The Kernel Mutual Information

Arthur Gretton, Ralf Herbrich, Alex Smola

16 April 2003



ABSTRACT

We introduce two new functions, the kernel covariance (KC) and the kernel mutual information
(KMI), to measure the degree of independence of several continuous random variables. The former
is guaranteed to be zero if and only if the random variables are pairwise independent; the latter
shares this property, and is in addition an approximate upper bound on the mutual information,
as measured near independence, and is based on a kernel density estimate. We show that Bach
and Jordan’s kernel generalised variance (KGV) is also an upper bound on the same kernel density
estimate, but is looser. Finally, we suggest that the addition of a regularising term in the KGV
causes it to approach the KMI, which motivates the introduction of this regularisation. The
performance of the KC and KMI is verified in the context of instantaneous independent component
analysis (ICA), by recovering both artificial and real (musical) signals following linear mixing!.
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Chapter 1

Introduction

The problem of separating mixtures of signals, so as to recover the original signals prior to mixing,
is a much studied challenge in signal processing. Methods of solution generally depend on the
nature of the signals, and the manner in which they are mixed; in particular, a criterion known as
the contrast function is required to determine when the demixing is successful. We assume here
that the original signals are i.i.d. according to some unknown probability distributions, and are
combined in a scalar mixing process: demixing is then achieved by ensuring that the recovered
signals are statistically independent. This is the framework for instantaneous ICA.

A measure of statistical independence between two random variables is the mutual information [25],
which for random vectors x,y is zero if and only if the random vectors are independent. This may
also be interpreted as the KL divergence Dxr, (fxy||fxfy) between the joint density and the product
of the marginal densities; the latter quantity generalises readily to distributions of more than
two random variables. We therefore propose two quantities, based on the mutual information,
that may be used as contrast functions in ICA. The first, which we call the kernel covariance
(KC), can be shown to be zero if and only if the random variables are independent. The second
function, the kernel mutual information (KMI), is an upper bound on the Parzen window estimate
of the mutual information, and is also zero if and only if the random variables are independent.
Both functions bear a strong resemblance to the kernel canonical correlation (KCC) and kernel
generalised variance (KGV) introduced by Bach and Jordan [7]: indeed, we demonstrate that the
KGYV can also be thought of as a (looser) upper bound on the same Parzen window estimate. An
important advantage of the derivation described herein, however, is that it addresses the behaviour
of the contrast functions for finite kernel sizes, rather than relying on a limiting argument in which
the kernel size approaches zero, as in [7] (the latter proof may in any case require further refinement:
see Appendix A.6.2). In addition, our approach allows us to apply well established methods for
selecting kernel size as a function of the number of observations; see for instance [80].

The ICA framework has found many practical applications. Perhaps one of the earliest and best
known is the separation of multiple audio signals recorded in a room, although basic ICA has been
superseded by algorithms that take better account of the mixing process and signal properties
(reverberation in the room, statistical properties of human speech, movement of the sources; see
for instance [2]). A more successful application of instantaneous linear ICA is in removing eye
blinks and electronic artefacts from EEG recordings, so as to isolate the weaker signals arising
from various mental activities; one such study is [59]. ICA has also been used in [17] to determine
brain regions used in visualisation, when applied to event-related fMRI experiments. Compared
with generalised linear models, which depend on a particular form of the haemodynamic response
being assumed, ICA permits the identification of additional regions of activation relating to the
stimulus. Further applications of ICA are described in [49, 23], notably basis function determination
for natural images and financial data analysis. The KCC was applied in [85] to find correlations
between documents in English and French with identical meanings, thus revealing the features that
best represent the semantic information pairs of documents have in common.
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The instantaneous linear ICA problem is introduced in Chapter 2, which also contains a review of
methods that have previously been used to address it. The KC and KCC contrast functions for
the 2-variable case are derived in Chapter 3, and their behaviour at Independence is investigated.
Chapter 4 contains the principal results of this study. A multivariate Gaussian approximation to
the mutual information (again, for 2 variables), which holds near independence, is introduced in
Section 4.1. Upper bounds on the Parzen window estimate of this quantity are derived in Section
4.2; these constitute the KMI and KGV contrast functions. A generalisation to more than 2
variables is presented in Section 4.3. The procedure used to apply the kernel contrast functions to
ICA, which includes a method for reducing computational cost and a gradient descent technique,
is described in Chapter 5. Finally, we show in Chapter 6 that the performance of the KMI and KC
contrasts, when used in ICA, is competitive with that of the KGV and KCC contrasts respectively,
and that the kernel based methods outperform many traditional ICA algorithms.



Chapter 2

ICA with linear mixing

In this chapter, we describe the goal of instantaneous independent component analysis (ICA), and
review some approaches to this problem. The discussion draws on the numerous existing surveys of
ICA and related methods, including [49, 57, 23, 42]; see also [24] for a discussion of older literature
on the topic. We begin in Section 2.1 by describing the general framework of linear instantaneous
ICA, independent of any particular method used to solve it. The main methodologies that have
previously been used for ICA are then described in Section 2.2.

2.1 Problem statement

We begin our discussion with a general description of the problem we wish to solve. We are given
m samples ¢ := (ty,...,t,,) of the n dimensional random vector t, which are drawn independently
and identically from the distribution P;. The vector t is related to the random vector s (also of
dimension n) by the scalar mixing process

t = Bs, (2.1.1)

where B is a matrix with full rank'. We refer to our ICA problem as being instantaneous as a way
of describing the dual assumptions that any observation t depends only on the sample s at that
instant, and that the samples s are drawn independently and identically.

The components s; of s are assumed to be mutually independent: this model codifies the assumption
that the sources are generated by unrelated phenomena (for instance, one component might be an
EEG signal from the brain, while another could be due to electrical noise from nearby equipment).
Mutual independence has the following definition [65]:

Definition 2.1.1 (Mutual independence). Suppose we have a random vector s of dimension
n. We say that the components s; are mutually independent if and only if

n

fo(s) =[] fs (s0)- (2.1.2)

i=1

It follows easily that the random variables are pairwise independent if they are mutually indepen-
dent; i.e. fs, (s:)fs; (sj) = fs,5; (54,85) for all i # j. The reverse does not hold, however: pairwise
independence does not guarantee mutual independence.

1That B is square means the number of sources is equal to the number of sensors. Full rank is required to
ensure that no two sources in s are mixed with exactly identical coefficients (which would imply the sources coincide
perfectly). As discussed in [73], we may consider (2.1.1) when the number of sources is less than the number of
sensors by a change of basis, although this may be made more difficult in the presence of noise.
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Our goal is to recover s, given only the mixing model (2.1.1), and the fact that the components of
s are mutually independent. Thus, we wish for an estimate V of the inverse of the matrix B, such
that the recovered vector x = VBs has mutually independent components (as measured according
to Definition 2.1.1).

It turns out that the problem described above is indeterminate in certain respects. For instance,
our measure of independence does not change when the ordering of elements in x is swapped;
in addition, components of x may be scaled by different constant amounts, while still retaining
their independence with respect to the remaining components. We therefore modify our problem
definition slightly, and choose V such that VB = PS, where P is a permutation matrix and S is a
scaling matrix (in other words, S is a matrix with non-zero elements on the diagonals only). The

associated random vector
x = PSs

clearly has independent components.

Mutual independence is generally difficult to determine. In the case of scalar mixing, however,
we are able to find a unique optimal unmixing matrix V using only the pairwise independence
between elements of x, which is equivalent to recovering the mutually independent terms of s (up
to permutation and scaling). This is due to the following theorem [24].

Theorem 2.1.2 (Mutual independence in linear ICA). Let s and x be two random vectors
with dimension n, related according to x = As, for which the underlying densities do not contain
delta functions. Let s contain at most one Gaussian component. Then the properties

e The components of X are pairwise independent
o The components of s are mutually independent

o A =PS, where P is a permutation matriz, and S a full rank scaling matriz
are equivalent.

There is a third identifiability limitation, in addition to those due to permutation and scaling. This
is illustrated by the case s = [s; SQ]T, where s; and s, are Gaussian random variables with equal
variance. These are combined with a pure rotation matrix,

| cos@ —sinf

o { sinf  cosd }
Clearly, the density of t can be factorised in the manner of Definition 2.1.1, regardless of #; thus,
we cannot use the mutual independence of components of x = VBs to invert B. Likewise, if t is
deterministic (constant for each element of the sample), then B cannot be inverted using a measure
of independence. The following theorem is a more general statement of these concepts [28].

Theorem 2.1.3 (Independence and Gaussianity). Lets and x be two random vectors, where
the components of s are mutually independent, and the components of x are pairwise independent.
Furthermore, let x = As, where A has two or more entries in the jth column. Then s; is Gaussian
or deterministic.

In any practical instantiation of the above framework, we are provided with a sample ¢ rather
than the true distribution Py. Thus, any determination of independence must be made empirically
on the basis of this sample. A selection of criteria used to accomplish this goal is described in
Sections 2.2.2,2.2.3, and 2.2.4; this is also the application we use to test the performance of the
kernel covariance and kernel mutual information.

We note at this point that if elements t;, t; in the sample ¢ are not drawn independently for i # j
(for instance, if they are generated by a random process with non-zero correlation between the
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outputs at different times), then an entirely different set of approaches can be brought to bear?.
For instance, the independent sources are modeled in [67] as generalised autoregressive processes
(with an inverse cosh noise distribution), which allows their separation using maximum likelihood
principles. Alternatively, the sources may be modeled as stationary random processes, in which
case they can be recovered when the spectral covariance matrices are diagonal [11, 73]; if non-
stationary, the sources may be unmixed by jointly diagonalising the covariance matrices at each
time point [72] (see also [2, 44] on the subject of demixing random processes given convolutive
mixing). An elegant overview of these ICA methods and the links between them is given in [22].
Although the present study concentrates entirely on the i.i.d. case, we will briefly address random
processes with time dependencies in Chapter 7, when describing possible extensions to our work.

2.2 Review of ICA methods

In this section, we describe the various approaches that have previously been used in ICA. The
problem of finding the inverse V of B is broken down into smaller steps, for greater ease of solution.
First, we remove the mean from the observations t (our estimate of s then also has zero mean).
Next, we decompose the demixing matrix as V = WQ, where Q is a whitening matrix and W is
an orthogonal matrix, as described in Section 2.2.1. It is generally simpler to determine Q and W
separately than to compute V in its entirety, although a small loss of accuracy results from this
procedure. In the remaining parts of this section, we introduce the three main methods used to
determine when the independent sources have been recovered, given the possible choices of W. The
first approach maximises the likelihood (Section 2.2.2), the second applies the mutual information
with a specific density model (Section 2.2.3), and the third draws on various density estimation
techniques to compute the mutual information (Section 2.2.4).

We do not describe gradient descent on W, however; this may for instance be accomplished using
the natural gradient [3] and relative gradient [20] techniques, which result in similar algorithms de-
spite their different motivating principles. Our algorithm for computing W follows [7] in performing
gradient descent on the Stiefel manifold, as described in Section 5.2.

2.2.1 Preprocessing

The steps described in this section may be found in any discussion on ICA, for instance [23, 49, 42].
First, we whiten the observations ¢, using the operation

i = Qt, (2.2.1)
for each t; € t, such that the new observations £ := (t1,...,t,,) have a unit (empirical) covariance
matriz. Our estimate of the demixing matrix then becomes

V= WQ, (2.2.2)

where W is an orthogonal matrix (which is to say that WTW = I; W may thus be written
as a rotation matrix with arbitrary row/column permutations). Although the determination of
W remains difficult, there are only n (n — 1) degrees of freedom involved in this problem [49], as
opposed to the n? degrees of freedom present in the estimation of V. In the remainder of this
section, we describe a way to estimate® Q. If we wish the population random variable t to have a
unit covariance matrix, we may write

1 = E(&)-E@E®G
E (Qtt'Q") — E: (Qt) E (QY)”
= Q[E(tt") —E (t)E (t")]QT,

2In particular, it becomes possible to separate Gaussian processes when they are correlated over time.

30ur reasoning makes use of the population random variables, although in practice we use empirical estimates.
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or -
Q'I (Q_l) = Cy,
where Cy; is the covariance matrix of t. Since Cy; is positive definite, it is real and symmetric.

Thus it can be written in the form
Cy = SAST,

where A is a diagonal matrix of real values (the eigenvalues), and S contains the orthonormal
eigenvectors (which means S™! = ST). It can then be trivially seen that

Q71 — SAI/Q,

and thus

Q — A71/2 ST.
The pre-whitening process described here is not a statistically efficient means of estimating B (see
[20]), although in practice the performance penalty incurred by using pre-whitening is small.

2.2.2 Maximum likelihood

The computation of the remaining portion W of V must rely on the high order statistics of the
output random vector x, since these statistics indicate when the components of x are pairwise
independent. We use the term contrast function to denote both the expression that specifies the
statistical dependencies between elements of x (which is therefore a function of the high order
statistics), and the empirical estimate of this expression. We solve for W by optimising over the
empirical contrast function. The idea of using the expectation of a nonlinear function to measure
independence was first proposed by Jutten and Hérault (a summary of this early research is in
[53]), although the choice of function is in this case less mathematically rigorous than the methods
set out below.

The first approach we discuss for measuring independence is the mazimum likelihood method [74].
This is equivalent to the Infomax algorithm [10], as described in [19]: the objective is to find the
orthogonal matrix W that causes the distribution of x to most closely approach a certain model
of fg, written

fo(s) := Hf (). (2.2.3)

The independent sources are therefore recovered by minimising the KL divergence Dky, (fx| |fs) =

D, (fwg||fs) with respect to W (see Definition A.8.11 for the definition of the KL divergence,

and Theorem A.8.12 for its properties). Equivalently, we can solve for W by maximising
~Dit (Fwillfs) = ([ Fo (WE), - B (WE), ]), (2.2.4)
where ?si is the model C.D.F. of s;, and h(-) is the differential entropy.

Of course, this leaves open the nature of the model /f\s to be chosen. One strategy is to use the
property that the signals ought to become less Gaussian as the estimate of W yields increasingly
independent x. In effect, we know from Theorem 2.1.3 that at most one component of s can be
Gaussian, which makes non-Gaussianity a property of the remaining x by our problem definition.
With this in mind, Bell and Sejnowski set the densities fs, (s;) to be derivatives of generalised
logistic sigmoids, which corresponds to the assumption the elements of s are super-Gaussian. In
practice, this particular choice of contrast is known to perform poorly for sub-Gaussian signals
[10], since in this case stationary points of the contrast function can be found greater than those
obtained for independent x. This is addressed in [36], in which a second contrast function is used
for sub-Gaussian cases. The associated density models are therefore

: exp(—s?/2)sech’(s;) super — Gaussian,
s (1) o exp (— (si —1)° /2) + exp (— (si +1)° /2) sub — Gaussian.
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This model is applied in [59] to the separation of source signals and the removal of noise in EEG
recordings.

We now show that this method corresponds to the maximum likelihood approach, as described for
instance in [60, 73, 67] (a concise explanation of this link is in [19], although the connection was
made independently in [60, 67]). We assume that m (whitened) observations £ are generated from
the model distribution® /f\W—ls in accordance with the model in (2.1.1) and (2.2.1)°. The expected
log likelihood of the whitened random vector t, which must be maximised with respect to W, is

E; log (fg (f:)) = E;log (fw_ls (E)) (2.2.5)
- _Du. (f;||fw_1s) —h (). (2.2.6)

Only the first term need be considered when W changes, however. Comparing with (2.2.4), we
note that Dgy, (f;||fw_1s) = Dy, (fwg||fs), which completes the proof.

In applying the method described above, we would like to know whether the proposed contrast
function still works when the model (2.2.3) is incorrect. In fact, it has been shown independently
in [73, 88] that the KL divergence exhibits a zero gradient with respect to W when the elements of
x = Wt are independent. A sufficient condition for the stability of this point (which ensures that
it is not a saddle point, for instance), taken from [20], is

Es: (¥} (1)) Es; (s7) — E(pi(si)s:) >0, (2.2.7)

where the score functions p; are defined as

)

!

