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Confidence Sets for Ratios: A Purely Geometric
Approach To Fieller's Theorem

Ulrike von Luxburg, Volker H. Franz

Abstract. We present a simple, geometric method to construct Fieller’s exact confidence sets for ratios of
jointly normally distributed random variables. Contrary to previous geometric approaches in the literature, our
method is valid in the general case where both sample mean and covariance are unknown. Moreover, not only
the construction but also its proof are purely geometric and elementary, thus giving intuition into the nature of the
confidence sets.

1 Introduction

In many practical applications we encounter the problem of estimating the ratio of two random vakiates

Y. This could, for example, be the case if we want to know how large one quantity is relative to the other, or if
we want to estimate at which position a regression line intersects the abscissa (cf. Marsaglia 1965). While it is
straightforward to construct an estimator ®©(Y")/E(X) by dividing the two sample means &f andY, it is

not obvious how confidence regions for this estimator can be constructed. In the caseXwdrea@” are jointly
normally distributed, an exact solution to this problem has been derived by Fieller (1932, 1954). But in practice,
his results are seldomly used, and they are not very well-known among non-statisticians. Perhaps the main reason
why Fieller’s results are so unpopular among practitioners is that his confidence regions do not look like "normal”
confidence intervals and are often perceived as counter-intuitive. In benign cases they form an interval which is
not symmetric around the estimator, while in worse cases the confidence region consists of two disjoint unbounded
intervals, or even of the whole real line. This raised the suspicion that confidence regions for ratios are a highly
complicated issue, and that Fieller's solutions lack intuition and are difficult to interpret. As a consequence, many
ad-hoc heuristics have been used. For a discussion and empirical comparison see Franz (submitted 2004).

There have been several approaches to simplify Fieller's proofs. Especially remarkable are the ones which rely
on geometric arguments, as they might lead to more intuition about the constructed confidence sets. Milliken
(1982) attempted a geometric proof for Fieller's result in the case wikeend Y are independent normally
distributed random variables. Unfortunately, his proof contained an error which led him to the wrong conclusion
that Fieller's confidence regions were too conservative. Later, his proof was corrected and simplified by Guiard
(1989). He considers the case tiatandY are jointly normally distributed according {X,Y) ~ N(u,02V),
where the meam and the scaler? of the covariance are unknown, but the covariance madtriis known.

Guiard presents a geometric construction of confidence regions, and then shows by an elegant comparison to a
likelihood ratio test that the constructed regions are exact and coincide with Fieller's solution. The drawback of
his proof is that it only works in the case where the covariance metiscknown, which is usually not the case in
practice. Moreover, although the confidence sets are constructed by a geometric procedure, Guiard’s proof relies
on properties of the likelihood ratio test and does not give geometric insights why the construction is correct.

In this article we derive a simple geometric construction for confidence intervals for ratios. Contrarily to Milliken
(1982) and Guiard (1989), this construction is valid in the general setting Wien€) ~ N (u, C) with unknown
meany and unknown covariance matrfX. Our construction is related to the construction in Guiard (1989), but
its derivation is new and completely different. Our proofs are rather elementary, purely geometric, and lead to
insights why our construction is correct. The goal in this paper is to make these geometric insights available to a
broad audience and show that Fieller's confidence regions are indeed a very natural solution.



1.1 Definitions and Notation

We will always consider the following situation. We are given a sample: @fairs Z;, := (X;,Y:)i=1,..n
drawn independently according to the joint 2-dimensional normal distribitign C') with meany = (uq, p2)
and covariance matriK’. We assume that both and C' are unknown. Our goal will be to estimate the ratio
p := po/p1 and construct confidence intervals for this estimate.

To estimate the unknown mean and the covariance matrix of the samples we will use the standard estimators:
the means are estimated by

= %ZXZ and fip == %ZYW 1)

Graim Y (X = i)? and dap = 1 S (Vi — i) 2)
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As estimator for the ratip = ua /1 We use

p = & 4)
H1

Our goal will be to construct confidence sets for In general, fora €]0, 1, a confidence set (or confi-
dence region) of level — « for a quantityp is defined to be a set constructed from the sample such that
P(p € I) > 1 — . Remember that the random quantity in this statement is the data-dependent/region
not the parametes. If P(p € I) > 1 — « always holds with equality, then the confidence E&t called exact,
otherwise it is called conservative. For more discussion about confidence sets we refer to Chapter 20 of Kendall
and Stuart (1961) or Section 5.2 of Schervish (1995).

