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Theories of biological motor control have been pursued from at least two separate
frameworks, the “Dynamic Systems” approach and the “Control
Theoretic/Optimization” approach. Control and optimization theory emphasize motor
control based on organizational principles in terms of generic cost criteria like
“minimum jerk”, “minimum torque-change”, “minimum variance”, etc., while dynamic
systems theory puts larger focus on principles of self-organization in motor control, like
synchronization, phase-locking, phase transitions, perception-action coupling, etc.
Computational formalizations in both approaches have equally differed, using mostly
time-indexed desired trajectory plans in control/optimization theory, and nonlinear
autonomous differential equations in dynamic systems theory. Due to these differences
in philosophy and formalization, optimization approaches and dynamic systems
approaches have largely remained two separate research approaches in motor control,
mostly conceived of as incompatible.

In this poster, we present a novel formal framework for motor control that can
harmoniously encompass both optimization and dynamic systems approaches. This
framework is based on the discovery that almost arbitrary nonlinear autonomous
differential equations can be acquired within a standard statistical (or neural network)
learning framework without the need of tedious manual parameter tuning and the
danger of entering unstable or chaotic regions of the differential equations. Both
rhythmic (e.g., locomotion, swimming, etc.) and discrete (e.g., point-to-point reaching,
grasping, etc.) movement can be modeled, either as single degree-of-freedom or
multiple degree-of-freedom systems. Coupling parameters to the differential equations
can create typical effects of self-organization in dynamic systems, while optimization
approaches can be used numerically safely to improve the attractor landscape of the
equations with respect to a given cost criterion, as demonstrated in modeling studies of
several of the hall marks of dynamics systems and optimization theory. We believe that
this novel computational framework will allow a first step towards unifying dynamic
systems and optimization approaches to motor control, and provide a set of principled
modeling tools to both communities.


