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Psychophysical Comparison of Synthesis Algorithms for Natural 

Images 
 

 

Abstract.    In this study, we used three computational algorithms to compute basis sets for natural 
image patches, such that each patch could be synthesized as a linear combination of basis functions.  
The two biologically plausible algorithms non-negative matrix factorization (NMF) and sparsenet 
(SPN) were compared to standard principal component analysis (PCA). We assessed human 
psychophysical performance at identifying natural image patches synthesized using different basis set 
sizes in each of the algorithms.  We also computed the reconstruction error, which represents a simple 
objective measure of synthesis performance.  We found that the reconstruction error was a good 
predictor of human psychophysical performance.  Performance was best for PCA, followed by NMF 
and SPN despite large differences in basis function characteristics.  All algorithms were well able to 
generalize to represent novel natural image patches.  When applied to white noise patches  instead of 
natural images, PCA and SPN outperformed NMF.  This shows that of the three algorithms the one 
that is least biologically plausible (PCA) actually supported best psychophysical performance, 
suggesting that in the present study it is low-level quality of reconstruction that is the main 
determinant of psychophysical performance. 
 

 

1. Introduction 

Recently, a new computational algorithm called non-negative matrix factorization (NMF) has 
been described which can learn a parts-based representation for complex visual stimuli such 
as faces (Lee & Seung 1999).  It has been argued that this algorithm is biologically plausible, 
because it imposes non-negativity constraints on the contributions of each of the parts or basis 
functions (BF).  A similar argument has been made previously for a different algorithm called 
sparsenet (SPN), which learns an efficient sparse code for the representation of natural 
images.   SPN BF resemble the receptive field characteristics of primary visual cortical 
neurons (Olshausen & Field 1996).  Both NMF and SPN can be used to find BF for a set of 
input images, such that each of these images can then be synthesized as a linear combination 
of the BF.  The synthesized or reconstructed images can therefore only contain information 
that is expressible in terms of the BF.  Since for biologically plausible algorithms BF capture 
image properties that are meaningful in terms of sensory coding of these images, images 
reconstructed with these algorithms should have higher information content for a human 
observer than images reconstructed with algorithms that are not biologically plausible.  We 
thus hypothesized that a biologically plausible algorithm might be able to support better 
psychophysical performance than other arbitrary algorithms that are not biologically plausible.  
To test this, we compared the performance of NMF and SPN to principal component analysis 
(PCA) – a standard for finding BF that is not thought to approximate functions of the human 
visual system – using natural scene patches as input images. 
 
In Experiment 1, human subjects were asked to identify patches synthesized with each of the 
algorithms in a delayed matching paradigm.  Subjects saw an image synthesized using one of 
the three algorithms, and after a brief delay had to select the correct match from a set of eight 
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images taken from the original set.  By varying the number of BF (the basis set size) that each 
algorithm was allowed, we were able to assess the efficiency of each of the coding methods.  
In addition, we also compared the objective performance of each of the algorithms by 
computing the pixel-by-pixel mean square error between original and synthesized images.  
Experiment 2 was designed to test generalization performance of the algorithms.  BF were 
computed for one set of images and subsequently used to represent images that had not been 
part of this set. 
 
Experiment 1 demonstrated that both objective and human psychophysical performance 
improved with increasing basis set size, as expected.  Regardless of basis set size, PCA 
performed better than NMF, and NMF performed better than SPN both in terms of 
reconstruction error and psychophysical performance.  In fact, there was in general close 
agreement between reconstruction error and human psychophysical performance suggesting 
that at least for image patches at the same retinal position and size, the reconstruction error is 
a good predictor of human psychophysical performance.  The ability to generalize was very 
similar for all three algorithms, as shown by the results of Experiment 2.  Using BF to 
represent new images only had a small impact on the algorithms performance, both in terms 
of psychophysical performance and reconstruction error.  Closer inspection of the 
reconstruction error revealed that the algorithms’ generalization performance was worst for 
intermediate basis set sizes.  
 
 
 
