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Abstract. When different perceptual signals of the same physical property are 
integrated–e.g., the size of an object, which can be seen and felt–they form a 
more reliable sensory estimate [3]. This however implies that the sensory 
system already knows which signals belong together and how they are related. 
In a Bayesian model of cue integration this prior knowledge can be made 
explicit. Here, we examine whether such a relationship between two arbitrary 
sensory signals from vision and touch can be learned from their statistical co-
occurrence such that they become integrated. In the Bayesian model this means 
changing the prior distribution over the stimuli. To this end, we trained subjects 
with stimuli that are usually uncorrelated in the world–the luminance of an 
object (visual signal) and its stiffness (haptic signal). In the training phase we 
presented only combinations of these signals which were highly correlated. 
Before and after training we measured discrimination performance with 
distributions of stimuli which were either congruent with the correlation during 
training or incongruent. The incongruent stimuli came from an anti-correlated 
distribution compared to the stimuli during training. If subjects were sensitive 
to the correlation between the signals then we would expect to see a change in 
their prior knowledge about what combinations of stimuli are usually 
encountered. Accordingly, this should change their discrimination performance 
between pre- and post-test. We found a significant interaction between the two 
factors pre/post-test and congruent/incongruent. After training, discrimination 
thresholds for the incongruent stimuli are increased relative to the thresholds for 
congruent stimuli, suggesting that subjects learned to combine the two signals 
effectively. 

1 Introduction 

Our brain constantly receives sensory information from many different sources and 
modalities. Some of these sensory signals have to be combined in order to form a 
coherent percept of the world–others have to be kept separate. For example, when 
moving your head visual, vestibular and proprioceptive signals all give rise to an 
estimate of the position and orientation of your head. Hence, it would make sense for 
the sensory system to integrate these signals into one representation of head position 
and orientation. Another prominent example is depth perception. The distance to an 
object can be estimated from the disparity signal between the two eyes’ images, 
relative size, perspective, motion parallax, and other cues [1, 6]. When touching an 
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object there are also several signals that can be used to judge its size when it is 
simultaneously explored by vision and touch [3]. All these sensory signals, which are 
at least partially redundant when derived from the same object property or event, 
should be combined by our nervous system. Other signals, which are not elicited by 
the same object property or event, should not be combined. It is the job of our brain to 
decide which cues to combine, and which not. The question we address here is 
whether we can learn to combine different signals which are usually not combined. 
Phrased differently, we ask whether the combination of signals is pre-determined and 
hard wired in the nervous system or whether it is adaptive. 

Each sensory signal on its own is inherently noisy. The advantage of combining 
sensory information from different sources is that the noise in the combined signal is 
reduced relative to each signal alone [2, 3, 7, 10]. An optimal model of cue 
combination describing this benefit can easily be derived under the assumption that 
the noises are Gaussian and independent. Let’s call the stimulus a subject is presented 
with s . The estimator with the lowest possible variance 2σ  can be derived from the 
maximum likelihood principle. This combined estimate ˆ s  is given by the weighted 
sum of the individual estimates iŝ  based on the individual signals, with weights iw  
proportional to their reciprocal variances 2
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With this particular choice of weights the variance of the combined estimate 2σ  
becomes minimal and is given by 

∑ −−=
i i

122 )( σσ . (2) 

It was recently shown by several studies that the human brain integrates sensory 
information in such an optimal way [3, 5, 9] 

How does the brain know which signals can be combined? When seeing and 
feeling small objects they usually look small but also feel small whereas big objects 
look and feel big. This trivial statement demonstrates that there is a natural statistical 
relationship between the felt and seen size of an object. This statistical relationship 
could have been exploited by the developing brain in order to form its own integrated 
concept of the objects’ property now called size. Here we want to test this idea and 
see whether our brain can adapt to integrate two signals, which are usually not 
combined because they are signaling two different properties of an object. We 
decided to test this in a framework of visual-haptic integration. We chose the 
luminance of an object as the visual dimension and its stiffness as the haptic 
dimension. This choice was made because we believe there should be no statistical 
relationship between these two properties in a “natural” environment. By correlating 
these properties (and hence the visual and haptic signals derived from them) in an 
artificial environment we can introduce a new statistical relationship between them. A 
comparison of discrimination performance before and after extensive training with 
such correlated stimuli will reveal whether cue combination can be learned from the 
statistical co-occurrence of the stimuli in the environment. 

