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Implicit Wiener Series
Part I: Cross-Correlation vs. Regression in Reproducing Kernel Hilbert Spaces

Matthias O. Franz, Bernhard Schölkopf

Abstract. The Wiener series is one of the standard methods to systematically characterize the nonlinearity of
a neural system. The classical estimation method of the expansion coefficients via cross-correlation suffers from
severe problems that prevent its application to high-dimensional and strongly nonlinear systems. We propose a
new estimation method based on regression in a reproducing kernel Hilbert space that overcomes these problems.
Numerical experiments show performance advantages in terms of convergence, interpretability and system size
that can be handled.

1 Introduction

In system identification, one tries to infer the functional relationship between system input and output from ob-
servations of the in- and outgoing signals. If the system is linear, it can be characterized uniquely by measuring
its impulse response, for instance by reverse correlation. For nonlinear systems, however, there exists a whole
variety of system representations. One of them, theWiener expansion, has found a somewhat wider use in neu-
roscience since its estimation constitutes a natural extension of linear system identification (e.g., Rieke, Warland,
de Ruyter van Steveninck, & Bialek, 1996; Schetzen, 1989; Geiger & Poggio, 1975). The coefficients of the
Wiener expansion can be estimated by a cross-correlation procedure that is conveniently applicable to experimen-
tal data.

Unfortunately, the estimation of the Wiener expansion by cross-correlation suffers from severe problems pre-
venting its application to high-dimensional data and highly nonlinear systems. In the first part of this report, we
want to overcome these problems by proposing a different estimation method based on regression in areproducing
kernel Hilbert space(RKHS). We will show that the new estimation method is superior to the classical one in terms
of convergence, interpretability and system size that can be handled.

In the next section, we introduce the Volterra and Wiener expansion and discuss the problems of the cross-
correlation procedure. In Sect. 3, we review linear regression in a RKHS. The new estimation method is described
in Sect. 4, followed by some examples of use in Sect. 5. We conclude in Sect. 6 by briefly discussing the results
and possible improvements of the new estimation procedure. Issues concerning the regularized estimation of the
implicit Wiener series will follow in the second part of this report.

2 Volterra and Wiener theories of nonlinear systems

A system can be defined mathematically as a rule that assigns an output signaly to an input signalx. This rule can
be expressed in the form

y = T [x]

using the system operatorT . A large class of systems can be characterized by their Wiener series expansion where
the system operator consists of a linear combination of monomials in the components of theinput vectorx. Roughly
speaking, the so-called Wiener class encompasses all systems with scalar outputs that are time-invariant with finite
memory. This class is described by the Wiener theory of nonlinear systems which is based on the orthogonalization
of a specific, complete set of time-invariant operators called theVolterra operators.

2.1 Volterra systems

Originally, Volterra operators are defined for continuous, scalar output time functionsy(t) and input time functions
x(t) (t stands for the time variable). Subject to certain restrictions, one can show that a time-invariant system
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operatorT can expressed as a series of integral operators

y(t) = h(0)+
∫

R
h(1)(τ1)x(t− τ1) dτ1

+
∫

R2
h(2)(τ1, τ2)x(t− τ1)x(t− τ2) dτ1dτ2

+
∫

R3
h(3)(τ1, τ2, τ3)x(t− τ1)x(t− τ2)x(t− τ3) dτ1dτ2dτ2

+ · · ·

(1)

in whichh(0) is a constant and forn = 1, 2, ..

h(n)(τ1, ..., τn) = 0 for anyτj < 0, j = 1, 2, 3, ..., n (2)

such that all operators are causal, i.e., they do not depend on future values ofx(t) (Volterra, 1887). The series
in Eq. (1) is calledVolterra seriesand the functionsh(n)(τ1, .., τn) are theVolterra kernelsof the system. Note
that the Volterra kernels for a given output are not unique. There are, in fact, many asymmetric (with respect
to permutations of theτi, i.e.,h(n)(. . . , τi, . . . , τj , . . . ) 6= h(n)(. . . , τj , . . . , τi, . . . )) Volterra kernels which give
rise to the same operator, but every system operator corresponds only to one symmetric kernel. Fortunately,
any asymmetric kernel can be symmetrized by a simple procedure (Schetzen, 1989). Therefore, we can assume
symmetric kernels and unique Volterra expansions without loss of generality throughout this text.