2. General Methods 
2.1 Image sets 

In the first two experiments, we used two sets of natural image patches, each consisting of 
1000 pictures.  These patches were drawn from different Corel Photo CDs, and showed 
natural motives like butterflies, flowers and various landscapes.  No effort was made to 
exclude pictures with manmade objects, as long as they were only present in the background 
of the scenes.  Originally, the images had a size of approximately 500 by 700 pixels.  For 
further processing, a subregion of 256 by 256 pixels was selected in each image.  This 
subregion was positioned randomly within the original picture such that its borders had a 
minimal distance of 100 pixels to the edges of the original image.  The selected subregions 
were then converted to grayscale images.  For natural images, the amplitude of the Fourier 
transform has a characteristic power law dependence (Field 1987).  To ensure that all images 
employed here had identical Fourier amplitude spectra, we computed the Fourier amplitude of 
each image and then used the inverse Fourier transform with each image’s Fourier phase 
spectrum together with the average Fourier amplitude of the entire set.  After filtering, the 
images were rescaled to 16 by 16 pixels using nearest neighbor interpolation.  This was 
necessary to allow the computation of BF in a reasonable amount of processing time.  The two 
image sets were constructed in the same way and were similar in terms of mean image 
intensity and the distribution of grayscale values.  A third image set consisting of 1000 
random noise patch of size 16 by 16 pixels was generated with Matlab.  Here, each pixel was 
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set to a random value drawn from a Gaussian distribution with mean 0.0 and standard 
deviation 1.0.  Subsequently, pixel values were rescaled to span the range from 0 to 1. 
 
 
2.2 Calculation of basis functions 

Algorithms to compute basis functions were implemented as Matlab code.  For the two 
iterative processes NMF and SPN, the number of iterations was set such that the mean 
squared error between original and reconstructed images could converge to a stable value.  
About 4000 iterations were necessary in both cases to meet this criterion. 
 
In all experiments, we varied the number of BF (the basis set size).  Since PCA BF have a 
global order, restriction of the basis set size is possible by computing all BF at once and then 
selecting a subset of the appropriate size.  BF are selected respecting their order, always 
starting with the first BF.  For NMF and SPN, computation of BF was repeated for each basis 
set size. 
 
 
2.3 Apparatus and Task 

Stimuli were presented on a 21’’ monitor (Intergraph 21sd107) with a refresh rate of 85 Hz 
and a resolution of 1152 by 864 pixels.  The monitor was gamma corrected for each channel 
individually.  Background luminance was set to 17 cd/m2. Subjects were comfortably seated 
in front of the screen with a viewing distance of 57 cm.  The subjects’ head position was 
stabilized by a chinrest.  A table in front of the subjects held a computer keyboard, which the 
subjects used for their responses. 
 
Subjects performed a delayed matching-to-sample task (shown in Fig. 1), in which they had to 
match reconstructed images to their originals.  Each trial started with the 500 ms long 
presentation of a reconstructed image (the target), followed by a blank screen of the 
background luminance for 50 ms.  In the last frame, eight of the original images appeared and 
stayed on the screen until subjects made a response.  All images had a size of 2.2° x 2.2°.  The 
subjects had to indicate which of these images they had seen in the first frame.  They 
responded by pressing one of eight keys on the keyboard in front of them.  No limits were 
imposed on the reaction time.  Once they had pressed a key, the next trial was initiated.  There 
was no feedback about the correctness of their answer. 
 
On each trial, the image used as target was randomly selected from the image set.  Care was 
taken that each image appeared only once as a target within each session.  Additionally, the 
method (e.g., the number of BF and the algorithm) used to reconstruct this image was 
randomized.  The precise method depended on the experiment and thus will be described 
later.  The subjects were given eight original images as response possibilities on each trial.  To 
answer correctly, subjects had to select the image corresponding to the target.  The difficulty 
of this task does not only depend on the similarity between the target and its original, but also 
on the differences between the eight original images to choose from.  E.g., making these 
images very different may help the identification of the correct image even if target and 
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original are quite dissimilar.  To control for task difficulty, the seven original images 
representing incorrect answers were selected in dependence of the correct image on each trial.  
We calculated the mean squared difference, averaged over all pixels, between all images in 
the set and the correct match.  According to this mean squared difference, the image set was 
split into three groups.  Two images each were randomly chosen from the groups with the 
smallest and largest mean squared differences, respectively.  Three images were selected from 
the medium group.  The positions at which the original images appeared in the last frame were 
different in each trial. 
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Reaction

 
 

Figure 1 - Sequence of trial events:  The target (a reconstructed image) was shown for 500 ms, followed by a 
blank for 50 ms.  In the last frame, 8 images from the original image set appeared and stayed on the screen until 
the subject had given a response.  The correct match, i.e. the original corresponding to the target, is indicated 
with a star (not shown in the actual experiment). 

 
 
2.4 Reconstruction match 

The difference between the reconstructed and original images was calculated as the mean 
squared error (MSE) between a reconstructed image and its corresponding original, averaged 
over all pixels and images.  The MSE was normalized by the MSE between all original 
images, again averaged over all pixels and all possible combinations of original images.  This 
normalized MSE approaches 0 for reconstructions that are very close to their originals.  
Differences between reconstruction and original as large as differences between original 
images lead to values close to 1.  Thus, good reconstructions coincide with small normalized 
MSE values.  To facilitate comparisons between analytical and psychophysical results, which 
were calculated as percent correct responses, we defined the reconstruction match (RM) as 1 
minus the normalized MSE: 
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where N is the number of images in the set, M the number of pixels per image, and oip and rip 
denote the value of the pth pixel in the original image i and its reconstruction, respectively. 
 