Before we continue we would like to point out several things. Note that we want to estif(&te/ £(X) and
not E(Y/X). In fact, the latter quantity does not exist. In case wh€randY” are uncorrelated this is easy to see.
As X is normally distributed, the density of is positive in every-neighborhood of). Together with the fact
that the integral(”_ 1/ d is infinite this shows thaf(1/X) and E(Y/X) do not exist. Similar statements are
true in the correlated case. The observation H1@t/ X) does not exist for normally distributed random variables,
together with the fact that the estimatgrs and 1> are normally distributed, also shows that the estimattas
well as any other estimator fai) cannot be unbiased. Its expectatiby) = E(fi2//i1) simply does not exist.
For more discussion about the distribution of the ratio of two normal distributions we refer to Marsaglia (1965),
Hinkley (1969, 1970) and references therein.

2 Geometric construction of exact confidence regions

In this section we want to explain how confidence sets for the yatian be constructed geometrically. Let us
start with some simple geometric observations, most of which were already present in Fieller (1954). For given
= (p1,p2) € IR?, the ratiop = us/p; can be depicted as the slope of the line in the two-dimensional plane
which passes both through the origin and the pgint 12). Similarly, the estimated ratip is given as the slope

of the line through the origin and the poifit= (/i1, ji2) (cf. Figure 1). Assume that we are given a confidence
interval I = [I,u] C IR that contains the estimatgr The lower and upper limits of this interval correspond to the
slopes of the two lines passing through the origin and the p¢inis and (1, u), respectively. The lines inside

the wedgdl enclosed by the two lines exactly correspond to the ratios inside the infervais also works the

other way round: given a wedge containing the line with slppthe intervall, u] can be reconstructed from the
wedge as the intersection of the wedge with the dine 1 (cf. Figure 1).
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Figure 1: Geometric principles. The rafia //i1 can be depicted as the slope of the line through the ptinty) and(f1, fi2).
The ratios inside an interv@ll, u] correspond to the slopes of all lines in the wedge spanned by the lines with slapés.
For a given wedge, the corresponding interf¥al] can be obtained by intersecting the wedge with thedine 1. Later, an
appropriate wedge will be constructed by fitting it around a certain ellipse centefed At ).

In the following we want to construct an appropriate wedge contaipiirsyich that the region obtained by
intersection with the linec = 1 yields an exact confidence region forof level 1 — «. This wedge will be
constructed as the smallest wedge containing a certain ellipse around the estimateg@mgan We will see
that we have to distinguish between three different cases, depending on the position of the ellipse. The first case
will occur if the denominatoy:, is significantly different from 0. Here the ellipse lies completely on one side of
the y-axis. The corresponding wedge does not containythgis, and the confidence set obtained by intersecting
the wedge with the line@ = 1 will be a bounded interval (see the left two panels of Figure 2). We will call this
case thébounded case’

A not so benign situation will occur if the the denominator is not significantly different from 0. We will see
that in this case, the ellipse intersects thaxis, and it now depends on the actual position of the ellipse how to
proceed. Firstly, assume that the ellipse does not contain the origin. In this case we can proceed as above and
construct the wedge given by the two tangents of the ellipse through the origin. The confidence region which
is given as the intersection between the wedge and thexline 1 will then be unbounded, but have a small
hole in the middle (see third panel of Figure 2). We will call the corresponding régiatusive unbounded”

Later we will see that this case occurs if the denominator is “close to 0” (i.e., not significantly different from
0), but the numerator is far from 0. Intuitively, the form of the confidence set can be explained by considering
what happens if we divide a fairly large number by a number close to 0. The magnitude of the ratio can get
arbitrary large, and as we cannot be sure about the sign of the denominator, we also do not know the sign of the
ratio. Thus it makes sense that regions of the fprmoo, ¢1] and|cq, o[ are part of the confidence region. The

fact that there is an excluded “hole” in the confidence set is related to the only thing we are relatively certain
about: the only way to end up in the excluded part of the real line would be either to have a very small numera-
tor or a very large denominator, which we both believe to be rather unlikely because of the assumptions in this case.