-

Si

Pi =

)

-

Si

It is not guaranteed that the solution at independence is a global optimum; indeed, both [10] and
[20] give specific instances in which errors in model formulation cause the global minimum of the
contrast to be far from independence. Finally, we should expect to be penalised when our source
density model is incorrect, given that the contrast is in practice computed using an empirical
expectation with m samples. Thus, given a maximum likelihood estimate of W, it is shown in [20]
that the asymptotic ratio in output x; of the unwanted signal power P(s;) to the desired signal
power P(s;) is minimised when the source density model is correct. In [73], the effects of incorrect
source density models are reduced using a parametric estimate for fsi , which is adapted according to
the observations t. Alternative methods for adapting the source density models include [54], which
is designed to work well near zero kurtosis, and [41], which uses regularised splines to approximate
the departure of the sources from Gaussianity.

2.2.3 KL divergence

We next introduce an alternative approach to determining independence, as summarised from
[24, 42]. In this case, we use a criterion suggested directly by Theorem 2.1.2: namely, that when
the pairwise independence of components of x is maximised (through adjustment of W), we recover
s up to the natural indeterminacies of permutation and scaling. Recall from (2.1.2) that the random
variables x are mutually independent when the joint density can be written as the product of the
marginals. Another way of looking at this is to say that the KL divergence between the joint
density and the product of the marginals must be zero; in other words,

Dk, (fx H&) =0. (2.2.8)
i=1

4Note that the model requires both an approximate density fs and an estimate W—1 of QB.
5In other words, f;(t) := fyy—1, (W™1s) =fs(s)/ |det (WL)].




14 CHAPTER 2. ICA WITH LINEAR MIXING

This contrast was proposed in [24]. We now discuss the link between this method and the maximum
likelihood algorithms introduced in the previous section, following [20]. We decompose the contrast

in (2.2.4) as
Hin> +DKL (foi /f\S> .
i=1

i=1
Since both terms are non-negative, the maximum likelihood based score is minimised when [}, f,, =
f (i.e., when the model (2.2.3) is correct®) and fyx =[], fy (as required by (2.2.8)). Thus, for a
correct density model, the maximum likelihood and KL divergence based solutions coincide. An ad-
vantage of the KL divergence, however, is that it makes no assumptions regarding the source model
fs; on the other hand, there remains the problem of empirically estimating fy and its marginals.

Dxk1, (fx||fs) = Dk (fx

We now describe methods used to compute the empirical estimate of (2.2.8), or at least that part
of the criterion which varies with our choice of W. We begin with the following simplification.

Theorem 2.2.1 (Change in KL divergence following instantaneous linear mixing). Given
random vectors x,t related according to x = Wt, the KL divergence between fy and the product of
its marginals can be written

Dxg, <fx

This result is proved using Theorem A.8.17. We recall from the previous section that W is or-
thogonal, and hence log |det W| = 0. In addition, h (t) is invariant with respect to W. It remains,
therefore, to estimate the entropies h (x;).

ﬁfxi> = z”: h(x;) — h (t) — log |det W] . (2.2.9)

One method for computing the entropies is by using cumulant based expansions about the Gaussian
density, as described in [21, 20]. Two methods for empirically estimating the entropies include the
Edgeworth expansion [24] and the Gram-Charlier expansion [4]. Using the former expansion (Def-
inition A.9.3), and subject to the constraint that x be whitened, the contrast can be approximated

as
Dxg, <fx

where C' is a constant term with respect to W, and the 4th order cumulant k4 (x;) is defined in
Appendix A.9. We note that the stability analysis described at the end of the previous section
can also applied to cumulant based contrasts [20]. A related contrast function is used in the Jade
algorithm [21], which differs slightly from the above function to simplify the calculation of W. The
Gram-Charlier expansion yields

o) oo~ () (R)T 5 (sh) kL (s)°
DKL<fx Hlf"i>’“_z< s T T s 16 ) TC

i=1
A non-cumulant based method for approximating the KL divergence is proposed in [47], which is
of particular interest since it permits the design of a contrast that takes specific features of the
source distributions into account (aside from cumulants), as well as providing an alternative link
between the KL divergence based contrasts and those derived from maximum likelihood. In this
case, the observation densities fy, are modeled by densities fy, of maximum entropy, subject to the
constraints

n

foi> ~ _4_18 an (x;) +C,
i—1

i=1

Ex. (91 (%)) = c1i = Ex, (g1 (x:)) (2.2.10)

for [ = 1...P and functions g;(-) that describe certain known properties of our sources (here Ey,

denotes the expectation with respect to fy,, and E4, the expectation with respect to fy,). The
right hand equality applies since the quantities ¢;; are in practice estimated from samples drawn

6We gloss over the question of ambiguities in permutation and scaling, which can be dealt with for instance by
using a convention in source ordering [73].
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according to fy;,. It is assumed in addition that the fxi are close to Gaussian (this being the
distribution of highest entropy for a given mean and variance), and that the g;(-) are orthonormal
with respect to the metric induced by the Gaussian, orthogonal to all quadratic polynomials, and
do not rise faster than quadratically as a function of their argument. Under these circumstances,
we may write

p
/f\xl. (z) = (27r)—1/2 exp (—352/2) (1 + Z cLigi (wl)> ,
=1

in accordance with [25]. Then

1 P
h(x;) =~ h(xG)—izcii
=1

where we make use of the orthogonality relations required of the g;(-), and xg is a Gaussian
random variable with zero mean and unit covariance. A single such function is often used in ICA
(i.e., P = 1), since this results in simple ICA algorithms. Given that we have some desirable
property measured by some even function f(-) (more on these properties below), then minimising
h(x) can be shown to be equivalent to minimising

h(xi) % h(xc) =7 (Ex (f (i) = Exg (f (xa))?,

where 7 is a constant”. The minimisation of h(x;) is thus achieved by maximising E,, (f (x;))-
If we write as w a particular row of W, then replacing z = wt and f(z) := log (fs(wf;)) for

each such row allows us to recover the maximum likelihood contrast (compare with (2.2.5)). It
is shown in [50] that E; (f (wf)) has a local maximum or minimum when w is chosen so as to
recover an independent component. Moreover, denoting by w our estimate of this extremum for m
observations, a proof is given in [46] that the trace of the asymptotic® covariance matrix of w+/m is
minimised when f = log fs, which corresponds approximately to a minimum least squares estimate
of w. Given that we do not know the source densities, contrast functions are proposed in [46] that
achieve good results in terms of robustness to outliers and small asymptotic covariance; these are

fi(z:) = i log cosh(a; z;),
folz) = —L exp(—asei/2),
fS(mz) = %m;l)

where a; > 1 and ap ~ 1. The first function is recommended for general use with super-Gaussian
sources, and is robust to outliers; the second is still more robust, and is used in highly super-
Gaussian situations; the third is equivalent to a kurtosis based contrast. A method for performing
ICA quickly and robustly with these contrasts is given in [48].

2.2.4 Semi-parametric entropy estimates for KL divergence

The results in this section also describe ways to compute the entropies h (x;), in the context of the
KL divergence based contrast in (2.2.9). These methods are sufficiently different from the cumulant
and nonlinearity based methods to merit a separate discussion, however, and represent promising
directions in recent research. We begin with a kernel density estimate, which was proposed in
the context of ICA in [69]°, and refined to decrease computational cost in [70]. Let us divide

"The operations required to modify an arbitrary even function f(-), so as to satisfy the orthogonality constraints
required of g(-) in (2.2.10), are accomplished in the course of the derivation of this expression.

81n the sense that m — oco.

9A related method was rediscovered independently in [86], which like [69] uses the binning and FFT density
estimation method described in [80].
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the support of f, into a grid of size I, with even spacing A,, where [, is assumed to be odd for
notational convenience. The proposed approximation of the differential entropy!'® is

112/2]
B =Y AKGA) g (A (A))
i==11-/2)

where H(X) is the entropy associated with the discretised approximation x (with distribution
P;(j) = fx (jA,) A,) of the continuous random variable x, and fi(z) is the kernel density esti-
mate of f,. Given an ii.d. sample & := (z1,...2,,) of size m from f,, a simple kernel density

estimate [80] is
= 1 — T — T
fi(z) = — k J 2.2.11
SRy (=5%). (2211)

where o determines the degree of smoothing, and k(z) is a valid probability density (see also the
more detailed discussion at the start of Section 4.2). Unfortunately, (2.2.11) does not lend itself
to computationally efficient numerical integration: instead, we apply binning, the simplest version
of which involves setting the effective number of samples at each grid point proportional to the
number of observations that fall closer to it than to its neighbours. A more accurate estimate of
the density (in the mean square sense) can be found by assigning weights to the grid points in
the immediate vicinity of each observation, where the weights are a function of the distance to the
observation in question. This turns out to be equivalent to replacing k(x) in (2.2.11) with

L

~ L

k(z) =S :%S’“ (Z—"Jr ;T —l>,
l:0 xr xr

where S” are the cardinal splines of order r (simple binning corresponds to » = 1). The ¢; are
positive coefficients that sum to 1 and are symmetric about L/2, and are functions of the original
kernel k(z). In [70], however, a single coefficient ¢y = 1 is used in the above sum, and the kernel is
in effect a spline kernel alone. We shall see in Section 4.2 that the method of Pham bears certain
similarities to our approach.

An alternative estimate of entropy is proposed in [64], which does not require a density estimate
as an intermediate step, but is based instead on order statistics. This estimate represents a mod-
ification to that proposed in [84], and the two are in fact asymptotically equivalent; both are, in
addition, asymptotically efficient. Writing as & the sample x with terms ordered from smallest to
largest, the entropy can be approximated as

- 1 & omal,
h(x) = p— Z log ] (Tivr — T4),
i=1

where | must satisfy
l

lim — =0
m—00 M
for the estimate to be consistent (in [64], ] = y/m is used). The estimate is smoothed by augmenting
the data with Gaussian clusters of points about each observation, and a grid search over the Jacobi
angles parameterising W is used to find the global optimum. Results in [64] indicate that this
estimate is highly resistant to outliers, and performs better than the KGV on many of the data
sets described in [7]. On the other hand, performance of this method when the sources are near-
Gaussian remains problematic.

10The relation below derives from Theorem A.8.8 in Appendix A.8.



Chapter 3

The kernel covariance and kernel
canonical correlation

In this chapter, we focus on the formulation of measures of independence (that is, contrast func-
tions) for two random variables. This reasoning uses well established principles, going back to
[75], in which study a list of desirable properties was given for a measure of statistical dependence
Q (Py,y) between random variables x,y. These include

1. Q(Py,y) is defined for random variables x,y that are not constant with probability 1,
2. 0<Q(Py,) <1,
3. Q(Py«y) =0 if and only if x,y independent,

4. Q(Py,) = lifand only if y = f(x) or x = g(y), where f and g are Borel measurable functions.

It is shown in [75] that one measure satisfying these constraints is Q (Pyy) = sup; , corr (f(x), g(y)),
where f(x),g(y) must have finite positive variance, and f, g are Borel measurable. This is similar
to the kernel canonical correlation (KCC) introduced in [7], although we shall see that the latter is
more restrictive in its choice of f,g. We propose a different measure, the kernel covariance (KC),
which omits the second and fourth properties above; in the context of ICA, however, the first
and third properties are adequate. Comparing with the contrast functions described in Section
2, the kernel methods in this section use a supremum over a function class, rather than a fixed
nonlinearity: we shall see that this guarantees a global minimum of the contrast at independence,
which in traditional methods is contingent on the accuracy of the source density model.

We begin in Section 3.1 with some useful definitions. In section 3.2, we introduce the normalised
covariance, and demonstrate that this quantity is a measure of independence when computed in
a RKHS. Several related approaches in the area of spectral methods and clustering are presented
in Section 3.3. Finally, we introduce the canonical correlation, and the associated interpretation
when this is accomplished in a RKHS, in Section 3.4.

3.1 Definitions

We begin by defining the terms and concepts needed to describe our contrast functions. Let &
and ¥ be vectors in X', ) respectively, where X is a bounded subset in R” and ) is a bounded
subset in R™ . Let X and ¥ be random vectors in X’ and ). We define the vectors x and y and the

17
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random vectors x and y in the feature spaces Fx and Fy, and the mappings ¢, : X = Fr and
¢y : Y = Fy such that

x =, (# and yi=,(.

The feature spaces may be the reproducing kernel Hilbert spaces (and subspaces of £5°) associated
with the Gaussian or Laplace kernels; we also consider feature spaces R** and R™ on occasion, in
which case the feature and input spaces coincide. We define the variance and covariance matrices
for x and y as

Coy = Exy (x—E(0)(y—E, () '), (3.1.1)

C,o = Ex ((x — Ey (%)) (x — Ey (x))T) , (3.1.2)

Cow = E(-EO)y-E()), (3.13)

c = [ gﬂ, gyz } . (3.1.4)

Assume we are given m i.i.d. samples of data; z = {(x1,y1),.-., (Xm,¥m)}, where x; € Fx and

yi € Fy. Defining the matrices
X=[x1 - xp] and Y=[y1 - ym |, (3.1.5)

we obtain the empirical estimates

1 T _ 1 T _ 1 T
Coy= ——XHY' C, = XHX' C, = YHY, (3.1.6)

where

1
H=1- E1m1jn, (3.1.7)

and 1,, is an m x 1 vector of ones. These results are obtained by noting that multiplying X by H
is equivalent to subtracting the column mean from each column of X;

X(I—%1m1;>
- X—%(ixl) 1,
[xi— (S0 x) e X — (0 x)

XH

We define the centered sample matrices as

X:=XH, Y:=YH, (3.1.8)
for greater conciseness. Writing XHX'" = XHHX " = XX yields the empirical estimate for C,,
(see Appendix A.7.3 for the proof that H is idempotent). Another interpretation is that the rows
of XH are the projection of the rows of X onto the space perpendicular to 1,,. Thus, following
the discussion of Appendix A.7.2 (in which it is proved that H has rank m — 1), the matrix XH
can have rank at most m — 1.

Finally, we define the Gram matrices of inner products between the centered observations above,
in the case where Fy and Fy are reproducing kernel Hilbert spaces with associated kernels!

IThe argument of the kernel specifies whether the kernel pertains to Fy or Fy.
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k(#; — #;) = x] x; and k (§; — ;) := y,; y;. Beginning with the uncentered Gram matrices?,

[ k(2 — %) k(%1 — Zn)

Kg,f)n = : . : =XTX
L k(fm_fl) (_‘m__‘m)
[ k(G —7) ... k(@ — Tm)

KW = : : =YY,
L km —31) - Kk (Um —m)

then Gram matrices for the centered variables are
K@ .—HK® H=X'X, K¥ —HKY H=Y'Y.

This result is taken from [78].

3.2 The normalised covariance and kernel covariance

In this section, we define the normalised covariance, and describe the properties of the kernelised
version. This quantity, in non-kernelised form, has been widely used in the partial least squares
method for regression [87], which is applied to problems in which the dimension of the regressors
Z; is greater than their number m, and the regressors are highly multicollinear (this situation is
often encountered in chemometrics). A kernelised version of the (highly robust) nonlinear iterative
partial least squares algorithm was derived in [76], although in this case only the variables in the
space X’ of regressors are mapped to an RKHS Fy, whereas in this study we also map the outputs
in Y to Fy3. It is noted in [76] that the feature spaces commonly used in kernel methods are of
high dimension, and the large ratio of the maximum to minimum eigenvalues in the associated
Gram matrices imply the feature space representations of the observations & to be highly collinear.
Thus, the partial least squares algorithm is well suited to being kernelised.

We begin by giving a general description of the normalised covariance, which applies whether or not
the feature spaces Fx, Fy are reproducing kernel Hilbert spaces. Let x and y be random vectors
in Fx and Fy, as defined in the previous section. We wish to find vectors a; € Fx : aiTai <
landB; € Fy : BZBi < 1 onto which x and y respectively project, such that the covariance ~;
between these projections is a stationary point with respect to a;, 3;. The following theorem yields
an equivalent eigenvalue problem.

