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1 Introduction

This report presents a comparison study of the methods, that have been implemented
for the BLISS project, and the new method of Pham. For this purpose, we utilise the
real-room recordings that McMaster University created as a contribution to the BLISS
project.
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After introducing the different algorithms (in Sec. 2), the database, a new performance
measure for convolutive mixtures (proposed recently by FhG FIRST) and the experimen-
tal setup is explained (Secs. 3, 4, and 5). A detailed discussion of our findings follows
(Sec. 6), and finally, a conclusion is given.

2 Methods for convolutive BSS

We compare INPG’s new method to some of the state-of-the-art methods for convolutive
BSS which are explained in the following. The algorithm of Murata, Ikeda, and Ziehe is
available on Ikeda’s website [5]. Futhermore, FhG FIRST implemented the algorithm of
Parra and Spence and the method of Anemüller and made the code publicly available on
the BLISS project website.

We consider the convolutive blind source separation problem: the source signals at time
point t are given as a column-vector s(t). The convolutive mixture is represented as a
filter matrix A, i.e. each entry aij is a linear time-invariant filter. The mixed signals x(t)
can then be written as:

x1(t) = (a11 ? s1)(t) + (a12 ? s2)(t)

x2(t) = (a21 ? s1)(t) + (a22 ? s2)(t)

or more compact
x(t) = (A ? s)(t). (1)

The demixing system is also modeled as a filter matrix:

y(t) = (B ? x)(t) = ((B ? A) ? s)(t) (2)

We call (B ?A) the global system. The global system will be used to evaluate the perfor-
mance of the different demixing algorithms.

2.1 Algorithm of Murata, Ikeda, and Ziehe

In a pioneering work [8], Murata, Ikeda, and Ziehe proposed to apply temporal decorre-
lation [7, 4, 13] for each subband in the frequency domain (see Fig. 1) in order to solve
the convolutive blind source separation problem by exploiting the rich time-frequency
structure of speech signals.

Recall from Eq. (1), that we model the n input signals x(t) from m unknown sources s(t)
by the equation

x(t) = (A ? s) (t)

where A is an n×m matrix of filters and ? denotes convolution. Hence, x(t) is regarded
as a linear combination of filtered sources. This translates to

x̂(α, t) ≈ A(α)ŝ(α, t)

in the frequency domain, where we have ŝ(α, t), short-time Fourier transforms (abbr. STFT)
of unknown sources using window length T starting at time t, mixed by the n×m matrix
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Figure 1: The specgram is calculated by applying the short-time Fourier transfrom to
time-shifted windows.

A(α) of transformed filters to obtain the inputs x̂(α, t). This approximation is good if
the time frame length T is large enough to properly reflect the convolutive mixture A in
time domain.

Because each frequency band is handled separately, the scaling and permutation indeter-
minacy (which is not a problem for instantaneous mixtures) has to be taken care of to
correctly reconstruct the demixed signals. Murata eta al. [8] solve the scaling indeter-
minacy by the assumption that the energy of the signal does not change by the mixing
process, i.e. by back-projecting the demixed signals onto the sensor space. The permu-
tation ambiguity is resolved using the large-scale temporal structure of speech signals.
Fig. 2 illustrates the structure of this approach. More details can be found in [8, 9]. For
the comparison in this paper we use the MATLAB code from Ikeda’s website [5].

2.2 Algorithm of Parra and Spence

The algorithm by Parra and Spence (as described in [10]) also tries to find demixing ma-
trices in the frequency domain similar to Murata, Ikeda, Ziehe’s approach. In particular,
Parra and Spence’s method utilizes a joint diagonalization of time-shifted cross-power
spectra between the input signals, which is carried out by standard gradient-based opti-
mization. The permutation problem is solved by restricting the number of non-zero filter
taps in the time domain, which leads to smooth results in frequency domain.

The goal is to find a set of matrices {W (α)} that simultaneously diagonalize the cross-
power spectra

R̄x(α, t) =
1

N

N−1∑

n=0

x̂(α, t+ nT )x̂(α, t+ nT )H
.