The last case occurs if the origin is contained in the ellipse. In this case it is impossible to construct tangents to
the ellipse which go through the origin, which means that our construction for the wedge will break down (see
right panel of Figure 2). In this case we will choose the unbounded confidente-set oo[, and we will call
this the"completely unbounded case”Intuitively this makes sense, as this case occurs if both numerator and
denominator are not significantly different from 0. Thus we believe that thegagiclose ta) /0, which can take
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Figure 2: The three cases in the construction of the confidende et figure labels please consider Figure 1): the bounded
case where the ellipse does not intersectjtlagis (left two panels); the exclusive unbounded case, where the ellipse intersects
the y-axis but does not contain the origin (third panel); the completely unbounded case, where the ellipse contains the origin
(right panel). Note also that even in the bounded case, the estiiatar is usually not the geometric center of the confidence

set (second panel).

arbitrary real values.

To explain the construction of the ellipse in detail we need to introduce some notation concerning covariance
ellipses. LetC € IR?*? a covariance matrix (i.e., positive definite and symmetric) with eigenvectots € IR?
and eigenvalues;, A, € IR. Consider the ellipse centered at some pgint IR? such that its principal axes
have the directions of,, v, and have lengthg\/A\; andgy/\, for someq > 0. We denote this ellipse by
E(C,pu,q) and call it the covariance ellipse accordingdocentered ap and scaled with parameter This
ellipse can also be described as the set of pairtsz? which satisfy the ellipse equatida—p)'C 1 (z—pu) = ¢>.

Now we can explain how we can construct exact confidence regions fohe proof that this construction is
correct will be postponed to Section 4.

Geometric construction of exact confidence region® of level (1 — «) for p
1. Estimate the means andji, according to Equation (1), the covariance matthaccording to Equation (2).

2. Define the real numberto be half the length of & — «)-quantile of the Studentdistribution withn — 1
degrees of freedom.

3. In the two-dimensional plane, plot the ellipge = E(C,ﬂ,q) centered at the estimated joint mean=
({11, fi2), with shape according to the estimated covariance matyiand scaled by the numbercomputed
in the step before.

4. Depending on the position of the ellipse, distinguish between the following cases (see Figure 2).

(a) If(0,0) ¢ E, construct the two tangents fowhich go through the origif0, 0) and letiW be the wedge
enclosed by those tangents. Define the redias the intersection d¥” with the linex = 1. Depending
on whether they-axis is contained i/ or not, this results in an exclusive unbounded or a bounded
confidence region.

(b) If (0,0) € E, choose the confidence region&s=] — oo, co[ (completely unbounded case).




There are several things to note about this construction. The first thing is that usually the esiimatot in
the geometric center of the regidh Even in the bounded case, the closer the ellipse gets t@-#dxés, the more
p deviates from the center of the confidence interval (see first two panels of Figure 2). But it can be seen that the
region R is symmetric in the following sense:

1
P(pe Randp < ) = P(p € Randp > p) = 5(1 - a). (5)

This means that the regioR is central: the probability that we estimated too high and the true value is in the
lower part of the region equals the probability that we estimated too low and the true value is in the upper part of
the region (cf. Section 20.7. of Kendall and Stuart, 1961).

Secondly we note that by decreasing or increasing the confidenced@atan switch between the three cases
“bounded”, “exclusive unbounded”, and “completely unbounded”. If we checsmall enough the ellipsg will
not intersect thg-axis, and consequently we are in the benign case of bounded confidence regions. On the other
hand we can always chooseso large that the ellipse will cover the origin and we get a completely unbounded
confidence region.