Theorem 3.2.1 (Stationary points of the normalised covariance). The stationary points
;i with respect to o;3; of

cov (aTx,87y) : llalls, <1, [Blls, <1 (3.2.1)
are given by the solutions to the eigenvalue problem
w5
= . 3.2.2
[ cl, o B, | =7 B, (3.2.2)

The proof may be found in Appendix A.2.1. The eigenvalues are in pairs ++;, since for each
solution ay;, B; with eigenvalue 7; there is a solution a;, —3; with eigenvalue —v;. We replace Cg,
with its empirical estimate XHY " to obtain an empirical estimate of the stationary points;

[% gllgigj]:[Y}?XT XPEYTHIOB{}:%[ZZ] (3.2.3)

2The subscripts associated with the Gram matrices may at this point seem redundant, however they are required
to distinguish between different Gram matrices in later sections.

30f course, the use of the terms “input” and “output” are in our case meaningless, since we require only the
dependency between the two quantities.
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It is clear from the above expression that the eigenvectors for non-zero eigenvalues v; can be written
as linear combinations of the centered observations. We define the coefficient vectors c;, d; of these
linear combinations as

(this argument can be thought of as a specific instance of the representer theorem; see Scholkopf
et al. [77]).

In the remainder of this section, we consider only the case where Fx and Fy are reproducing
kernel Hilbert spaces, with the intent of demonstrating that the mazimum eigenvalue in (3.2.2)
may be used as a measure of independence. We make this replacement in (3.2.3), and premultiply
XT 0

0 YT
of (3.2.4)), to obtain the equivalent generalised eigenvalue problem in terms of the centered Gram

matrices;
0, FRREITe ] TR o Na] g
ROKD, 0 a7 0 kY|l >

both sides with the matrix (this does not alter the non-zero eigenvalues, in the light

The contrast function associated with this maximum eigenvalue is explicitly defined below.

Definition 3.2.2 (Kernel covariance). Let the feature spaces Fx and Fy be reproducing kernel
Hilbert spaces with associated kernels k (#; — &;) and & (¢; — ;). The kernel covariance is defined
as

J(Pzy, Fx,Fy) = sup _ |Exy[f(X)g(¥)] — Ex[f(X)] Ey 9],
fEFx,9E€EFy

where Fy := {feFx:lIfllz, <1}, and Fy = {g €Fy : llgllg, < 1}.

The empirical estimate of this quantity follows simply from the definition.

Definition 3.2.3 (Empirical kernel covariance). Given a training sample x,y drawn indepen-
dently and identically according to Py, the empirical estimate of the kernel covariance is given
by

jemp(xay:fé\fafy): ~Sup ~ 4
feFx,geFy M T

> F@a) — (Z f(a?z)> (Z g(z?z)) ‘ .
=1 =1
In particular, if we replace

f@ = D ak@-&)=> ax'x, (3.2.6)
=1 =1

m m
9@ = D dkG—-aq)=> dy 'y, (3.2.7)
=1 =1
we observe that the kernel covariance is simply the maximum stationary point with respect to c,d
of the normalised covariance in Theorem 3.2.1.
We now demonstrate the link between the kernel covariance and independence.

Theorem 3.2.4 (Kernel covariance and independence). Let f € F and g € 5, where f,?
are the absolutely bounded, continuous functions on the respective bounded sets X C R ) C R .
Then the kernel correlation J (Pgy, Fx, Fy) =0 if and only if X,y are independent.

The proof below is a classical result [32, 75].
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Proof. We first show that J (Pyy, Fx, Fy) = 0 if X,y are independent. This is quite simple;

J(Pry, Fa, Fy) = sup  |Egz[f(X)g()] — Ex[f(X)] Ey[9(V)]]
fEFx,9€Fy
= sup _ |E[f(X)]Ey[9(¥)] — Ex[f(®)] Ey[g(M]|
fEFx,9€Fy
= 0,

where the second step makes use of the independence of X,¥. We now prove the converse. To
simplify the discussion, we describe only the case n,,n, = 1, and write z,y without the vector
notation. Let [g1,¢2] C X and [r1,r2] C Y, on which the strictly positive functions u(z) € Fr and
v(y) € Fy are compactly supported. In this case, u'/!(z) € Fx and v'/!(y) € Fy for | > 1. Using
the limits

lim ul/l(w) = Toelqy,q0] and lim Ul/l(y) = Lyelr,ra]s

l—00 l—00

then if the supremum of the covariance over all functions in .7-'X, fy is zero, it follows that

lim |E, [ul/l(x)vl/l(y)] — Ex [ul/l(x)] E, [Ul/l(y)H =0,

[—o0

and thus
Puy (la1,¢2]; [r1,m2]) = Px([g1, ¢2]) Py ([r1,72]) -

Since the o-algebra over {[g1, 2] X [r1,72] : 1,92 € X, r1,72 € YV} constitute the Borel sets over
X x Y, J(Pgy, Fx,Fy) = 0 implies x,y are independent. O

We end by noting that the kernel covariance is generalised to more than two random variables in
Section 4.3. This more general expression is zero if and only if the random variables are pairwise
independent.

3.3 Concepts similar to the kernel covariance

The kernel covariance turns out to be similar in certain respects to a number of kernel algorithms,
for an appropriate choice of the spaces Fx,Fy. By contrast with ICA, however, these methods
seek to mazimise the kernel covariance through the correct choice of feature space elements. To
describe these similarities, we rewrite (3.2.5) in a more suitable form.

Lemma 3.3.1 (Kernel covariance: alternative form). The square of the empirical kernel

covariance (Definition 3.2.3) can be written

emp

Tomp (@, Y, Fr, Fy) = quvf%zf(,(f{zn

where the matrix norm is the mazimum eigenvalue.
The proof may be found in Appendix A.2.2. We now describe two examples which are demonstrated
to perform optimisation using this contrast.

The first algorithm related to the kernel covariance is kernel principal component analysis (kPCA)
[78, 79]. Given a data sample x of size m, kPCA entails diagonalising the covariance matrix C,,
in the feature space Fy. In other words, we solve

szA = AA:

where A contains the eigenvectors c; in its columns, and A is a diagonal matrix of eigenvalues.
Given the empirical estimate of the covariance matrix in (3.1.6) and (3.1.5), this is written?

XXTA=AA.

4The (m — 1)~! factor in the empirical covariance is absorbed into the eigenvalues.
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Each eigenvector a; with non-zero eigenvalue A; can be written as a linear combination of the
centered observations;

The eigenvalue problem is therefore rewritten

HK() He; = \;Hc;
for each entry A; in the diagonal of A, or equivalently ciTHKgrfanci = \;, where we know from
(3.3.1) that Hc; = c; for non-zero \;. We now define our second feature space Fy := R, with

kernel k(yk, yi) = yryi- If we consider the maximum eigenvalue Amax with associated eigenvector
c, we obtain

Amax = ¢ HK(®) He = HK;:),LHCCTHH
= [&@.ED.,

where the uncentered Gram matrix in Fy is K%’)n :=cc'. In other words, the largest eigenvalue

obtained in kernel PCA is found by mazimising the kernel covariance through the optimal choice
of m elements ¢; in Fy, with the constraint ||c;|| < 1 (an inequality is used to keep the constraint
set convex).

The second algorithm that relates to the kernel covariance is part of the spectral clustering/kernel
target alignment framework [26, 27]. Consider the case where we observe a data sample x of size
m, with a matrix of distances between these observations defined via a kernel as f{,(ﬁ)n In the case
of spectral clustering, we wish to assign each point in & to one of two classes, such that points in a
given class are similar to each other (as defined by the kernel), and different to points in the opposite
class. Writing as ¢ the vector containing the m proposed labels ¢; € {—1,1} : j € {1,...,m} for
each point in &, we would like to choose ¢ to ensure K%;n and cc' are similar. One measure of
similarity, the alignment, is written

) (Righce”)
QR(E) ecT) =
\/<I~(%2n, IN(%%@> {ccT,ccT)
(R e

my [, Kiih )

)

where the inner product used is given in Definition A.1.5 (the alignment is simply the angle between

two matrices: see Definition A.1.7). The numerator can be rewritten <I~(£,f2n,cc—r> = cTINC%Qn, c,

while the denominator is constant with respect to c. Since the optimisation over the discrete labels

is intractable, a relaxed problem is solved instead: we replace ¢ with ¢ € R™ such that ||¢/m]| < 1,
)

and find the ¢ that yields the maximum eigenvalue of éTIN{%m,é. Thus, we return to the kernel
PCA framework described earlier. The signs of the elements of ¢ provide an estimate of ¢, bearing
in mind that an offset should be added to € to account for imbalances in the proportion of points
in each class. Alternatively, we might be given the labels ¢, and wish to build up a kernel IN(%% to
maximise the alignment; further detail regarding this approach may be found in [26].

3.4 The canonical correlation

The results in this section are taken from [37, 55, 7]. In particular, a much more extensive discussion
of the properties of canonical correlation analysis and its kernelisation may be found in [55] and
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[7], and this section simply summarises the properties and derivations relevant to our requirements
for ICA. We again start by defining the canonical correlation in the general case, without reference
to its interpretation when Fy,Fy are reproducing kernel Hilbert spaces. The random vectors x
and y in Fy and Fy are defined in Section 3.1, as are the related variance and covariance matrices.
For a set of indices 7 € (1,...,s) (the determination of s will be addressed shortly), we would like
to find vectors e;, B; onto which x and y respectively project, such that the correlation p; between
these projections is a stationary point with respect to a;,3;. A related interpretation is that we
are attempting to find the linear combination of the elements of x that is the best “predictor”’, and
the linear combination of the y that is the most “predictable”’, subject to being uncorrelated with
other such linear combinations.

We define the linear variates a;, b; as respective linear combinations of the random variables x and
y;

ai=a (x—Ec(x), b; =8 (y—Ey(y)). (3.4.1)
The correlation between a; and b; is
Ex,y (a:b;
pi = COorr (ai, bl) % (342)
Ex (aj) Ey (b})
= i Cuyf; (3.4.3)

\/(aiTCmai) (B;nyﬁ).

These definitions lead to the following theorem.

Theorem 3.4.1 (Stationary points of the correlation between projections). The station-
ary points of (3.4.8) with respect to o, B are known as the canonical correlations, and are given by
the solutions to the generalised eigenvector problem

L sl a 1B
|:CzTy 0 8, Pi 0 C,, 8. | (3.4.4)

An alternative form is
o; C 0 o;
C = (1+p; v . 3.4.5
|:Bi:| ( p)[o ny:||:ﬂi:| ( )

The proof may be found in Appendix A.3.1. We next describe the correlation relations between
the canonical variates. This result is proved in Appendix A.3.2.

Theorem 3.4.2 (Correlation relations between canonical variates). Given C,,,C,, have
full rank, and writing

A::[a1 Oés] 812[31 Bs])

then
ATCeA=1, B'CyB=1 A'CpB=diag([p ... ps]),

where s = 2min {n,,n,} when Fx and Fy coincide with X and Y, and the solutions are in pairs
+p;. Note that the linear variates a;,b; and aj,b; corresponding to different roots p;,p; : j # i of
(8.4.3) are uncorrelated. The first canonical correlation is that for which p; is largest.

Replacing C,y = XHY', C,, = XHX", and Cyy = YHY ', it is again clear that the projection
directions for non-zero p; can be written as linear combinations of the centered observations;

o = XHCZ', ,Bl = YHdl

We next introduce a theorem taken from [37], which will be useful when describing the behaviour
of the canonical variates in high dimensional spaces.
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Theorem 3.4.3 (Geometric interpretation of canonical variates). Let the sample matrices
X,Y be defined as in (3.1.5), and let the vectors a;, b; be the m empirical estimates of the linear
variates in (3.4.1) for this sample. Then p;a; is the projection of b; onto the column space of
XT, and p;b; is the projection of a; onto the column space of YT, where X and Y represent the
centered sample matrices, as defined in (3.1.8).

The proof of this theorem is in Appendix A.3.3.

We now discuss the properties of the canonical correlation when Fy and Fy are reproducing
kernel Hilbert spaces. This kernelisation has been investigated by [7, 83, 55, 56, 62]. Following the
procedure used to derive (3.2.5) in Section 3.2, we obtain an expression for the kernel canonical
correlations (KCC) in terms of the Gram matrices;

~( ) 2
0 KOKD e (K)o ci
= (1) 77 (2) { 4 ] = p; 2 [ 4 ] (3.4.6)
KUK, 0 i 0 (K% ) i

By analogy with Definition 3.2.2, we can define a candidate contrast function on the basis of (3.4.4).

Definition 3.4.4 (First kernel canonical correlation). Let the feature spaces Fx and Fy
be reproducing kernel Hilbert spaces with associated kernels k (&; — &;) and k (¢; — ¢;). The first
kernel canonical correlation is defined as

I (Pzy, Fx,Fy) = sup  corr (£(%),9(¥)))

fE€EFx,9EFy

. E(/()9(§)) — E: (/(9) Es (93)

up .
serx 987\ [E: (£2(3)) — B3 (£(%)y/E5 (62(7) — E} (9(7)

As in the case of the kernel covariance, we may specify an empirical estimate Jemp (2, Y, Fx, Fy) 1=
max; (p;) similar to that in Definition 3.2.3, and use (3.2.6) and (3.2.7) to recover (3.4.6). It is
pointed out in [7] that the first canonical correlation is very similar to the function maximised by
the alternating conditional expectation algorithm in [15], although in the latter case f(#) may be
replaced with a linear combination of several functions of Z.

We note that the numerator of the contrast in Definition 3.4.4 is the same as that in Definition
3.2.2, which suggests that the first kernel canonical correlation might also be a useful contrast
function; this was proposed by Bach and Jordan [7]. A problem with using the kernel canonical
correlation in the form described above is discussed in both [55] and [7]; we now describe this
problem, and the two main ways in which it has been solved.

Lemma 3.4.5 (Without regularisation, the kernel canonical correlation is independent

of the data). Suppose that the Gram matrices Kg,f)n, K( Y). have full rank. The 2 (m — 1) non-zero
solutions to (3.4.6) are then p; = 1, regardless of z.

The proof may be found in Appendix A.6.1. This result does not come as a surprise, given Theorem
3.4.3: when the respective dimensions of Fyx and Fy are much greater than m (which is the case
when they are RKHSs associated with the Gaussian or Laplace kernel) then the rank of both X
and Y is m — 1. In other words, the columns of X and YT both span R™ \ {1}, and the
projection of b; onto the column space of X7 (and of a; onto the column space of YT) gives b;
(resp. a;) exactly for all i.

This argument is used in [7] to justify a regularised contrast function,

dr (Pzy, Fx,Fy) ==  sup cov (/(),9(9)) 73 (3.4.7)

RISy (var (£ () + sl ) (var (o 30 + ol )
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although this requires an additional parameter x, which complicates the model selection problem.
It is further stated in [7] that this regularisation is responsible for ensuring the consistency of
the estimate obtained from the observations, with respect to the regularised population quantity.
Comparing with the definition of the kernel covariance (Definition 3.2.2), we note that the KC
differs from the KCC in that the former does not contain the variance terms var (f (X)) , var (g ()).
In the light of the derivation of Theorem 3.2.4, however, which relies only on the covariance in the
numerator of both the KC and KCC, it seems that both contrasts ought to perform similarly when
used to measure independence; this observation is borne out in our experimental results (Section
6).

An alternative solution to the problem described in Lemma 3.4.5 is given in [55], in which the
projection directions used to compute the canonical correlations are expressed in terms of a more
restricted set of basis functions, rather than the respective subspaces of Fx and Fy spanned by
the entire series of mapped observations. These basis functions can be chosen using kernel PCA,
for instance.
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Chapter 4

Approximations to the mutual
information

In this chapter, we investigate the mutual information as a contrast function for measuring inde-
pendence. We begin in Section 4.1 by introducing the mutual information between two multivariate
Gaussian random variables, for which a closed form solution exists. We then describe the discrete
approximation to the mutual information between two continuous, univariate random variables,
and discuss how it relates to the continuous mutual information. Next, we show that the discrete
mutual information may be approximated by the Gaussian mutual information near independence.
A more general discussion of the basic principles of information theory may be found in Appendix
A8.