For each frequency, we consider K spectra estimated by N non-overlapping short-time
Fourier transforms, so that the k-th cross-power spectrum to diagonalize for frequency
channel α is R̄x(α, kTN).

With ‖x‖ being the L2-norm of x, we measure the error by

E(α, k) =
wwwW (α) R̄x(α, kTN) WH(α)

www
2
.

The optimal diagonalizers
{
Ŵα

}
are then found by minimizing the error:

Ŵα = arg minW (α)

K−1∑

k=0

E(α, k)
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Figure 2: Exploiting the correlations between the envelopes of the signals in each fre-
quency band allows to solve the permutation problem.



The permutation problem is solved by posing an additional constraint to this optimization
problem: the taps of each filter in time-domain should be zero for indices i > Q� T . This
ensures smooth impulse responses in the frequency domain which penalizes permutations.
In practice, this condition is enforced by projecting the preliminary solution onto the
subspace of legal diagonalizers after each optimization step (for further details see [10]).

2.3 Algorithm of Anemüller

The algorithm of Anemüller [3, 2] is based on the observation, that for speech signals am-
plitude changes in neighboring frequency channels are correlated. Hence, a useful criteria
for unmixing speech signals is as follows: find source signals whose frequency channels
are correlated, but not inter-correlated across different sources. Using a cost function
that quantifies inter-correlation, the algorithms finds a set of demixing matrices (one
for each frequency channel) by standard numerical optimization tools. In the following,
we briefly describe Anemüller’s method, formulated in a concise matrix notation which
allows straightforward implementation.

First of all, we cast the demixing problem in the frequency domain (as the algorithm
of Murata, Ikeda, Ziehe). From the n input signals (or microphones) xi(t) we compute
STFTs x̂i,α(t̂) for each frequency channel α (using short-time Fourier transforms with

an appropriate window function). The goal is to find a set of m × n matrices
{
Ŵα

}
for

computing the unmixed STFTs

[
û1,α(t̂) · · · ûm,α(t̂)

]>
= Ŵα

[
x̂1,α(t̂) · · · x̂n,α(t̂)

]>
.

The unknown sources are then easily computed from ûi,α(t̂) by using the overlap-add
method.

For measuring the amplitude correlation between frequency channels (abbr. AMCor ),

we use the covariance of their magnitude spectra
∣∣∣ûi,α(t̂)

∣∣∣. With cov {·} denoting the
covariance, AMCor between frequency channels α, β and sources i, j is expressed as

c
i,j
α,β = cov

{∣∣∣ûi,α(t̂)
∣∣∣ ,
∣∣∣ûj,β(t̂)

∣∣∣
}
.

By computing AMCor for all frequencies, we obtain correlation matrices C i,j for each
pair (i, j) of sources. The cost function H is the sum of squared correlations between
different sources for all frequency channels, which can be written as

H
({
Ŵα

})
=

∑

α,β,i,j 6=i

(
c
i,j
α,β

)2

or

H̃
({
Ŵα

})
=
∑

i,j 6=i

tr
([
Ci,j

]>
Ci,j

)

where we discarded the normalization of the covariance estimate.

H penalizes
{
Ŵα

}
for amplitude correlations across different frequencies. Hereby, H

also prevents local permutations: imagine there are channels α, β incorrectly assigned to
sources i, j. Then we have ci,jα,β > 0 (with i 6= j) which will add to the costs.



Experiments show that optimizing over all Ŵα at once is both expensive and prone to get
stuck in local minima. Considering only a single Ŵα while fixing all Ŵβ (β 6= α) proved
to be a good heuristic.

An iteration of the algorithm consists of a full optimization sweep over all demixing
matrices Ŵα. The frequency channels α1 . . . αl are processed in the following order:

1. Find the channel αk that has the maximum signal energy. Optimize Ŵαk
.

2. Consider frequency channels in ascending order (αk+1 . . . αl) until the highest fre-
quency αl is reached.

3. Optimize Ŵαi
for the lower half (αk−1 . . . α1) of frequency channels in descending

order.