Another way of expressing Eq. (1) is

y(t) = H0[x(t)] + H1[x(t)] + H2[x(t)] + · · ·+ Hn[x(t)] + · · · (3)

in whichH0[x(t)] = h(0) and

Hn[x(t)] =
∫

Rn

h(n)(τ1, .., τn)x(t− τ1) . . . x(t− τn) dτ1 . . . dτn (4)

is thenth-orderVolterra functional. The application of the Volterra series in the continuous time form of Eq. (1)
is mostly limited to the analysis of nonlinear differential equations. In practical signal processing, one uses a
discretized form for a finite sample of data where the Volterra functionals are expressed as

Hn[x] =
m∑

i1=1

· · ·
m∑

in=1

h
(n)
i1...in

xi1 . . . xin . (5)

Here, we assume that the input data is given as a vectorx = (x1, . . . , xm)> ∈ Rm. The vectorial data can
be generated from any multi-dimsional input or, for instance, by a sliding window on a discretized time series.
The discretizednth-order Volterra kernel is given as a finite number ofmn coefficientsh(n)

i1...in

1. The discretized
nth-order Volterra functional (5) is, accordingly, a linear combination of all orderednth-order monomials of the
components ofx. Clearly, the discretized Volterra functionals provide a practical approximation which shares the
completeness and convergence properties of Volterra and Wiener theory only in the continuous limit.

Due to its power series character, the convergence of an infinite Volterra series usually is only guaranteed for
input signals of sufficiently small amplitude (Schetzen, 1989). This limitation is circumvented by Wiener theory,
described in the next section.

2.2 Wiener systems

Convergence of the Volterra series is comparable to the convergence of the Taylor series expansion of a function
which often allows only for small deviations from the starting point. In fact, the Volterra series can be seen as
a Taylor series with memory. The type of convergence required is very stringent since not only the error has to
approach zero with increasing number of terms, but also the derivatives of the error. A less stringent notion of
convergence applies if one represents a function by a series of orthogonal functions, namely only convergence in

1In a symmetric Volterra kernel, two coefficients are the same when their indices are permuted. The number of independent
coefficients reduces to(n + m− 1)!/(n!(m− 1)!) in this case.
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the mean square sense which allows convergence over a much larger range than the Taylor series. The same idea
can be applied to functionals instead of functions by using an orthogonal series of base functionals and stipulating
convergence in the mean square sense.

The output of two different functionals in a Volterra series, however, is usually not orthogonal, i.e., their re-
spective output is correlated. They can be orthogonalized with respect to a given distribution on the input signals
by a procedure which is very similar to a Gram-Schmidt orthogonalization. The resulting functionals are sums of
Volterra functionals of different order, ornonhomogeneous Volterra functionals. If the orthogonalization is done
with respect to a white Gaussian input distribution with zero mean, one obtains the so-calledWiener functionals
denoted byGn[x(t)] (Wiener, 1958). The class of systems for which the Wiener expansion

y(t) =
∞∑

n=0

Gn[x(t)] (6)

converges in the least squares sense is the above mentioned Wiener class that contains all “nonexplosive” (i.e., the
system response must have finite variance for the Gaussian input) systems with finite memory (Schetzen, 1989).
Examples of systems with infinite memory are all systems with more than one stable attractor that can be switched
from one attractor to another by the input. This occurs for instance in systems described by nonlinear differential
equations with more than one limit point or limit cycle. Whereas these systems still can be approximately dealt
with by suitably restricting the input to prevent switching, this becomes completely impossible in chaotic systems.
Here, the present output never becomes independent of its initial state, and even infinitesimal differences in the
initial state lead to finite differences in the system output after sufficient time.

In addition to the larger range of convergence, the Wiener formulation provides a direct way of estimating the
Volterra kernels from data in a system identification task. In such a setup, the system to be identified is thought to
be a black box for which the input and output function are known. The system identification consists in finding the
Wiener representation of the unknown system. If the input is a white Gaussian process with varianceA, it can be
shown (Schetzen, 1989) that thenth-order Volterra kernelskn of thenth-degree Wiener functionals, theleading
Wiener kernelsor simply Wiener kernels, are given by the cross-correlations

k(0) = y(t) (7)

k(1)(σ1) =
1
A

y(t)x(t− σ1) (8)

k(2)(σ1, σ2) =
1

2A2
y(t)x(t− σ1)x(t− σ2) (9)

k(3)(σ1, σ2, σ3) =
1

3!A3
y(t)x(t− σ1)x(t− σ2)x(t− σ3) (10)

...

k(n)(σ1, . . . , σn) =
1

n!An
y(t)x(t− σ1) . . . x(t− σn). (11)

where the bar indicates the average over time. Since the Wiener functionals are orthogonal by definition, the single
Wiener kernels can be estimated independently.

Besides the Wiener kernel, every Wiener functional of degreep > 1 consists of a varying number of lower order
Volterra operators containing the so-calledderived Wiener kernels. These are derived from the leading Wiener
kernel by the orthogonalization procedure. The zeroth- and first-degree Wiener functionals do not contain derived
Wiener kernels and are given by

G0[x(t)] = k(0) and G1[x(t)] =
∫

R
k(1)(τ1)x(t− τ1) dτ1. (12)

Forpth-order Wiener functionalsGp, the derived Wiener kernelsk(p)
p−2m can be computed from the leading Wiener

kernelkp using the formula (Schetzen, 1989)

k
(p)
p−2m(σ1, . . . , σp−2m) =

(−1)mp!Am

(p− 2m)!m!2m
· ∫

Rm

kp(τ1, τ1, . . . , τm, τm, σ1, . . . , σp−2m) dτ1 . . . dτm. (13)
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For instance, the Volterra expansion of the second-degree Wiener functional

