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Abstract

This subproject considered ICA and BSS problems for nonlinear data mod-
els. In that case, ICA is characterized by severe indeterminacies, which makes the
BSS problem ill-posed. Hence some kind of regularization is necessary for actually
achieving solutions which can be interpreted as underlying sources. The problem of
reqularization has been analyzed from different perspectives and resulted in powerful
methods. For example, explicit constraints on the model class are used in the case
of post-nonlinear mixtures, where the nonlinearity is modeled as a component-wise
distortion of linear mixtures. More implicit constraints are implemented in kernel-
based methods like KTDSEP, where the choice of the kernel parameters regularizes
the complexity of the nonlinearities.

Also, exploiting prior information on the sources, for example bounded or tem-
porally correlated sources, reduces the indeterminacies in the solutions and leads to
simplified algorithms. Another promising method consists in regularizing the solu-
tion using a fully Bayesian variational ensemble learning approach. It tries to find
the sources and the mapping that have most probably generated the observed data
given the prior. The ensemble learning method allows nonlinear source separation
for problems of realistic size, and it can be easily extended in various directions.

It has been argued that regularization based on an assumption of smoothness
of the mixture could overcome the ill-posedness of nonlinear BSS. Although it is
still a matter of debate under what exact conditions this is true, several examples
of successful source recovery through the MISEP method, using smoothness for
regularization, have been presented.

Last but not least, there has been a high degree of cooperation among the
partners to compare the results and to promote combined approaches.



1 Introduction: nonlinear ICA and BSS problems

When linear ICA models fail, a natural extension is to consider nonlinear models. For
instantaneous mixtures, the nonlinear mixing model has the general form

x = F(s) (1)

where x and s denote the data and source vectors, respectively, and F is an unknown
real-valued m-component mixing function.

Assume now for simplicity that the number of independent components n equals the
number of mixtures m. The general nonlinear ICA problem then consists of finding a
mapping G : R" — R" that yields components

y = G(x) (2)

which are statistically independent. A fundamental characteristic of the nonlinear ICA
problem is that in the general case, solutions always exist, and they are highly non-unique.
One reason for this is that if x and y are two independent random variables, any of their
functions f(z) and g(y) are also independent. An even more serious problem is that in
the nonlinear case,  and y can be mixed and still be statistically independent [39, 38, 44].

Contrary to the linear case, the BSS problem for general nonlinear mixtures differs greatly
from the nonlinear ICA problem defined above. In the respective nonlinear BSS problem,
one should find the original source signals s that have generated the observed data x. This
is usually a clearly more meaningful and unique problem than the nonlinear ICA problem
defined above, provided that suitable prior information is available on the sources and/or
the mixing mapping. If some arbitrary independent components are found for the data
generated by (1), they may be quite different from the true source signals. Generally,
solving the nonlinear BSS problem is not easy, and requires additional prior information
or suitable regularizing constraints.

In the remainder of this report we present a summary of the achieved results in this
subproject. The details can be found in the attached publications which are listed in
section 2. In the following sections we give a brief overview of the work on post-nonlinear
mixtures (see section 3) and on general nonlinear mixtures (see section 4). Finally, the
conclusions summarize the major achievements of this subproject.

2 Publications included into the deliverable

Publication 1 [77] H. Valpola, E. Oja, A. Ilin, A. Honkela, and J. Karhunen, “Nonlinear
blind source separation by variational Bayesian learning”, IFICE Transactions (Japan),
vol. E86-A, no. 3, March 2003, pp. 532-541.

In this publication, a general approach for blind separation of sources from their nonlinear
mixtures is presented. Multilayer perceptrons are used as nonlinear generative models for
the data, and variational Bayesian (ensemble) learning is applied for finding the sources.
The variational Bayesian technique automatically provides a reasonable regularization of
the nonlinear blind source separation problem. In this publication, we first consider a
static nonlinear mixing model, with a successful application to real-world speech data
compression. Then we discuss extraction of sources from nonlinear dynamic processes,



and detection of abrupt changes in the process dynamics. In a difficult test problem with
chaotic data, our approach clearly outperforms currently available nonlinear prediction
and change detection techniques. The proposed techniques are computationally demand-
ing, but they can be applied to blind nonlinear problems of higher dimensions than other
existing approaches.

Publication 2 [78] H. Valpola, T. Ostman, and J. Karhunen, “Nonlinear independent
factor analysis by hierarchical models”, in Proc. of 4th Int. Symp. on Independent Com-
ponent Analysis and Blind Source Separation (ICA2003), A. Cichocki and N. Murata,
Eds., Nara, Japan, April 2003, pp. 257-262.

We construct in this publication a hierarchical nonlinear model for nonlinear factor anal-
ysis based on the building blocks introduced earlier by us. The resulting method is called
hierarchical nonlinear factor analysis (HNFA). The variational Bayesian learning algo-
rithm used in the HNFA method has a linear computational complexity, and it is able to
infer the structure of the model in addition to estimating the unknown parameters. We
show how sources can be separated from their nonlinear mixtures by first estimating a
nonlinear subspace using the HNFA method, and then rotating the found subspace using
standard linear independent component analysis. Experimental results show that the cost
function minimized during learning predicts well the quality of the estimated subspace.