 
 
3. Experiment 1 

The core element of each of the three algorithms is a set of BF.  These BF are extracted such 
as to capture specific properties of a set of input images.  NMF and SPN apply biologically 
motivated criteria to compute the BF, while PCA employs a purely statistical criterion.  Once 
BF are determined, the algorithms code input images as sets of BF activations.  Because of 
this transformation, the algorithms can only represent information in the input images that is 
expressible in terms of the BF.  The type and quality of this information ultimately determines 
the utility of an algorithm.  The type of information can be determined by the properties of the 
BF.  However, the quality of the information is more difficult to assess.  We limited our 
analysis to one of its key features, namely the fidelity of the encoding. 
 
Differences between input images and their BF representations can most easily be measured if 
both are represented in the same format.  We therefore made use of the fact that all three 
algorithms are linear.  Thus, the BF representation of an image can be transformed into a 
pixel-based representation – the reconstructed image – by computing a linear combination of 
the BF, weighing each BF by its activation (see Eq. 1 in the Appendix).  Comparisons can 
then be carried out between a reconstructed image and its original. 
 
We were especially interested in differences between biologically plausible and non-plausible 
algorithms.  We hypothesized that since biologically plausible algorithms represent images by 
BF that resemble properties relevant for the sensory encoding of these images, differences 
between algorithms should be most notable if reconstructed images are compared to their 
originals by means of a psychophysical experiment.  Biologically plausible algorithms should 
support better psychophysical performance than the biologically non-plausible ones.  In this 
experiment, reconstructed images were compared to their originals by means of a delayed 
matching-to-sample task.  Subjects were first shown a reconstructed image, and after a delay 
had to select the corresponding original out of a set of eight images.  In addition to the 
psychophysical experiment, we also assessed differences between original and reconstructed 
images analytically, computing the reconstruction match as a pixel-based value for the mean 
squared difference between the images. 
 
The number of extracted features is essentially arbitrary.  For PCA and NMF, there exists an 
upper limit, which is the number of pixels of the original images.  Between 1 and the 



 8

maximum, all algorithms can extract any number of features.  We varied the number of BF to 
assess its influence both on the extracted features and the reconstruction performance. 
 
 
3.1 Methods 

Basis functions 
PCA, SPN and NMF computed BF for the same set of original images.  Basis set size was set 
to 10, 25, 50, 100, 175 or 250.  At the same time the coefficients for the images in this set 
were computed.   
 
Procedure 
The computed BF and coefficients were used to calculate reconstructions of the input images.  
Reconstructed images were computed separately for each condition, i.e. each combination of 
basis set size and algorithm.  Subjects then had to match the reconstructed images to their 
corresponding originals in the described match-to-sample paradigm.  There were 35 trials per 
condition, resulting in a total of 630 trials in the whole experiment, which usually lasted about 
1 hour.  Eleven naïve subjects participated in the experiment.  For each subject, the number of 
correct responses per condition was computed.  Finally, the data from single subjects was 
averaged to obtain the average number of correct responses per condition. 
 
 
3.2 Results 

Basis functions 
Fig. 2A depicts the computed BF.  Since each basis function is a function of pixels, they are 
represented as images.  Comparison of the three panels in Fig. 2A illustrates the influences of 
basis set size.  For a small set of BF, the functions were relatively similar over all algorithms, 
but they developed differently as basis set size increased.  We considered as features parts of 
the BF with relatively homogenous values.  Increasing the basis set size mainly resulted in a 
reduction of feature size, an effect that is especially pronounced for PCA and SPN.  For the 
largest basis sets, BF of these algorithms hardly displayed any contiguous features.  In 
contrast, NMF BF retained localized features even for the larger basis sets. 
 