G2[x(t)] =
∫

R2
k2(τ1, τ2)x(t− τ1)x(t− τ2) dτ1dτ2 −A

∫
R

k2(τ1, τ1) dτ1 (14)

consists of a zero-order and a second-order Volterra functional, the third-degree Wiener functional

G3[x(t)] =
∫

R3
k3(τ1, τ2, τ3)x(t− τ1)x(t− τ2)x(t− τ3) dτ1dτ2dτ2

− 3A

∫
R2

k3(τ1, τ2, τ2)x(t− τ1) dτ1dτ2 (15)

of a first- and third order Volterra functional. In general, an odd-degree Wiener functional contains all lower
odd-order Volterra functionals, an even-degree Wiener functional all lower even-order Volterra functionals.

Wiener and Volterra series can be viewed as two equivalent ways of characterizing a system. Both use mono-
mials as base functions, but they group them into either nonhomogeneous or homogeneous Volterra functionals.
Therefore, one representation can be converted into the other. The Volterra expansion of a Wiener series can be
computed easily by adding up all operators of equal order. The Wiener expansion can be obtained by applying
Gram-Schmidt orthogonalization to a Volterra series (Schetzen, 1989), but this procedure becomes rather tedious
for higher-order functionals. Fortunately, the Wiener expansion can also be computed directly from the Volterra
kernelHp using (Schetzen, 1989)

Hp[x(t)] =
[p/2]∑
m=0

Gp−2m[x(t)] (16)

where[..] denotes integer truncation. The leading Wiener kernel of the Wiener functionalsGp−2m is derived from
the Volterra kernelhp according to

k(p−2m)(σ1, . . . , σp−2m) =
p!Am

(p− 2m)!m!2m
· ∫

Rm

hp(τ1, τ1, . . . , τm, τm, σ1, . . . , σp−2m) dτ1 . . . dτm. (17)

The derived Wiener kernels ofHp can be obtained from the leading kernel using Eq. (13).

2.3 Properties and problems of Wiener systems

Before we discuss the practical problems that arise during the computation of a Wiener series representation of a
system, we summarize the most important properties of the Wiener expansion:

1. Thepth-degree Wiener expansion of a system is the sum of Volterra operators of order up top which mini-
mizes the mean square error between true system output and its Volterra representation if the input is zero-
mean, white Gaussian noise.

2. The Wiener functionals are orthogonal if the input is zero-mean, white Gaussian noise.

3. pth-degree Wiener functionals generally consist of several Volterra functionals up to orderp.

4. The leading Wiener kernels can be computed by cross-correlating the system output with products of the
input (cf. Eqns. (7) - (11)). The derived Wiener kernels are computed from the leading kernel using the
orthogonality condition.

These properties will play an important role in the remainder of the text since we propose an alternative way of
computing the Wiener series. We will show that the resulting expansions still fulfill the properties described above.

The practical computation of the Wiener expansion via cross-correlation poses some serious problems:

1. In practice, the cross-correlations have to be estimated at a finite resolution (cf. the discretized version of the
Volterra operator in Eq. (5)). The number of expansion coefficientsh

(n)
i1...in

in Eq. (5) increases withmn for
an m-dimensional input signal and annth-order Volterra kernel. However, the number of coefficients that
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actually have to be estimated by cross-correlation is smaller. Since the products in Eq. (5)) remain the same
when two different indices are permuted, the associated coefficients should be equal. As a consequence, the
required number of measurements is(n+m− 1)!/(n!(m− 1)!) (Schetzen, 1989). Nonetheless, the resulting
numbers are huge for higher-order Wiener kernels. For instance, a 5th-order Wiener kernel operating on
16 × 16 sized image patches contains roughly1012 coefficients,1010 of which would have to be measured
individually by cross-correlation. As a consequence, this procedure is not feasible for higher-dimensional
input signals.

2. The estimation of cross-correlations requires large sample sizes. Typically, one needs several tens of thou-
sands input-output pairs before a sufficient convergence is reached. Moreover, the variance of the estimator
y(t)x(t− σ1) . . . x(t− σn) in Eq. (11) increases with increasing values of theσi (Papoulis, 1991) such that
only operators with relatively small memory can be reliably estimated.

3. Even if the Wiener kernels are known, they provide no obvious interpretation on which features of the input the
associated Wiener functionals operate. In contrast, by looking at the impulse response of a linear system, one
immediately sees to which features of the input it is tuned. In image processing, for instance, the structure
of the filter mask reveals whether it is tuned to small scale edge elements or to image patches of constant
brightness.

4. The estimation via cross-correlation works only if the input is Gaussian noise with zero mean, not for general
types of input.

In this study, we propose a different method for estimating the Wiener expansion that overcomes the discussed
practical problems. The proposed method relies on a regression technique taken from the field of kernel methods
which is widely used in the machine learning community. This technique is the subject of the next section.

