a Hilbert space F for which at each z € X,
the point evaluation functional, §, : F — R, which maps f € F to f(z) € R, is continuous. To each
reproducing kernel Hilbert space, there corresponds a unique positive definite kernel & : X' x X' — R
(the reproducing kernel), which constitutes the inner product on this space; this is guaranteed by the
Moore-Aronszajn theorem.

In RKHSs the representer theorem [16] holds, stating that the solution of an optimisation problem,
dependent only on the function evaluations on a set of observations and on RKHS norms, lies in the span
of the kernel functions evaluated on the observations. This property is next used to specify an easily
computed expression for COCOemp(2z; F, G) where F' and G are respectively unit balls in the reproducing
kernel Hilbert spaces F and G. The proof may be found in [5], although we give a condensed version
here.

Lemma 4 (Value of COCOemp(2; F, G)). Denote by F,G RKHSs on the domains X and Y respectively
and let F,G be the unit balls in the corresponding RKHS. Then

COCOemp(2; F,G) = %\/Hf(ff(!?”g (2.3)



1
n

where K7 is the matriz obtained by the projection K/ = PK'P with projection operator P;; = §;; —

and Gram matriz Klfj = ky(zi,x;). K9 is defined by analogy using the kernel of G (which might be
different from that of F).

Proof. By the representer theorem, the solution of the maximisation problem arising from COCOemp(2; F, G)
is given by f =321, aiky(xi,x) and g = 377, Bk, (y;,y). Hence

1 1 .
COCOemp(2; F,G) = sup —a"K'K9 — —aTK/TTTK93
aTKfa<1,3TK93<1 N n?

1
=  sup —a (K')sP(K9):8
llee|l,]1B]| <1 T

= IR EP(E))

Squaring the argument in the norm, rearranging, and using the fact that P = PP proves the theorem.
Here we defined 1 € R™ to be the vector of ones. O

A second theorem which will be crucial in our proofs is Mercer’s theorem, which provides a decom-
position of the kernel into eigenfunctions and eigenvalues.

Theorem 5 (Mercer’s Theorem). Let k(,-) € Loo(X?) be a symmetric real valued function with
an associated positive definite integral operator with normalised orthogonal eigenfunctions ¢, € La(X),

sorted such that the associated eigenvalues k, do not increase. Then for almost all x; € X and z; € X,
the series

];p‘Pp (i)ep(z;)

NE

k(mi,azj) =
1

P

converges absolutely and uniformly. In addition, the series Y .-, |ks|.

Finally, we give kernel-dependent decay rates for the coefficients used to expand functions in F in
terms of the set of basis functions {¢;(+)} from Mercer’s theorem.

Lemma 6 (Rate of decay of expansion coefficients). Let f € F, where f(z) := S50, fipi(z).
Then as long as (k;)~" increases super-linearly with i, (|fi|) € ¢1 and there exists an lo € N such that for

all e >0 and alll > Iy, |fi| <e.
~ ~\ —1
Proof. This holds since for any f € F, ||f|2 = 22, 2 (k) < . O

The super-linearity requirement in Lemma 6 is satisfied by many kernels, including the Gaussian (for

which the ((k,,)~!) increase as exp(m?)); see [16]. We assume hereafter that our kernel satisfies the
requirements of Lemma 6.

3 A Test for Independence

We now characterise the class of kernels for which COCO is a non-trivial test of dependence. The main
result is given in Theorem 8, in which we demonstrate that COCO constitutes such a test when F and
G are RKHSs with a universal kernel [17].

Definition 7 (Universal kernel). A continuous kernel k(-,-) on a compact metric space (X,d) is
called universal if and only if the RKHS F induced by the kernel is dense in C'(X') with respect to the
topology induced by the infinity norm ||f — g|| -



For instance, [17] shows the following two kernels are universal on compact subsets of R?:

k(z,2") = exp (= ||z — 2'[|*) and
k(xz,2') = exp (=\||z — 2'||) for A > 0.