Feature size was determined quantitatively by analyzing the distribution of values in 
subregions of the BF.  For this analysis, BF were again represented as images, and the 
standard deviation of BF values in square subregions of the BF was calculated as a measure 
for the homogeneity within this region.  Both position and size of the subregion were varied. 
Position was moved such that each element of the BF served as upper left corner of the 
subregion once, under the constraint that the full subregion had to be placed within the BF.  
The subregion’s size grew from 2 x 2 to 8 x 8 BF values.  Standard deviations were averaged 
over all possible positions as a function of subregion size, and normalized by the standard 
deviation of all BF values.  This ratio of standard deviations will be small while subregions 
are small and BF values within the subregion are relatively homogenous.  It will increase with 
subregion size, as a consequence of more diverse values within larger subregions.  The feature 
size of a BF was determined as the subregion size at which the averaged standard deviation in 
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the subregions reached 80% of the standard deviation of the full BF (the critical size).  To 
compute feature size for a set of BF, the critical sizes were independently determined for each 
of the BF and averaged over the whole set.  Fig. 2B shows the analysis for a single BF (the 
PCA basis function Nr. 10). Its critical size was determined as 5 x 5 BF values.  The left panel 
in Fig. 2B confirms that a square of this side includes just the white regions of this basis 
function.  A comparison between the three algorithms is given by Fig. 2C.  For small basis set 
sizes, critical size was large.  With increasing set size, it decreased especially fast for PCA and 
somewhat slower for SPN.  For a set of 250 BF, a critical size of less than 2 x 2 BF elements 
confirmed that these BF contain no features.  In contrast, NMF feature size remained large 
even for large basis sets.  It fell from a critical size of over 8 x 8 elements to about 6 x 6 
elements for 250 BF. 
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Figure 2 - Basis function characteristics:  (A) Overview of the BF computed for PCA, NMF and SPN at three 
different basis set sizes.  (B) Analysis of feature size for an example basis function.  The left panel illustrates 
how different patch sizes influence the standard deviation of pixel values within these patches (σp), with large 
patch sizes leading to higher pixel variance.  The center panel plots σp averaged over all possible patch locations 
and normalized by the standard deviation of all pixels in the entire basis function, σf.  From this plot, the critical 
patch size was determined as 5 x 5 elements. (C) Dependency of critical patch size on algorithm and basis set 
size, illustrating that for small set sizes BF were similar across algorithms with differences developing with 
larger basis set sizes. 
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Reconstruction performance 
The psychophysical experiment tested how well the different basis sets represented the input 
images as a function of basis set size.  The average number of correct responses in each 
condition is plotted in Fig. 3A.  All algorithms showed a similar trend, in that recognition 
performance increased with basis set size.  Paired t-tests between all three possible pairs of 
algorithms, separately performed for each basis set size, revealed no significant differences 
either between PCA and NMF or between NMF and SPN at any basis set size.  There were 
however significant differences between PCA and SPN for intermediate basis set sizes of 50 
(t[10]=2.375, p=0.039) and 100 (t[10]=2.988, p=0.014).   
 
The average number of correct responses increased asymptotically with basis set size.  
Changes in performance were only present until a certain set size had been reached.  
Thereafter, enlarging the basis set size left the performance unchanged.  The minimal basis set 
size after which performance remained stable was determined by comparing the performances 
at adjacent basis set sizes with paired t-test, separately executed for each algorithm.  In the 
case of PCA, the tests revealed significant changes in performance up to a set size of 50.  
NMF performance changed until 100 BF were used in the reconstructions.  For SPN, 
dependence on basis set size was weaker.  While there were significant differences between 
10 vs. 25 and 50 vs. 100 BF, no further differences were seen at higher basis set sizes.  The 
results of all t-tests are summarized in Table 1. 
 
On each trial, subjects responded by selecting one of eight images.  One of these images was 
the correct image, i.e. the original corresponding to the reconstructed image shown in this 
trial.  The other seven images were selected such that two of them had a small distance to the 
correct image, three a medium and two a large distance.  Distances were measured in terms of 
the MSE.  A closer inspection of subjects’ errors revealed that they preferentially selected 
images that fell into the first two categories (Fig. 3B).  Averaged over all algorithms and basis 
set sizes, 80% of the errors involved images that either had a small or a medium distance to 
the correct image.  Only in 20% of the trials subjects erroneously selected images that were 
very different from the correct image. 
 
 
 
Table 1: For each of the algorithms, subjects’ performances were compared between different basis set sizes 
using a t-test.  The table lists the resultant p-values. 

10 vs. 25
25 vs. 50

50 vs. 100
100 vs. 175
175 vs. 250

.047

.009

.060

.156

.377

PCA

.016

.038

.004

.026

.369

NMF

.002

.067

.026

.060

.508

SPNcompared
basis set sizes
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Calculation of the RM under the same conditions allowed a comparison of psychophysical 
and computational results.  As Fig. 3C shows, there was a close correspondence between 
psychophysical and computational results.  Similar to the psychophysical results, RM only 
slightly differed between algorithms.  PCA led to the best RM, followed by NMF and SPN.  
The dependence of RM on the basis set size displayed the same asymptotical behavior as 
described for the performance of human observers. 
 