3 Linear regression in RKHS

3.1 Linear regression

The regression technique we will use as a new approach to estimating Wiener expansions is based on classical
linear regression. We will review this method, since some of its properties are important for the derivation of its
nonlinear extension. As we described above for the estimation of Wiener kernels, the experimental setting is that
of system identification: We are given a set ofN input valuesxi ∈ Rm and the asscociated scalar output values
yi of the system to be identified. In linear regression, we assume a linear relation between input and output of the
form

yi = g̃>xi + b, b ∈ R, g̃ ∈ Rm. (18)

This can be expressed in a more convenient way by settingg = (g̃>, b)> and collecting the data in the form

X =


x>1 1
x>2 1
...

...
x>N 1

 and y =


y1

y2

...
yN

 (19)

such thaty = Xg. The coefficient vectorg is chosen to minimize the quadratic loss function

L(g) = (y −Xg)>(y −Xg) = y>y − 2y>Xg + g>X>Xg. (20)

Computing the differential with respect tog and setting it to zero,

dL = (−2X>y + 2X>Xg) dg = 0 (21)

this yields the so-called normal equation
X>Xg = X>y (22)

the solution of which is given by
g = (X>X)−1X>y (23)
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if the inverse ofX>X exists. Note that the solution is a linear combination of the rows ofX, i.e., it is an element
of therow spaceL(X>) of X

g ∈ L(X>) := {X>a | a ∈ RN}. (24)

This finding is important for the derivation of the linear regression method in nonlinear feature spaces described in
the next section.

3.2 Regression in RKHS

We now extend classical linear regression to the case when the output is modeled by linear combinations from a
dictionary of fixed nonlinear functionsϕj of the inputx, i.e.,

yi =
M∑

j=1

γjϕj(xi). (25)

The number of functionsM in the dictionary can be possibly infinite, as, for instance, in a Fourier or wavelet
expansion. Alternatively, one can express Eq. (25) by using a nonlinear mapφ(xi) = (ϕ1(xi), ϕ2(xi), . . . )> from
Rm into some high-dimensional (possibly infinite-dimensional) spaceF. yi can be computed by a scalar product2

with a coefficient vectorγ = (γ1, γ2, . . . )> ∈ F

yi = γ>φ(xi). (26)

If we put allN mapped samples into anN ×M design matrixΦ with

Φ =


φ(x1)>

φ(x2)>
...

φ(xN )>

 , (27)

the model can be written as
y = Φγ (28)

As before, the regression problem consists in finding the vectorγ that minimizes the squared error. It could be
solved in the same way as in the linear case, but ifF is very high-dimensional this procedure is no more feasible
due to computational reasons. We therefore restrict our attention to an important special case of nonlinear maps,
namely those where the scalar product between two nonlinearly mapped input vectors can be expressed analytically
by akernelfunctionk of the input vectors

φ(x1)>φ(x2) = k(x1,x2). (29)

As a consequence, the evaluation of a possibly infinite number of terms in the scalar product inF reduces to the
computation of the kernelk directly on the input.

Equation (29) is only valid forpositive definitekernels, i.e., functionsk with the property that theGram matrix
Kij = k(xi,xj) is positive definite for all choices of thex1, . . . ,xN . It can be shown that a number of kernels
satisfies this condition including polynomial, Gaussian and sigmoid kernels (Schölkopf & Smola, 2002). The
subspace ofF spanned by theφ(xi) can be viewed as a space of functionsf(x) defined by

f(x) =
∑M

j=1
γjk(x, zj). (30)

This space has the structure of areproducing kernel Hilbert space (RKHS). By carrying out linear methods in
F, one can obtain elegant solutions for various nonlinear estimation problems (see Schölkopf & Smola, 2002),
examples being Support Vector Machines.

If we can express a solution such as Eq. (23) only in terms of scalar products, we can use this property to
manipulate the otherwise inaccessible elements ofF. For that purpose, we resort to our previous finding that the

2Note that with a slight abuse of notation, we use the transpose also to denote the scalar product in infinite-dimensional
spaces.
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solution of the linear regression problem is an element of the row space of the data matrixX. Consequently, we
know that the regression result for the model in Eq. (28) is a linear combination of the mapped input samples
φ(xi). Thus, the solution vectorγ ∈ F can be written as

γ = Φ>a (31)

with some coefficient vectora ∈ RN . The representation ofγ by using its coefficient vector with respect to the
input samples is called itsdual representation (Cristianini & Shawe-Taylor, 2000). Substituting this into Eq. (28),
we obtain the model

y = ΦΦ>a = Ka (32)

with the symmetricN × N Gram matrix K = ΦΦ> = (k(xi,xj))ij . The dual problem now has the same
functional form as in the linear case with the solution from Eq. (23)3

a = (K>K)−1K>y = K−1y (33)

sinceK = K>. Note that the solution depends on the input data only via the Gram matrix. The Gram matrix
contains only scalar products of vectors fromF which can be computed according to Eq. (29) if an appropriate
mapφ is used. Moreover, if the solution is used for predicting the system outputy for a new inputx, again only
scalar products are used:

y = γ>φ(x) = a>Φ φ(x) = a>z(x) = y>K−1z(x), (34)

wherez(x) = (k(x1,x), k(x2,x), . . . , k(xN ,x))> ∈ RN . Regression and prediction can be done on the simpli-
fied scalar products alone, without the need for explicitely mapping the inputs intoF.