In Section 4.2, we begin by deriving a Parzen window estimate of the Gaussian mutual information
between two random variables. Next, we give an upper bound on this quantity, which defines the
kernel mutual information (KMI). We show this is zero if and only if the two random variables are
independent. Next, we give more detail on the computation of certain data dependent normalising
factors used in the KMI. Finally, we demonstrate that the regularised kernel generalised variance
(KGV) proposed in [7] is also an upper bound on the Gaussian mutual information, but is looser
than the KMI. A comparison with the original KGV proof is given in Appendix A.6.2.

In Section 4.3, we derive generalisations of the KC and KMI to more than two univariate random
variables. We demonstrate that both the KC and KMI are zero if and only if the associated random
variables are pairwise independent, which makes them suited for application as contrast functions
in ICA.

4.1 Mutual information approximated by multivariate Gaus-
sian random variables

4.1.1 The mutual information between two multivariate Gaussian ran-
dom variables

We begin by introducing the Gaussian mutual information, and its relation with the canonical
correlation. A more detailed and general discussion of these principles may be found in [9]. If
xc, Yo are Gaussian random variables! in R'= Rlv respectively, with mean vector [, u,] and

IThe subscripts G are used to emphasise that xg,yg are Gaussian; this notation is introduced here to make the
reasoning clearer in subsequent sections.

27
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covariance matrix C, then the mutual information between them can be written

1 C|
) | 1, el 4.1.1
(XnyG) 2 Og<|czz||cyy|> ’ ( )

using Definition A.8.13 and Theorem A.8.14 in Appendix A.8. A more useful representation,
however, is given in the following theorem from [6, 7], which is proved in Appendix A.3.4.

Theorem 4.1.1 (Gaussian mutual information as a function of canonical correlations).
The mutual information of the Gaussian random variables Xg,ya may be written

min(lz,ly)

1
I'(xa;¥a) = —5 log I -], (4.1.2)

i=1

where the p; are the canonical correlations, given by the stationary points in (3.4.4).

We next simplify the ratio of determinants in (4.1.1);

L e
|C| _ Cyz Cyy (4.1.3)
|Coal [Cyyl |Coal [Cyyl h
|Cmc| |ny - CWC;,;CMA (4_1_4)
Caal |Cyyl
= |[I-C,,;C).C,LCqyl. (4.1.5)

We may rearrange this slightly, to obtain an expression that will be shown to possess useful math-
ematical properties in the subsequent discussion. Thus,

C _ _ —1/2 ~—1/2 _
Wllcyy\ = |I - nylcyzcmlcxy| = ‘I - ny/ ny/ nycmlcxy
= |ew”||eil’ - cnPenciic,| = I-D'D

)

where D = C;,;/*C,,Cyy />

4.1.2 Mutual information between discretised univariate parameters

In this section, we describe a discretised approximation to the mutual information between two
continuous, univariate random variables x € X and y € ), where X and ) are both bounded
intervals on R (in other words, n, = n, = 1). All results and proofs in this section are taken
from [7]. Consider a grid of size I, x [, over the range of  and y. Let the indices 4, j denote the
point (g;,7;) € X x Y on this grid, and let ¢ = (¢1,...,q,),7 = (7‘1, e ,rly) be the complete
sequences of grid coordinates. Assume, further, that the spacing between points along the z and
y axes is respectively A, and A,. We define two random multinomial random variables X,y with
a distribution Py (¢, j) over the grid (we write the complete I, x I, matrix of such probabilities as
P,,); this corresponds to the probability that x,y is within a small interval surrounding the grid

position g;,r;, so
qi+A, ri+Ay
[ @i e = [
qi r

i )
¢Gi+Ae  pri+Ay
Pgid) = [ [ fu(npdedy.
qi rj

Thus Py g (4, j) is a discretisation of f, ,. Finally, we denote as p, the vector for which (p,), = Px(i),
with a similar p, definition. The mutual information between X and y is defined as

l. ly so (1,7
I(%9) = Py (i,j)log (%) !

i=1 j=1 x

Py (4)
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it is well known that I(x,y) represents the upper bound on I (X;y) as the discretisation becomes
infinitely fine [25]. We may always write Py (4, j) = Px (¢) Py (j) (1 + €;,;) for an appropriate choice
of €; 7, where ¢; ; is small near independence. Making this substitution in the above yields

la

ly
HCUEES S)NACLAOEN (41.6)

i=1 j=1

where the proof may be found in Appendix A.4.

4.1.3 Multivariate Gaussian approximation to the discretised mutual
information

The results in this section are again from [7], although the proof of (4.1.13) below is novel. We
begin by defining an equivalent multidimensional representation X,y of X,y in the previous section,
where x € R and y € Rlv, such that & = i is equivalent to (x); = 1 and (X);. 2 = 0. To be
precise, we define the functions

mi) ={ g S =] g TSt
such that -
(i) = B () = [ mi(0fa)de = i (1)
and

ey (5095 0)) = Euy (0, 0),) = [ [ walo)ij )y (o, )dady = Py i.5).
A specific instance of the second formula is when y = x, and fy y(z,y) = 5 (y)fx(x). Then
E (s ) =B ((667),,) = [ [ wiohns )fu(o)5a)dady
_ P =y
o 0  otherwise

In summary,

EX,)’ (X yT) = Pmy (417)
EX) = p. (4.1.8)
E.(xx') = D, (4.1.9)
where D, = diag (p..). Using these results, it is possible to define the covariances
Cy =Ey(xy7) —E<XE () = P.y—p.p,, (4.1.10)
Cor = Ec(xx7) — Ex(x "= D,-p.p,, (4.1.11)

) Ex (%)
Cy =E (ny) -E (¥)Ey (Y)T = Dy,— PyP;—- (4.1.12)

Using the above definitions, we may define Gaussian random variables xg,yg with the same co-
variance structure as x,y, and with mutual information given by (4.1.1). We prove in Appendix
A.5.1 that the mutual information for this Gaussian case is

1 T _
[(XG§YG) = 3 log ( Ily - (Pacy - PxpyT) D, ! (Pacy - pacpyT) Dy ID > (4-1-13)

which may be approximated by

I(xg;y6) =~ 5 (4.1.14)

N | —
0
x>
—~
~
~
o
<
—
<
~—
M
<.
<.
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(Appendix A.5.2). The latter expression is identical to the approximate mutual information in
(4.1.6) of the discretised approximation X,y to x,y. On this basis, it is possible to show that
the multivariate Gaussian mutual information in (4.1.14) is a good approximation to the mutual
information between continuous, univariate variables with arbitrary probability distribution.

4.2 Kernel density estimate of the discretised mutual infor-
mation

In this section, we describe a kernel density estimate of the approximate mutual information in
(4.1.13). Before proceeding, however, we motivate this discussion by reviewing the Parzen window
estimate and its properties, as discussed in [80, 31] (this discussion pertains to the general case
of multivariate X, although our application requires only univariate random variables). Given a
sample x of size m, each point Z; of which is assumed generated i.i.d. according to some unknown
distribution with density fz, the associated Parzen window estimate of this density is written?

i) = =S k(@ —1).

m

The kernel function k (#; — Z) must be a legitimate probability density function, in that it should
be correctly normalised,

/ k(%) di = 1, (4.2.1)
X

and k(%) > 0. We may rescale the kernel according to V%k (i), where the term V, is needed

Ox
to preserve (4.2.1)3. The following theorem then describes the convergence of the Parzen window
estimate to the true probability density.

Theorem 4.2.1 (Convergence of the Parzen window estimate). Let k,,,(Z) be the Parzen
window chosen for a sample x of size m, where the window size is chosen by varying oy ., with
increasing m, with associated normalisation constant V,, ,,. The density estimate /f\g(f) converges
to fz in the mean square sense as m — 0o, subject to the kernel k,,,(Z) being a legitimate probability
density, and to

o sup; ky, (%) < oo,

Hm ) o0 [T; i k(%) = 0,

limy, 00 Vem =0,

lim 00 MV m = 00.

The last two properties in the above definition give an indication of how one might choose the
kernel size as a function of the number of observed samples. Common choices are Vy m = V,.1/v/m
and V, , =V, 1/logm. This method requires an initial parameter choice for a particular sample
size (written V; 1 in this case, in a slight abuse of index notation), which can be obtained by cross
validation.

2The Parzen window is deliberately written in the same way as the RKHS kernel in Section 3.2, since it is in fact
the same function; this link is described in detail in the present section.

3Here we scale each component z; of & by the same factor o.
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4.2.1 Exact expression for the kernel density estimate

We return now to the problem described in Sections 4.1.2 and 4.1.3. We are given a sample of
length m, z := ((z1,%1) ,-. -, (Tm,Ym)), from Py ,. The kernel density (Parzen window) estimates
are then

L) = Y k@), K== kw-v),
=1 =1

~

1 m
foy(my) = —> k(@ —2)k-v),
=1

where the kernel argument is used to specify which kernel is used, to simplify notation. We require
approximations to the terms in the Gaussian mutual information, as described in (4.1.13). We
therefore define the vectors p,, Py, and the matrix f’my, using the expectations in (4.1.7)-(4.1.9)
computed with these kernel expressions;

Ey (Xy) = Puy, (4.2.2)
E.(X) = Pu, (4.2.3)
E (xx") = D,. (4.2.4)

In the limit where A;, A, are small (and thus, by implication, I, > m, [, > m, o, > A,, and
or > Ay, where o, defines the kernel size), we make the approximations

~ ~ 1 gi+A, M A, m
EX((x)i):Pﬁ(z):E/ Sk =) de s 253 kw0,
i =1 =1

E Y W ﬂ Wi k — {; .: y
Ex((xxT)m)%{ m21_10(5€l qi) i=j

otherwise

and

~ ~ 1 gi+AL  prij+A, M
Exy (x97),,) = Psy (i,) —/ / S k(@ —2) k(g — y) dody

m qi i =1
A A, &
~ myzk(ﬂfl—qz')k(yz—rj)-
=1

Finally, the normalisation condition (4.2.1) becomes

and therefore
1 - 1 i
A ~ Z k(gi —x) and A Z k(rj—y). (4.2.5)

i=1 v j=1

Before proceeding further, we define two matrices of kernel inner products to simplify our notation.
Namely,

k(gp —x1) ... k(gn—xm) kE(ri —y1) ... k(ri—ym)
Kl(;) = h , KWY .=

kg, —z1) ... kg, —zm) k(ri, —y1) .. k(r, —ym)
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where we write the above in such a manner as to indicate [, > m and [, > m. The first subscript
specifies whether the grid (g and r) or the sample (x and y) is used in the rows of the kernel
matrix, and the second subscript whether the grid or sample is used in the columns. By analogy,
we may also define the matrices Kglx), K,(;”)n, Kl(f’), Kgf{)n Two useful results that follow from (4.2.5)

are
1

(K(“”))T 1, ~ -1, and (K@))T 1, ~ —1

lm le A, ™ Im Ly A, m-

We now redefine the estimates of the matrices used to compute the Gaussian mutual information.
These are

R (Kl(iff (k) — K1) (K%)T> :

‘ g

D, ~ —Zdiag (Kl(fn)lm) = %idiag (Kl(;) (Kl(:;))T 11z> ;

3

and ,
LA T
D, ~ —diag (K}fn) (xi2) 1,y> .

Substituting these terms into (4.1.13), it can be seen that the factors A, A, /m, A2 /m and AZ /m
cancel. Furthermore, the matrices being inverted have full rank, as required. Comparing (4.1.13)
with (4.1.5), we may proceed by analogy with (4.1.2), and (3.4.3), using the proof strategy in
Appendix A.3.4, to obtain the kernel density approximation to the discretised mutual information,

min(lz,ly)
~ 1 R
I(%9) = —log (1-47) ), (4.2.6)
i=1
where
¢l (P — pabl ) d;
pi = — ( iy Ax Ay)l (4.2.7)
¢/ D,é;d] D,d;
T A
(32 e (K02 (1) - 2Kl (x12) ) &
~ (4.2.8)
/B eTaiag (K(2)1,) a7 (42) ding (K(7/1,)
T ™\ .
o7 (xiz) (x2) - 3 (x2) ) a
- . (4.2.9)

T “ T N
\/ ¢] diag <K§j§3 (i) 1,2> ¢; d] diag <K§fn> (xi2) 1,y> 4

The form of (4.2.8) might mislead us into supposing that the expressions in the numerator and
denominator are expressible as Riemann integrals in the limit as the grid becomes increasingly
fine. This is not correct, however, since the solutions ¢;, d; are not constant at a given set of grid
points when new grid points are added. In the next section, we derive an upper bound for p; that
is independent of the discretisation.

4.2.2 An upper bound on the kernel density estimate

To compute an upper bound on the kernel density estimate of the discretised mutual information,
we begin with the following theorem.
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Theorem 4.2.2 (Effect on norm of taking sums of rows). If B is a symmetric n X n matriz
with positive elements b; ;, and c an arbitrary n X 1 vector with elements c;, then

c¢'diag (B1,)c > ¢ ' Be.

The proof is in Appendix A.7.1. We now apply this result to the computation of an upper bound
on p; in (4.2.8). We define the quantities

" m
Vg 1= min Z k(z1,4;5), Uy 1= min Z k(yi, ;) - (4.2.10)
JE{llm} =1 ]E{].ly} i
Then
vetl K& < vge] diag (Kl(f)lzm) &
Vg . .
SN i
A%Z?;lk(lh,wz) 0
<& : : ¢;
0 A%E;Lk(%awl)

-
~ & diag (Kg,g (x(2) 1p>
where both the second and final lines use (4.2.5). Defining
T ™ .
e (Kl (x02) - axinag (x2) ) &

q; = , (4.2.11)
(vary)t &l KD ed KLY d,

we find 4; > p; (this new quantity is a normalised covariance, and not a correlation, hence the
notation).

We next find an upper bound v; on 4; that is independent of the discretisation, using the geometric
properties of the RKHS interpretation of (4.2.11). We define the representations in Fx and Fy of
the grid points ¢ = (¢1,.-.,q,),T = (7“1, .. ,rly) as

QZ[(h ..oq ], R:[rl S 8 ]

Using the feature space representations X,Y of x,y defined in (3.1.5), and the definition of the
centering matrix H in (3.1.7), we may rewrite (4.2.11) as

N T ~
5= ¢;Q"XH(YH) Rd; ‘ (4212)
et (€7 Q70e) (47 RTRA)

The following theorem is proved in Appendix A.2.3.

Theorem 4.2.3 (Eigenvalue problem for normalised covariance with restricted projec-
tions). Let X := XH and Y := YH be the centered matrices in their respective feature spaces
of the points in z. The stationary points of 4; in (4.2.12) with respect to éi,&i are given by the
solutions to the eigenvalue problem

P, O 0 XY Q; 1o [ oy
9 S N<a N 4.2.13
[ 0 PR] YXT 0 ][Bz:| (ory) |:Bz:| ( )
where R .
a; =Qé¢;, B, =Rd,, (4.2.14)

and we define the projection operators

P,=Q(Q'Q) Q", Px=R(R'R) R.
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We see immediately that problem described in (4.2.13) is very similar to the normalised covariance
problem in (3.2.3), but with the additional requirement that the solutions be projected onto the
basis spanned by the columns of [ QT RT ]T, as well as an added scaling factor®. In particular,
the non-zero solutions ~; of (3.2.3) enumerate the (potentially) non-zero solutions ¥; of (4.2.13),
where we bear in mind that the projection operations can increase the nullspace.