As we fix all demixing matrices while optimizing a single Ŵα, the computational effort
for evaluating the cost-function H can be signifcantly reduced. More precisely, when
considering frequency channel α, all terms ci,jγ,δ of AMCor with γ 6= α and δ 6= α remain
constant and are thus neglectable. In the following, we show how this is implemented
in practice. From now on, we use matrix notation and limit the presentation to the
m = n = 2 case. The extension to an arbitrary number of sources and microphones is
straightforward.

We extend the cost-function by adding a set of m matrices {U1 . . . Um} as arguments.
These matrices represent centered magnitude spectra for each source, that are not subject
to optimization but necessary for computing the covariances. Frequency channels go along
the rows and time increases column-wise. Formally speaking

Uk = Ξ
[[
ûk,α1

(t̂) · · · ûk,αl
(t̂)
]>]

where we introduced Ξ as an abbreviation for centering the rows that can be written as

Ξ [A] = A− A
1

c
1c×c

with 1c×c as a c× c matrix of ones and c being the number of rows of A.

Before formulating the cost-function H, we introduce some further notations: by ei we
denote the i-th standard unit column vector, En is the n × n identity matrix and Ei

n is
En with the (i, i)th element set to zero. We use x2 for xx>.

Another abbreviation makes the formulas easier to read: we use ωk for the centered
absolute value of the demixed STFTs in the frequency channel αk. That is

ωk = Ξ
[∣∣∣∣Ŵαk

[
x̂1,αk

(t̂) · · · x̂n,αk
(t̂)
]>∣∣∣∣
]
.

In order to make the cost-function more concise, we break it into pieces using the following
definition: ξk

i,j is the sum of unormalized squared AMCor between frequency αk of source
i and all channels αz of source j where z 6= k, that is

(
ξk
i,j

)2
= n2

t̂

∑

z 6=k

(
ci,jαk ,αz

)2

=
(
ei

>ωkUj
>Ek

l

)2



where nt̂ denotes the number of time-slices obtained by the STFTs.

Using these notations, the cost-function for the m = n = 2 can be written as:

H̃U1,U2,x̂1,αk
(t̂),x̂2,αk

(t̂),k

(
Ŵαk

)
=
(
ξk
1,2

)2
+
(
ξk
2,1

)2
+
(
e1

> (ωk)
2
e2
)2
.

The last term adds the AMCor
(
c1,2
αk ,αk

)2
which is not included in ξk

1,2 and ξk
2,1.

Though the latter formulation of H̃ seems a litte bit obfuscated, it allows an simple
gradient calculation and helps for a straightforward implementation. Let us first introduce
the gradient of

ψQ,x (W ) = Q |Wx|

which is

Re [∇ψQ,x] (W ) = Re [x]

((
Q�

1

|Wx|>

)
Re [Wx]

)
+ Im [x]

((
Q�

1

|Wx|>

)
Im [Wx]

)

Im [∇ψQ,x] (W ) = −Im [x]

((
Q�

1

|Wx|>

)
Re [Wx]

)
+ Re [x]

((
Q�

1

|Wx|>

)
Im [Wx]

)
.

We get

Re
[
∇H̃U1,U2,x̂1,αk

(t̂),x̂2,αk
(t̂),k

(
Ŵαk

)]
= Re [∇ψQ,x]

(
Ŵαk

)

Im
[
∇H̃U1,U2,x̂1,αk

(t̂),x̂2,αk
(t̂),k

(
Ŵαk

)]
= Im [∇ψQ,x]

(
Ŵαk

)

with

Q = 2
(
Int̂

− 1nt̂×nt̂

) [
U2

>ξk
1,2

>
e2

> + U1
>ξk

2,1

>
e1

> +
[
e1

> (ωk)
2
e2
]
ωk

>

(
0 1
1 0

)]

x =
[
x̂1,αk

(t̂) x̂2,αk
(t̂)
]>

as the gradient of our cost-function (more details can be found Anemüller’s PhD thesis
[2]).