Publication 3 [55] T. Raiko, H. Valpola, T. Ostman, and J. Karhunen, “Missing val-
ues in hierarchical nonlinear factor analysis”, in Proc. of Int. Conf. on Artificial Neural
Networks and Neural Information Processing (ICANN/ICONIP 2003), Istanbul, Turkey,
June 26-29, 2003, pp. 185-188.

In this paper, the properties of the hierarchical nonlinear factor analysis (HNFA) method
introduced in Publication 2 are studied further by reconstructing missing values. To
compare HNFA with other methods, missing values of speech spectrograms have been
reconstructed using HNFA, a nonlinear factor analysis method introduced earlier by us
(see Publication 1), linear factor analysis, and the self-organizing map. Experimental
results suggest that the capacity of the HNFA method to handle nonlinear problems lies
between the nonlinear factor analysis and linear factor analysis methods. The HNFA
method provides better reconstructions than linear factor analysis, and is more reliable
and computationally much more efficient than our previous nonlinear factor analysis
method.

Publication 4 [31, 29] S. Harmeling, A. Ziehe, M. Kawanabe, and K.-R. Miiller,
“Kernel-based nonlinear blind source separation”, Neural Computation, no. 15, 2003,
pp. 1089-1124, attached is Technical report 1/2002,European Commission Research Project
BLISS (Blind Source Separation and Applications), IST-1999-14190, 2003.

In this article, FhG proposes kTDSEP, a kernel-based algorithm for nonlinear blind source
separation (BSS). It combines complementary research fields: (1) kernel feature spaces
and (2) BSS using temporal information. This yields an efficient algorithm for nonlinear
BSS with invertible nonlinearity. Key assumptions are that the kernel feature space is
chosen rich enough to approximate the nonlinearity and that signals of interest contain
temporal information. The reported experiments demonstrate the excellent performance
and efficiency of the KTDSEP algorithm for several problems of nonlinear BSS, also for
more than two sources.



Publication 5 [82] A. Ziehe, M. Kawanabe, S. Harmeling, and K.-R. Miiller, “Blind
Separation of Post-Nonlinear Mixtures Using Gaussianizing Transformations and Tem-
poral Decorrelation”, Proc. Int. Conf. on Independent Component Analysis and Signal
Separation (ICA2003), pages 269-274, Nara, Japan, 2003.

In this paper, FhG proposes two methods that reduce the post-nonlinear blind source
separation problem (PNL BSS) to a linear BSS problem. The first method is based
on the alternating conditional expectations (ACE algorithm). The second method is a
Gaussianizing transformation, which is motivated by the fact that linearly mixed signals
before nonlinear transformation are approximately Gaussian distributed. After equalizing
the nonlinearities, temporal decorrelation separation (TDSEP) allows us to recover the
source signals. Numerical simulations testing “ACE-TD” and “Gauss-TD” on realistic
examples are performed with excellent results.

Publication 6 [40] A. Tlin, A. Honkela, S. Achard, and C. Jutten, “The comparison of
the blind source separation methods developed at HUT and INPG”, Technical Report
2/2003, European Commission Research Project BLISS (Blind Source Separation and
Applications), IST-1999-14190, 2003.

As a collaboration between HUT and INPG, two approaches for solving the nonlinear
blind source separation (BSS) problem were compared on PNL mixtures: the Bayesian
methods developed at HUT and the BSS methods for post-nonlinear (PNL) mixtures de-
veloped at INPG. The report also introduces a new Bayesian algorithm for BSS in PNL
mixtures, for which promising results are obtained.

Publication 7 [34] A. Honkela, S. Harmeling, L. Lundqvist, and H. Valpola, “Using
kernel PCA for initialization of nonlinear factor analysis”, Technical Report 1/2003, Eu-
ropean Commission Research Project BLISS (Blind Source Separation and Applications),
IST-1999-14190, 2003.

The nonlinear factor analysis (NFA) method by Lappalainen and Honkela (2000) [49]
is initialized with linear principal component analysis (PCA). Because of the multilayer
perceptron (MLP) network used to model the nonlinearity, the method is susceptible to
local minima and therefore sensitive to the initialization used. As the method is used for
nonlinear separation, the linear initialization may in some cases lead it astray. As a col-
laboration between HUT and FhG FIRST, we studied how kernel PCA (KPCA) can be
used to initialize NFA. Experiments show that this combination can produce significantly
better initializations than linear PCA.

Publication 8 [6] L. Almeida, “Faster training in nonlinear ICA using MISEP”| in
Proc. Int. Worksh. Independent Component Analysis and Blind Signal Separation, pages
113-118, Nara, Japan, 2003.

MISEP has been proposed as a generalization of the INFOMAX method in two direc-
tions: (1) handling of nonlinear mixtures, and (2) learning the nonlinearities to be used
at the outputs, making the method suitable for handling components with a wide range
of statistical distributions. This approach is special in that it can be used for general
nonlinearities and in that it employs neural networks as the main architecture. It has
been shown to be able to handle moderately nonlinear mixtures of up to 10 sources, and
to be able to perform nonlinear BSS by using smoothness for regularization.