Using this insight, we can prove that |¥;| < |v;| for all 4; with a corresponding non-zero ; (the
eigenvalues obtained as the solutions to both problems come in pairs, with equal value and opposite
sign, which is why it is necessary to take the absolute value). We begin by decomposing the solutions
of (3.2.3) as

ai=ait+a;, B;=p6;+08,

where ;| is the component of a; perpendicular to the column space of Q, and 3; | the component
of B, perpendicular to the column space of R. In addition, we write

X:PQX-FXL, ?:PR?‘{_?L-

The system of equations in (3.2.3) then becomes

[N

(PQ)NC + Xl) YT (BZ + Bi,L) (vavy)
(PR? + ?L) XT (i +ai1) = (Voiy)

vi (@ + 01 )

Vi (Bz + /Bi,L) (219

[N

Considering only those components in the span of the columns of Q and R, we obtain

PoXY B, +PoXYTB, | = (vavy)® vitu,
PR?XTai + PR?xTai,L = (Vw’/y)% 'YiBi;
or
o~ A~ ~ 1
PQXYT,Bl = (V:v’/y)E (’YZ - 91) ai)
~ o~ 1 ~
PrYXTa; = (Vmuy) 2 (vi — 0:) By,

where (mey)% ba; = PQ)ESNKT;BZ»,L and (le/y)% Oiﬁi = PR?)ZTO%L We conclude that the
solutions to (4.2.13) can be written 4; = ; — ;. To complete the proof, we must take into account
the geometric properties of the feature spaces Fy, Fy. In particular, when the reproducing kernel
Hilbert space is induced by a Gaussian or Laplace kernel, the angle between any two vectors in
this RKHS must be less than 7/2, and all vectors are of equal magnitude and located in the
positive quadrant. Thus PoXY T8, and PRYX ;1 have the same sign as v;, and || < |y
as required.

Drawing the results in this section together, we see that
[Ta-)<IT-3) <[TQ-4),
and

2 log (H (1-7,»2)) > L log (H (1—@3)) > —3log (H (1—ﬁ3>>-

(2

(3

K3
This motivates us to introduce a new contrast function, as described in the following definition,

where we use the Gram matrix expression in (3.2.5) for the kernel normalised covariance.

Definition 4.2.4 (The kernel mutual information). Let z be a sample of size m consisting
of points x,y, and let X, Y be the corresponding feature space representations. Then an upper

1
41t is therefore implied that the scaling factor (vsvy)?2 is in this case included in the computation of v;, as will
be made explicit in (4.2.15) below.
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bound on the kernel density approximation to the mutual information near independence is given
by the kernel mutual information, defined as

(3

M(m7y>-7:X7‘7:y) = _%log (H (1_712)> )

where ; are the non-zero solutions to

0 K@ @) s 4 K@ 0 c
() () mmBmm |: dz :| — (Vm’/y) 2, mm ) |: dz :|
Kmmem 0 i 0 Kmm i

Using the fact that f(%}n and IN(%{zn are positive semidefinite, we may again proceed by analogy
with (3.4.4), (4.1.1), and (4.1.2), using the proof strategy in Appendix A.3.4, to obtain a more
convenient form for the above;

(very)? Kiih  KWnKW,
K Kion  (vary)* Kt

3 K@ I R@
(VmVy) mm (Vm’/y) mm

M(x,y, Fx,Fy) = —5log

1 ~ )
= —§log (‘I_(Vw’/y)KgnangryLGD

The KMI also inherits the following important property from the kernel covariance.

Theorem 4.2.5 (The population KMI is zero at independence). The random variables x,y
are independent if and only if M (Pyy, Fx, Fy) = 0.

This theorem follows from Theorem 3.2.4, bearing in mind that the kernel correlation is the largest
eigenvalue 7;.

4.2.3 Practical choice of v, and v,

In section 4.2.2, our upper bound on the mutual information incorporated the constants v, and vy,
which are defined in (4.2.10). These cannot readily be obtained in practice, however, so we now
propose more easily computable replacements. We base our reasoning on the fact that 7; is an
upper bound on %; regardless of the grid spacing. Hence, when the grid is very fine with respect
to the spacing of the observations in z, then only those coefficients of ¢; and d; corresponding to
the grid points nearest to the samples ¢,y are non-zero (assuming that the kernel is continuous).

We now state this idea more formally. Assuming the grid is sufficiently fine, we can define q :=
(¢1,...,Gm) such that ¢ = argmingeq |2; — ¢| (we will have §; # ¢; for i # j as long as the spacing
in the grid is much smaller than the spacing between the samples x), with an analogous definition

for 7. We also define the Gram matrices Iu(%zn, Iu(%’zn on these grid points, and vectors ¢;,d; as

the entries in ¢;, &i corresponding to g and 7. Recall that the upper bound ; on 7; is written
TR, hd,
i 1= i L . (4.2.16)
(Vary)® \JeT R he:d] Ki¥hd,

Thus, when g, are closely spaced, it follows® that

5The reader is reminded that 7; is a mazimum over the choice of &; and Eli, and therefore approaches the upper
bound +v; as ¢ and # approach « and y.
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¢ KGLH (KW, d;
(o) (7K ne) " (k)

where we replace ¢; = He; and ai = Hd; to obtain the centered Gram matrices in (4.2.16). In
the light of the above, we do not need to compute the minima in (4.2.10) over the entire grid, but
merely over those grid points g, 7 closest to the observations. Specifically, if we define the new
constants

Up = min Zk (@1, ;) = min Zk (@1, 4;) , (4.2.17)
]E{lm} =1 ]E{lm} =1

Uy = min Zk: (y,y;) min Zk: (@1,75), (4.2.18)
]E{lm} =1 ]E{lm} 1=1

then the leftmost term in the denominator of (4.2.8) may be lower bounded by

vt KiE,6 < ] diag (K2 1n ) &

< ¢ (diag (f(ggznlm))z &
(S k(@ =) (S b (2 — o)
< & diag : é;
(S k(@ —m)) (S b (= wm))
Aimzlrllk(lh,wl) 0
< ¢ ; ; &
0 s A ey k(@ )

.
_ & diag (K;;;g (k) 1p)

We may therefore replace the constants v, v, in Definition 4.2.4 with the new constants in (4.2.17)
and (4.2.18).

We now briefly return to the alternative kernel density estimate of [70], as described in Section
2.2.4. Aside from the fact that we approximate the mutual information, rather than the entropy,
an important difference in our respective approaches is that our contrast is computed in the limit of
infinitely small grid size, which removes the need for binning. Thus, we retain our original kernel,
rather than using a spline kernel in all cases. This allows us greater freedom to choose a kernel
density appropriate to the characteristics of the sources.

4.2.4 An alternative upper bound on the kernel density estimate

Bach and Jordan [7] propose two related quantities as contrast functions for ICA: the kernel
canonical correlation (KCC), as discussed in Section 3.4, and the kernel generalised variance (KGV).
In this section, we demonstrate that the latter quantity may be derived by finding an upper bound
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on (4.2.8). This derivation, which is based on the kernel density estimate, takes a completely
different approach to the proof in [7], which uses a limit as the kernel becomes infinitely small. In
any event, there may be some problems with the limiting argument in [7]; see Appendix A.6.2 for
further discussion.

We begin with the simpler case of the unregularised KGV®. The kernel generalised variance is given
by

N(mvy)}—X;}—y) :_%log (H (1_p3)> ’

(3

where in this case p; are the stationary points with respect to c¢; and d; of

TRE) R0 g
pi = Ci 2mm mm (4.2.19)

(7 (&))" (a7 () )

given by the generalised eigenvalue solutions of (3.4.6). Starting with the expression for p; in
(4.2.9), we use Theorem 4.2.2 to show

T T
qKE (KD) & < o diag <Kg;;> (x(2) 1,1) (4:2.20)
Thus, replacing the right hand term with the left hand term in the denominator of (4.2.9) (and
likewise for the term in d;), we get

e (K (x2) - 3 (x2) ) &

Im Im

T N2 /. T \/2
(ermin (x62) &) (arsiz) (xi2) )
where p; > p;. We then express this solution p; as a projection onto the respective grid matrices
Q and R as in Theorem 4.2.3, and use similar reasoning to the previous section to prove |p;| > |p;l
for p; in (4.2.19). Although the contrast function induced by the stationary points of (4.2.21) is

never used in practice, it is nonetheless of interest to compute it: recalling the result of Lemma
3.4.5, we find

pi = (4.2.21)

1 m—1
=—=1 1 x 1-1) ] =o0.
N(:B,y,fx,fy) 2 Og< Z];[1( )> &
In other words, the approximation made in (4.2.20) is too loose: this is a helpful result, however, in
that it provides a guideline to how loosely we may bound the terms in the denominator of (4.2.8)
while still obtaining an applicable empirical contrast function. It follows that the regularised kernel
canonical correlations (3.4.7), which are used to compute the regularised empirical estimate of the
KGV [7], constitute a tighter approximation than that in (4.2.20). In particular, if we make the
replacement

T T
¢ ding (K;,fg (x(2) 1>;» (61Kl(fn) (k) +e2ymK,<;v>)

where 681 >0, 65 > 0, and 6, + 0> < 1, we recover an expression which, for correct choice of 61, 65,
yields the regularised KGV. We therefore expect the performance of both the KGV and KMI to
be very similar when used for ICA: this is indeed the case, as seen in Section 6.

4.3 Multivariate KC and KMI

We now describe how our contrast function may be generalised to more than two random variables.
Let us define the continuous univariate random variables xq,...,x, on A, ..., X, (which are as-
sumed here to be bounded intervals in R), and let z := {x1,...,x,} be an i.i.d. sample of size

6We emphasise that only the regularised empirical estimate of the KGV is used in practice [7]-
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m from the joint distribution Py, .. ... We also define the associated feature spaces Fx,,...,Fx,,
each with its corresponding kernel (as in the 2 class case, the kernels may be different, and are
identified by their argument).

We begin with a generalisation of the concept of normalised covariance. The derivation takes a
similar form to that in [7, Appendix A.3], although Bach and Jordan deal with canonical correla-
tions rather than normalised covariances, which changes the proof strategy in some respects. Let
Qay,...,a, be the vectors of unit magnitude in their respective feature spaces (as in the 2-variable
normalised covariance), onto which the feature space vectors xy, . .., x,, respectively project. Defin-
ing the 7, jth covariance between these projections as

Yij = Ex;x; (a;rxiijaj) — Ey, (a;rxi) Ex, (a;-rxj)
= aZTCijaj,
then the eigenvalues A of
0 y(1)2 . Yin ay
Y21 e Y2
[ a, ay ... ap ] " @2 1 _ )\ (4.3.1)
Ynl Yn2 .- 0 Gn

are all zero if and only if y;; = 0 for all 7, j; in other words, each pair of projections is uncorrelated.
If the feature spaces are sufficiently rich RKHSs, this implies that the variables are pairwise inde-
pendent using Theorem 3.2.47 . In fact, we need only determine that the eigenvalue with the largest
magnitude is zero, which is less costly to compute (we are not guaranteed that this eigenvalue is
positive). This gives us the multivariate contrast

j(le,...,xnanla---ann) = m]ax(|)\]|),
= |>\max|

It is instructive to compare with the KCC-based contrast for more than two variables, which uses
the smallest eigenvalue of a matrix of correlations (with diagonal terms equal to one, rather than
zero), where this correlation matrix has only positive eigenvalues.

This generalisation of the covariance can be rewritten in a form that more closely resembles the
normalised covariance expression in (3.2.2), by rewriting (4.3.1) as the equivalent eigenvalue prob-
lem

0 Cl2 e Cln a0
T - T Cgl 0 e an 202

[ a0y A0y ... GpOL, ] : : . : : =\
Cnl an e 0 A Oy,

the eigenvectors retain unit norm due to the components a; having unit norm. We may find an
empirical estimate of this quantity by writing each projection vector as a;c] = ¢; ;j X;, where
X; contains the observations x; in its columns; this follows from the same argument that was
used to obtain (3.2.3) from (3.2.2) in Section 3.2. Making this replacement, and using the same
reasoning that was applied in deriving (3.2.5), we write the above in terms of Gram matrices of
the observations, giving

0 KKy, ... KiK, ][ ey Ki 0 ... 0 c1
K2K1 0 A KQKn C2 5 0 K2 A 0 C2j
Rnﬁl ﬁnﬁg .. 0 Cn,j 0 0 - Rn Cn,j

7We require only pairwise independence to recover the independent sources in the case of linear ICA: see Theorem
2.1.2.
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where I~{, = XZT)Z@ = HK;H; the matrix X, represents the centered feature space representation
of the sample x;, and K; the uncentered Gram matrix of x;.

We now describe a generalisation of the kernel mutual information to more than two variables. By
analogy with the 2-variable case in Definition 4.2.4, we propose the contrast

M(Z,fxl,...,}'xn)::—%logH(1+5\j), (4.3.3)
j=1

where v, \; = )A;, and

Vs min _ v,, where

ie{l,...,n}

m
Ve, = _ min > k(@ig,wig);
]E{l...m} =1

this additional scaling factor will be justified below, on both numerical and theoretical grounds.
For (4.3.3) to be defined, it is necessary that 1+ A; > 0 for all j, which is true near independence®
. For this to be a reasonable choice of contrast function, we wish it to be zero if and only if all
pairs of feature space projections are uncorrelated (i.e., the kernel correlation must indicate at
this point that the variables are independent). This may be shown via a minor adaptation of the
corresponding proof in [7, Appendix A.2]. First, we may rewrite each factor S\j + 1in (4.3.3) as
the solution to

T IRVPRY? L aRPRY T a d
V1KY K2 I .. vIIKYPKY? d,; s d

. . . . . :(Aj+1) . ,
VRIPRY? L ORPRY? I d,; d;

where Kg/zci,j = d; j, bearing in mind that the determinant of the left hand matrix is the product
of these eigenvalues. Since the left hand matrix is symmetric, the trace is equal to the sum of the
eigenvalues (Theorem A.1.28). This means

% (Xj + 1) = mn. (4.3.4)

Assuming without loss of generality that the the mnth eigenvalue corresponds to S\max = Amax/Vz,
we rewrite (4.3.3) as

—%logﬁ (1 +5\j)

mn—1

—% 108(1 4 Amax) — %log ]1;[1 (1 + 5\])

=1
1 y mn—1"20 1 y
= 3 log(1 + Amax) — 5 .E: —7 log (1 + )\j)
1 mn — 1 1 et
> —Zlog(l + Xay) — 1 §j(1 X-)
- 2 08(1 + Amax) 2 &\ mn—1 o A

1 v mn — 1 mn—S\max—l
= ——log(l max) — 1 —_— ],
2og( + Amax) 5 0g< — )

8This is our first reason for introducing the factor vy, since it generally causes ‘;\]‘ < |Ajl, which results in

M (z,}'xl e ,fxn) being defined further from independence. This is not the only such scaling factor: we provide
further justification in due course.
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where the penultimate line uses Jensen’s inequality, and we substitute (4.3.4) in the final line. The

v

function —1/2 (mn — 1) log ((mn — Amax — 1)/(mn — 1)) is convex with respect t0 Amax, and its

tangent at :\max +1=1is :\max /2. Since a convex function is always greater than or equal to its
tangent, we find

1
—Zlog(1 + Xmax) —
5 108(1+ Amax) 2 mn — 1

v mn — 1 <mn—5\max—
log 5

1 1 . Amax
) Z —5 log(l + )\max) + —a.

The left hand side is convex, and has a global minimum at S\max = 0. It follows that (4.3.3) is
likewise minimised at M (2, Fxy,. .., Fx,) = 0 (at which point A\; + 1 =1 for all j), and that this
corresponds to the point at which all pairs of covariances are zero, using (4.3.1).

We now briefly outline how the contrast function in (4.3.3) relates to the KL divergence (Def-
inition A.8.11 in Section A.8), which is zero if and only if the random variables are pairwise
independent [24]. In the case of a Gaussian random vector xg, which can be segmented as
x5 = [ Xgm .. xg’n ], the KL divergence between the joint distribution of x¢ and the product

of the marginal distributions of the xz ; can be written in terms of the covariance matrices as

- 1 C
Dxq, (fxc HfXG,i> = _5 log (ﬁ) ’
. i=1 |“ii

=1
where
C = E4 (xcxg) — Ex. (x¢) Exg (xg) ,
Cii = EXG,i (XG,ixg,i) - EXG,i (XGvi) EXG.i (xg,i) °

These results should allow us to generalise the reasoning in Section 4.1, then substitute the kernel
density estimates

~ 1
Pa(w) = = klzii—w),
m =1
R 1w
PX17---,Xn(wlv"'7xn) = Eznk(mi,l _xi)a
=1 i=1

and apply the bounding technique of Section 4.2, to obtain the contrast in (4.3.3); this is the second

reason for our choosing v, to scale /u\]-. The details of this generalisation are beyond the scope of
the present work.