We now state our main result for this section.

Theorem 8 (COCO is only zero at independence for universal kernels). Denote by F,G RKHSs
with universal kernels k¢, k, on the compact domains X and Y respectively and let F,G be the unit balls
in the corresponding RKHSs. We assume without loss of generality that ||flleo <1 and ||g|lcc < 1 for all

fe€F and g € G. Then COCO(Pyy; F,G) =0 if and only if x,y are independent.

Proof. 1t is clear that COCO(Py,y; F, @) is zero if x and y are independent. We prove the converse by
contradiction, using the starting assumptions COCO(Py y; B(X), B())) = c for some ¢ > 0 (here B(X)
denotes the subset of C'(X) of continuous functions bounded by 1 in the Lo (X), and B(Y) is defined
in an analogous manner) and COCO(Pyy; F,G) = 0. There exist two sequences of functions f, € C(X)
and g, € C(Y), satistying ||fulloo < 1, [gnlac < 1, for which

Jim_cov(fa(x), gn(y)) = ¢

More to the point, there exists an n* for which cov(fy,», (X)gn-(y)) > ¢/2. We know that F and G are
respectively dense in C'(X) and C(Y): this means that for all 1/3 > € > 0, we can find some f* € F
(and an analogous g* € G) satisfying [|f* — fp-||,, < € = 55. Writing as FX) := F*(X) = frr (X) 4 Frr (x)
(with an analogous g(y) definition), we obtain

cov(f*(x), g*(y))
~E,, [f(x)g(y)] — E.(f(x)Ey(3(y))

> coV(fn (%), gn=(¥)) — 2€ [Ex (fn- (x))]
)

— 2¢|Ey (g (y))] — 2¢
c c ¢
> 6 =S50,
“27 %1
This contradicts the assumption that cov(f*(x),g*(y)) = 0, and completes the proof. O

The kernel dependence tests (COCO, KMI, KGV, and KCC) are generalised in [5, 1] to a greater
number of random variables, providing tests of pairwise independence.

4 Limitations of Independence Tests

4.1 General independence tests

In this section, we illustrate with a simple example that for a finite sample, there exists no test of
independence which can reliably (i.e. with high probability) distinguish dependence from independence.
This discussion is intended as a complement to the next section, where we explicitly construct dependent
random variables which are difficult for the empirical COCO to distinguish from independence. We
illustrate the case where X is countable, but our reasoning applies equally to continuous spaces.

We begin with some notation. Consider a set P of probability distributions Py, where x contains
m entries. The set P is split into two subsets: P; contains distributions P,((i) of mutually independent
random variables P,((i) = H;nzl P,,, and Py contains distributions P,((d) of dependent random variables.

We next introduce a test A(x), which takes a data set® x ~ Py», and returns
Alx)=1 : z~ P,((Unl),
Alz)=0 : z~ P,(fn)

5We denote by @ ~ Pyn the drawing of n i.i.d. samples a := (X1,...,%xn) from Py.



Given that the test sees only a finite sample, it cannot determine with complete certainty whether the
data are drawn from P(n) or P,((f) We call A an a-test when

sup E, po(A(®) =1) <o
PV eP; *

in other words a upper bounds the probability of a Type I error. Our theorem is as follows:

Theorem 9 (Universal limit on dependence tests ). For any a-test, some fized n € N, and any
1—a>e>0, there exists Py & P; such that

Pewr.(A(x)=0)>1—a—c¢
in other words, a dependence test with a low Type I error can have a severe Type II error.