Although we have directly shown the existence of a dual representation of the solution, the same conclusion can
be drawn from a more general property of RKHSs referred to as theRepresenter Theorem(Kimeldorf & Wahba,
1971). It states the following: supposec is an arbitrary cost function,Ω is a nondecreasing function onR>0 and
‖.‖F is the norm of the RKHS. If we minimize an objective function4

c((x1, y1, f(x1)), . . . , (xN , yN , f(xN ))) + Ω(‖f‖F), (35)

over all functions of the form (30), then an optimal solution5 can be expressed as

f(x) =
∑N

j=1
ajk(x,xj), aj ∈ R. (36)

In other words, although we did consider functions which were expansions in terms of arbitrary pointsxj (see
(30)), it turns out that we can always express the solution in terms of the training pointsxj only. Hence the
optimization problem over an arbitrarily large number ofM variablesγj is transformed into one overN variables
aj , whereN is the number of training points.

4 Estimating Wiener series by linear regression in RKHS

4.1 Volterra series as linear operator in RKHS

We now have the prerequisites to develop a new approach to estimating the Wiener series expansion. As our first
step, we have to convert the Volterra series into a form suitable for regression in RKHS. Our starting point is the
discretized version of the Volterra operators from Eq. (5)

Hn[x] =
m∑

i1=1

· · ·
m∑

in=1

h
(n)
i1...in

xi1 . . . xin
(37)

3If K is not invertible,K−1 denotes the pseudo-inverse ofK.
4In our case, we use the mean square error as a cost function, and the regularizerΩ is set to zero.
5for conditions on uniqueness of the solution, see (Schölkopf & Smola, 2002)
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which is also the base of the classical cross-correlation procedure. Thenth-order Volterra operator is a weighted
sum of allnth-order monomials of the input vectorx. Forn = 0, 1, 2, . . . e define the mapφn as

φ0(x) = 1 (38)

φ1(x) = (x1, x2, . . . , xm) (39)

φ2(x) = (x2
1, x1x2, x2x1, x

2
2, x1x3, . . . , x

2
m) (40)

φ3(x) = (x3
1, x1x2x3, x1x3x2, x2x1x3, x2x3x1, . . . , x

3
m) (41)

...

such thatφn maps the inputx ∈ Rm into a vectorφn(x) ∈ Fn = Rmn

containing allmn ordered monomials of
degreen. Usingφn, we can write thenth-order Volterra operator in Eq. (5) as a scalar product inFn

Hn[x] = η>n φn(x) (42)

with the coefficients stacked into the vectorηn = (h(n)
1,1,...1, h

(n)
1,2,...1, h

(n)
1,3,...1, . . . )

> ∈ Fn. Fortunately, the func-
tionsφn constitute a RKHS. It can be easily shown that

kn(x, z) = φn(x)>φn(z)

=
m∑

i1=1

. . .
m∑

in=1

xi1 · . . . · xin · zi1 · . . . · zin (43)

=
m∑

i1=1

xi1 · zi1 . . .
m∑

im=1

xi1 · zim
=

(
m∑

i=1

xj · zj

)n

= (x>z)n. (44)

The same idea can be applied to the entirepth-order Volterra series. By stacking the mapsφn into a single map
φ(p)(x) = (φ0(x), φ1(x), . . . , φp(x))>, one obtains a mapping fromRm into F(p) = R×Rm×Rm2 × . . . Rmp

=
RM with dimensionalityM = 1−mp+1

1−m
6. The entirepth-order Volterra series can be written as a scalar product in

F(p)
p∑

n=0

Hn[x] = (η(p))>φ(p)(x) (45)

with η(p) ∈ F(p). SinceF(p) is generated as a Cartesian product of the single spacesFn, the associated scalar
product is simply the sum of the scalar products in theFn:

k(p)(x1,x2) = φ(p)(x1)>φ(p)(x2) =
p∑

n=0

(x>1 x2)n. (46)

Thus, we have shown that the discretizedpth-order Volterra series can be expressed as a linear operator in the
RKHS spanned by all ordered monomials up to orderp.