Chapter 5

Implementation issues

In this chapter, we describe the manner in which the KC and KMI contrasts may be used to solve
the instantaneous linear ICA problem described in Section 2. This implementation comprises two
components: the efficient computation of the KC and KMI contrasts, using low rank approxima-
tions of the Gram matrices; and gradient descent on the space of orthogonal matrices W, which
follows whitening in our determination of the inverse of the mixing matrix B (see Section 2.2.1).
These results are summarised from the more detailed discussion in [7] (although the low rank de-
composition is in our case made easier by the absence of the variance term used in the KCC and
KGV contrasts).

5.1 Efficient contrast computation

We note that the KC requires us to determine the eigenvalue of maximum magnitude for an
mn X mn matrix (see (4.3.2)), and the KMI is a determinant of an mn X mn matrix, as specified
in (4.3.3). For any reasonable sample size m, the cost of these computations is prohibitive. We
now describe how the computational complexity of this problem may be substantially reduced.
First, we note that any positive (semi)definite matrix can be written K; = Z;Z. , where Z; is lower
triangular; this is known as the Cholesky decomposition. If the eigenvalues of the Gram matrix
K; decay sufficiently rapidly, however, we may make the approximation

K; ~Z;Z;

to the Gram matrix K;, where Z; is an m X d; matrix; the error due to this approach may be
measured via the maximum eigenvalue u; of K; — ZiZiT. The Z; are determined via an incomplete
Cholesky decomposition, in which the smaller pivots are skipped; symmetric permutation of the
rows and columns of K; is used in the course of this process to increase the accuracy and numer-
ical stability of the approximation. This method is applied in [34] to decrease the storage and
computational requirements of interior point methods used in SVMs, as well as in [7] for faster
computation of the KMI and KCC contrasts (pseudocode algorithms may be found in both these
references). Once the incomplete Cholesky decomposition is accomplished, we can compute the

approximate centered Gram matrices according to K; := HK;H = (HZ;) (HZ:) = ZZT

We now show how this low rank decomposition may be used to more efficiently compute the kernel
covariance in (4.3.2). Substituting

e an
di; =Z; ¢ j,
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we get
0 Z.Z{Z> ... Z.Z{Z, ] [ dy; Z, 0 ... 0 d,
757, 7, 0 A AN /M dy,; \ 0 Z, ... © ds,
. . . . . = Aj . . . . .
We may premultiply both sides by! diag ([ ] ... 77 ]) without increasing the nullspace of
this generalised eigenvalue problem, and we then eliminate diag ([ Zszl ilin D from

both sides. Making these changes, we are left with

0 Z[Z» ... Z[Z, dy di;
AW/ 0 ... Z]Z, ds; dy;

2. ' . . 2. .] =Aj . ’ , (5.1.1)
ilzl Zgig N 0 dThj dn,j

which is a much more tractable eigenvalue problem, having dimension ., d;. The same procedure
may easily be used to recast (4.3.3) as the determinant of an (3", , d;) x (31, d;) matrix. We now
briefly consider how to choose the rank d; for a given precision u;: this depends on both the density
fy, and the kernel k (z; — ). For Gaussian kernels and densities with exponential decay rates, it
is shown in [7] that the required precision relates to the rank according to d; = O (log (m/u;)),
which demonstrates the slow increase in rank with sample size. In the case of the KGV and KCC,
however, the form of the contrast causes eigenvalues less than approximately 10 3m#k/2 to be
discarded, which thus serves as a target precision to ensure the Z; retain constant rank regardless
of m. We also adopt this threshold in our simulations with the Gaussian kernel, although our
motivation is purely a reduction of computational cost.

5.2 Gradient descent on the Stiefel manifold

We now describe the method used to minimise our kernel contrast functions over possible choices
of the orthogonal demixing matrix W (the whitening process having been accomplished). The
manifold described by n x p matrices A for which AT A =1, where n > p, is known as the Stiefel
manifold. Gradient descent for functions defined on this manifold is described in [33]. A clear
and intuitive explanation of this procedure is also given in [52], which was kindly provided to the
authors by Hyvérinen, and which along with [7] constitutes the basis for the present description.
Let f(W,%) be the particular contrast function (KC or KMI) on which we wish to do gradient
descent, where ¢ := (t,...,t,,) are the whitened, mixed observations (see Section 2.2.1). A naive
gradient descent algorithm would involve computing the derivative

_f(W,)
=W

updating W according to W — W + uG (where p is chosen to minimise f(W + pG, %)), and
projecting the resulting matrix back onto the Stiefel manifold. This might not be particularly effi-
cient, however, in that the update can largely be canceled by the subsequent projection operation.
Instead, we attempt to find the direction of steepest descent on the Stiefel manifold, and to perform

our update with the constraint that we remain on this manifold. To achieve this, we first describe
the set of perturbations to W that retain the orthogonality of W, then choose the direction of

IThe notation diag ([ ZIT ZI ]) defines a matrix with blocks ZT along the diagonal, and zeros else-

where. The matrix need not be square, however, and the diagonal is in this case defined in a manner consistent
with the asymmetry of the Z;'—.
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steepest descent /ascent within this set, and finally give the expression that parameterises the shifts
along the geodesic? in this direction.

Let A be a perturbation with small norm to the orthogonal matrix W, such that W + A remains
on the Stiefel manifold. For this constraint to hold, we require

(W+A)" (W+A) = I, whichimplies (5.2.1)
WIA+AT™W =~ 0; (5.2.2)

in other words, WTA is skew-symmetric. To find the particular A that gives the direction of
steepest change of f(W,t), we solve

Aoy = arg max fW + AL,

subject to tr(A T A) = const and (5.2.2). This yields
Apax =G - WG'W,

where the proof may be found in [33, 52]. Finally, if we use ¢ to parameterise displacement along
a geodesic in the direction A,y from an initial matrix W(0), then the resulting W(q) is given by

W(q) = W(0) exp (qW(O)TAmaX) .

The ICA algorithm was implemented by modifying the Matlab code in [5] to use our KC and
KMI contrast functions. Consequently, we determine an approximation of the gradient of our
contrast f(W,%) by making small perturbations to W about each possible Jacobi rotation, and
recomputing the contrast for each such perturbation. Gradient descent is then accomplished using
a Golden search along this direction of steepest descent. It is interesting to note that performance
was empirically found to improve, for all the kernel algorithms, when a grid search was used over
the Jacobi angles that parameterise W (although careful tuning of the tolerance used in the Golden
search can reduce this difference). This becomes impractical for large numbers of sources, however.

Finally, we note that procedures are given in [33] to compute the Hessian on the Stiefel manifold,
as are the implementations of Newton’s method and conjugate gradient descent. In addition, an
adaptive algorithm for gradient descent on the Stiefel manifold is proposed in [90]. The application
of these methods to improve the performance of our algorithm is beyond the scope of the present
work.

2 A geodesic represents the shortest path on a manifold between two points; equivalently, the acceleration involved
in moving between two points along a geodesic is perpendicular to the manifold when constant velocity is maintained.
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Chapter 6

Experimental results and conclusions

In this chapter, we examine the performance of our contrast functions (KC, KMI) as it compares
to the KGV and KCC methods, when used to address the problem of linear instantaneous ICA.
Since the objective is to find an estimate V := WQ of the inverse of the mixing matrix B (the
reader is referred to Section 2.2.1 for a detailed description of the ICA problem), we require a
measure of distance between our approximation and the true inverse: this is given by the Amari
divergence, which is introduced in Section 6.1. Next, we separate a range of artificial signals mixed
using randomly generated matrices, including cases in which the observations were corrupted by
noise. Results are compared with those obtained using fast ICA, Jade, and the extended Infomax
algorithm, as well as the KCC and KGV. Finally, we artificially mix a range of audio signals
representing a number of musical genres, and attempt to separate these. We end the chapter with
some general observations regarding our results, and give suggestions for further study.

6.1 Measurement of performance

We use the Amari divergence, defined in [4], as an index of ICA algorithm performance.

Definition 6.1.1 (Amari divergence). Let A and C be two n x n matrices, and let B = AC™".
Then the Amari divergence between A and C is

1 = (35 [bigl 1 — (i 1bil
D(A.C) = J 21 - L=l 16IL )
(4,©) 2n(n —1) 2; (maxj |bs ] * 2n(n —1) 2; (maxi |bs ] >

i= j=

Although this measure is not, strictly speaking, a distance metric for general matrices A, C, it
nonetheless possesses certain useful properties, as shown below.

Lemma 6.1.2 (Properties of the Amari divergence). The Amari divergence D (A, C) between
the n x n matrices A, C has the following properties:

e D(A,C) > 0, with equality when A is equal to C, or some permitted scaling or permutation
thereof (as described below).
e 0<D(A,C) L1

o Let Py, Py be arbitrary permutation matrices, and r,s be arbitrary non-zero scaling factors.
Then D (A,C) = D(A (rPy),C (sP3)): the Amari divergence is invariant with respect to
scaling and column swaps. The Amari divergence is generally not invariant with respect to
row swaps, or with respect to scaling of rows or columns by different amounts.

The final property in the above Lemma is particularly useful in the context of ICA, since it causes
our performance measure to be invariant to the output ordering ambiguity (see Theorem 2.1.2).
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6.2 Experiments and performance assessment

We now describe the experiments conducted to verify the performance of our algorithms. Since the
main purpose is to compare the performance with that reported in [7], we tried as far as possible
to generate our test distributions in the manner described therein, besides our near-Gaussianity
experiment and certain additional investigations we performed. A list of the distributions used
in our experiments, and their respective kurtoses, is given in Table 6.1. While these distributions
represent a broad range of behaviours, we note that negative kurtoses predominate, which should
be borne in mind when evaluating performance. We used the KGV and KCC Matlab implementa-
tions downloadable from [5], which we also modified to implement the KMI and KC. The precision
of the incomplete Cholesky decomposition, used to approximate the Gram matrices for the Kernel
contrasts, was set at n := en; our choice of € represents a tradeoff between accuracy and com-
putation speed. Unless otherwise specified, the kernel contrast results were refined in a polishing
step, in which the kernel size was halved upon convergence, and the gradient descent procedure
recommenced with this smaller kernel. This polishing usually caused a measurable improvement
in the results.

We also follow [7] in providing results from FastICA [35], Jade [18], and the extended Infomax
algorithm [58], as an additional check of our algorithm performance. In the case of fast ICA,
the default (kurtosis based) nonlinearity was used except for sources specifically unsuited to it, in
which cases we signal our alternative choice of nonlinearity (the predominantly negative kurtoses
in Table 6.1 make this a good choice: see Section 2.2.3). The Jade and Infomax algorithms were
likewise used in their default configurations.

We begin with a brief investigation into the form taken by the various kernel contrast functions for
a selection of the data in Table 6.1. Contours of the KGV, KC, KMI, and Amari divergence are
plotted in Figure 6.2.1, which describes the demixing of samples from three distributions, combined
using a product of known Jacobi rotations. All kernel based contrasts in this demonstration were
computed with a Gaussian RBF kernel,

kg(z,2') = |z — z'||*). (6.2.1)

1 1
ovzr P54
We observe that each of the contrasts exhibits local minima at locations distant from independence,
but that each possesses a “basin of attraction” in the vicinity of the correct answer. Moreover,
we note that each of the contrasts is smooth (given the choice of kernel size), and that the global
minima are fairly symmetric. For these reasons, the gradient descent algorithm described in Section
5.2 should converge rapidly to the global optimum, given a reasonable initialisation point. Our
solution method differs from [7], however, in that we generally use Jade (unless specified otherwise)
to initialise the kernel based contrast functions (KC, KCC, KGV, KMI), whereas Bach and Jordan
only do this when separating large numbers of signals. Initialisation is accomplished in [7] using a
one-unit kernel contrast with deflation, and with a less costly polynomial kernel. For more than two
signals, this process is repeated several times, starting from different initialising matrices. While
Jade is less computationally costly as an initialisation method, it might be less reliable in certain
cases (where the sources are near-Gaussian, or when a large number of outliers exist due to noise,
both of which can cause Jade to misconverge).

6.2.1 General mixtures of artificial data

We now describe the ICA experiments performed with the distributions in Table 6.1, where the
Amari divergence is used to measure the closeness of the estimated mixing matrix to the true
matrix. Kernels used include the Gaussian RBF kernel in (6.2.1), and the Laplace kernel,

A
i (,2') = 5 exp(=Allz = 2'[).
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Figure 6.2.1: Contour plots of kernel contrast functions. Top left: Amari divergence. Top right:
kernel mutual information. Bottom left: kernel covariance. Bottom right: kernel generalised
variance. Three signals of length 1000 and with respective distributions g, k, and ¢ (this choice
was random) were combined using a 3 x 3 orthogonal rotation matrix. This matrix was expressed
as a product of Jacobi rotations A = Ry Ry, Ry,, where 8, = —7/6, 0, = —7/4, and 0, = —7/3;
the subscript of the angle denotes the axis about which the rotation occurs. An estimate W =
R_g, Réy R; of A~! was made, in which éy and 6. took values in the range [0, 7]. The red “x” in
each plot is located at the coordinates (—6.,—6,) corresponding to the optimal estimate of A. A
Gaussian kernel of size 02 = 1 was used in all cases, and k = 1072 for the KGV.
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Table 6.1: Labels of distributions used, and their respective kurtoses. All distributions have zero
mean and unit variance.

| Label | Definition | Kurtosis |

a Student’s t distribution, 3 DOF 00

b Double exponential 3.00
¢ Uniform -1.20
d Students’s t distribution, 5 DOF 6.00
e Exponential 6.00
f Mixture, 2 double exponentials -1.70
g Symmetric mixture 2 Gauss., multimodal -1.85
h Symmetric mixture 2 Gauss., transitional -0.75
i Symmetric mixture 2 Gauss., unimodal -0.50
j Asymm. mixture 2 Gauss., multimodal -0.57
k Asymm. mixture 2 Gauss., transitional -0.29
1 Asymm. mixture 2 Gauss., unimodal -0.20
m Symmetric mixture 4 Gauss., multimodal -0.91
n Symmetric mixture 4 Gauss., transitional -0.34
o Symmetric mixture 4 Gauss., unimodal -0.40
p Asymm. mixture 4 Gauss., multimodal -0.67
q Asymm. mixture 4 Gauss., transitional -0.59
T Asymm. mixture 4 Gauss., unimodal -0.82

We combined the independent sources using random mixing matrices, with condition numbers
between 1 and 2, and then whitened the resulting observations before estimating the orthogonal
de-mixing matrix'. We first present the results obtained by de-mixing two independently generated
samples from the same distribution, where each distribution in Table 6.1 was investigated. Results
for samples of length 256 are given in Table 6.2, and those for samples of length 1024 in Table
6.3. The average performance in the 256 sample case is best in the case of the KGV, followed by
the KMI with the Laplace and Gauss kernels. In addition, the KC and KCC methods outperform
the remaining algorithms, despite being based only on a single eigenvalue. It is notable that the
extended Infomax method performs badly in every example, which appears due to the small number
of observations. In the 1024 sample case, the hierarchy in algorithm performance is retained,
although the KGV and KCC outperform the KMI and KC with smaller margin. It is notable that
the difference between the KMI with Laplace kernel and that with Gaussian kernel is large for
the distributions a,b,d,e, all of which are heavy tailed (indeed, the Laplace kernel yields the best
performance for double exponential and exponential distributions): this is not surprising, in the
sense that a Parzen window estimate of a heavy tailed distribution can be accomplished efficiently
with a heavy tailed kernel. We also note that distribution o (the symmetric, unimodal mixture of
4 Gaussians) is now accurately demixed, which was not possible with 256 samples.

Our second experiment consisted in de-mixing data drawn independently from several distributions
chosen at random from Table 6.1. Results are given in Table 6.4. We note that the KMI with
Gaussian kernel outperforms the KGV in the final three experiments, and the KMI with Laplace
kernel yields best overall performance in five of the seven experiments. On the other hand, the
KGYV performs best in the first and third case, where the number m of samples is small. This
behaviour is akin to the large performance lead of the KGV in Table 6.2, compared with the
smaller difference in Table 6.3, and suggests that the KGV performs better for a smaller number
of samples, at the expense of performance at large sample sizes.