Proof. We introduce a distribution P,((V) = 'yP,(f) + (1 - 'y)P(d), where 0 < v < 1. Clearly, random

variables drawn from P,((V) are dependent. The probability of a Type II error for this mixture is then

P, ey (A@)=0) < > P @)am-s
= > H P (%) A ()0
x k=1
> Z H ’)/P (xr, HA ()=
z k=1
= 7P (A(@) =0)
= 7"(1-a)

where the sum following (a) is over all possible draws of @ from P,((Z), and I 4 is the indicator function for

event A. Taking v very close to 1 (i.e. making the dependent distribution very unlikely in the mixture)
proves the theorem. O

4.2 Kernel independence tests

We prove the existence of a dependent probability distribution for which COCO is small, but with a large
covariance between certain functions in F and G; we then demonstrate that this also holds for the KCC,
KMI, and KGV. Although the population COCO is not zero for this density, its small size will make
this dependence hard to detect unless a large data sample is available. We illustrate this phenomenon
by specifying a particular joint density f,, chosen such that cov(y;(x), ¢i(y)) is large for some large I
(meaning x,y have a non-trivial dependence), but COCO(Py; F, G) is small (making it hard to detect a
non-zero value of the population COCO on the basis of a finite sample, as in the previous section). The
intuition behind our argument is made clear by re-writing COCO for RKHSs as

COCO (Pyy: F,G) = sup XU X)90)) (4.1)
fEF,g€G ||f||]:||g||g

This will obviously be small when the RKHS norms in the denominator are much larger than the
covariance in the numerator: we will see that this motivates our choice of density. More specifically, high
order eigenfunctions of the kernel® (¢;(z) and ;(y) for large [) have large RKHS norms, a fact widely
exploited in regression as a roughness penalty [16]. Thus, if the high order eigenfunctions are prominent

6See Theorem 5 for a definition of the eigenfunctions. Note that the kernels in F and G may not be identical, and the
eigenfunctions ¢;(x) and ¢;(y) might therefore be different. We use the arguments of the eigenfunctions to distinguish
between them, since this is unambiguous and avoids messy notation.



in f,, (i.e., for highly non-smooth densities), we expect COCO to be small even when there exists an [
for which cov(y;(x), i (y)) is large.”

Theorem 10 (Dependent random variables can have small COCO). Assume F and G are
reproducing kernel Hilbert spaces with (k%)~' and (k¥)~' increasing superlinearly with m (see Lemma
6), and with respective eigenfunctions p;(z) and p;(y) absolutely bounded.® Then there exists a density
f.y for which cov (¢i(x),pi(y)) > B — € for non-trivial 3 and arbitrarily small € > 0, yet for which
COCO(Py; F,G) < 7 for an arbitrarily small v > 0.

Proof. We begin by constructing a density for which cov (¢;(x), ¢i(y)) > 8 — €, where € is small for large
enough [. This is written

fuy(@,y) = ar + Beu(z) i (y) (4.2)

where fy,(z,y) > 0 and [ f.,(z,y)dzdy = 1. The first constraint requires a; — 8 min, , (¢ (z)@i(y)) > 0,
which can be satisfied as long as the ;(z) and ¢;(y) are absolutely bounded. The second constraint
affects the covariance between kernel eigenfunctions,

Cij = cov(pi(z),¢;(y)) (4.3)
= Exy(pi(x)e;(y)) — Ex(pi(x)Ey (05 (y))-

Indeed, this constraint causes C to have i, jth entries

Ciz1,j#1 = €, 5171 =B+ e, (4.4)

where €;; denotes a quantity with absolute value arbitrarily small for large enough [ (the proof is in
Appendix A.1).

We next expand the functions f and g which define COCO (i.e. elements of the respective RKHSs
at which the supremum is attained) as f(z) = Y50, fipi(z) and g(y) = Y21 Gii(y) (the expan-
sion coefficients are written as vectors f,g). Using these expansions, the numerator of (4.1) becomes
cov(f (@), 9(y)) = FTCg, and

£7Ce < Y D Ifillale+IAllals

i=1 j=1

€l lIgll e+ [fil1g:] 5,

where we replace all entries in C with their expressions in (4.4), and € = max; j |€i;] is small. Lemma 6

ensures that ||f]|; and ||g||; both converge. In the case of the remaining term |f;| |§| 8, we divide through
by the norms in the denominator of COCO to get

|fil Il 8 _ < p\filR,
\/Zz 72 () \/ZJ 33 (

and the right hand side approaches zero as [ — oo thanks to Theorem 5. |

We now prove the KCC [1] has the same limitation, being upper bounded by a constant multiple of

"This reasoning can be extended to motivate kernel choice for the detection of particular dependencies, although this is
beyond the scope of the present study. Note also that an alternative Parzen-window based interpretation of kernel choice
is given in [5].