This observation leads to one aspect of the constructiaR which might be confusing at first sight. As an
example, assume that we are given a sample such that the élligseonfidence leved5% just touches the origin.
In this case, the corresponding confidence&gtis unbounded. On the other hand, the ellipse for confidence level
94.99% is a bit smaller and does not touch the origin, and the corresponding confidenceRggigris exclusive
unbounded. Now one is tempted to think that tRép € Rg4.99) = 94.99% but P(p € Rgs) = P(p € R) = 1.
It seems that “we have los8% of probability here. The solution of this apparent paradox lies (as so often) in the
definition of a confidence region: it is not the parametarich is random, but the sét. For aparticular sample
and its confidence regioR it is not truethat P(p € R) = 95%. For fixed sample, this statement does not even
make sense asis not a random variable. The statemé&ip € R) = 95% only holdsin averageover all samples.
It is by definition impossible to make any statement about a particular sample.

3 Generalizations

The geometric principle that a confidence set can be constructed as the intersection of a wedge with the line
x =1 can also be used to derive other confidence setg.f&or example, we can replace the elligsdrom the
construction above by a convex two-dimensiofial- «)-confidence sed/ C IR? for the two-variate joint mean

p € IR?, that is a set such thd@(u € M) = 1 — a. Then, as above we can construct the wetdigaroundM

which is given by the two enclosing tangents and choose a confidence fegipimtersecting the wedge with the

line x = 1, distinguishing between the same three cases as above. By construction we then have that

PlpeS)=PpeW)>PueM)=1-«

Because of the inequality in this statement, the so constructed confidengendebe conservative in general.
Formally, the construction is the following:

General geometric construction of conservative confidence regiorsof level (1 — «) for p
1. Estimate the means andji, according to Equation (1), the covariance marimccording to Equation (2).

2. In the two-dimensional plane, construct a convex confidence rédiaf level (1 — «) for the joint mear
(11, p2)-

3. (a) If(0,0) € M, construct the two tangents 3d which go through the origif0, 0) and letiV” be the wedge
enclosed by those tangents (such thatC W). Define the confidence regiah as the intersection ¢
W with the linexz = 1. Depending on whether thgaxis is contained iV or not this results in an
exclusive unbounded or a bounded confidence region

(b) (0,0) € M, choose the confidence region$is=] — oo, .

=




There are several obvious ways to choose thelsetFor example, a two-dimensional confidence set for the
joint meany is given by the ellipséZs(f, C, r) centered af; with shape according to the estimated covariafice
where the scaling parameteis given as half the length of theé — «)-quantile of the Hotelling™ distribution
with dimension 2 anah — 1 degrees of freedom (cf. Section 3.3.3 of Rencher, 1998). Using the ellipsethe
general construction of the confidence sgtsads to conservative confidence sgtsf level (1 — o) (see Figure 3).

Figure 3: Geometric construction of conservative confidence regions. The small ellipse is the one used in the exact construction
of Section 2 (called” in the text). The larger, dashed ellipse (calléglin the text) is a two-dimensional confidence region for

the joint mear of level 1 — «. The rectangle (called in the text) is a two-dimensional conservative confidence st fafr

level 1 — 2a. As before, the confidence sets fpare obtained by intersecting the wedge with the line 1. Here we show

the confidence set fgr which is constructed from the rectangle.

We can also choos#! to be a rectangle. Let the intervals := [l1,u;] and Iz := [l3, us] be the standard
confidence intervals for the one-dimensional meansind 5 of level 1 — «, as given by the quantile of the
distribution withn — 1 degrees of freedom. By definition we then have tAgt, € I1) = P(uz € Is) = 1 — a.

Now let A be the axis-parallel rectangle x I, centered at the estimated medn, /i2) (see Figure 3). Le$ the
confidence set obtained from this rectangle according to the construction above. By construction we now have

P(peS)=PpeW)
=2 P(peA)
= P(p1 € Iy andyy € 1)
=1-P(u g Liorps ¢ I2)
>1—=(P(um € )+ P(u2 ¢ I2))
=1-2a.
This shows that the rectangle construction leads to a conservative confidence set df feel). It can also be

seen easily that the sétcoincides with the set obtained by “dividing” the one-dimensional confidence intervals
I5 by I, namely

SZIQ/Il = {%, yelxe Il}

Note that the construction for conservative confidence sets presented in this section is in fact a fairly general
principle which can also be applied to situations where the distributions of the random variables are not normal.
For example, in case of unknown distributions this principle can be used to construct bootstrap confidence sets for
ratios of random variables.