4.2 Implicit Wiener series estimation

As we stated above, thepth-degree Wiener expansion is thepth-order Volterra series that minimizes the squared
error if the input is white Gaussian noise with zero mean. This can be put into the regression framework: assume
we generate white Gaussian noise with zero mean, feed it into the unknown system and measure its output. Since
any finite Volterra series can be represented as a linear operator in the corresponding RKHS, we can find the
pth-order Volterra series that minimizes the squared error by linear regression. This, by definition, must be the
pth-degree Wiener series since no other Volterra series has this property7. From Eq. (34), we obtain the following
expression for the implicit Wiener series

G0[x] =
1
N

y>1 (47)∑p

n=0
Gn[x] =

∑p

n=0
Hn[x] = y>K−1

p z(p)(x) (48)
6This result is obtained by applying the geometric sum formula.
7assuming symmetrized Volterra kernels which can always be obtained from any Volterra expansion.
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where the Gram matrixKp and the coefficient vectorz(p)(x) are computed using the kernel from Eq. (46) and
1 = (1, 1, . . . )> ∈ RN . Note that the Wiener series and its Volterra functionals are represented only implicitely
since we are using the RKHS representation as a sum of scalar products with the training points. Thus, we can
avoid the “curse of dimensionality”, i.e., there is no need to compute the possibly large number of coefficients
explicitely.

The explicit Volterra and Wiener expansions can be recovered at least in principle from Eq. (48) by collecting
all terms containing monomials of the desired order and summing them up. The individualnth-order Volterra
operators (p > 0) are given implicitly by

Hn[x] = y>K−1
p zn(x) (49)

with zn(x) = ((x>1 x)n, (x>2 x)n, . . . , (x>Nx)n, )>. For p = 0 the only term is the constant zero-order Volterra

operatorH0[x] = G0[x]. The coefficient vectorηn = (h(n)
1,1,...1, h

(n)
1,2,...1, h

(n)
1,3,...1, . . . )

> of the explicit Volterra
operator is obtained as

ηn = Φ>n K−1
p y (50)

using the design matrixΦn = (φn(x1)>, φn(x1)>, . . . , φn(x1)>)>.
The individual Wiener functionals can only be computed by applying the regression procedure twice. If we are

interested in thenth-degree Wiener functional, we have to compute the solution for the kernelsk(n)(x1,x2) and
k(n−1)(x1,x2). The Wiener functional forn > 0 is then obtained from the difference of the two results as

Gn[x] =
n∑

i=0

Gi[x]−
n−1∑
i=0

Gi[x] = y>
[
K−1

n z(n)(x)−K−1
n−1 z(n−1)(x)

]
. (51)

The correspondingith-order Volterra operators of thenth-degree Wiener functional are computed analogously to
Eqns. (49) and (50) as

H
(n)
i [x] = y>(K−1

n −K−1
n−1)zi(x) (52)

and
η
(n)
i = Φ>i (K−1

n −K−1
n−1)y. (53)

4.3 Orthogonality

The resulting Wiener functionals must fulfill the orthogonality condition which in its strictest form states that a
pth-degree Wiener functional must be orthogonal to all monomials in the input of lower order (Schetzen, 1989).
Formally, we will prove the following

Theorem 1 The functionals obtained from Eq. (51) fulfill the orthogonality condition

E [m(x)Gp[x]] = 0 (54)

whereE denotes the expectation over the input distribution andm(x) an ith-order monomial withi < p.

We will show that this a consequence of the least squares fit of any linear expansion in a set of basis functions of
the form of Eq. (25). In the case of the Wiener and Volterra expansions, the basis functionsϕj(x) are monomials
of the components ofx.

We denote the error of the expansion ase(x) = y −
∑M

j=1 γjϕj(xi). The minimum of the expected quadratic
lossL with respect to the expansion coefficientγk is given by

∂L

∂γk
=

∂

∂γk
E‖e(x)‖2 = −2E [ϕk(x)e(x)] = 0. (55)

This means that, for an expansion of the type of Eq. (25) minimizing the squared error, the error is orthogonal to
all base functions used in the expansion.

Now let us assume we know the Wiener series expansion (which minimizes the mean squared error) of a system
up to degreep − 1. The approximation error is given by the sum of the higher-order Wiener functionalse(x) =∑∞

n=p Gn[x], soGp[x] is part of the error. As a consequence of the linearity of the expectation, Eq. (55) implies∑∞

n=p
E [ϕk(x)Gn[x]] = 0 and

∑∞

n=p+1
E [ϕk(x)Gn[x]] = 0 (56)
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for anyφk of order less thanp. The difference of both equations yieldsE [ϕk(x)Gp[x]] = 0, so thatGp[x] must
be orthogonal to any of the lower order basis functions, namely to all monomials with order smaller thanp. �

Note that for both the regression and the orthogonality of the resulting functionals the assumption of white
Gaussian noise was not required. In practice, this means that we can compute the implicit Wiener series for any
type of input, not just for Gaussian noise. The resulting Volterra functionals (Eqns. (49) and (50)) should be -
at least in principle - the same regardless of the input signal. This, however, is not the case for the computation
of the Wiener functionals and their Volterra expansion in Eqns. (51) - (53). As we saw above, orthogonality of
functionals can be only defined with respect to an input distribution. If we use Eqns. (51) - (53) for nongaussian
input the resulting functionals will still be orthogonal, but with respect to the nongaussian input distribution. The
resulting decomposition of the Volterra series into orthogonal functionals will be different from the Gaussian case.
As a consequence, the functionals computed according to Eqns. (51) - (53) will be different from the Wiener
functionals, even if the Volterra expansion is exactly the same in both cases. If one still wants to compute the
Wiener expansion, but can only use nongaussian input, one needs to resort to the classical procedure of Eq. (17)
that has to be applied to the explicit Volterra expansion from Eqns. (50) and (5).