Bayesian estimation theory provides a principled approach to handle such 
questions. In the following we will introduce such a model based on maximum a 
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posteriori (MAP) estimation. As opposed to the maximum likelihood (ML) approach 
outlined above, the maximum a posteriori formulation can use beliefs about the 
stimulus statistics (top-down information) in the form of priors. Learning in this view 
is reflected in a change of the prior beliefs about the distribution of the stimuli. 

1.1 Combination of Signals as MAP estimation 

From an “ideal observer” perspective the problem of combining different sources of 
information is conveniently addressed using probability theory [2, 8, 11, 12, 15]. The 
physical stimulus we used has a visual (luminance) and haptic (stiffness) property– Vs  
and Hs –that results in a visual and haptic sensory signal ( Vl  and Hl ). Faced with the 
sensory signals how does the brain infer the underlying physical stimuli? The 
Bayesian approach explicitly uses prior beliefs about the distribution of the stimuli. 
Given that the sensory noise in the visual and haptic channel is distributed normally 
the generation of the sensory signals is modeled with a 2D Gaussian about the 
physical stimulus: 

),;(),|( LslNLslp =  (3) 

with a physical visual/haptic stimulus ) ,( HV sss = , a sensory signal ) ,( HV lll =  and 
the covariance matrix L  which is positive definite and symmetric. Interpreted as a 
function of s  this is called the likelihood of s  given the sensory signal l . A 
graphical illustration of such a likelihood function is depicted in Fig. 1 (top row). 

In the next step we model the prior distribution which describes what stimuli are 
expected to be seen by the subject. It is noteworthy to point out that this does not 
necessarily mean that the stimuli are really drawn from this distribution. The prior is 
supposed to model what the subject expects to see, irrespective of what the real 
distribution is. Of course, the prior information can be misleading if the stimuli 
presented don’t come from the distribution assumed by the subject. Recently, this fact 
has been taken to explain several sensory illusions [12]. Here, for simplicity and 
illustration we assume the prior to be also Gaussian: 

p(s | p,P) = N (s; p,P)  (4) 
with a mean p and a covariance matrix P. Some schematics for prior distributions are 
given in the middle row of Fig. 1. 

According to Bayes’ rule we can calculate the posterior distribution over the 
stimuli s given the subject’s observations l  and the subject’s beliefs present in the 
prior 
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In the Bayesian view this should now represent the subject’s belief about what 
stimulus he has encountered. Fortunately this posterior is again a Gaussian with a 
covariance matrix S 

111 )( −−− += PLS  (6) 
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and a mean ŝ  which corresponds to the weighted average of likelihood and prior (see 
lower row of Fig. 1 for an illustration of the posterior): 

ˆ s = WL l +WP p = S(L−1l + P −1 p)  . (7) 

The maximum of this distribution, which is equal to the mean ŝ , is taken to be the 
estimator for the presented stimulus s. This estimate is called the maximum a 
posteriori (MAP) estimate.  

The MAP estimator can be thought of as the optimal way to incorporate extra-
sensory knowledge about the stimulus distribution. Where the likelihood function 
(given by l and L) describes the noisy sensory signals (bottom-up if you want), the 
prior distribution (given by p and P) describes the extra-sensory (or top-down) prior 
beliefs that the subject has, such as knowledge about the correlation between the 
physical stimuli. 

If  the subject knows nothing about the distribution of the stimuli, i.e. there is no 
prior belief (informally, P → ∞) about the distribution of the stimuli, the terms for the 
prior disappear and only the likelihood function (i.e., the sensory signal) is left, so that 
the MAP estimator will simply be the sensory signal l (flat prior: left column in Fig. 