Publication 9 [1] S. Achard, D.T. Pham, C. Jutten, “ Blind source Separation in Post



Nonlinear Mixtures”, Proceeding of ICA 2001 Conference, San Diego (California, USA),
December 2001, pp. 295-300.

In this publication, we implement alternative algorithms to that of Taleb and Jutten for
blind source separation in post non-linear mixtures. We use the same mutual information
criterion, but we exploit its invariance with respect to translation for deriving its relative
gradient in terms of the derivatives of the nonlinear transforms. Then, we design an algo-
rithm, based on a piece-wise parameterization of the nonlinear functions. The algorithm
requires estimation of the score functions. In this purpose, we propose a new method for
score function estimation.

Publication 10 [12] M. Babaie-Zadeh, C. Jutten, K. Nayebi, “Separating convolutive
post non-linear mixtures”, Proceeding of ICA 2001, San Diego (California, USA), Decem-
ber 2001, pp. 138-143.

This paper addresses blind source separation in convolutive post non-linear mixtures. In
these mixtures, the sources are first mixed convolutively, and then distorted by nonlinear
transforms due to the sensors. We show that the mutual information can be used as
an independence criterion. The algorithm is based on the minimization of the mutual
information, and uses multivariate score function estimation.

Publication 11 [13] M. Babaie-Zadeh, C. Jutten, K. Nayebi, “A geometric approach for
separating post nonlinear mixtures”, Proceeding of EUSIPCO 2002, Toulouse (France),
September 2002, Vol. 2, pp. 11-14.

A geometric method for separating 2 sources from 2 PNL mixtures is presented. The main
idea is to find two compensating nonlinearities able to transform the observations so that
the joint plot of observed data is transformed to a plot contained in a parallelogram. It
then results to a linear mixture which can be separated by any linear source separation
algorithm. An indirect result of the paper is another separability proof of PNL mixtures
for bounded sources for 2 sources and 2 sensors.

Publication 12 [2] S. Achard, D.T. Pham, C. Jutten, “Quadratic Dependence Measure
for Nonlinear Blind source Separation”, Proc. of ICA 2003 Conference, Nara (Japan),
pages 263268, April 2003.

This work focuses on a quadratic measure of dependence used to solve the problem of
blind source separation. After defining it, we show some links with other quadratic mea-
sures used by Feuerverger and Rosenblatt. We develop a practical way for computing the
criterion, which leads to a new method for blind source separation in nonlinear mixtures.
It consists in first estimating the theoretical quadratic measure, then computing its rela-
tive gradient, finally minimizing it through a gradient descent procedure. Some examples
illustrate the method in the most nonlinear case.

Publication 13 [14] M. Babaie-Zadeh, C. Jutten, K. Nayebi, “Minimization-Projection
(MP) Approach for Blind Source Separation in Different Mixing Models”, Proceeding of
ICA 2003 Conference, Nara (Japan), April 2003, pp. 1083-1088.

In this paper, a new approach for blind source separation is presented. This approach is
based on minimization of the mutual information of the outputs using a non-parametric
“oradient” of mutual information, followed by a projection on the parametric model of
the separation structure. It is applicable to different mixing system, linear as well as
nonlinear, and the algorithms derived from this approach are very fast and efficient.
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Figure 1: The mixing-separating system for PNL mixtures.

Publication 14 [51] A. Larue, C. Jutten, “Separation of Markovian sources in PNL
mixtures”, Internal BLISS report, September 2003.

Markovian source separation in post-nonlinear mixtures is the extension to PNL mix-
tures to Markovian approaches for linear mixtures, developed in the second year of the
project. Using this approach [37], we minimize the conditional mutual information of the
estimated sources y;. We derive the estimation equation in the general case. However, for
sake of simplicity, experimentally, we design the method only for nonlinear functions g;’s
which are parameterized by one parameter #; or by a polynomial. Based on these equa-
tions, we design an algorithm which is much more efficient than algorithms considering
iid signals, when sources are colored signals: one obtains an average (on 30 experiments)
SNR equal to 60dB.

3 Separation methods for post-nonlinear mixtures

In the post-nonlinear (PNL) model, the nonlinear observations have the following specific
form (Figure 1):

zi(t) = fi(zaijsj(t)), i=1,...,n (3)

One can see that the PNL model consists of a linear mixture followed by a componentwise
nonlinearity f; acting on each output independently. The nonlinear functions (distortions)
fi are assumed to be invertible.

Besides its theoretical interest, this model belonging to the L-ZMNL! family suits per-
fectly for a lot of real-world applications. For instance, such models appear in sensors
array processing [53], satellite and microwave communications [54], and in many biological
systems [47].

3.1 Minimization of mutual information

Consider now BSS methods proposed for the simpler case of post-nonlinear mixtures (3).
Taleb and Jutten have studied this case in several papers [65, 67, 66], and we start with
a brief discussion of their results. A short overview of their studies can be found in [45],
and the main results have been represented in [67].

The separation algorithm for the post-nonlinear mixtures (3) generally consists of two
subsequent parts or stages:

L stands for Linear and ZMNL stands for Zero-Memory Nonlinearity.



1. A nonlinear stage, which should cancel the nonlinear distortions f;, i = 1,...,n.
This part consists of nonlinear functions ¢;(0;,u).