4  Proofs

In this section we want to prove that the construction for the exact confidence régmsmtroduced in Section
2 is correct.

Theorem 1 (R is an exact confidence set fop) Let (X,Y) ~ N(u,C) with unknownyu and C, and letR the
regions constructed according to the procedure in Section 2. Fhiinan exact confidence region of level «
for p, that is for all x andC we haveP(p € R) = 1 — «.

The idea of the proof is very simple. Consider an orthogonal projeetjarf the two-dimensional space on the
subspace spanned by some unit veater IR2. It maps the ellipse to an interval, the estimated joint mgaa
the center of this interval, and the true joint mgato some other point. According to our construction we chose
the width of the ellipse exactly such that(F) is a confidence interval of levél— « for 7, (x). This holds for
the projections for alk, so in particular for the projection,, on the line which is perpendicular to the line with
slopep. For this projection it is easy to see (Figure 4) that (1) € 7,, (E) iff p € R, and by construction this
happens with probability — «.. Now let us give the details.

Proof. In the whole proof we denote by = (a;, as) € IR? an arbitrary unit vector and by
7t IR? - IR, — a'z = a121 + asxs

the projection of the two-dimensional space on the one-dimensional subspace spannedMaydenote by
U = m,(X,Y) the projection of the joint random variab(&,Y") on a. It is well-known that if (X,Y) is
distributed according taV(u, C), thenU is distributed according tdV(a'u,a’'Ca). The independent sample
points(X;,Y;);=1,...» are mapped by, to independent sample points;);=1,...,. We now subdivide the proof
in four easy steps. For illustration we refer to Figure 4.

upper tangent

(B, )
(M1, 12)

mfh,, ;)

lower tangent

Pl

Figure 4: Projection of the ellipsE on the subspace spannedy (see proof of Theorem 1).

1. The length of the interval := 7, (FE) is 2(a/Ca)'/2. This follows from the two well-known facts that the
ellipse E depicts the standard deviations of\g i, C‘)—distributed random variable in the different directians
and that the latter are given by the form@éCa)'/2.

2. It makes no difference whether we first project the safileY;);=1,... , Ona and then estimate mean and
variance of(U;);=1,... » or whether we first estimate joint mean and covariance of the safdflé’;);—,, .. ,, and

then project the results on



Denote byv := E(U) the true mean o/, by # := 13" | U; the estimated sample mean, anddjy :=
ﬁ S (U; —)? the estimated sample varianceldf, ..., U,,. By linearity of the projection and the expectation

it is clear that = m, (1) andi = m,(j1). Moreover we have that? = a/Ca, which can be seen as follows:

n

1
2 A2
0o = "7 ;zl(UZ V)

1 A~
= —— > (Ma(X:,Yi) — ma(f))?
=1
1 n R X )
- n—1 Z(alXi + a2Y; — aifi — asfia)
=1
- n_1za1 )2+ a3 (Y; — fi2)? + 2a1a2(X; — fin) (Yi — fi2)

= ajéi1 + a3éas + a1aséin + asaién
=dCa
3. m.(E) is a (1 — a)-confidence interval for. In the construction of the regioR, the scaling factog has

been chosen such that it coincides with half the length ©f_a (1 — «)-confidence interval. A& is normally
distributed and by steps (2) and (1) of the proof we have

l—a=Pve[D—qbaV+ qba))
(1) € [ma(f) — 4(a'Ca)'/?, ma (1) + q(a’Ca)' /%))
(1) € ma(E)).