 
 
 
A

0 50 100 150 200 250

%
 C

or
re

ct

100

80

60

40

Basis Set Size

B

%
 E

rro
r

0 50 100 150 200 250

50

0

10

20

30

Medium Distance
Large Distance

40

Basis Set Size

R
M

0 50 100 150 200 250

1.0

0.9

0.7

0.8

C

Basis Set Size

 
 

Figure 3 - Results of Experiment 1:  (A,B) Psychophysical results: (A) Percentage of correct responses per 
algorithm and basis set size, averaged over all subjects.  Error bars show the SEM.  (B) Distribution of error 
types in dependence of basis set size. (C) Computational results: RM as a function of algorithm and basis set 
size. 
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4. Experiment 2 

BF are derived by adaptation to a particular set of images.  After the BF computation, any 
image can in principle be coded using the then fixed set of BF.  The second experiment was 
designed to test how capable the algorithms were in representing “novel” images, i.e. how 
well they could generalize.  We calculated BF for one set of images and used them to 
represent images from a second set.  Again, reconstruction performance was assessed both 
psychophysically and analytically.  Since basis set size may have an influence on the 
generalization ability, it was varied similar to Experiment 1. 
 
 
4.1 Methods 

Basis functions 
Two image sets were used in this experiment.  For both of them we separately computed BF.  
These BF were then applied either to reconstruct images from the set they had been computed 
from or from the other set, which was “new” to the BF.  The first image set, i.e. the one that 
the BF were derived from, will be termed training set, the latter one transfer set.  Since BF 
were computed for the two image sets, each image set could serve as training or as transfer 
set.  Coefficients for the training set were calculated at the same time as the BF.  To compute 
coefficients for the transfer set, the update rules given in the General Methods were used, 
while keeping the BF fixed.  As in Experiment 1, the basis set size was varied.  It was set to 
10, 50, 100, 175 or 250 BF.   
 
Procedure  
For each subject, only one of the basis sets was used.  Images both from the corresponding 
training and transfer set were reconstructed.  Trials in which images from the training set were 
shown were grouped into a “direct” condition, whereas trials with images from the transfer set 
were selected for the “generalization” condition.  For each combination of algorithms, 
reconstructed image set and basis set size, there were 22 trials.  The implemented basis set and 
thus the image sets representing training and transfer set changed between subjects.  A total of 
20 naïve subjects participated in the experiment, ten for each basis set.  The experiment lasted 
about 1.5 hours.  For each of the subjects, the number of correct responses per combination of 
reconstructed image set, basis set size, and algorithm was registered.  To calculate the average 
number of correct responses, we combined the results of both groups of subjects to exclude 
any influence of the basis set on the results. 
 
 
4.2 Results 

In the “direct” condition, images were reconstructed that belonged to the image set the BF 
were computed from.  This and the range of basis set sizes tested was identical to the first 
experiment.  Since two different basis sets were used, the second experiment extends the 
results of the first experiment.  A comparison of the average number of correct responses 
between the two experiments showed the two experiments in good agreement.  When BF were 
used to reconstruct images in the “generalization” condition, the performance of human 
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observers decreased slightly.  The difference in the average number of correct responses 
between “direct” and “generalization” condition, calculated independently for each subject 
and then averaged over all subjects, is plotted in Fig. 4A. 
 
To test the influence of basis set size and reconstructed image set on the performance, we 
entered the number of correct responses into a repeated measures ANOVA with the within-
subjects factors condition (“direct” vs. “generalization” condition) and basis set size.  Basis 
set identity was used as a between-subject factor.  ANOVAs were performed separately for 
each algorithm.  For SPN, differences between “generalization” and “direct” condition were 
present at each basis set size (F(1,18) = 17.965, p<0.000).  In contrast, PCA performance did 
not depend on condition.  NMF had an intermediate performance.  Here, a significant 
interaction between condition and basis set size was found (F(4,72)=3.078, p=0.021), which 
was due to a difference between “generalization” and “direct” condition at a set size of 175 
BF (ANOVA at 175 BF, F(1,18)=7.067, p=0.013).  There was no influence of basis set for 
any of the algorithms. 
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Figure 4 - Results of Experiment 2:  (A) Psychophysical results: Differences in percent correct responses 
between “generalization” and “direct” condition, averaged over all subjects.  Error bars depict the SEM.  
Negative values indicate a performance that is worse in the “generalization” condition than in the “direct” 
condition.  (B,C) Computational results: (B) Difference in RM between “generalization” and “direct” condition. 
Negative values indicate a lower RM in the “generalization” than in the “direct” condition. (C) RM in the 
“generalization” and “direct” condition as a function of basis set size, separately plotted for each algorithm. 
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The RM was calculated using the two basis sets to reconstruct their respective training and 
transfer set. The results were averaged separately for the training and the transfer sets.  
Conditions are named as in the psychophysics experiment, with the “direct” and 
“generalization” condition referring to results derived from the reconstruction of the training 
and transfer set’s images, respectively.  A plot of RM in the two conditions (Fig. 4C) shows 
that generalization led to a decrease in reconstruction performance for all three algorithms.  
These changes in RM were small compared to the actual values of the RM.   
 