2. A linear stage that separates the approximately linear mixtures z obtained after
the nonlinear stage. This is done as usual by learning an n X n separating matrix
B for which the components of the output vector y = Bz of the separating system
are statistically independent (or as independent as possible).

Taleb and Jutten [67] use the mutual information /(y) between the components y1, . . ., Yy,
of the output vector as the cost function and independence criterion in both stages. For
the linear part, minimization of the mutual information leads to the same estimation
equations as for linear mixtures [38, 21]

ol(y) _ T T\—1
S = ~E{¥x"} - (B") )

where components 1; of the vector 1 are score functions of the components y; of the
output vector y:
d _ pi(u)

Yi(u) = - logpi(u) ) (5)
Here p;(u) is the pdf of y; and pj(u) its derivative. In practice, the natural gradient
algorithm [22, 20, 9] is used for providing equivariant performance, which does not depend
on the mixing matrix A provided that there is no noise present.

For the nonlinear stage, one can derive from the estimating equations the gradient learning
rule [67]
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Here z; is the kth component of the observation vector, b;, is the element ik of the
separating matrix B, and g, is the derivative of the kth nonlinear function g;. The exact
computation algorithm depends naturally on the specific parametric form of the nonlinear
mapping gx(Or, zx). In [67], a multilayer perceptron network is used for modeling the
functions gx (0, zx), k=1,...,n.

Contrary to BSS of linear mixtures, separation performance for nonlinear mixtures is
strongly related to the estimation accuracy of the score functions (5) [67]. The score
functions (5) must be estimated adaptively from the output vector y. Several alterna-
tive ways to do this are considered in [67]. The first approach is to estimate the pdf,
and then compute using differentiation the score function. Pdf estimation based on the
Gram-Charlier expansion [24, 38| performs appropriately only for mild post-nonlinear
distortions. For hard nonlinearities, a simple pdf estimation based on kernel methods
is preferable. The second method estimates the score functions directly, and provides
very good results for hard nonlinearities, too. A well performing batch type method for
estimating the score functions has been introduced in a later paper [66].



Quadratic Dependence Measure for Nonlinear Blind Sources Separation: At
INPG, we have considered and extended a dependence measure introduced by Eriksson
et al.[27], which we call quadratic dependence measure. The advantage of this measure is
its flexibility since one can choose a kernel with few constraints with a large bandwidth.
Further, it can be easily estimated and we also obtain explicit formula for calculating the
gradient of the estimated criterion. We have applied our method to the post nonlinear
mixture model and have obtained satisfactory results [2].

Minimization-Projection algorithms During the second year, INPG derived the
differential of the mutual information (MI), and showed that the stochastic gradient of
the mutual information is nothing but the difference of marginal and joint score functions.
This theoretical result leads to a new class of very efficient algorithms. Usually, given
observations x, source separation consists in estimating a mapping G so that y = G(x)
are independent; then, the mapping G is estimated so that the gradient of the mutual
information I (y) with respect to the parameters of G is equal to zero. The convergence of
the algorithm strongly depends on the model complexity, which can for instance generate
bad local minima. For avoiding this drawback, we share the algorithm in 2 stages:

e a minimization stage, in which one computes the data y so that they are as in-
dependent as possible, by using the differential of the MI (without assuming any
model)

e a projection stage, in which one estimates the model parameters # which fit the
best to the data, according to a least square error criterion J(0) = E[(y — Go(x))?].

The method has been implemented for various models, especially post non-linear mixtures
[15, 14], and points out faster convergence with respect to one-step algorithms.

Separability of bounded sources in PNL mixtures. A new separability theo-
rem for PNL mixtures has been proposed for bounded sources, based on geometrical
properties. For such sources, the joint distribution, after linear mixture, is a parallel-
ogram. Then, restricting the mapping H to component-wise nonlinearity (PNL case:
Hi(x) = hi(x;)), we can prove that such a mapping transforms a parallelogram into an-
other parallelogram only in the affine case: h;(x;) = ax; + b. This result also suggests a
new class of algorithm since the nonlinearity can be estimated without using an indepen-
dence criterion, but exploiting the above geometrical property. Details on the separability
theorem and on algorithm can be found in [11, 13].

Separation of Markovian sources in NL mixtures. Source separation in nonlin-
ear case is, in general, impossible, since there exist many mappings with non-diagonal
Jacobian matrices preserving the independence. At INPG, we wonder if the time struc-
ture (based on a Markovian model) of the sources can reduce this indeterminacy. In
particular, we show [37] that the classical example used in literature for demonstrat-
ing the nontrivial non-separability of the non-linear mixtures can be rejected by taking
into account the temporal correlation of the sources [37]. This result, although it does
not insure that time dependent sources are separable in any nonlinear mixtures, points



out on interest in taking into account prior informations for restricting the solution space.