2.4 Algorithm of Pham

D. T. Pham (INPG) considers the blind separation of convolutive mixtures based on
a new highly-efficient joint diagonalization algorithm (developed in the BLISS project
workpackage 1) of time varying spectral matrices of the recorded signals, hereby opti-
mally exploiting both: non-stationarity and non-whiteness. In order to eliminate the
permutation ambiguity, the novel method relies on the continuity of the frequency re-
sponse of the filter. The method achieves the separation of audio mixtures in which the
mixing filter has quite long impulse responses. The details of the algorithm of Pham from
INPG can be found in the two attached papers [11, 12].

3 Database of real-room recordings

McMaster University created in the BLISS project a comprehensive database of real-
room recordings [6]: live-capture audio mixtures and a realistic hearing in noise test
environment (R-HINT-E). A human head and torso model called KEMAR was placed in
the centre of three different rooms:



pc323dc: a semi-reverberent 10’x10’ room with carpeted floor and acoustically treated
ceiling panels and with 2 x 24 oz velour drapes independently hung around the
perimeter of the room to minimise reflections

pc323do: the same pc323dc 10’x10’ room without the 2 x 24 oz velour drapes indepen-
dently hung around the perimeter of the room

pc335: a semi-reverberent classroom located in the Psychology Department at McMaster
University

KEMAR has in each ear a small microphone array with three microphones. A single
loudspeaker was moved to different locations around KEMAR (with different angles,
heights and distances). For each location the room impulse response was measured.
Using these room responses and some source signals, many different mixtures can be
produced by convolving the sources (for more details see [6]).

One might object that convolving source signals with the recorded room responses lead
to different signals, than if we recorded the source signals directly in the room. To study
this, six sentences were played from all different locations, really recorded (in addition
to measuring the room responses) and compared to the signals obtained by convolution
with the corresponding room responses. In [6]), Trainor et al. show that the measured
and the convolved sentences are in very good agreement.

4 Validation methods

In order to enable an informative comparison, a meaningful performance measure is
needed. In the following, we introduce a new performance measure for convolutive mix-
tures that has been recently developed at FhG FIRST. This performance index analyses
the global system (B?A) (see Eq. (2)), which is available to our experimental setup, since
our comparison is based on McMaster’s database that provides us with the true mixing
matrix A.

4.1 Indeterminacies of convolutive BSS

A useful performance measure should be invariant to the indeterminacies of the blind
source separation problem. For the convolutive case these are:

1. Arbitrary permutation, i.e. exchanging the rows of B does not change the quality
of the solution.

2. Arbitrary scaling, i.e. multiplying some row of B by some factors does not change
the quality of the solution either.

3. Arbitrary filtering, i.e. applying some filter to some extracted signal does not change
the quality of the separation. However, the sound quality might be influenced. But
since a real-world mixing system (the room impulse function) is often not invertible,
the demixed signals are usually filtered version of the source signals.



Obviously, the second point—scaling—can be seen as a special case of the filtering inde-
terminacy. We distinguish those two, because they are dealt with differently: the scaling
indeterminacy is evened out, but the filtering indeterminacy is only circumvented (see
next paragraph).

4.2 Amari index for convolutive mixtures

The global system, the filter matrix C = B ? A, is the basis of our performance measure
which comprises of the following steps:

1. In order to overcome the scaling indeterminacy we normalize the rows of C: stack
all filters of a row of C into one long vector and normalize its norm to one. Then
distribute the parts of that vector to the original row entries. Doing this for all
rows of C evens out the scaling indeterminacy.