1). If the variances are 
finite then they will pull 
the estimator towards the 
mean of the prior p 
(middle column in Fig. 1). 
The smaller the variance 
of the prior in a given 
direction the more the 
estimate is drawn to the 
center of the prior. An 
extreme case is where the 
variance in one direction 
becomes zero (right 
column of Fig. 1). This 
means it is certain that the 
stimulus does not change 
along this direction and 
the estimator is equal to 
the center of the prior 
along this direction. This 
corresponds to a situation 
of complete fusion of the 
two signals. Another 
extreme case is the 
situation when the noise in 
the sensory signals goes to 
infinity (Eigenvalues of 
L go to infinity) so there 

is basically no useful sensory information. Decisions then have to be based only on 
prior knowledge (this scenario is not depicted in Fig. 1). 

 
Fig.  1.  Three schematic examples for combining visual and 
haptic signals with different priors (columns). Top row: 
Likelihood distributions; (x) physical stimulus. Middle Row: 
Prior distributions; left: flat prior, middle: infinite variance in 
one direction and a variance of one perpendicular to that, 
right: again infinite variance in one direction but this time 
zero variance perpendicular to that. Lower Row:  Posterior 
distributions which are the product of the likelihood and prior 
distributions. The MAP estimate is indicated by the (•).  
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1.2 Learning to Combine Signals  

How is learning to combine signals represented in the MAP model? For the 
experiment we suggest it is natural to think about learning as a change of the subject’s 
belief about the distribution of stimuli, which is reflected in a modification of the 
priors. It is natural to think about it as a change of priors because it is the joint 
distribution of the stimuli we are manipulating in the experiment: before learning 
visual and haptic properties were uncorrelated and during learning they are being 
correlated. Most other adaptation paradigms treat learning as a modification 
somewhere in the nervous system, i.e. the map from the physical stimulus to the 
sensory signal is altered. This map from the physical scene to the sensory signal is 
given by the likelihood function in our framework. For us the likelihood simply 
describes the inherent physical noise in the sensory system of an agent. Although we 
cannot exclude that the noise, and hence the likelihood function, changes over the 
course of the experiment due to perceptual learning, for the time being we will 
assume that it does not and focus on the change of the beliefs about the manipulated 
distributions. By changing the stimulus distribution we effectively try to manipulate 
subjects’ assumptions about the environment. By using Bayes’ rule a subject could 
infer its state of belief about the world taking into account the sensory data, the 
internal noise and its prior beliefs about the environment. Bayes’ rule is, so to say, the 
ecological version of Helmholtz’s “unconscious inference”. 

This can be illustrated with two stimuli, which we assume to be independent, for 
example the luminance of an object and its stiffness. Say, whether an object reflects 
much light or not does not tell anything about how hard or soft it feels. Therefore, in a 
“natural” environment it does not make sense to combine the sensory signals elicited 
by these two stimuli and a subject should belief that they are independent of each 
other. However, if we lived in a world where bright objects always feel hard and dark 
objects soft, it would suddenly make sense for our sensory system to combine the 
visual and the haptic signal. In other words, if the value of one variable is informative 
about the value of the other and the system knows their joint distribution then it would 
be useful to combine these signals. 

Coming from a world where luminance and stiffness are independent and then put 
into a situation where they are highly correlated (i.e., not independent), what is 
changing? Learning to combine these two signals means a change in belief about their 
joint distribution, which in the Bayesian framework is equal to a change in the prior 
distribution. 