Markovian source separation in post-nonlinear mixtures is the extension to PNL mixtures
to Markovian approaches for linear mixtures, developed in the second year of the project.
Using this approach [37], we minimize the conditional mutual information of the estimated
sources y;. We derive the estimation equation in the general case. However, for sake of
simplicity, experimentally, we design the method only for nonlinear functions g;’s which
are parameterized by one parameter ;. So the problem of the estimation of g;, which
canceled the nonlinear distortion f;, is equivalent to the estimation of one parameter 6;.
Then, the separation problem consists in estimating the parameter vector © = [0y, ..., 0y]
and the separation matrix B. The gradient of the criterion with respect to B is similar
to the linear case replacing the observations with the nonlinear blocks outputs (after
compensation by g;). In [51], we derive the criterion with respect to the parameter 6; of
the nonlinear blocks:

01(B,0) _ 0290, xi(1)) (g0, i)\
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This expression also used the estimation of conditional score function wg(,l])(), and the
others terms are calculated with the explicit function g;(6;, x;(¢)) . Initialization of the
parameter ¢; is computed with a gaussianity criterion [64]. At each iteration of the
algorithm, we compute the new separation matrix B by a relative gradient and the new
nonlinear parameters 6; by a natural gradient. With this algorithm, the separation of an
instantaneous post-nonlinear mixtures of two colored Gaussian sources is very efficient:
the average (on 30 experiments) SNR is 60dB, with a standard deviation of 20dB.

3.2 Linearization methods: ACE and Gaussianization

Another approach by Ziehe et al. [81] uses powerful linearization techniques in order
to enable the subsequent application of standard linear ICA /BSS techniques for source
separation in the PNL case.

First, the alternating conditional expectation (ACE) method of non-parametric statistics
has been proposed for approximate inversion of the post-nonlinear functions f; in (3). In a
second step, a linear BSS method, e.g. based on temporal decorrelation (see [17, 84, 81]),
is used for recovering the source signals. Independently, Solé et al. [64] and Ziehe et al.
[82] improved the method by directly computing (instead of estimating) the inverse g;
(see Figure 1) of the nonlinear mapping f according to the formula

§i=d 1o Fy, (8)

Here Fl, is the cumulative distribution function of the random variable X;, and @ is the
cumulative Gaussian distribution. For a more detailed description and a comparison of
those methods see the attached paper [83].



3.3 Extension of PNL mixtures

A Wiener system consists of the cascade of a linear filter [H(z)] followed by a memoryless
nonlinearity f, whose input is an independent and identically distributed signal s(k). The
output is then z(k) = f([H(z)]s(k)). Using a suitably chosen parameterization, Taleb,
Solé and Jutten proved that Wiener systems can be expressed as PNL mixtures, and
proposed non-parametric [68] as well as parametric [63] algorithms based on minimization
of mutual information rate [25]. A similar problem appearing in satellite communications
has been solved using Monte Carlo Markov Chain (MCMC) simulation methods [62].

Convolutive post-nonlinear (CPNL) mixtures have been introduced by Babaie-Zadeh,
Jutten and Nayebi for taking into account propagation which is commonplace in many
realistic situations. The observation vector is then

vi(k) = fi([A(Z)]s(K), i = 1,...,n (9)

Some separation algorithms based on the generalization of mutual information minimiza-
tion for random processes have been proposed in [12, 14].

PNL methods for designing smart chemical sensor array. This work, which was
not intended in the project, has been done in cooperation with UPC (Barcelona), during
a 4-month visit in INPG of a PhD student (Guillermo Bedoya) working in the framework
of another European project (SEWING, IST-2000-28084). It is however reported here
since it is an interesting application of PNL.

Ton-selective field effect transistor (ISFET) are used as chemical sensors for biomedical and
environmental applications, since ion activities at the interface between the electrolyte
solution and the ISFET membrane vary the gate voltage (and consequently the drain
current), according to:

RT =
Vo = Vaes + niFTln(si + Z Kiyjs;) (10)
J

where R is the gas constant, 1" is the temperature, n; is the charge of the measured ion,
F' is the Faraday constant, s; is the activity of ion ¢, K; is the selectivity coefficient,
z; is the charge of the ion 7, and s; is the ion activity of ion 7. For ions with the same
charge, Eq. (10) is a PNL mixture, with known nonlinearity and unknown parameters.
Then, for recovering the ions activity, one can estimate a PNL separation model, with
exp as nonlinearities followed by a mixing matrix. Blind separation can be achieved
by minimizing mutual information. Preliminary results [16] are promising and suggest
another way for designing accurate ISFET sensor exploiting sensor variability.

4 Separation methods for general nonlinear mixtures

4.1 Variational Bayesian methods

Advanced Bayesian inference methods are becoming increasingly popular both in neural
networks and statistical signal processing, because one can often obtain excellent results



using them provided that the assumed model is of correct type. They allow utilization of
the available prior information by modeling them using suitable prior distributions, and
a fully Bayesian treatment makes it possible to select an optimal model order, making
such methods robust against overfitting. The main disadvantages of fully Bayesian es-
timation methods have been their often quite high computational load and intractable
computations without approximations. These obstacles have prevented their applica-
tion to realistic unsupervised or blind learning problems where the number of unknown
parameters to be estimated grows easily large.