2. Calculate for each filter in the filter matrix C, the norm (viewing each filter as a
vector and assuming they have the same length to insure comparability). These
norms can be arranged in a matrix C̃ which has the same size as C, but the entries
of which are numbers instead of filters. C̃ summarizes the proportions that each
true source sj contributes to the estimated sources yi. This circumvents the filtering
indeterminacy, since C̃ can not distinguish whether the contribution of a source sj

to the estimated source yi originates from a filter in Cij that is just a delta peak or
from a more complicated filter. In realistic real-room mixtures, obtaining a filtered
version of the true sources is most likely all we can hope for, because the room
response function might not be invertible. However, if an entry in C̃ is small or
close to zero, we can be sure that there was no contribution from the corresponding
source. Therefore, to assess the degree of separation, we measure in the next step
how close C̃ is to a permutation matrix.

3. Calculate the Amari index of C̃, i.e. normalize the rows of C̃ (if necessary) and
calculate (as suggested by Amari [1]):

∑

i



∑

j

|C̃ij|

maxk |C̃ik|
− 1


+

∑

j

(
∑

i

|C̃ij|

maxk |C̃kj|
− 1

)
.

The Amari index is small when each row and each column is dominated by one
large element, i.e. if the evaluated matrix is close to a permutation matrix.

We call this performance index defined by the above steps Amari index for convolutive
mixtures. Note, that the Amari index for convolutive mixtures is zero if and only if there
are for an estimated source no contributions from the other sources, which coincides with
the notion that all sources are separated from each other.

5 Experimental setup

For the comparison study in this paper, we employ McMaster University’s hearing database
(R-HINT-E) to create mixtures with two sources originating from different directions (all



Figure 3: The room impulse response function are measured for each angle and each
microphone in the ears.

1

2

Figure 4: The speech signals used in the experiments.



combinations of the angles: 0, 45, 90, 135, 180, 225, 270, 315 degree, see Fig. 3) at a fixed
distance (3 feet) and a fixed height (4 feet). This corresponds to 28 different mixtures
(and therewith experiments) per room (without repetitions and without equal angles).
Since some of the algorithms can only deal with two microphones we restrict ourselves
to one microphone for each ear (in the database called left1 and right1). We use speech
source 1 and 2 from the speech files supplied with the database (about 18,000 samples,
see Fig. 4). All signals are downsampled to 11025 Hz. Note that all four algorithms use
short-time Fourier transforms. The length of the Fourier transform has been fixed for all
algorithm to 512 to allow a fair comparability.

6 Results

Fig. 5 is an example how we visualized our results: shown are the Amari indices of all
different angle combinations for the room 323dc. The gray level of each of the 64 squares
encodes the Amari index of the corresponding combination of angles. We observe:

• On the main diagonal the value is 4 since that is the maximal Amari index for a
2 × 2 mixing matrix. Two signals coming from exactly the same direction can be
considered like one single channel, which is not separable with the ICA approaches
presented in this study.

• Combining the angles 45, 90 and 135 with 45, 90, 135 degrees leads to large Amari
indices (dark areas) as well, indicating that if both sources are on the same side of
the head (in this case at the right side) the sources arrive very well mixed at the
ears. This applies analogously to the left side for combinations of the angles 225,
270, 315 with 225, 270, 315.

• Combining a source from the left side (angles 45, 90, 135) with a source from the
right side (angles 225, 270, 315) are not very much mixed (light areas). The reason
for this is that the signals are quite well separated due to acoustic shielding by the
KEMAR head.

The first row of Fig. 6 shows the Amari indices of the mixtures for all three rooms (the
upper left panel is a small version of Fig. 5). These plots represent the initial situations.
The panels of each further row show the results after applying one of the algorithms.
Especially, for the hearing-aids-scenario it is important to know how much we can improve
upon the initial situations (the panels in the first row of Fig. 6), i.e. how close we get to
a plot in which every box in the off-diagonal is white (i.e. perfect separation):

parra: Comparing the panels in the second row (parra) with the panels in the first row,
we observe that the squares changed towards a lighter gray. In other words, the
algorithm of Parra and Spence is able to improve the separation in all three cases.
Especially, if the sources are on different sides of KEMAR, the separation is almost
perfect.