8This condition is not satisfied for all Mercer kernels: see [16, Exercise 2.24]. The assumption holds in most everyday
cases we encounter (e.g. the Fourier basis), however, so it is reasonable in this context.



COCO. The KCC is defined as
jli (Px,yQ -7:7 g)
. cov (£(x), g(y))
p
167,960 \fvar (F (X)) + K11 fvar (9 (1)) + w3

< &THNF g™ (lg eov (£*(x), 97 (v))
< £1COCO (Pyy; F.G),

where f*, ¢g* attain the supremum in the first line, and we assume f and g to be bounded.

Finally, we demonstrate that the KMI [5] and KGV [1], which are respectively extensions to COCO
and the KCC, have the same property. This follows since the KMI can be written as —1 log ([T}, (1—p?)),
where |p;| are upper bounded by COCO, and the KGV as —1 log([]}"_, (1—+?)), where the |;| are upper
bounded by the KCC. Small COCO will therefore cause small KMI, and small KCC will cause small
KGV.

5 Bounds

We give two convergence bounds in this section. The first (and simplest) guarantees small population
COCO when the empirical COCO is small; the second, which has a more involved derivation, guarantees
that if the empirical COCO is large, then the population COCO is also large. A consequence of these
bounds is that the empirical COCO converges to the population COCO at speed 1/4/n. This means that
if we define the independence test A(z) (Section 4.1) as the indicator that COCO is larger than a term
of the form C'y/log(1/a)/n with C' a constant, then A(z) is an a-test with type II error upper bounded
by a term approaching zero as 1/+/n.

5.1 Upper bound
We require two bounds for the proof in this section. The first is the standard Hoeffding bound [7].

Theorem 11 (Hoeffding’s inequality). Consider a collection of n i.i.d. random variables (zy,...,zy)
such that a; < z; < b; for 1 <i<n. Then for 0 <t <1—E,(z),

1 & 5 )
P, | = i — E; >t < —2nt*/ 37 (bi—ai) )

The second theorem, from [7, p. 25], applies to U-statistics of the kind we encounter in calculating
covariances.

Theorem 12 (Positive deviation bound for one sample U-statistics ). Consider a collection of
n i.i.d. random variables (zi,...,z,). We define the U-statistic

1

= Pig,oin(Zigy o325
! n(n—l)...(n—r+1); ityein (Zins -5 Ziy )

”

where the index set i is the set of all r-tuples drawn without replacement from {1,...,n}, and the
function h is called the kernel of the U-statistic. If a < h < b,

—2t2[n/r] ) |

Py(u—Ey(u) > ) <exp < (b—a)?

We now state the bound.



Theorem 13 (Upper bound on population COCO). Assume that functions in F and G are bounded
a.s. by 1. Then for n > 1 and all 6 > 0, with probability at least 1 — 4,

210g(2/0)
sup cov(f(x),g(y)) < sup cov(f(x),9(y)) + /7235
fEF geG fEF,geG n(v2 —1)2
where we denote the empirical covariance based on the sample z as
— 1 -
V(@) 9v) = Sy > fla ~ D f@i)g(ys).

z;é] i:l

Proof. First, we note that

sup cov(f(x),g(y)) = sup cov(f(z),g(y)) < sup (cov(f(x),g(y)) —cov(f(z),9(¥))) -
fEF,geG feF,geG fEF,geG