Variational Bayesian learning, also called Bayesian ensemble learning [50], utilizes an
approximation which is fitted to the posterior distribution of the parameter(s) to be es-
timated. The approximative distribution is often chosen to be Gaussian because of its
simplicity and computational efficiency. The mean of this Gaussian distribution provides
a point estimate for the unknown parameter considered, and its variance gives a some-
what crude but useful measure of the reliability of the point estimate. The approximative
posterior distribution is fitted to the posterior distribution estimated from the data us-
ing the Kullback-Leibler information (divergence) [38, 21]. This measures the difference
between two probability densities, and is sensitive to the mass of the distributions rather
than to some peak value, resulting in robust estimates. We shall not proceed deeper into
the theory of variational Bayesian learning here, because this has been done already in
the deliverable D17 [70] of this project as well as in the publication [76] included into the
deliverable D21 [46]. Connections of variational Bayesian ensemble learning to methods
and theory developed for efficient coding of information have been explored in [35].

Variational Bayesian methods were first applied to standard linear ICA and BSS in [10,
48], and several research groups have since then used Bayesian approaches to handle
various blind problems for linear models; see [28, 38, 56, 76] and the references therein.
H. Valpola (earlier Lappalainen) and his co-authors have introduced at HUT several
methods based on Bayesian ensemble learning for blind estimation and separation in
nonlinear mixture (data) models.

In these methods, the nonlinear model in (1) is modified somewhat so that it contains
also an additive noise term:

x(t) = £(s(t)) + n(t) (11)

The nonlinear mapping f in (11) is modeled using a multilayer perceptron (MLP) network
[32] with one nonlinear hidden layer:

f(s) = Btanh(As+a)+b (12)

The mapping f is thus parametrized using weight matrices A and B as well as the bias
vectors a and b of the hidden layer and output layer of the MLP network, respectively.
The regularization needed in nonlinear BSS is achieved by choosing the model f(s) and
sources s(t) that have most probably generated the observed data x(t) [70, 76].

Assuming that the source signals s at the input layer of the MLP network (12) have simple
Gaussian distributions, one obtains a nonlinear principal component analysis (PCA) so-
lution called nonlinear factor analysis (abbreviated NFA, or NLFA in some of our papers)
[49, 69, 71, 38]. The NFA solution can usually model quite well the nonlinear mixtures
(observed data) x(¢), but it does not yet provide estimates of the independent source
signals, because the sources s(t) have plain Gaussian distributions in the NFA method.
The simplest way to achieve nonlinear BSS is to apply standard linear ICA to the found



NFA solution. The quality of this nonlinear BSS solution can be improved still somewhat
by continuing variational Bayesian ensemble learning, but using now a more sophisticated
mixture-of-Gaussians model for the sources [49, 69, 71, 38]. It is well known that suitable
mixtures of Gaussian distributions are able to model with sufficient accuracy any source
distributions [18]. This method is called Nonlinear Independent Factor Analysis (NIFA).

The NFA and NIFA methods were first introduced in [49], and a more principled theoret-
ical derivation has been presented in [69]. Experimental results with artificially generated
data have been presented in [38, 49, 71], showing that the NFA method followed by linear
ICA as well as the NIFA method are able to approximate pretty well the true sources.
These methods have been applied also to real-world data sets, including 30-dimensional
pulp data [38, 49, 71] and speech data [77], but interpretation of the results is somewhat
difficult, requiring problem-specific expertise.

Somewhat later on, the NFA method was extended to include a nonlinear dynamic model
for the sources in [75]. The developed NDFA (Nonlinear Dynamic Factor Analysis)
method is presented thoroughly in [76], and the results obtained thus far have been
summarized in [77]. This paper has been included into this deliverable. The MATLAB
codes for the NFA and NDFA methods are available at the www site [74].

More specifically, the data model used in the NDFA method is
x(t) = f(s(t)) + n(t) (13)

s(t) = g(s(t = 1)) + m(t) (14)
In the latter equation (14), g(¢) is another unknown nonlinear function which controls
the dynamics of the sources s(t), and m(t) is a similar additive noise term as n(t) in the
static nonlinear data model (13). Similarly as in the NFA method, the function g(t) is
modeled by an MLP network, and the unknown mappings f(¢) and g(¢) as well as the

sources are learned using Bayesian ensemble learning. The model (13)—(14) is discussed
in detail in [76].

Many real-world data sets can be appropriately described as nonlinear dynamic systems
such as (13)—(14), and therefore nonlinear BSS for dynamical systems may in fact have
more practical applications than static nonlinear BSS. The first paper about nonlinear
dynamical ICA (to our knowledge) is [23], where the authors have considered state-space
models and a hyper radial-basis function (RBF) network [32] for nonlinear mixtures.
However, the method introduced in [23] is not completely blind, because it partly resorts
to supervised learning.

In experiments with difficult chaotic data [75, 76], the NDFA method performed excel-
lently, outperforming for example the prediction results given by nonlinear autoregressive
modeling learned by standard back-propagation (see [32], Chapter 15) by an order of
magnitude. The NDFA method has been applied also to BSS of biomedical MEG data in
[57], and it provided clearly better results than standard linear ICA. In this application,
the static data model (13) was a standard linear ICA model, but the dynamic model (14)
was nonlinear.