5 Examples and experiments

5.1 Analytic toy example

To check whether the proposed solutions are consistent, we apply our formalism to a toy example for which a
closed form analytic solution exists. We assume the following scenario: The system to be identified receives scalar
input x (i.e., m = 1) and we only have two pairs of measurements (i.e.,N = 2) (x1, y1) and(x2, y2). As our
model, we choose a Wiener series up to functionals of degreep = 1

ŷ = G0[x] + G1[x] (57)

with the model output̂y. The associated scalar product is given by (cf. Eq. (46)

k(1)(x1, x2) = 1 + x1x2. (58)

In order to compute the implicit expansion of Eq. (48), we need the Gram matrix

K1 =
(

k(1)(x1, x1) k(1)(x1, x2)
k(1)(x2, x1) k(1)(x2, x2)

)
=
(

1 + x2
1 1 + x1x2

1 + x2x1 1 + x2
2

)
(59)

which is identical to the matrixX>X in linear regression (cf. Eq. (19)). The inverse is given by

K−1
1 = (X>X)−1 =

1
(x1 − x2)2

(
1 + x2

2 −1− x1x2

−1− x1x2 1 + x2
1

)
. (60)

The dual coefficient vector in Eq. (48) is

z(1)(x) =
(

k(1)(x1, x)
k(1)(x2, x)

)
=
(

1 + x1x
1 + x2x

)
= X

(
x
1

)
, (61)

such that the entire solution becomes

ŷ = y>(X>X)−1X

(
x
1

)
= y>X(X>X)−1

(
x
1

)
(62)

which is identical to the result found for linear regression (cf. Eq. (23)).
If Eq. (50) is correct, we should obtain the explicit Volterra operator coefficients

η0 = a and η1 = b (63)

with the coefficientsa andb identical to those given by classical linear regression (Press, Teukolsky, Vetterling, &
Flannery, 1992)

a =
(
∑

x2
i )(
∑

yi)− (
∑

xi)(
∑

xiyi)
N
∑

x2
i − (

∑
xi)2

=
x2

2y1 + x2
1y2 − x1x2(y2 − y1)
(x1 − x2)2

(64)

b =
N(
∑

xiyi)− (
∑

xi)(
∑

yi)
N
∑

x2
i − (

∑
xi)2

=
y2 − y1

x2 − x1
. (65)
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Figure 1: Mean squared error between true and estimated coefficients of the second-order Wiener kernel of a Reichardt-type
correlation detector for varying number of training samples. The solid line depicts the error of the regression technique, the
dash-dot line that of the cross-correlation technique.

According to Eq. (50), we obtain the coefficients usingφ>0 = 1> andφ>1 = (x1, x2)

η0 = 1>K−1
1 y and η1 = (x1, x2)K−1

1 y (66)

which can be easily shown to be identical witha andb by substituting Eq. (60).
The corresponding Wiener functionals from Eqns. (47) and (51) are

G0[x] =
1
2
(y1 + y2) (67)

G1[x] = yK−1
1

(
1 + x1x
1 + x2x

)
− 1

2
(y1 + y2) (68)

which yields the identical Volterra series. Note that the zero-order Volterra functional of the first-degree Wiener
functional given by Eq. (52)

H
(1)
0 [x] = yK−1

1 1− 1
2
(y1 + y2) = a− 1

2
(y1 + y2) (69)

is not zero as required for strict orthogonality of the operators. However, we have only two input samples , and
orthogonality is merely required for the entire input distribution. For zero-mean white Gaussian input and a linear
system with constant terma, we obtain indeed

E

[
1
2
(y1 + y2)

]
= a (70)

such thatH(1)
0 [x] becomes zero.

5.2 Numerical experiment on convergence

In this example, the system to be identified is a discretized Reichardt-type correlation detector (Hassenstein &
Reichardt, 1956) of the form

y[n] =
(∑4

k=0
h[k]x[n− k]

)
×
(∑4

k=0
l[k]x[n + 1− k]

)
(71)
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Figure 2:Left: 16 × 16 nonlinear receptive field of the test system;Right: Reconstructed receptive field from the fifth-order
Volterra kernel by computing a preimage (after 2500 samples).

with some arbitrary, but fixed high pass h[k] and low pass l[k] of order 5. The data are generated by sliding two
windows of widthx[n−4] . . . x[n] andx[n−3] . . . x[n+1] over a time series of white, zero-mean Gaussian noise
and simultaneously measuring the system outputy[n]. Finally, we added white, zero-mean Gaussian measurement
noise to the signal with a variance of 10% of the signal variance. We applied both estimation methods, cross-
correlation and regression, to estimate the 21 free parameters of the second-degree Wiener modelŷ =

∑2
i=0 Gi[x].