We can therefore ignore the suprema, and treat only the random variables f := f(x) and g := g(y) (thus,
when we are considering a sample of size n, we write f; = f(x;) and g; = g(y;)). To find the bound, we
make the split

i=1

Pingn (cov(f,g) — v (f,0) > 1) < Ppogn <——ngz+5fg(fg) <1—a>t>

P gn n(n Zf & — E;(g) > at
z#]

Next, we apply the theorems of Hoeffding to do the bound. For any 0 < a <1,

Pf"’g" (COVf,g(fa g) - @(fa g) > t)

< Pgngn | Efg(fg) — Ef(f - — Zfzgz Zflgj >t
z#]
< Pf’hg" <__ Zfzgz + E g(fg) (1 - Oé) > + Pf",g" Zfzg] ( ) >at
i=1 ziy

We replace z; = f;g;in Theorem 11 and use |z;] < 1 to obtain

P gn (—% > figi+ Erglfg) > (1 - a)t) <exp (—(1—a)’nt*/2).

We likewise repace z; = (f;, g;) in Theorem 12, and use the kernel h((f;, g;), (f;g;)) = fig;, giving

Pen gn i Zfzg] E¢(g) > at | <exp(—a’[n/2]t*/2)
z#]
Combining these two results, we obtain
Pin gn (coveg(f,g) — cov(f,g) > t) exp (—(1 — a)’nt?/2) + exp (—a’[n/2]t?/2)

<
< exp (—a2nt2/4) + exp (—(1 - a)2nt2/2)

We complete the proof by setting o = 2 — /2, which gives both exponents the same argument. Thus
Pén gn (covig(f,g) — Cov(f,g) > t) < 2exp (—(\/§ - 1)2nt2/2) .

This is easily rearranged to give the bound in the form of Theorem 13. O



5.2 Lower bound

A lower bound on the population COCO is harder to compute, since we have to deal with the suprema.
We begin with McDiarmid’s inequality [12].

Theorem 14 (McDiarmid’s inequality). Let h : Z" — R be a function such that for all i €
{1,...,n}, there ezist ¢; < oo for which

sup  |h(z1,...2n) — h(21, .. - 2i21, 2, Ziv1, -5 20)| < G
zZEZ" ZEZ

Then for all measures P, and every t > 0,

Py (h(%) — Epn (h(x)) > £) < exp (-%) .

We now introduce the main theorem.

Theorem 15 (Lower bound on population COCO). Assume functions in F and G are bounded
a.s. by 1, and that the functions ky(xz,z) <1 and ky(y,y) <1 forallz € X andy € Y. Then forn > 1
and all § > 0, with probability at least 1 — 4§,

— 134 [181og2/6
sup cov(f,g) < sup cov(f,g)+—= + 7g/
fEF,geG fEF.geG \/ﬁ n

Proof. We begin with a rearrangement of the suprema;

sup cov(f(x),9(y)) — sup covey(f(x),9(y))

feF,geG feF,geG
< sup (Cov(f(), g(y)) — covey(f(x),9(y)))
FEF,gEG
: fesl;,lfeG ( <y f () n Zf ) (5.1)

sup | oy D o)~ Ef By | 52)

F
fekge z#]

When upper bounding the above, we treat the deviations of (5.1) and (5.2) separately (as we did in the
last section), thus splitting the total deviation as ¢ = at + (1 — «)t. The first term is bounded using
McDiarmid and symmetrisation in the usual way (see Appendix A.2), giving

Px",y" [ sup ( ,yf - Z f Xz Yz )

fEF,geG

Z EXn Yo ( sup Zalf Xl yl > (]‘ - O{)

- < efn(lfa)2t2/2 (5.3)
fEF,geG

In the case of the second term, we begin with McDiarmid to get

Px",y" ( sup [ Z fzg] xnyg:| Z

feF,geG

1753
Ein y»  Sup Z flg] xnyg:| + at (54)
fEF,geG 17&]
(Z)
7na2t2
Se v (5.5)



(the proof is in Appendix A.3). Our next step is to replace (a) with an upper bound based on Rademacher
averages. We cannot symmetrise (a) directly: instead, we first apply the Hoeffding decomposition and
then decouple, following [3]. The Hoeffding decomposition yields