To test this hypothesis we measured subjects’ discrimination performance for 
objects that can vary in luminance and stiffness before and after extensive training 
with stimuli for which these two properties were highly correlated–we even set the 
correlation to one. Given the MAP model we can make some qualitative predictions 
of how the discrimination performance should change ideally. The predictions are 
only qualitative because it is very hard to exactly match all the assumptions present in 
the model in an experiment. However, this MAP analysis we presented above is still 
very useful in the respect that it provides us with a conceptual framework to think 
about the task that the subject has to solve. So what are the predictions? First we have 
to be a bit more explicit on what the experiment is going to look like. 
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To measure discrimination performance we used a three-interval forced-choice (3-
IFC) oddity task. Subjects sequentially see and feel three objects (little squares) from 
the two-dimensional visual-haptic stimulus space, two of which are identical in both 
properties and one is different in some respect. Their task is to identify the interval 
containing the odd stimulus. We measure discrimination performance along two axes 
of the two-dimensional stimulus space before and after an extensive training phase. 
One axis is termed the congruent axis which is the one from which stimuli in the 
training phase are exclusively drawn. In a pre-experiment we determined subjects’ 
just-noticeable differences (JND) along the haptic and the visual dimension and used 
this information to normalize the two-dimensional stimulus space. The congruent axis 
is then chosen to be one of the main diagonals in this space such that for each 
stimulus on this line the visual and the haptic discrimination performance are the 
same. This also assures that we can compare the results over different subjects. The 
other axis we termed incongruent axis and it is perpendicular to the congruent axis. Of 
course, it would have been nicer to measure performance over the whole two-
dimensional space but it is very cumbersome to do so.  

Now, choosing a decision rule we can simulate a virtual subject that uses the MAP 
estimates in our experiment. Given the three MAP estimates from the three intervals 
on what interval should the subject bet? We used the well known triangular rule as a 
decision rule for the oddity task: The estimate that is furthest away (in the Euclidian 

 
Fig. 2: Hypothetical psychometric functions for the oddity task using the MAP estimator. Three 
examples with different priors are shown. White corresponds to chance level and black to no 
error. The diagonal lines represent the congruent (solid) and incongruent (dashed) stimuli that 
we presented in the experiment. The variance of the prior distribution along the congruent axis 
is called 2

1σ , the variance along the incongruent axis 2
2σ . During the training session only 

stimuli from the solid line are shown. Before the training phase the subject should not assume 
anything about the stimuli and hence should not combine the two signals. This situation is 
depicted in the left panel where ∞→2

1σ  and ∞→2
2σ  are taken for an ignorant prior.  Note that 

the psychometric function is circular rather than square. In the right panel it is assumed that the 
subject has perfectly learned that stimuli only come from the congruent line and hence his/her 
prior is expressed by the fact that the variance along the incongruent axis is zero: ∞→2

1σ , 
02

2 =σ . In the perfect fusion case subjects always project the signals onto the congruent axis 
and therefore cannot discriminate along the perpendicular direction. The middle panel depicts a 
more realistic case in between where ∞→2

1σ  and 12
2 =σ . Thus, we hope to see equal 

thresholds along the congruent and incongruent axes before training and increased thresholds 
along the incongruent axis after training. 
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sense) from the center of the other two is guessed to be the odd stimulus [13]. Fig. 2 
shows a simulation using this rule. 

 

In the pre-test subjects should assume that stiffness and luminance are 
uncorrelated. For the purpose of illustration we can even make a stronger assumption 
and say that they do not know anything about the stimuli. If we measure 
discrimination performance along the congruent and the incongruent axes there 
should be no difference in discrimination performance. More formally, if we call the 
variance of the prior distribution along the congruent axis 2

1σ , and the variance along 
the incongruent axis 2

2σ  then a completely ignorant prior can be expressed by ∞→2
1σ  

and ∞→2
2σ . This situation is depicted in the left panel of Fig. 2. In the training phase 

stimuli come only from the congruent axis. The hypothesis is that subjects learn that 
the variance 2

2σ  along the incongruent axis is reduced compared to stimuli without 
correlation (before training). In the extreme the subject could even learn that there is 
no variance along the incongruent axis whatsoever. This situation is depicted in the 
right panel of Fig. 2. In this case subjects always project the sensory input onto the 
congruent axis and cannot discriminate along the incongruent axis at all. More 
realistically, in the post-test we expect to see an asymmetry between the 
discrimination performance along the congruent and the incongruent axis that was not 
there before training. 