A more detailed look at the results behind these averages, as illustrated in Figure 6.2.2, shows that
in rare cases (at most 1-2 instances per experiment) the Amari divergences can be substantially
greater than the mean, which occasionally (but not always) corresponds to poor convergence in

We did not use a simple orthogonal matrices to mix our sources, since this would lower the variance in our
estimate of W, making the problem (slightly) easier than that of estimating a truly random mixing matrix [20].
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Jade (which is used to initialise the optimisation process for the kernel contrasts). The effect is
most pronounced in the n = 4,m = 1000 and n = 8,m = 2000 cases, and is absent from the
n = 4,m = 4000 and n = 8,m = 4000 cases. This suggests that these misconvergences are
due to local minima in the contrast (caused by insufficient observations relative to the number of
sources), and not necessarily an artefact due to poor initialisation. Finally, the extended Infomax
algorithm seems unable to separate the signals in 250 sample, 2 signal case: the Amari error was
spread almost uniformly over the range [0,100]. While the Lapalce kernel clearly gives superior
performance, this comes at an increased computational cost, since the eigenvalues of the associated
Gram matrices decay more slowly than for the Gaussian kernel, necessitating the use of a higher
rank in the incomplete Cholesky decomposition to maintain good performance.
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Figure 6.2.2: Amari divergence for demixing n randomly chosen signals, where n = 4 (left hand
plot) and n = 8 (right hand plot), over 100 and 50 experiments respectively. Parameters are in
both cases identical to those in Table 6.4.

6.2.2 Performance on difficult artificial problems

In our third experiment, we investigated the effects of noise added to the observations . We selected
two generating distributions from Table 6.1, randomly and with replacement. After combining
these signals with a randomly generated matrix with condition number between 1 and 2, we added
points chosen with equal probability from {45, —5} to both signals, at random locations, in various
quantities. Results are shown in the left hand plot in Figure 6.2.3. We used the Tanh and Gauss
nonlinearities for the fast ICA algorithm, since these are resistant to outliers [46].

We observe that the KMI and KC are more resistant to outliers than the KGV and KCC contrasts,
in that the rate of increase of the KC and KMI Amari divergences as a function of the number
of corrupted points is less, and the Amari divergences at high noise levels are significantly lower.
In addition, the kernel methods all perform very substantially better than the remaining methods,
including those that are designed for robustness to outliers. As expected, Jade performed the most
poorly, being based on highly noise-sensitive cumulants.

An additional experiment was also carried out on the same data, to test the sensitivity of the KCC
and KGV to the choice of k. Thus, we replaced k = 2 x 1072 (recommended in [7] for samples
with m < 1000) with & = 2 x 1072 (used when m > 1000). We observe from the right hand plot
in Figure 6.2.3 that this greatly reduces the performance of the KCC and KGV with respect to
the KC and KMI, although these remain superior to fast ICA, Jade, and the extended Infomax
methods.

Our fourth experiment concerns the effect of near-Gaussianity of the sources on the performance
of the various algorithms. In this case, the two sources were both generated from members of the
exponential power family,

fi(z) = ay exp(az|z|®)

where parameters a; and a» were chosen to ensure that the density was appropriately normalised,
with zero mean and unit variance. The parameter a determines the nature of the distribution:
0 < a < 2 is super-Gaussian, while @ > 2 is sub-Gaussian (o = 1 is the Laplace distribution).
Results are given in the left hand plot in Figure 6.2.4. At zero Kurtosis, the KMI and KGV perform
best, followed by the KCC and the KC. The kernel methods exhibit a decisive performance lead in
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Figure 6.2.3: Effect of outliers on the performance of the ICA algorithms, for signals of length m =
1000, drawn independently with replacement from Table 6.1, and corrupted at random observations
with outliers at £5 (where each sign has probability 0.5). Each point represents an average over
100 independent experiments. The number of corrupted observations in both signals is given on the
horizontal axis. In both plots, we used ¢ = 1 for the kernel contrast functions, and € = 2 x 107°.
In the left hand plot, & = 2 x 1072 was used for the KCC and KGV, whereas k£ = 2 x 1072 was
used in the right hand plot.

regions of positive and near-zero kurtosis, although traditional algorithms (notably Jade) are more
competitive when the kurtosis is negative. Finally, the KGV and KCC are somewhat better in the
vicinity of zero kurtosis, although the KMI and KC recover more rapidly as kurtosis increases.

Our fifth experiment addresses the effects of low kurtosis on the performance of our contrast func-
tions, since many ICA contrasts rely (sometimes implicitly, through their choice of nonlinearity)
on the kurtosis as an index of signal independence. Two signals were drawn from a single distri-
bution, consisting of an asymmetric mixture of two Gaussians; the amplitudes of the Gaussians
were adjusted to give both positive and negative kurtosis. Results are given in the right hand plot
of Figure 6.2.4. All kernel based contrasts were unaffected by near-zero kurtosis, as opposed to
both Jade and Fast ICA (which rely explicitly on the kurtosis) and the extended Infomax method
(which does not). Surprisingly, the Tanh nonlinearity did not perform as well as the kurtosis based
Pow3 nonlinearity, when used in fast ICA.

6.2.3 Audio signal demixing

Our final experiment involved the demixing of brief extracts from various musical sources, which
were combined using a randomly generated matrix (in the same manner as the artificial signals de-
scribed in the previous section). A total of 17 different extracts were taken from the ICA benchmark
set provided in [66]. These consist of 5 second segments sampled at 11 kHz with a precision of 8
bits, and represent a wide variety of musical genres. While adjacent samples of a musical signal are
certainly not generated independently and identically, many ICA algorithms have nonetheless been
applied successfully to this problem, and in this sense it constitutes a reasonable benchmark for
our algorithm. Random permutation of time indices was used to reduce the statistical dependence
of adjacent samples in the music, since this was found to improve performance.

A summary of our results is given in Table 6.5: the KMI performs best for two extracts, and the
KGYV does best with four extracts. In the n = 2 case, every possible combination of two different
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Figure 6.2.4: Left hand plot: Effect of near-Gaussianity on the performance of the algorithms,
for two signals of length 1000 drawn from a range of generalised exponential distributions (see
text). Each point represents an average over 100 independent experiments. We used a Laplace
kernel with ¢ = 3 and precision € = 0.01 for the KC and KMI, and a Gaussian kernel with size
o = 1, precision € = 2 x 107%, and & = 2 x 102 for the KCC and KGV. The tahn nonlinearity was
used for fast ICA due to its good performance.

Right hand plot: Effect of near-zero kurtosis on the performance of the algorithms, for two
signals of length 1000 drawn from a range of mixtures of two Gaussians. Each point represents an
average over 100 independent experiments. We used a Gaussian kernel with ¢ = 1 and precision
€ = 2 x 107 for all kernel contrast functions, and & = 2 x 102 for the KCC and KGV.
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Table 6.5: Tllustration of the demixing of n music segments of length m = 55272, taken from the
collection of 17 music samples in [66], and each representing an average over 120 experiments.
Details of the KGV and KMI parameters may be found in Section 6.2.3.

| n | Fica | Jade | Imax | KGV | KMI |
2 1.10+0.10 1.02 £+ 0.06 1.33+£0.16 0.70 £ 0.05 0.66 £0.17
4 0.94 £0.03 0.89 +0.03 1.12 £ 0.06 0.62 £ 0.02 0.68 +0.03
KGV, 4 Sources KMI, 4 Sources
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Figure 6.2.5: Histograms of the Amari divergences for the KGV and KMI, plotted for the 120
results obtained when unmixing four randomly selected music signals. Both the associated mean
values are given in Table 6.5, as is a comparison with other ICA methods. The settings used for
the KMI and KGV are described in Section 6.2.3.

extracts was investigated (for a total of 120 experiments), and the results averaged. We used
k=2x10"3 0=0.5,e=1x 107°, and a Gaussian kernel for the KGV; and 0 = 3, e = 1 x 0.01,
and a Laplace kernel for the KMI. In both cases, a polishing step was applied to refine the result.
For each experiment with n = 4, music segments were drawn randomly and without replacement
from the 17 available extracts, and the results averaged over 120 repetitions. All kernel contrast
parameters were the same as in the n = 2 case besides the Laplace kernel size, which was increased
to o = 4. In addition, no polishing step was applied to the KGV or KMI, since it caused a drop
in performance for both contrasts 2. Our use of the Laplace kernel in the KMI was motivated by
music generally being super-Gaussian [10].

Although the results in Table 6.5 are quite similar for the KGV and KMI, it is instructive to compare
the distribution of the outcomes obtained in each experiment. Histograms of these distributions
are given for the n = 4 case in Figure 6.2.5. This plot reveals markedly different distributions of
the Amari divergences, with the KGV results being more tightly grouped about their mean, while
the KMI yields more results at smaller divergences, but a larger number of outliers.

2This is perhaps surprising, given that the polishing step caused a minor increase in performance in the n = 2
case. On the other hand, the larger dimension of the n = 4 problem makes the global minimum harder to find, and
diversion to local minima more likely.



Chapter 7

Conclusions

7.1 Conclusions

Our experiments appear to demonstrate the effectiveness of the kernel methods, as compared with
Jade, fast ICA, and the extended Infomax algorithms. Indeed, kernel methods proved themselves
more resistant to noise in the observations, near-zero kurtosis, and near-Gaussianity. Moreover, the
KMI and KGYV yield the best performance in most of our experiments, including those conducted
with audio signals. This is to be expected, since as we recall from Section 2, these methods all
assume particular models for the source densities. Thus, although the contrast functions exhibit
stable extrema at independence regardless of the accuracy of the underlying density models, the
variance in the values of W at these extrema becomes larger as the models decrease in accuracy. By
contrast, the kernel based methods use nonlinearities that adapt to the sources (as determined by
the observations); indeed, the KMI and KGV use upper bounds on the Parzen window estimates
of the source densities. This Parzen window interpretation facilitates the kernel choice when
properties of the source densities are known: for instance, we have seen that the Laplace kernel-
based KMI performs particularly well when separating samples generated by the double exponential
and exponential distributions, and also performs better than the Gaussian kernel-based KMI when
separating (heavy tailed) music extracts.

The computational cost of this performance is higher, however; this is particularly true when the
Laplace kernel is used, since it occasionally requires the retention of a high rank in the Gram
matrix approximation, due to the slow decay of the associated eigenvalues. The multimodal nature
of the cost function being optimised by the kernel methods also necessitates a good initialisation
method; although as pointed out earlier, methods exist to find good starting guesses within the
kernel framework, and at a reasonable cost.

The choice between the KGV and KMI (or, alternatively, the KC and KCC) is more difficult. The
methods proposed in [7] appear to do well when there is little data available, as in Table 6.2, and
also the n = 2, m = 250 and n = 4, m = 1000 cases in Table 6.4. The KGV and KCC also yield
better performance in the case where both sources have the same distribution (Table 6.3); although
the gap is smaller in the m = 1024 experiment. The KMI and KC seem to have particular difficulty
in separating two Student’s ¢ distribitions for a larger number of degrees of freedom (i.e., as the
Student’s ¢ distribution approaches the Gaussian). Both small sample size and near-Gaussianity
cause the variance of the best possible estimate of W to rise [20], making the ICA problem harder.
Thus, it would appear that the use of var (f (X)) + ||f||3_-x in the regularised KCC and KGV (see
(3.4.7) in Section 3.4), rather than simply using ||f||ix (Definition 3.2.2 in Section 3.2), allows us
to more closely approach the minimum variance estimate of W in these difficult cases, although
the mechanism by which this is achieved remains unclear. This variance reduction effect is also
seen in Figure 6.2.5.

a7
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On the other hand, the KCC and KGV appear more susceptible to noise in the observations, which
is particularly apparent when x becomes small (see Figure 6.2.4). The absence of « in our kernel
contrasts therefore greatly simplifies model selection, especially if the observations are known to
be corrupted by noise. The KMI and KC also perform better in most cases described in Table 6.4,
in which (generally) different sources are being separated. Thus, the good performance obtained
by the KGV and KCC at low sample sizes seems to be offset by a drop in accuracy as the number
of samples and/or sources increases. This apparent tradeoff cannot easily be explained using the
analysis in Section 4.2, and requires further investigation.

A number of extensions to this work are readily apparent. For instance, the behaviour of the KMI
has not been studied in detail for more than two univariate random variables, besides the discussion
in Section 4.3 which guarantees it to be zero if and only if the sources are pairwise independent.
In particular, it would be of interest to prove that (4.3.3) in Section 4.3 is an upper bound on the
Gaussian mutual information, in the manner described in Section 4.2.2 for two random variables.
This would incidentally require the link between the Gaussian mutual information and the discrete
mutual information, described in Section 4.1 for the two variable case, to be extended to a greater
number of random variables. These calculations might be made easier with the removal of the
discretisation step in Section 4.3, since it is later negated by the subsequent limiting argument in
Section 4.2. The optimisation procedure we use for ICA might also be made faster, for instance by
implementing Newton’s method or conjugate gradient descent on the Stiefel manifold, rather than
simple gradient descent.

We have at present no guarantee that the empirical estimates of the KMI and KC converge towards
their population expressions, which requires the application of concentration inequalities. It is
possible to use Rademacher averages [63] to bound the deviation of the KC from its expected
value, by applying the following theorem.

Theorem 7.1.1 (Rademacher bound on the deviation of a function from its expecta-
tion). Let F be a class of uniformly bounded functions on X, and let Py be a probability measure
on X. Then there exists a universal constant C > 1 such that for all € > 0, with probability at least

1 —exp (—T—ij) over the random draw of x ~ P},

sup L 1(a) - B0 € =R (5P + 35,

fer

The application of this result in predicting KMI performance is less clear, however, since the KMI
is a product of multiple KC-type quantities. More generally, it is necessary to further investigate
methods for model selection (i.e., for choosing the kernel size and type) in the KC and KMI. It is not
presently known whether performance is most effectively tuned by simple cross-validation, using
bounds derived from concentration inequalities, or via the properties of Parzen window estimates
discussed in [80].

where

Zﬂif(xi)

i=1

Rm(}-a Px) = Exl,...,xm,o' (

1
—— sup
vm feF

and P,(1) =P,(-1) =1/2.

The good performance of our algorithm in the context of ICA entails a higher computational cost
than the other methods investigated. It would thus be of interest to compare with other recent
semi- and non-parametric entropy approximations proposed for ICA [41, 64, 70], which also adapt
their source density estimates according to the observations. Many real life problems do not fit
neatly into the linear ICA framework, however; we now outline ways in which our kernel contrasts
might be used to improve performance in these more difficult signal separation problems.
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7.2 ICA for stationary random processes

It is rare in practice to encounter signals that do not depend on their previous outputs. Rather,
most real signals are drawn from random processes, for which there are statistical dependencies
between the observations at different times. These random processes may be stationary, meaning
that their statistical properties (for instance the mean and correlation) do not change over time;
or they may be nonstationary. In both cases, however, the time dependence greatly assists in
separating signals into independent components, the idea being that the independence of different
random processes should hold not only between samples drawn at the same time, but also between
samples drawn at different times.

A simple and computationally efficient criterion is described in [11] to separate linearly mixed,
independent, and stationary random processes, using only second order moments. This is achieved
by jointly diagonalising the covariance matrices

R(() := Eqire ®OE (1+0)),

parameterised by various delay values £, where the stationarity of the process causes the expectation
to depend only on the time delay '. When a large number of delays £ are chosen, then the signals
become inseparable only when the power spectra of the sources are proportional; it is noted in [11],
however, that the expected cross-signal interference in our estimate of the sources becomes high
as this indeterminate situation is approached, and the spectral overlap increases. This problem
might be avoidable by refining the decorrelation-based solution, using the proposed kernel contrasts
(which depend on higher order moments, although this is obviously ineffective if the sources are
merely Gaussian random processes). This would require us to extend the KMI to random vectors,
rather than random variables (the dimension of the vectors corresponding to the number of different
lags ¢ considered previously); in other words, we would need to show that the KMI remains an
upper bound on Dxr,(fz, . %, ||fz, --.fx,) near independence when the dimension of X; is greater
than one (we remind the reader that the KC and KCC are already known to be valid contrast
functions in this circumstance, although they might not perform as well).