4. Projection orp . So far we have seen that for all projectianswe have that

P(m,

= P(7ra

P(ra(p) € ma(E)) =1 — . (6)

Now consider the special case where we project on the vgetes (p/+/1 + p2, —1/4/1 + p2) which is perpen-
dicular to the line through the origin and the true m@gai®ur goal is now to prove that

WPL(IU‘) € ﬂ—ﬂL(E) — pE R7

as this together with Equation (6) proves tliais an exact confidence region. As in the constructioRoke
consider two cases. In the first case the origin is not contained in the ellipkethis case we can construct the
wedgeW as described in the construction®f Denoting the line with slopg by L,, we now have the following
geometric equivalences (see Figure 4):

7 (p) €y () <= 0€m, (F) <= ENL,#0 < L,CW <= peR.

In the second case, the origin is contained in the elligseéUnder this assumption it is clear thaf, (1) = 0
is always contained int,, (E). On the other hand, in this case the regifincoincides with]—oo, cof
by construction. Thus we also have that always= R is true. Consequently, in this case we have that
7, (1) € mp, (E) <= p € R. This completes the proof. ©)

Theorem 1 shows that the confidence regifirabtained by our construction are exact confidence regions. Now
we want to compare our solution to the classic confidence sets constructed by (Fieller, 1954). To this end let us first
state Fieller’s result according to Subsection 4, p. 176-177 of (Fieller, 1954) (note that there is a typo in Formula
(9) of Fieller (1954); in the first numerator the quantityv,,, should be replaced by’v,,). We reformulate his
result in our notation:
Theorem 2 (Fieller's confidence regions)Compute the quantities
~D ~

PPN AD A

q — M g o 13611 — 2fi1fialra + (3 é20
exclusive:— '« complete— ~ A ~9
C11 P C11C22 — Ciy




and the two numbers

(fufiz — q%e12) F /(A frz — ¢2¢12)2 — (03 — q2¢11) (03 — q2¢20)
2 on
M1 — Qg C11

lip=

with ¢ as in the definition of the confidence regidiRsDefine the quantity as in the geometric construction &f
Then exact confidence séfof levell — « for the ratio p can be defined as follows:

] — o0, 00| if Geomplete < ¢° (completely unbounded case)
F={]-00,l1] U [l2,00] if geusve< ¢° < deomplete (EXClUsive unbounded case)
[11,12] otherwise (bounded case)

Now we are given two ways to compute exact confidence sefs four confidence set® and Fieller’s confi-
dence setd’. A prioriitis not clear that both sets coincide, as confidence sets are not necessarily unique. But now
we will see that the two constructions indeed coincide.

Theorem 3 (R coincides with Fieller's ') The confidence region® constructed in Section 2 coincide with
Fieller's confidence regions'.

Proof. First we want to show that the three cases of Fieller's theorem coincide with our three cases. According to
our construction, the completely unbounded case occurs if the origin is contained in the ElliBgethe ellipse
equation this is the case if

0—)C7H0-h) < ¢ (7)

Using the fact that the inverse of the symmetric positive definite matrian be computed by the formula

-1 = 1 Co2  —C12
G112 — €12 \—C12  (n

it is easy to check that Equation (7) is equivalent to the condiﬁgrqp,eteg q? of Fieller's theorem.

In our construction of?, the exclusive unbounded case occurs if the ellipse intersecjsakis. This is equivalent
to the condition tha is contained in the projection of the ellipse on thexis, thatig) € [fi1 —qv/é11, fi1+qv/eé11)-
This condition is equivalent to the conditiép; — ¢gv/¢11)(f11 + ¢v/¢11) < 0, which coincides with the condition
GEciusive < ¢° of Fieller. Thus our three cases coincide with the ones of Fieller.

Now it remains to prove that in the exclusive bounded and the bounded case, thdlimitsf the Fieller's

theorem coincide with the slopes of the two tangents to the ellipse. To compute the slopes of the two tangents one
can solve the optimization problems

N R
min 2 subject to <x - ’lf1> 1 <x N 'ﬂ“) =q°
zyeER X Y — H2 Y — H2

and
~ / ~
max ? subjectto <9C—/j1> ¢t <x_lf1> =2
z,y€R X Y— M2 Y— K2

By some tedious calculations it can be verified that the slopes of the two tangents are given by the two expressions
11 andl, of Fieller's theorem. ©)
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