In summary, we predict to find an interaction between the factors pre/post-test and 
congruent/incongruent if subjects can learn to combine arbitrary signals. 

2 Methods 

2.1 Setup 

To generate the visual and haptic stimuli we used a mirror setup as depicted in Fig. 3. 
Subjects look onto a mirror and see a visual scene that is generated on a computer 
screen. Below the mirror a subject’s index finger is attached to a robot arm with six 
degrees of freedom and force feedback along the three translatory directions 
(PHANToM 1.5, SensAble Technologies). Subjects have a convincing impression 
that they are haptically exploring the same scene they are seeing.  

 
Fig. 3. The setup used can display visual 
scenes on a cathode ray tube (CRT), 
which are mirrored in order to be aligned 
with the haptic scene. Both scenes can be 
controlled independently. Haptically the 
scene can be explored using a PHANToM 
device to provide the appropriate force 
feedback. Subjects head is fixed on a head 
and chin rest. We used an SGI, Octane 2 
to drive the visual and haptic simulation. 
GHoST was used to generate the haptic 
scene, OpenGL with GLUT for the visual 
rendering.  
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2.2 Stimuli and Task 

Stimuli are flat squares (25mm x 25mm viewed at a distance of approximately 50 cm) 
that can have haptic and visual properties, namely a certain stiffness and luminance. 
All other properties are kept constant throughout the experiment. 
• The stiffness of the square is modeled using a linear spring model with spring 

constant k (GHoST, SensAble, Inc.). The maximum stiffness which can be reliably 
generated with this device is k=0.65 N/mm. The range is normalized from 0 to 1 so 
the maximum k=0.65 corresponds to 1. 

• For the luminance we only used the green electron beam (Sony Trinitron F500R). 
The exponent of the gamma correction was pre-determined with a photometer 
(Minolta). We were able to present 1024 different shades of green. We normalized 
the range from 0 to 1 so the maximum luminance 58 cd/m2 corresponds to 1. 

On a horizontal plane three flat squares are presented subsequently for 500 ms each. 
The subject is told that two of them are identical (visually and haptically) and one is 
somehow different. The subject has to guess the interval with the odd stimulus. The 
presentation is as follows: A white outline of the first square appears randomly on one 
of 16 possible locations. Once the subject touches the square he/she for 500 ms gets a 
sensation of stiffness and/or the square lights up with a certain luminance. 250 ms 
later the outline of a second square appears at another location, which the subject can 
see and/or feel again. The same procedure followed for a third square. After 
presentation the subjects made their choice.  

2.3 Subjects and Groups 

Twelve highly trained subjects participated (7 male, 5 female, 26.1±3.1 years, normal 
or corrected to normal vision, all except C.R., M.E. and F.J. naive to the purpose of 
the experiment). Subjects were randomly assigned into two groups, one of which got 
stimuli with a positive correlation between luminance and stiffness during training 
(hard equals bright), the other group was trained with a correlation in the other 
direction (hard equals dark).  

2.4 Experimental Design 

The experiment is a two factor within subject design. Each subject performs a pre- 
and post-test with a training phase in-between. Thus, one factor is performance before 
and after training. During training subjects were exposed to correlated stimuli only. In 
pre- and post-test stimuli came either from a correlated or anti-correlated distribution 
(two directions in visual-haptic space). That is, the second factor is the congruent or 
incongruent direction relative to the correlation during training. The dependent 
variable is the discrimination performance (threshold) in the four conditions (pre/post; 
congruent/incongruent).  
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2.5 Procedure 

The experiment was divided in 4 sessions conducted on separate days. Each session 
lasted between 1.5 and 2.5 hours. 