The NDFA method has been used not only to blind estimation of the dynamic system and
its source signals, but also to detection of changes in the states (sources) of the process
in [42, 77]. The method performed again much better than the compared state-of-the-art
techniques of change detection. The results of this study will be presented in detail in
the forthcoming journal paper [43].



A problem in particular with the NDFA method but also with the NFA and NIFA meth-
ods is that their computational load remains high in problems of realistic size in spite
of the efficient Gaussian approximation. Another problem is that the Bayesian ensemble
learning procedure may get stuck to a local minimum and requires careful initialization.
To combat these problems, a simpler block approach which neglects all posterior depen-
dencies was developed in [79].

The block approach allows straightforward construction and Bayesian ensemble learning
of a variety of models, and it is computationally clearly more efficient and robust against
local minima. It can be used for learning variance sources for linear and nonlinear models
[73, 72]. In the publication [78] included into this deliverable we have tested it in nonlinear
BSS by constructing a hierarchical nonlinear data model from the blocks. The resulting
method is called hierarchical nonlinear factor analysis (HNFA). The HNFA method gives
for artificial data slightly worse results [78] than the NFA method followed by linear
ICA or the NIFA method, but preliminary experiments with real-world speech data are
quite encouraging. Further properties of the HNFA method in the task of reconstructing
missing values have been studied in the conference paper [55] attached to this deliverable.

Occasionally, the approximation used in the block method which neglects all posterior
dependencies may be too simple for providing the true ICA or BSS solution, leading to
inferior performance. This problem and solutions to it are discussed in [41]. Bayesian
ensemble learning can be accelerated also by applying an improved updating scheme for
the parameters to be estimated; this has been studied in the papers [33, 36].

4.2 Kernel-based methods

Kernel-based learning has become a popular technique recently (e.g. [80, 26, 60, 19,
61, 52]). The basic idea of “kernelizing” (see [61]) allows to construct very powerful
nonlinear variants of existing linear scalar product based algorithms by mapping the
datax[t] (t = 1,...,T) implicitly into some kernel feature space F through some mapping
® : " — F. Performing a simple linear algorithm in F, then corresponds to a nonlinear
algorithm in input space: in other words a linear blind source separation in F would give
rise to a nonlinear BSS algorithm in input space. All can be done efficiently and never
directly but implicitly in F by using the kernel trick k(a, b) = ®(a) - &(b). However, a
straight forward application of the kernel trick to BSS fails for two reasons: applying a
linear BSS algorithm in feature space will not necessarily identify the sought-after signals,
since there are very likely directions that are also independent but higher-order versions
of the original signals, and secondly, in principle, the BSS algorithm has to be applied,
after kernelizing, to a T dimensional problem which is numerically neither stable nor
tractable.

In our contribution (see [30, 31] we added a new aspect which enabled us to first employ
successfully kernel-based methods for nonlinear BSS: since typically the data forms a
lower dimensional subspace in F, even much lower than 7" dimensional, we apply first a
dimension reduction step before applying the linear BSS algorithm. We therefore propose
a mathematical construction—very much inspired by reduced set methods (e.g. [58])—
that allows us to adapt to the intrinsic data dimension. In the next step an orthonormal
basis of this low dimensional sub-manifold is constructed which eventually makes the
computations of a subsequent BSS algorithm tractable. The subtle difference to reduced



set techniques is that we do not aim to construct a low dimensional basis for a good clas-
sification, rather we aim for an efficient, i.e. low dimensional description of the data in F.
Note, that we use a BSS algorithm that is based on second order temporal decorrelation
(see [84, 17]) which is an essential building block of our algorithm. Lastly, the sources
of interest are automatically selected after the BSS step. These ingredients give rise
to an algorithmic solution, called KTDSEP, that is mathematically elegant and efficient
with high performance, as the experiments on nonlinear mixtures of artificially generated
signals and various sound signals (for details see attached paper).

4.3 Combination of kernel PCA and NFA

In the nonlinear factor analysis (NFA) method [49, 69, 77] developed in HUT, an appro-
priate initialization is essential for getting good results. This results from the flexibility
of the multilayer perceptron (MLP) network [32] used to model the nonlinear mixing
process, and from the general ill-posed nature of the nonlinear blind source separation
problem [39, 38, 44]. In the original implementation, initialization of the sources is carried
out by computing a desired number of first linear principal components of the data and
then fixing the sources to those values for some time while the MLP network is adapted.

In co-operation with HUT and FhG, it was studied whether the kernel PCA method
[32, 59] developed earlier at FhG could be used to improve the initialization of the NFA
method. Kernel PCA (KPCA) [59] is a nonlinear generalization of linear principal com-
ponent analysis (PCA). It works by mapping the original data space nonlinearly to a high
dimensional feature space and performing PCA in that space. With the kernel approach
this can be done in a computationally efficient manner.

The results of this joint study are reported in detail in [34]. They show that with a suitable
kernel PCA initialization, both the signal-to-noise ratios of the separated sources and the
convergence speed of the NFA indeed improved clearly. This effect was more pronounced
for the artificially generated data consisting of nonlinear mixtures of four sub-Gaussian
and four super-Gaussian sources, while for real-world speech data the improvement was
smaller. A problem with using kernel PCA for initialization and in general is that the
choice of the nonlinear kernel requires care. If the kernel is chosen poorly, the results can
be even poorer than when using linear PCA initialization [34].