To analyze the changes more thoroughly, we calculated the difference in RM (the 
generalization error) between the two conditions (Fig. 4B).  All algorithms had a small 
generalization error for both small and large basis set sizes, with a maximal error at 
intermediate set sizes.  Thus, small basis set sizes – although they allowed only a limited 
reconstruction performance – were relatively general.  The increment in performance with 
increasing set size seemed to be generated by adapting the BF closely to the image set they 
were computed from.  Only after a certain set size had been reached, a good reconstruction 
performance could be achieved with more general BF.  The basis set size with the maximal 
error was smaller for PCA (100 BF) than for NMF (150 BF) and SPN (150 BF).  
 
 
 
5. Experiment 3 

The three algorithms were developed with different goals.  NMF’s update rules were set up 
such as to mimic certain biological principles, while SPN was adapted to encode natural 
images very efficiently.  PCA in contrast is a more general purpose algorithm based only on 
sources of variance in the data.  So far we have tested the algorithms’ capability to encode 
natural scenes.  Both experiments demonstrated almost equally good performances for all 
three algorithms.  In the third experiment, we tested how well the algorithms represent 
“unnatural” input, namely images in which the distributions of pixel intensities followed a 
normal distribution.  We hypothesized that if the principles underlying SPN and NMF make 
them specifically adapted to natural input, their performance should drop under these 
conditions.  The reconstruction performance of PCA should however be relatively unaffected.  
As before, reconstruction performance was quantified psychophysically and analytically as a 
function of basis set size. 
 
 
5.1 Methods 

Basis Functions 
An image set of 1000 white noise patches was generated as described in the General Methods 
section.  BF were computed with NMF, PCA and SPN, using the same basis set sizes as in 
Experiment 1.  Together with the BF, the coefficients for the patches were computed. 
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Procedure 
As before, the computed BF, weighted by the respective coefficients, were combined to yield 
reconstructions of the input patches.  These were then compared to the original patches in the 
DMS task.  Eight subjects participated in the experiment, performing 35 trials per 
combination of basis set size and algorithm.  The experiment usually lasted about one hour.  
Subjects’ performance was analyzed by computing the number of correct responses for each 
combination of basis set size and algorithm. Group data was computed as the average over 
subjects. 
 
 
5.2 Results 

Using the algorithms to reconstruct white noise patches instead of natural scenes lead to an 
overall reduction in performance (see Figure 5A).  For the small basis set sizes up to 50 basis 
functions, subjects’ performance was now at chance level.  As in Experiment 1 and 2, 
enlarging the basis set size resulted in an increase in the average number of correct responses.  
However, the relationship between basis set size and percent correct responses changed from 
an asymptotic to an almost linear dependency, resulting in a much smaller gain in 
performance when increasing the basis set size.  Since at a basis set size of 250 subjects could 
do the task with an accuracy of about 70%, this effect is not attributable to a general 
incapability of the observers to do the task with the white noise patches. 
 
The effect of changing the reconstructed data set from natural images to white noise patches is 
further illustrated by computing the difference between the mean percentages of correct 
responses in Experiment 1 and 3. Plotting this difference as a function of basis set size showed 
that at intermediate basis set sizes, all algorithms were least capable of representing white 
noise patches (Figure 5B).  Overall, NMF was most affected by the image manipulation, while 
PCA and SPN appeared equally robust.  The impact on NMF was large enough that in this 
experiment, NMF had the worst reconstruction performance at almost every basis set size.  In 
contrast, its reconstruction performance had been intermediate in Experiment 1.  Paired t-tests 
between the algorithms, performed separately at each basis set size, showed significant 
differences between NMF and PCA for 25 (t[7]=5.158, p=.001) and 175 BF (t[7]=6.677, 
p<.000).  The differences to SPN became significant at a basis set size of 100 (t[7]=-2.760, 
p=.028) and 250 (t[7]=4.950, p=.002).  The only differences between PCA and SPN occurred 
for 175 BF (t[7]=2.846, p=.025). 
 