1
Ecnyn  sup nin=1) > figi — E«fEyg

F nn — —
fEF,gEG ( it

< By sfup n(n — 1 Z Z (xi)g(y;) — f(xi)Eyg — Exf g(yi) + ExfEyg)
9 i=1 i#£j

+Exn sup (2 > (fxi) = Exf)Eyg> :

f.9 i=1

The second term is easily symmetrised using the argument in Appendix A.2, giving

9
Ex" sup | — Z(f(xz) - Exf)Eyg S _Ex" aSUpZ sz Xz yg)
f9 n i=1 f.9 i=1
4
S A Z (0i f(xi)g(¥}))
9 =1

where the final line uses Jensen’s inequality to bring the expectation outside the supremum, o; are
Rademacher random variables that take values in {—1, 1} with equal probability, and y} are independent
copies of y;. The first term cannot be symmetrised, as the sum is not over i.i.d. terms. Thus we apply
Theorem 3.1.1. to replace the y; in this term with independent copies y;, giving the upper bound

n n
Exn yn SUD > fxi)g(y;) — f(xi)Eyg — Exf glyi) + ExfEyg | <
e =1 i#j
8By ym sup Z fxi)g(y;) — f(xi)Eyg — Exf g(y;) + ExfEyg (5.6)
fa i=1 i#j

where we use the constant in [3, p. 102] (which is better than the general constant in [3, Theorem 3.1.1]).
We can then apply the exact proof strategy of [3, Theorem 3.5.3] (the proof used is on the bottom of p.
140) to this decoupled quantity, which gives

(6:6) < 2x2x8Eswp |- ZZaz )9(y}) — f(xi)Eyg — Exf gy}) + ExfE,g)
9 i=1 i#j
< 2B s | L3S o) (1ot — elats)) = ) + 0ot
> =1 i#j
< 4x32Esup | o ZZazofxz )]

f.9 i=1 i£j

where x}, x!' are independent copies of x;, and y}, y; are independent copies of y;, and we use Jensen in
the second line.?

9We no longer provide the random variables in the subscript of the expectation, since this would be unwieldy.
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To conclude the proof, it turns out that we do not need to explicitly deal with these additional copies:
instead, we apply a simple additional bound (see Appendix A.4) to get

1
Ex y»  sup - fi9; — ExfE,g
e e DI
128 4 : -
< ——Ean E kr(xi,xi)kg(yi,yi) + —Exn ym E ky(xi,xi) kg (yis yi)
n(n—1) g n i=1

and then substitute ky(x,z) <1 and k,4(y,y) < 1. Setting a = 2/3 in (5.3) and (5.5) (to give the same

exponent for both deviations), and bearing in mind that ﬁ < ﬁ when n > 1, completes the
n(n—
proof. O
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A Proofs

A.1 Covariance between eigenfunctions

We prove that there exists a density fy, (specifically, that in 4.2) for which cov(y;(z), vi(y)) is large
for big enough [, yet with a small covariance cov(y;(z), ¥, (y)) between any other pair of eigenfunctions
(1 #1,j #1). We begin by defining the expansions of the constant functions e(z) =1 on X and e(y) =1
on Y. Using the notation T4 to denote a function which is one when A holds, and zero otherwise, we

have
e(@) = Taex = 2,2 0p@NLop(@)) i) =1 2,2, Epep(@)
e(y) = Lyjey = X, 20a{LogW)iax)y =t g1 Ehq(y)
where we use the notation &) := (1,p,(x))r,x) and €% := (1,94 (y))L,(y), consistent with Lemma 6.