4.4 Comparison of PNL

In a joint study of Helsinki University of Technology (HUT) and Institut National Poly-
technique de Grenoble (INPG), two different approaches for solving the nonlinear BSS
problem were compared for post-nonlinear mixtures. The Bayesian nonlinear factor anal-
ysis method (abbreviated NFA or NLFA) developed at HUT [49, 69, 77] can be applied to
general nonlinear mixtures, while the post-nonlinear (PNL) method developed at INPG
[67, 66] requires that the observed mixtures are post-nonlinear (PNL) in nature. That
is, the mixtures are modeled as linear mixtures which have undergone some unknown
nonlinear distortion. The results of this comparison have been presented in more detail
in the attached publication [40].

The following conclusions were drawn from results of the comparison:



e The INPG methods are clearly superior for post-nonlinear mixtures having the same
number of sources and observed mixtures, provided that all the post-nonlinearities
are invertible.

e The performance of the INPG methods degrades when the number of mixtures
exceeds the number of sources, but they still outperform the more general Bayesian
methods.

e In general, the Bayesian methods developed at HUT may be more preferable in high-
dimensional post-nonlinear BSS problems where the number of sources is small.

e The Bayesian methods are able to separate post-nonlinear mixtures with non-
invertible post-nonlinearities while the existing INPG methods cannot do this.

This preliminary study showed the benefit of exploiting the additional information of more
observations than sources, especially in the nonlinear mixtures case. In this case, globally
invertible PNL mixtures, but with non-invertible component-wise nonlinearities, can be
identified and sources can be separated, which is a new and interesting result [40]. It
also emphasizes on the relevance (now well known) of a pertinent choice of the separation
structure for improving the performance. Especially, PNLFA (i.e. NLFA with structural
constraints suited to PNL) provides interesting results, much better than NLFA without
constraint. Moreover, non Bayesian PNL approaches, whose separation structure is not
suited to non-invertible PNL mixtures, could be extended based on PNLFA separation
structure.

4.5 Mutual information based method

Mutual information is a measure of statistical dependence with a well understood mean-
ing and with several desirable properties. It is therefore a natural choice as an objective
function for ICA. Estimating the mutual information in the ICA context is not straight-
forward, however.

It is known that the popular INFOMAX method of linear ICA /BSS can be viewed as min-
imizing the mutual information of the extracted components, if its output nonlinearities
are chosen as the cumulative probability functions (CPFs) of the sources. The MISEP
method — which was developed mostly within the BLISS project — extends INFOMAX
in two directions:

e By replacing the linear unmixing block with a generic nonlinear one (e.g. an MLP),
thus allowing the processing of nonlinear mixtures.

e By replacing the fixed nonlinearities of INFOMAX with adaptive ones, that main-
tain online estimates of the CPF's of the components that are being estimated.

The resulting method performs nonlinear ICA using a minimum mutual information cri-
terion. In practice it optimizes a nonlinear network with a specialized architecture, by
maximizing its output entropy. MISEP has been shown, within the BLISS project, to
be able to perform ICA and BSS in moderately nonlinear mixtures of random noise with



various statistical distributions, as well as in nonlinear mixtures of speech signals. Non-
linear BSS was achieved due to the smoothness-related regularization that was performed
(implicitly in most cases, but also explicitly in some ones).

INESC-ID had to withdraw from the BLISS project due to reasons internal to INESC-ID
itself, but the development of the MISEP method proceeded. We summarize here two
results obtained during this later period, because we think that they are relevant for an
assessment of the usefulness of the method:

e The method was shown to be able to separate nonlinear mixtures of up to 10 sources,
with a moderate increase in processing time.

e The method has been successfully used to separate nonlinear mixtures of images,
occurring in a real-life application.

The publication [7] gives a full description of the method, as well an account of several
experimental results (the results on the image separation application are subject to some
confidentiality constraints, and are not published yet). Other publications on the MISEP
method are [3, 4, 5, 6, 8].

5 Concluding remarks

In general, for nonlinear mixtures, a decomposition into independent components does not
ensure recovery of the underlying sources. However, we showed that proper regularization
strategies allow to solve the nonlinear BSS problem in many cases. We achieved the
nonlinear source separation with a number of different approaches like post-nonlinear
models, kernel-based methods and variational Bayesian methods. While those methods
have been developed, we made much effort to compare the results and to pursue combined
approaches. Examples are the joint work between HUT and INPG for extending the
ensemble learning methods for post-nonlinear mixtures an the joint work between FhG
and HUT for using kernel-PCA for initializing the Bayesian methods.

The different approaches related to the nonlinear ICA /BSS task have also been presented
and discussed at major conferences: first, at the ICA 2003 workshop in the invited special
session on nonlinear ICA and BSS organized by Christian Jutten and Juha Karhunen,
and in their invited paper “Advances in Nonlinear Blind Source Separation”, and second,
at the NIPS 2002 workshop: “ICA and beyond” organized by Stefan Harmeling, Erkki
Oja, Luis, Almeida and Dinh-Tuan Pham, Both events showed the leading role of the
BLISS group in this field of research.
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