Interestingly, Experiment 3 again demonstrated a close correspondence between RM and 
psychophysical performance (Figures 5C and D).  Here, we also found an almost linear 
relationship between basis set size and RM.  Computing the differences between the RM in 
Experiments 1 and 3 in addition showed NMF to be worst in representing the white noise 
patches, followed by PCA and SPN.  
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Figure 5 - Results of Experiment 3:  (A,B) Psychophysical results: (A) Percentage of correct responses per 
algorithm and basis set size, averaged over all subjects.  Error bars show the SEM.  (B) Differences in percent 
correct responses between Experiment 1 and 3, again averaged over all subjects.  Error bars depict the SEM.  
(C,D) Computational results: (C) RM as a function of algorithm and basis set size.  (D) Difference in 
reconstruction match between Experiment 1 and 3. 
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6. Discussion 

We have tested how well human subjects can identify natural image patches synthesized using 
three different algorithms (PCA, NMF and SPN). We tested algorithm efficiency by varying 
the number of BF that each algorithm could use to represent a large set of image patches.  Not 
surprisingly, we found that each algorithm performed better the more BF it was allowed.  
Analysis of the limiting basis set size revealed that PCA performance rose most rapidly with 
increasing basis set size, reaching a criterion performance level of 80% correct with only 110 
BF.  It also reached the highest overall performance levels of 87.3% correct for 250 BF.  SPN 
differed from PCA in that it minimizes an objective function that contains an additional term, 
designed to produce sparse responses for the set of BF.  The introduction of this sparsity term 
comes at a cost – SPN performance is lower than performance using PCA as evidenced by a 
higher number of BF necessary to reach the criterion performance (160 BF), lower overall 
performance of 83.9% correct as well as statistically significant differences in performance at 
intermediate basis function sizes.  Interestingly, BF computed using NMF led to performance 
that was statistically indistinguishable from performance using PCA in the present study.  
This is surprising, particularly since BF computed with NMF were very different from PCA 
BF. 
 
In general, we find that human perceptual performance can be well predicted by an objective 
measure of image similarity – the mean squared reconstruction error (MSE).  PCA is a 
method that actually minimizes the MSE, so it is not surprising that it leads to the lowest MSE 
values.  Since SPN minimized the MSE plus a sparsity term, it generally performs worse than 
PCA, while NMF performance levels are intermediate between the two other methods.  This 
pattern exactly mirrors the human psychophysical data described above.  This is important, 
because it highlights that in the present study the MSE is a rather good predictor of human 
performance, at least for the image sets employed in the present study that had similar mean 
intensity, Fourier amplitude spectra and retinal position and size.  It is likely that controlling 
each of these factors is quite important.  For example, it is known that human ability to 
recognize images changes systematically with variations in the Fourier amplitude spectrum 
(Parraga et al 2000), so failure to control this factor would likely introduce additional variance 
into the results.  Another recent study has demonstrated that human recognition performance 
is largely invariant to changes in image size (Furmanski & Engel 2000), whereas the 
reconstruction error (MSE) computed as in the present study would be highly susceptible to 
changes in size.  Simple size changes would lead to a breakdown of the correspondence 
between MSE and perceptual performance. 
 
By testing generalization performance of the algorithms, we evaluated whether BF were 
specific for the particular natural image patches that were used to compute them, or whether 
they were general in that they could equally represent arbitrary image patches.  We found that 
BF were quite general, and that differences were to small to be resolved in human 
psychophysical performance – human subjects performed similarly for arbitrary image 
patches (generalization condition) and those image patches used in the BF’ computation 
(direct condition).  Examination of the MSE revealed however that with increasing basis set 
size, each algorithm initially achieved good reconstruction performance by representing image 
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structure specific to the training set, and after an inflexion point began to extract more general 
structure.  This happened at about basis set size 100 for PCA, and near 175 for both NMF and 
SPN.  This indicates that the three algorithms initially represent the structure in their training 
set, but later they become more general and are able to capture arbitrary images with equal 
fidelity.  For PCA, the set size (256 BF) always leads to an MSE of exactly zero.  This 
becomes clear if BF and images are considered as vectors, in this case having 256 dimensions.  
The PCA BF are orthogonal vectors.  A set of 256 BF therefore represents a full basis for a 
256 dimensional space, and describing images in terms of the PCA BF is a pure 
transformation of the images from one space to another without a reduction in dimensionality. 
The images generated by the linear combination of BF at complete set size are thus identical 
to the original image. 
 