First Day: Normalization 
In a first step we determined a subject’s JND (just noticeable difference) in a purely 
visual and a purely haptic discrimination task. In the purely visual task the squares did 
not give any force-feedback and in the purely haptic task the squares were just 
defined by a white outline. Subjects did either the visual or the haptic task first. To 
measure JNDs in both visual and haptic tasks we adopted a constant stimuli procedure 
with a fixed standard. Each trial consisted of a fixed standard and a comparison 
stimulus where the odd stimulus could randomly be either the standard or the 
comparison stimulus. 
By fitting a Gaussian to the log of the discrimination data (max. likelihood), we 
defined the threshold θ  to be one standard deviation of this Gaussian. Besides the 
standard deviation we also had a nuisance parameter λ  in order to account for non 
task-related observer lapses [14]. An example of a maximum likelihood fit (found by 
gradient ascent) for a purely visual task is shown in Fig. 4.  

 

Second Day: Pre-Test 
With the knowledge about individual visual and haptic thresholds for each subject we 
can now generate normalized stimuli individually in units of JND where we defined 
one JND as being the threshold that we determined on the first day. We measure 
discrimination performance along two directions in the normalized visual-haptic 
space the (+1;+1)-axis and the (+1;-1)-axis.  

To measure discrimination performance in these two directions we adopt a similar 
procedure as described in the previous section. Again, each trial consisted of a fixed 
standard and a comparison stimulus where the odd stimulus could randomly be either 

 
Fig. 4. Data from one subject (D.C.) in the oddity task with only haptic information available. The 
left panel shows error-rate vs. stiffness of the comparison stimulus. The x-axis is scaled such that 
the maximum stimulus intensity (in this case stiffness k=0.65 N/mm) we were able to present is set 
to one. The right panel shows the same data in log units with the fixed standard shifted to zero. We 
measured 25 repetitions per data point. 
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the standard or the comparison stimulus. In order to get a measure for the 
discrimination performance we fit Gaussian psychometric functions. One 
psychometric function is used for the congruent direction and one for the incongruent 
direction. Thus we have one standard deviation parameter for the threshold in the 
congruent direction cθ  and one for the threshold in the incongruent direction iθ . For 
both directions we use the same lapse rate parameter λ  because data for both 
directions comes from the same session. Fig. 5 shows data for one subject split into 
congruent and incongruent trials together with a maximum likelihood fit. To get a 
measure of the reliability of the parameters we calculate the joint posterior of the 
thresholds and lapse rate ),,|,,( ∆Nnp ic λθθ , where n are the number of incorrect 
answers, N the number of trials, and ∆  the difference between comparison and standard 
stimulus. From this distribution we integrated out the nuisance parameters we are not 
interested in (as priors we used a uniform distribution over a much wider range than 
we were expecting to see).  

 
Fig. 5. Pre-Test: Discrimination performance for congruent and incongruent trials before 
training (subject D.C.). Distance ∆  between the comparison stimulus and the fixed standard 
stimulus given in JND units. Left panel shows data for the congruent trials with closed circles 
and the maximum likelihood fit (solid line). Data from incongruent trials are depicted with 
open circles and the fit with a dotted line. On the right the posterior distributions for each of the 
threshold parameters (i.e. the joint distribution integrated over the lapse rate and the other 
threshold parameter) is shown. The two posterior distributions are similar and so are the 
thresholds for the congruent and the incongruent directions. 

Third Day: Training & Post Test 
During training we presented stimuli from either only the (+1;+1)-axis or from the 
(+1;-1)-axis depending on the group that the subject was randomly assigned to. For 
each group we will call the direction that is trained on the congruent direction and the 
other one the incongruent direction. Stimuli are equally distributed over these two 
directions with intensity ranging from close to zero, up to approximately the 
maximum we can present physically. Thus, we choose the widest possible range for 
the distribution of the stimuli, in order to facilitate learning of the correlation. For 
each trial two composite stimuli were chosen randomly from this distribution and one 
of them was the standard and the other one was taken as the odd stimulus. During 
training subjects received feedback on each trial by a beep that indicated incorrect 
answers. Each subject did 500 trials during this training session. It usually took 
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subjects about an hour to complete the training session. After that subjects had a brief 
break before they continued with the post-test. 