murata: The algorithm of Murata, Ikeda, and Ziehe fails on the dataset from McMaster
University: the panels in the third row (murata) show very dark squares, even
darker than the ones in the first row, indicating that after applying this algorithm
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Figure 5: The Amari indices for all different angles in room PC323dc.

the data is even more mixed than before. The reason for such an behaviour might
be that the method, which should solve the permutation, miscarries due to the short
signal length or due to correlations among the envelopes of the two sources.

pham: The panels in the fourth row show the best results: the off-diagonal squares are
almost white, implying that the algorithm of Pham is able to largely improve the
degree of separation. Compared to the other rows (showing the results for the other
algorithm) it is clear that Pham’s algorithm performed best. However, comparing
the three panels in the fourth row (Pham) shows that the different rooms (PC323dc,
PC323do, PC335) pose problems of increasing difficulty. The left panel (PC323dc,
low reverberation) shows almost a diagonal (the simplest mixture), and the right
panel (PC335, class room, high reverberation) shows some darker squares which
indicate that the demixing is not perfect.

anemueller: The results of the algorithm of Anemueller (fifth row) are similar to the
results of Murata, Ikeda, and Ziehe’s algorithm. The reason for the failure might be
that the used speech signals are quite short (about 18,000 samples), so that there
might not be enough statistics to estimate the cross-frequency correlations properly.
Therefore, the algorithm probably failed to solve the permutation problem across
the frequencies.

Obviously, letting the algorithms find longer filter would lead to better results. But to
study and compare the different proposed algorithms (and to limit computing time), short
filters (length of the Fourier transform 512) were chosen. Furthermore, the performance
could be increased by exploiting the signals of all six microphones which were recorded
in McMaster Unversity’s database.
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Figure 6: Each panel presents the results for one special algorithm applied to the data
recorded in one of the three rooms. The plot in each panel visualizes the Amari indeces
for the different angles.



7 Conclusion

The algorithm developed at INPG (Pham), combining a powerful diagonalization algo-
rithm (from BLISS project workpackage 1) and a novel, efficient solution to the permu-
tation problem, has the best performance among the four tested algorithms.

The database created by McMaster University is very useful for comparison studies of
algorithms, because it allows systematic experiments with a broad variety of setups,
hereby allowing in combination with the Amari index for convolutive mixtures (developed
at FhG FIRST) to differentiate the algorithms’ performances in a meaningful way. Many
other comparison studies are conceivable using McMaster’s database. It has the potential
to become the benchmark for algorithms that tackle the Cocktail-party problem.

Future work can now be based on the achievements of the BLISS project: all implemented
methods and McMaster’s database are available online to the public.

8 Publications included in the deliverable

This deliverable includes two attached papers that describe the new method for convolu-
tive blind source separation developed by INPG (Pham):

Publication 1 [11] D. T. Pham, Ch. Servière, and H. Boumaraf, “Blind separation
of speech mixtures based on nonstationarity”, in Proceedings of ISSPA 2003 conference,
2003.
Pham considers the blind separation of convolutive mixtures based on the joint diago-
nalization of time varying spectral matrices of the observation records. The goal is to
separate audio mixtures in which the mixing filter has quite long impulse responses and
the signals are highly non stationary. In order to eliminate the permutation ambiguity,
the method relies on the continuity of the frequency response of the filter. Simulations
show that the method works well when there are no strong echos in the mixing filter. But
if it is not the case, the permutation ambiguity cannot be sufficiently removed.

Publication 2 [12] D. T. Pham, Ch. Servière, and H. Boumaraf, “Blind separation
of convolutive audio mixtures using nonstationarity”, in Proc. of 4th Int. Symp. on In-
dependent Component Analysis and Blind Source Separation (ICA2003), pages 257–262,
Nara, Japan, April 2003.
This paper presents a method for blind separation of convolutive mixtures of speech
signals, based on the joint diagonalization of the time varying spectral matrices of the
observation records and a novel technique to handle the problem of permutation ambi-
guity in the frequency domain. Simulations show that the method works well even for
rather realistic mixtures in which the mixing filter has a quite long impulse response and
strong echos.
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