The modeling errorε was measured for the second order kernel using

ε =
5∑

i=1

(ηi − hi)2 (72)

and averagingε over the 20 trials. We varied the number of training samples to see how the modeling error
decreases with the number of samples.

As the result shows (Fig. 1), the modeling error of the regression technique decreases at a significantly faster
rate than the cross-correlation method due to the unfavorable properties of the cross-correlation estimator. In fact,
a comparable modeling error is only reached at sample sizes that are more than 10 times as large (not contained in
the figure).

5.3 Reconstruction of a fifth-order nonlinear receptive field.

This experiment demonstrates the applicability of the proposed method to high-dimensional input. Our example is
the fifth-order system

y =

 16∑
k,l=1

hklxkl

5

(73)

that acts on16× 16 image patches by convolving them with a receptive fieldhkl of the same size shown in Fig. 2a
before the nonlinearity is applied. We generated 2500 image patches containing uniformly distributed white noise
and computed the corresponding system output to which, as above, we added 10% Gaussian measurement noise.

The resulting data was used to estimate the implicit Wiener expansion using the regression procedure. In the
classical cross-correlation procedure, this would require the computation of roughly 9.5 billion independent terms
for the fifth-order Wiener kernel. Moreover, even for much lower-dimensional problems, it usually takes tens of
thousands of samples until a sufficient convergence is reached.

Even if all entries of the fifth-order Wiener kernel were known, it would be still hard to interpret the result
in terms of its effect on the input signal. The implicit representation of the Volterra series allows for the use of
preimage techniques (e.g. Schölkopf & Smola, 2002) where one tries to choose a pointz in the input space such
that the nonlinearly mapped image inF, φ(z), is as close as possible to the representation in RKHS. In the case
of the fifth-order Wiener kernel, this amounts to representingH5[x] by the operator(z>x)5 with an appropriately
chosen preimagez ∈ R256. The nonlinear mapz 7→ z5 is invertible, so that we can use the direct technique
described in Scḧolkopf and Smola (2002) where one applies the implicitly given Volterra operator from Eq. (49)
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to each of the canonical base vectors ofR256 resulting in a 256-dimensional response vectore. The preimage is
obtained asz = 5

√
e. The result in Fig. 2b demonstrates that the original receptive field is already recognizable

after using 2500 samples. The example shows that the preimage technique elucidates to which input structures the
Volterra-operator is tuned, similar to the classical analysis techniques in linear systems.

6 Conclusion

The benefits of the proposed estimation of the Wiener and Volterra expansions via kernel regression can be sum-
marized as follows:

1. The implicit representation of the Wiener and Volterra series allows for system identification with high-
dimensional input signals. Essentially, this is due to the representer theorem: although a higher order series
expansion contains a huge number of coefficients, it turns out that when estimating such a series from a finite sam-
ple, the information in the coefficients can be represented more parsimoniously using an example-based implicit
representation.

2. Convergence is considerably faster than in the classical procedure because the estimation is done directly on
the data. The regression method omits the intermediate step of estimating cross-correlations which converges very
slowly.

3. Preimage techniques reveal input structures to which Wiener or Volterra operators are tuned. The preimage
corresponds to a nonlinear receptive field where the input is convolved with a linear filter whose output is fed into
a nonlinearity. The present method works only for Volterra kernels of odd order. More general techniques exist,
including the case of other kernels and the computation of approximations in terms of several preimages (“reduced
sets” Scḧolkopf & Smola, 2002). The latter corresponds to an invariant subspace of the Volterra operator (cf.
Hyvärinen & Hoyer, 2000).

4. The method works also for non-Gaussian input. In particular, uniform noise turned out to lead to better results
than Gaussian noise since its values are bounded. The Gaussian distribution sometimes produces very large values
which are extremely amplified by the higher order monomial terms.

From the point of view of learning theory, the proposed estimation method has the drawback that the regulariza-
tion term in the objective function (35) is currently set to zero in order to preserve the orthogonality property of the
resulting Wiener functionals. This may possibly lead to a degraded generalization performance and an increased
sensitivity to noise. The second part of this report will therefore discuss the regularized estimation of the Wiener
series. However, one could argue that already in the present form, an implicit regularization is in effect: in the form
stated, the representer theorem does not rule out the existence of solutions outside the span of thek(.,xj) with the
same (albeit not a lower) value of the objective function. In that case, our algorithm chooses the solution which
lies in the span (note that this need not be the case for the classical cross-correlation method). One can prove that
if a regularizer with strictly monotoneΩ (cf. Eq. (35)) is used, thenall optimal solutions lie in the span (Schölkopf
& Smola, 2002). Our algorithm thus searches a restricted space of possible solutions which coincides with the one
searched by its regularized counterpart.
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