The post-test was identical to the procedure of the pre-test with one exception. As 
it is expected that during the post-test–where also half the stimuli come from the 
incongruent distribution–subjects will slowly unlearn what they supposedly had 
learned during training, we included a number of catch trials (one third of all trials) 
which all come from the congruent direction. Thus, there were 500 regular trials (250 
congruent and 250 incongruent) plus 250 catch trials, which were all congruent to the 
correlation during training. Fig. 6 shows the psychometric functions for one subject 
determined as before. 

Fourth day: Control 
The last day was identical to the first day (Normalization). We measured performance 
in the task with only visual and only haptic information available to control for a 
general overall learning effect. 

3 Results 

Results for one subject are already shown in Fig. 5 and 6. For all subjects we 
performed the same procedure of fitting a Gaussian to the data in each direction. To 
get an estimate for the standard deviation and its reliability we calculated mean and 
variance of the posterior distributions for cθ  and iθ  in the pre-test as well as in post-
test. So we had thresholds for all four conditions with the two factors: pre-test/post-
test and congruent/incongruent. Three subjects (C.R., S.L.S and V.E.) were discarded 
from the summary analysis because their thresholds already showed large differences 
before training. We will discuss their results briefly in the Discussion section. 

 
Fig. 6. Post-Test: Discrimination performance in congruent and incongruent trials after 
training (subject D.C.). Distance ∆  between comparison and standard stimulus given in JND 
units. Left panel shows data for congruent trials with closed circles and maximum likelihood fit 
(solid line). Data from incongruent trials are represented by open circles (dotted line). The right 
panel shows posterior distributions over the threshold parameters of the model. Compared with 
pre-test distributions it is here more likely that the two parameters have different values. 
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Summary results for the remaining nine subjects are depicted in Fig. 7, which shows 
the mean thresholds over all nine subjects for all four conditions.  

An ANOVA (two factors, within subjects) on the data was conducted and revealed 
that there was no significant main effect, neither for pre- vs. post-test (F(1,8)= .705, 
p=.426) nor for congruent vs. incongruent (F(1,8)= 4.128, p=.077). However, 
importantly we found a significant interaction between the two factors (pre/post vs. 
congruent/incongruent: F(1,8)=14.58, p<.005). This shows that subjects learned to use 
the luminance of an object in combination with its stiffness. That is, subjects learned 
to combine arbitrary signals.  
 

We also checked whether there was a significant change of thresholds over the 
time course of the experiment (between Day 1 and Day 4). It could be that subjects 
become much better in discriminating stimuli simply because they have done more 
than 2500 trials. We can compare the discrimination performance in the purely visual 
task and the purely haptic task on the first day with the performance on the last day. 
An ANOVA shows no significant effect for the purely visual task or the purely haptic 
task. 

At the end of the experiment we informally queried subjects and there was no 
naive subject who has reported noticing the correlation during training. 

4 Discussion 

We conducted this study to test whether subjects can learn to combine arbitrary 
signals from vision and touch–namely, luminance and stiffness of an object. 
Therefore, we measured discrimination performance for these two signals presented 
simultaneously, and explored whether there is a change in discrimination performance 
before and after extensive exposure to a world in which these two signals are highly 

 
Fig. 7. Summary Results (nine subjects): On the left mean and standard deviation of the 
thresholds across all nine subjects in all four conditions (pre/post, congruent/incongruent) are 
shown. The right panel shows the mean and standard deviation for each individual subject. 
Dark bars correspond to the congruent direction, light bars to incongruent. The left pairs of bars 
correspond to pre-test, the right pairs to post-test. The dotted lines show sensible upper and 
lower bounds for the performance. If the threshold is 1 then subjects perform as well as they 
would by just using one of the cues. The lower dotted line is at 1/ 2  (circle with radius 1 JND 
measured along diagonals) the best performance that theoretically can be achieved.  
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correlated. We predicted that the thresholds should be symmetric before training, so 
there is “no fusion” between these two signals. Furthermore we predicted that 
subjects’ thresholds should become asymmetric after training if they were sensitive to 
the correlations in the stimuli. That is, the signals should become “somewhat fused”. 
In case subjects’ priors were fully adapted, one could say that the amount of 
correlation in the stimuli determines the “degree of fusion” [5].  