The results of Experiment 3 demonstrated the effects described so far to be specific for natural 
image patches.  Applying the algorithms to non-natural, white noise image patches resulted in 
a qualitatively different behavior of reconstruction performance.  For all three algorithms, 
performance tended to show a linear dependence on basis set size.  Interestingly, NMF was 
most affected by the change in the data set from which basis functions were computed.  This 
is consistent with the idea that NMF represents a more biologically plausible way of 
decomposing visual images into BF.  NMF’s restriction to allow only positive contributions 
from each basis function or feature results in BF that are localized to particular regions of 
space resembling the receptive field structure in early or intermediate visual areas.  The 
present results suggest that using NMF BF, psychophysical performance similar to the best 
algorithm we tested (PCA) can be supported.  NMF performance does not exceed the 
performance of PCA, providing no support for a privileged role of NMF as an approximation 
of visual system performance.  The human visual system is a hierarchical system containing 
many areas with distinct feature selectivity and with strongly non-linear tuning characteristics 
especially in higher cortical areas.  Such complexity may need to be captured by 
computational models before performance benefits can be achieved.  This highlights the 
importance of developing more realistic models with multiple layers, and computing feature 
maps for each layer.  Along these lines, a two-layer sparse coding model can not only learn 
the receptive fields of simple and complex cells, but also a topography of simple cells that 
resembles the topography found in V1 (Hyvarinen & Hoyer 2001).  Applying additional 
processing steps to the responses of a purely linear network layer can also lead to nonlinear 
behavior comparable to nonlinear properties observed in real neurons.  For example, the 
responses of a set of linear filters derived so as to be independent from each other, nonetheless 
contained nonlinear dependencies when applied to natural stimuli (Schwartz & Simoncelli 
2001).  By removing these nonlinear dependencies through division of the response of each 
filter by the weighted responses of filters in its neighborhood, this model achieved a kind of 
gain control.  This enabled the model to account for nonlinear response properties observed in 
real neurons like the nonlinear changes of tuning curves at different input levels.   
 
In principle, the feature maps derived by models as the ones used here, could be compared to 
neural responses in different visual processing areas of the monkey brain.  This comparison 
has previously been performed on the level of V1 simple cells.  By using different input data, 
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networks based on the same sparse coding principle that underlies SPN and NMF have been 
shown to generate filters that resemble the spatiotemporal (van Hateren & van der Schaaf A. 
1998), as well as binocular and chromatic filter properties (Hoyer & Hyvarinen 2000) of V1 
neurons.  Adding further network layers to the models and performing the same comparison 
between feature maps of later network stages and response properties of neurons in higher 
cortical areas may be a critical step to answer the question how representations are assembled 
from simpler parts in high-level association cortex.  In addition, psychophysical studies can 
allow quantitative evaluation of the performance of these models, and thus provide further 
insight into how well they approximate functions of the human visual system. 
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Appendix 

Images were synthesized as a combination of BF,  

( ) ( )∑
=

⋅=
L

i
ijij axbxr

1

vv . (Eq. 1) 

Here, rj indicates the synthesis or reconstruction of the original image oj.  bi denotes the BF, 
with i ranging from 1 to the basis set size L. The basis set size L has a value between 1 and the 
number of pixels in the original images.  Each BF has a coefficient aij assigned to it, which is 
specific not only for the BF but also for the image to be synthesized.  Both images and BF are 
a function of the spatial position xv , i.e. a function of pixels.   
 
Each algorithm derives BF by optimizing a specific objective function E.  For PCA, this 
function is based on the mean squared error between reconstructed and original images: 

( ) ( )[ ]∑∑ −=
j x

jj xrxo
N

E
v

vv 21 . 

BF are adapted to minimize E.  This is achieved by using the eigenvectors of the images’ 
covariance matrix as BF (Joliffe, 1986).  Additionally, the BF are sorted according to the 
variance of their coefficients.  The coefficients are then computed as: 

( ) ( )∑=
x

ijij xbxoa
v

vv . 

 
NMF employs the following objective function, which is maximized by the derived BF: 
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BF and coefficients are derived using an iterative procedure with the following update rules: 
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Subsequently, the BF are normalized: 
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v . 

These update rules lead to a maximum of the objective function E under the constraints 
( ) 0,0 ≥≥ iji axb v  for all i, j, xv . 

The SPN objective function consists of the mean squared error between reconstructed and 
original images combined with a value for the sparseness of the coefficients’ distribution: 
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S was set to ( ) ( )21log aaS += , and β = 2.2, σ = 0.316.  This objective function is minimized 
in two phases.  First, for each image oj, E is minimized with respect to the aij, keeping the BF 
fixed.  To find the minimum, the coefficients evolve in the direction of the gradient  
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More specifically, the implemented algorithm uses a conjugate gradient descent routine to 
find the minimum of E with respect to the coefficients.  In the second phase, the BF are 
updated such that E averaged over many image presentations is minimized.  This yields the 
update rule: 
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The learning rate η was set to 
)1log(

16.0
+

=
t

η , were t is the number of iterations performed.  

The BF are normalized by setting: 
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with 1.02 =goalσ , α=0.02. 
 