We now begin the proof. We first write a matrix C (having infinite size) of covariances cov(y; (), ;i (y)),
with (i, j)th entry

Cij = cov(pi(z),;(y))
= Eqy(pi(¥)p;j(y)) — Ex(9i(x)Ey(p ( )
= Eqy(pi(¥)p;j(y)) — Exy(wi()I yey xy (05 (V) ke x)

= Ey(pi(¥)p;(y)) — Exy (wz( > &P eu(y) | s, (Soj(Y)Zéém)Sop(X))

Exy (0i(%) — > el )@q(y)) D e By (0p(x) 5 () -

Our next step is to use the density from (4.2) in the expectations above, which allows us to prove that
only cov(p(z),pi(y)) is large. We remind the reader that this density takes the form

foy(z,y) = e(@)e(y) + Bi(x)pi(y)

o (Z oy (w )(Zew% >+5801(33)901(y)-

p=1

This expression contains two as yet unknown constants «; and (3, which are constrained by the require-
ment that fy,(z,y) be a density.'® Enforcing f,, > 0 requires a; — Smin, ,(p;(z)¢i(y)) > 0, which
can be satisfied as long as the ¢;(z) and ¢;(y) are absolutely bounded; the density having unit integral
implies

1 = /X | Fo(@y)dady
= / e(x)e(y)fuy(z,y)dedy
XxY
- /Xxy (7 ae®) (7, ) dedy
+B (Z;; éz%(w)) (Z:; égwq(y)) o1 (z) e (y)dzdy

AxY
= oM, M, + péfe}, (A.1)
where for ease of notation we define M, := Z;O 1 (””) and M, = ZZ; (63)2. From Lemma 6, the
series €7 and é” are absolutely convergent: thus for a sufficiently large I, |éf| and |¢/| are small. We
rearrange (A.1) to get

(1= Blefel|) (Mo M)~ < ag < (14 Blefe]|) (M, M,)~". (A.2)

19This implies two constraints: fxy(z,y) >0 on X x Y and [, fxy(z,y)dedy = 1.
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We now substitute f,,(z,y) into (4.3). After simplifying, we find C has i, jth entries

ale 6 (].—OélM M, ) = €ij i,j;él,
G = alel ] — (Bel + €l My) (alei-’Mx) = €1 i=1,j#I,
b aéte] — (ae? My) (BeF + e M) = €1 i£ L =1,
B+ Oéléféiy — (Be] + azéfMy) (Bef + ae/M,) = B+e i=j=I,

where €;; denotes a quantity with small absolute value for large enough I, and we use the bounds on o

from (A.2) to determine which C; ; will be small. The density f,, thus satisfies cov(y; (), ¢;(y)) > B —€
when i = j =1, and cov(p;(x),¢;(y)) < € elsewhere, where € = max; ; |€;;]|.

A.2 Symmetrisation and McDiarmid

In this section, we prove the bound

1 n
Pxn,yn[ sup ( sy f(X) EZ Xi)g yl>

feF,geG
> Ewmyno o Fx;: < e nt/2
Z AN (fngeGnZ i f (i) Yz> >
where the o; are Rademacher variables (i.e. ¢; and o; are iid. for i # j and P, (0; = 1) =
P, (0; = —1) = 1/2). First, we simplify our notation. We define z; = (x;,y;), and h(21 S Zp) =

sup e g gei (Exy f(X)g(y) — LS, f(xi)g(ys)) in Theorem 14. Given that functions f and g are as-
sumed absolutely bounded by 1, it is clear that |¢;| < 1/n for all ¢; in Theorem 14. Thus.

PX“W“[ sup ( sy f (%) ——foZ yz>
feF,geG

1
> Ewxpyn ( sup ( wyf (X)g(y - flxi)g y,))) +t
feF,geG n

(a)
Next we symmetrise, which allows us to replace (a) with an upper bound. To simplify notation, we
introduce a new function class L := F ® G of functions taking the form I(z,y) = f(z)g(y). We denote
the original sample as z, and the ghost sample (the i.i.d. copy of z) as Z.