First thing to note is that the results look reasonable. In the pre-test all subjects 
show a threshold below 1 JND. If a subject only used the visual or only the haptic 
signal for discrimination the threshold should lie at 1 JND. So at least we can say that 
subjects used both signals for the discrimination task. However they do not use it 
ideally. If they used all the available information then their threshold should lie at 
1/ 2 . If the noise is radially symmetric in the normalized visual-haptic space then the 
discrimination thresholds should all lie on a circle in this space. 

In agreement with our predictions, we found a significant asymmetry in the 
discrimination performance after training, which suggests that subjects indeed learned 
to combine the two arbitrarily chosen signals–luminance and stiffness. The 
asymmetry between congruent and incongruent thresholds cannot be explained by 
improvement of performance due to more practice because this would have affected 
the congruent and incongruent direction equally. It is probably worth noting that this 
change in thresholds should also reflect a change of the observers’ percept. This again 
demonstrated the high plasticity of even an adults’ brain. No further significant effects 
were found or predicted. 

Although subjects qualitatively show an asymmetry after training as we predicted 
based on the MAP model, the MAP model does a poor job in predicting the exact 
thresholds even for the average data. First of all, it has to be pointed out that the MAP 
model was not intended to be a model for the performance of each subject. It has to be 
understood as an ideal observer analysis of the cue combination problem in general. 
The MAP model is a normative model that shows us how the problem of combining 
correlated stimuli should be accomplished ideally. Obviously, subjects do not live up 
to these expectations. Even before training, in the uncorrelated case, they do not use 
all the available information. 

It also has to be noted that the MAP model as we presented it should provide us 
with a conceptual framework rather than being the exact ideal observer for the 
concrete task that subjects had to solve in this experiment. The assumptions in the 
model do not match the experimental conditions as carefully as it they ought to if we 
were to attempt a proper comparison between the model and the performance of the 
subjects. For example, stimuli did not come from a 2d normal distribution, they were 
chosen as constant stimuli along only two axes. Also, during the post-test subjects un-
learn what we are trying to measure with the post-test because the post-test 
necessarily contains incongruent stimuli. 

The observed effect is small. However, we did not expect the effect to be large. 
Considering only one hour of training compared to a whole lifetime of experience 
with objects, for which luminance and stiffness are not correlated. If the system would 
adapt more quickly serious problems could arise. For example, if by accident stimuli 
get fused this had the consequence that they were harder to discriminate from one 
another (this is the cost of fusion and the reason why the discrimination ellipse 
becomes wider in the anti-correlated direction).  
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Three of the twelve subjects were excluded from the summary results because they 
showed significant differences between congruent and incongruent trials already 
before training. This means they already had a predefined axis for discrimination. 
According to the MAP model this could be due to correlated noise in the two 
channels, which is unlikely because luminance and stiffness are sensed by two 
entirely separate sensory systems (vision and touch), or it could be due to correlated 
priors in these subjects. Where these correlations should come from, one can only 
speculate. However, the important fact for our experiment is that also these three 
subjects produced a similar effect as the other subjects (data not shown). The 
difference between congruent and incongruent trials also changed in the predicted 
way after learning: The difference got less or disappeared.  

How specific are the learned priors? For example, does the association between 
luminance and stiffness generalize from green squares to red circles? We don’t know 
the answer to these questions, but it should certainly be context dependent how easy it 
is to change the prior. For example, it would probably be harder to change the prior 
for the “light from above left” [12] in comparison to the prior used in this study.  

In any case, we are convinced that this framework can explain why some signals 
are fused whereas others are not. Objects that look big also feel big, and objects that 
feel small also look small. We have grown up with this sort of statistics. It would be 
stupid of our sensory system not to use this information.  
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