< efnt /2

IIMz
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1 n
E.» (115 <Ez(l(2)) - Zl(zi)>>

=1

= En (?2}3( ( lel>——§;l(2i)>>

¢ E.» Esn sup (5 Zl(ii) - l(Zi))

leL

Nt

—~
>
=

1 - -
o, B sup | DO1() —1(20) + 1(z2) — U(20)

i#k
() S
= E Es»sup oil(Z;) o; [-1l(z;
(nz 23 al <>1)
Y E.E.E Z + Z
mEsnEq | SU o;l Z su ag; Z
- leIIJ) il(2) lef ' 2
(e)
= E,Es |su oil(z;) | + ExEqs [ su oil(z;)
<legnz ) <legnz )
= 2EE, [ su oil(z;)
(legnz )

(a) The supremum is convex: we can permute expectation and supremum using Jensen’s inequality.
(b) Z; and z;, have the same distribution, so we can swap them.

(c) This is true for any o € {—1,1}".

(d) The supremum is convex. E, is taken assuming P,(c = 1) = P,(0 = —1) = 1/2, which is used
in the next step.

(e) Here E,» and E;» effectively mean the same thing. The 2nd term loses its minus due to the
symmetry of P,.

The final term is a rademacher average for class F.

A.3 McDiarmid for the U-statistic

In this section, we prove

Pyn yn sup Zf xi)g(xj) — ExfEyg | >
fEF,geG TLTL—]. 175]

Eoyr sup |-y > f(xi)g(x;) — ExfEyg| +1t

feFge z#]
—nt?
<es
We define the new variable z; := (w;,¥;), and set h(z1,...,2n) = supsepea(l(21,.-.,2n)) where

I(z1,...,2n) = m >ij fi9; — ExfEyg. Given we assume |f| <1 and |g| <1,
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ek <Ih(z1y oy 2k oy 2n) — (21,02 20y ooy Z0)]

< sup [U(z1y ooy Zhy ey 2n) — U210y e vy Zhy e ey 20)]
fEF,gEG
1
R SO ofigi— > figi+ @) gi+9wn) D fi— f)D> 95— 9wi) Y fi
TEF9€G |isjzi ijth i#k ik i#k ik

b s |G — 1) 0+ (o) — 904D

fEF,geG £k itk

ot (|60 - 160 S o + |00 - o000 T

fEF,geG s itk

2
gm sup Zgj + Zfz

fEF,geG £k itk

<

S|

The exponent in McDiarmid’s theorem (Theorem 14) then becomes

< 2t* > < < 2t2 ) < nt2>
exp|l —=n——= | <exp|—v5- ) =exp| ——

Z?:l C% 17?_271 8
as required.

A.4 Bounds on the decoupled Rademacher average and chaos

In this section, we show how to bound the decoupled Rademacher average and chaos in such a manner
as to avoid computing them empirically.

Lemma 16 (Bounds on the Rademacher average and chaos). We have

Ecr yn o <Sup ZUZ X g()’z)> A _Ex"7y" Zk(xi,xi)l()’u)’i),
i=1

fg M i=1

and

1
B S‘ffnn_l 3 s fxaty,) S A=) 575 bkl 3y

i=1 j#i i=1 j#i

Proof. We start with

Supzaz Xz Yz =

F9 =1

Z 0iQx; y:

where @y, y, is the rank one operator mapping g to k(x;,.)g(y;). We can upper bound this norm by the
Hilbert-Schmidt norm to get

up Z Ulf Xl yl = Z UZUJ szvyz ? QXJ Y5 >

S
f.9 i=1 ij
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Taking expectations and using Jensen’s inequality, we get

2
l5

n n
Exn yn o SUP Z oif(xi)g(y:) < Exnyn Z | @xsy:
i=1

9 =1

= Exnyn Z K(xi,xi)l(yi,Yi)-
i=1

This gives the first result. A similar reasoning can then be applied to the Rademacher chaos. O
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