Another alternative would be to derive more general features from the signals, and to determine the
independence of these features. This was done in [12] using Cohen’s class time-frequency kernels,
which permits the separation of sources with identical spectra. Cohen’s class T-F kernels were also
applied in [38, 30] to describe the identifying properties of audio samples: they were used in this
case to train a support vector machine to separate polynomial phase signals.

7.3 Nonlinear mixtures

The difficulty of modeling nonlinear mixtures is considerably greater, since the complexity of the
problem is far higher, and the number of indeterminacies much larger. One way of dealing with
these problems is to assume a specific functional form for the nonlinearity, as in [89]. An alternative
is to use a simplified nonlinearity, such that the ith component of the observation vector t is

t; = f(b;s),

where f; is the ith (unknown) nonlinearity, and b; is the ith row of the mixing matrix B; this
situation corresponds for instance to the observations being distorted by the sensors. This situation

L An equivalent approach based on the Whittle approximation is proposed in [73]. Here, the likelihood of the ith
independent stationary random processes s;(l), where ¢ € {1,...,n}, is approximated by modeling the DFT, §;(k)
for k = (1,...,m), as series of m independent Gaussians. These Gaussians are assigned zero mean, and variances
equal to the power at the kth frequency. Independence is then attained when the inter-signal correlation is zero
between the frequency components x;(k) and X;(k), i # j, of the unmixed signals at each k. In addition, methods
designed specifically for separating signals generated using Gaussian processes, or via generalised ARMA models
(that is, with non-Gaussian noise), are proposed in [71].
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is analysed in [82, 1], in which it is shown that a fixed source density model, of the kind described
in Section 2, performs exceptionally badly: rather, it is necessary to estimate the densities of the
sources when computing the contrast, which is accomplished using a kernel density estimate (the
details of this step differ in the two studies cited). A comparison of these methods with the KMI
would therefore be of interest. Various efforts have also been made to solve the more general case

t = f(s).

This problem requires constraints on f to be determinate (and even then, it is generally the case
that each source s; can only be recovered up to a nonlinear distortion; this is the analogue of the
scaling indeterminacy (Theorem 2.1.2) in the linear mixing case). An example of indeterminacy
when f(-) is unconstrained is given in [51]: we apply the Darmois decomposition to the random
variable t to obtain

xi = Fy(t),
xg = Fy,(t2]t1),
x3 = Fy(tsfts,ta),

and so on. The components of the output x are then independent, and each has a uniform dis-
tribution in [0,1]. A constraint proposed in [51], which applies when there are two observations
(n = 2), is to require f(-) to be a conformal mapping? of the complex variable ¢; + 1ty, which
removes the ambiguity in most cases. A different approach is proposed in [45], where it is shown
that enforcing temporal decorrelation over a single time step is sufficient to test whether the re-
covered independent processes are simply the result of a Darmois decomposition. While this does
not rule out other transforms that return independent signals unrelated to the sources, it suggests
that time dependencies have a crucial role to play in general nonlinear mixing. In the scheme sug-
gested in [39], demixing is achieved by mapping the observations to a reproducing kernel Hilbert
space, finding a low dimensional basis in the feature space which approximately spans the subspace
formed by the observations®, and enforcing the second order temporal decorrelation of projections
onto this basis (the last step is much like that in [11]). It remains unclear whether guarantees
exist to ensure the recovered independent sources are identical (aside from the nonlinear distortion
indeterminacy described above) to the original sources; indeed, multiple signals are recovered, and
the correct ones are recognised based on their expected statistical properties. It should also be
noted that the algorithm does not work when the time dependency between the samples is ignored,
thus lending support to the hypothesis in [45]. The applicability of the KMI is less clear than in
the case of post-nonlinear mixtures, although this might follow from a better understanding of [39]
and its relation to our work.

7.4 Models for dependent random variables

The KGV is used in [8] to model the source distribution fs as a tree structured graphical model,
which incorporates dependencies between components (unlike the independence assumption made
in ICA); this can also be thought of as a method for estimating the high dimensional multivariate
density fy using only densities of lower dimension and linear mixing. If 7 is an undirected spanning
tree on the vertices {1,...,m}, then the source model f is assumed to factorise in 7. Writing
x = Wt as the unmixed signal, the minimum possible loss due to this encoding (with respect to
both W and to the choice of T) is expressed as

min D, (fx||fs) = I(x) — (.Z):T[(Xi’ x;)- (7.4.1)
2,])€E

Two methods for attaining this minimum are compared in [8]. In the first approach, the KGV is
used to replace all the terms in (7.4.1), and the resulting expression is minimised with respect to T

2That is, the derivative must always exist and be non-zero.
3This basis generally has a very low dimension, irrespective of the number of observations.
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and W. In the second case, the decomposition (2.2.9) in Section 2.2.3 is applied to I(x), and both
the pairwise mutual information terms and the entropies are estimated using Parzen windows; this
expression is then minimised. Although the second method generally performs better, the KGV
is also very effective. This gives an indication of the tightness of the upper bound on the mutual
information provided by the KGV, since minimising (7.4.1) in the KGV setting involves maximising
upper bounds on the pairwise mutual information terms. Given that the KMI is in theory a tighter
upper bound than the KGV, it would be interesting to compare its performance with the KGV in
this setting.
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Appendix A

Proofs and Definitions

A.1 Standard linear algebra results

These results are mainly taken from [43, 40], with some results also from [68, 81, 16]. Proofs are
rarely provided, although certain proofs are included when they yield insight into the main body
of the discussion.

A.1.1 Miscellaneous definitions

Definition A.1.1 (Trace). The trace of an n X n matrix A is the sum of its diagonal elements

Qi,i;
n
trA = Z Qi
i=1
Definition A.1.2 (Rank). The rank of a matrix A is the maximum number of independent
columns and rows in A.
Definition A.1.3 (Subspaces of a matrix). Consider an m xn matrix A. The four fundamental
subspaces of A are:
e Column space: the space spanned by the columns of A
e Row space: the space spanned by the rows of A
e Left nullspace: the orthogonal complement to the column space of A
e Nullspace: the orthogonal complement to the row space of A

Theorem A.1.4 (Rank of a product of matrices). The column space of AB is spanned by
the column space of A, and the row space of AB is spanned by the row space of B. Consequently,

rank (AB) = min {rank (A),rank (B)}.

A.1.2 DMatrix inner products, projections

Definition A.1.5 (Matrix inner product). Given matrices A, B, C in the space V of m x n
matrices (or some subspace thereof), the inner product is any function f(A,B) for which the
axioms of an inner product space are satisfied, namely

63
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* (A,B) = (B,A)
e (aA +B,C) = a (A,C) + 4 (B,C)

e (A, A) > 0, with equality if and only if A = 0.

One such function is (A,B) = tr (ATB).

Definition A.1.6 (Matrix norm). Given an m x n matrix A, it follows from the definition of
the matrix inner product that the matrix norm can be written

IA] = (A, A)"/? = (tr (ATA))"*.

Definition A.1.7 (Angle between two matrices). It is possible to define an angle between

two m X n matrices A, B, as
(A,B)

<0 (6) = TATTIB]

We emphasise that the Cauchy-Schwarz inequality holds for the inner product and norm defined
above.

Theorem A.1.8 (Projection of a vector onto a column space). Let A be an m X n matriz,
for which m > n, and let b be an m dimensional vector in R™ (we do not require, however, that
rank (A) = n). Writing as p = A~ the least squares projection of b onto the n columns of A,
where v is an n dimensional vector, then

vy=(ATA) A"b

and
p=A(ATA) ATb, (A.1.1)

where we used the pseudoinverse in Definition A.1.17.

Proof. When p is a least squares estimate of b on the subspace spanned by the columns of A it
follows that b — p is orthogonal to the columns of A. In other words,

0=A"(b-p)=AT(b- A7),

or
ATAy=ATb.

It follows that ¥ = (ATA)” ATb. Then, using the definition p = A, we obtain (A.1.1). O

A.1.3 Properties of the determinant

Theorem A.1.9 (Determinant of a product of matrices). If A and B are n x n matrices,
then
det (AB) = (det A)(det B)

Theorem A.1.10 (Determinant of a matrix of which a submatrix is 0). If M is defined

such that
A O A B
M—[C D} or M—[O D}’

then
M| = [A|[D].
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Theorem A.1.11 (Determinant of a matrix containing unit submatrices). If B and CT

are m X n matrices, then
‘ { I B

c o1 ”:|I—BC|:|I—CB|

Theorem A.1.12 (Determinant of a scaled matrix). If A is an n X n matriz, then

kA| = k" [A]
Definition A.1.13 (Singular matrix). An n X n matrix A is singular if and only if its deter-
minant is zero.

Theorem A.1.14 (Determinant of matrix with less than full rank). If A is an n x n
matriz, and rank (A) < n, then |A| = 0.
Theorem A.1.15 (Determinant of inverse). If A is an invertible matriz, then
1
— =|A!.
A= AT
Theorem A.1.16 (Determinant of a partitioned matrix). If
A B
ve[en]

and assuming the ezistence of A~' and D™, then

M| =|A||D - CA 'B| =|D||A -BD 'C]|.

A.1.4 Properties of the matrix inverse

Definition A.1.17 (Matrix pseudoinverse). Let A be any m x n matrix, and let G be an
n X m matrix. Then G is called the pseudoinverse or generalised inverse of A when

AGA =A.

When A is square with full rank, then G = A~! is the only such pseudoinverse; otherwise, an infi-
nite number of such pseudoinverses exist (moreover, every matrix has at least one pseudoinverse).
The pseudoinverse of A is commonly written A~

Theorem A.1.18 (Pseudoinverse as a solution to a linear system). Let A be any m x n
matriz, and let B be an m X p matriz for which the linear system AX = B is consistent. Then
GB is a solution to AX =B if and only if G = A™.

Theorem A.1.19 (Inverse of a matrix product). If A, B are invertible matrices, then
(AB)"' =B 'A!
Theorem A.1.20 (Inverse of a partitioned matrix). If
A B
v-[en )

then assuming the existence of A™!,

M-lo | AT A'BECA™! —A"'BE |
| -ECA™! E |’
where B = (D — CA™'B)~'. Assuming the existence of D1,

M- | F ~-FBD !
~ | -D7'CF D !'+D!CFBD ' |’

where F = (A —BD™'C) 1.
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Theorem A.1.21 (Sherman-Morrison-Woodbury formulae). If I+ VT A~'U is nonsingu-
lar, then

-1
(A+UVT) =Al-AlU@E+VIATU) VAL

If vi Au # —1, then

1

- AluvTA L,
1+vTA-lu u

(A + llVT)71 =A"!

A.1.5 Eigenvalues and eigenvectors

Definition A.1.22 (Eigenvalues and eigenvectors). If A is a square matrix of dimension n,
and
Az = )z,

then A is the eigenvalue of A corresponding to the eigenvector u, where u # 0. As a consequence
of the above definition, the eigenvalues of a diagonal matrix are the elements of the diagonal.

Theorem A.1.23 (Characteristic polynomial). The roots \; of the eigenvalue problem
Au=)u

are the same as the roots of the characteristic polynomial
|A — AT].

Theorem A.1.24 (Similar matrices). Given the m x m matrices A, M, where M is invertible,
then the matrices A and B = M~YAM are said to be similar. It follows that A and B have the
same eigenvalue spectrum X.

Proof. This proof is taken from Strang [81]. We simply apply the definition of the eigenvalue
decomposition;

Au = )u
MBM 'u = Au
B (Mflu) = A (Mflu) .

O

Theorem A.1.25 (The singular value decomposition). Any m x n matriz A of rank s may
be written

A =QART,
where
e Q is an m x s matriz, of which the columns are the eigenvectors of AAT with non-zero
eigenvalues, and QT Q =1,

e R is an n x s matriz, of which the columns are the eigenvectors of AT A with non-zero
eigenvalues, and RTR =1,

e A is an s x s diagonal matriz, containing the singular values,

e both AAT and ATA have the same set of non-zero eigenvalues, obtained by squaring the
singular values.
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A.1.6 Properties of symmetric matrices

Theorem A.1.26 (Eigenvalues of symmetric matrix). The eigenvalues of a symmetric matriz
are real.

Theorem A.1.27 (Determinant of symmetric matrix). Any symmetric n x n matriz A with
eigenvalues A1, -+ , A\, has the property

Al =]\
i=1

Theorem A.1.28 (Trace of symmetric matrix). Any symmetric n X n matriz A with eigen-
values A1, -+ , A\ has the property

tr(A) = zn: Ai

Theorem A.1.29 (Spectral decomposition theorem). Any symmetric n X n matriz A with
eigenvalues Ay, -+ , Ay can be written
A =EAET,

where A = diag(\), EE" =1, and X is the vector of eigenvalues of A.

A.1.7 Properties of positive (semi)definite matrices

Definition A.1.30 (Positive definite/semidefinite matrices). A symmetric n x n matrix A,
with individual entries a; ;, is positive definite if and only if

a'Aa >0 (A.1.2)

for all @ € R", with equality only when a = 0. The matrix A is positive semidefinite if and
only if (A.1.2) is non-negative for all a € R*. If A is complex and conjugate symmetric, so that
a;j = aj;, then A is positive definite if and only if

(aT)* Aa >0,
for all @ € C", with equality only when o = 0.

Theorem A.1.31 (Eigenvalues of a positive definite matrix). If a matriz is positive definite,
then its eigenvalues are positive. If a matriz is positive semidefinite, then its eigenvalues are non-
negative.

Theorem A.1.32 (Cholesky decomposition). If A is a positive definite or positive semidefinite
matriz, it may be decomposed as A = BB, where B is upper triangular, using the standard LU
decomposition procedure. This is known as the Cholesky decomposition.

A.1.8 Derivatives

Theorem A.1.33 (Derivative of a linear function). Given an m x n matriz A and an m x 1
vector b, then the derivative of f (x) = Ax + b with respect to the n x 1 dimensional vector x is

of (x) AT,

ox
Theorem A.1.34 (Derivative of a quadratic form). Let A be a symmetric m X m matriz,

and f(x) = x" Ax a scalar valued function. Then the derivative of this function with respect to
the m x 1 dimensional vector x is 5
91 (x) _ gy

ox
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A.2 Normalised covariance: equivalent eigenvalue problem

A.2.1 Solution unconstrained

In this section, which constitutes a proof of Theorem 3.2.1, we find the vectors a; € Fr : o] a; < 1
and B; € Fy : ﬂ:,@l < 1 onto which random vectors x and y respectively project, such that the
covariance 7; between these projections is a stationary point with respect to e, 3;. These results
are well established, and may be found for instance in [87]. The Lagrangian for this problem is
written

L(@.BAE) = Egla'xy'B)-Eda'xE (A - (a'a-1)-¢(878-1)
aTCpB-AaTa-1)-¢(878-1).

We wish for the stationary points of the covariance to occur at the zero derivatives of the above
expression: according to [61, Section 7.3], this is true as long as Slater’s condition holds on the
feasible region (that is, the feasible region is required to have an interior point, which is true of the
constraints T < 1 and '8 < 1). We therefore set the derivatives with respect to a, 3, A, € to
zero, to compute the saddle points. This yields

0L

oL .

o — 28 =0.
5 Cla-28=0

We now demonstrate that A = £, by premultiplying the first expression by a' and the second
expression by BT

a'CpB -2 a’'a = a'C,B-2\=0,
B'Cla—298"8 = B'Cla-2=0.

We therefore write v = 2A = 2¢, and the solution becomes a single eigenvalue equation,

{C%y ngHg]ZV[g]’ (A.2.1)

which completes the proof.

A.2.2 An alternative form of the unconstrained solution

In this section, we derive the form of the eigenvalue solution presented in Lemma 3.3.1. The initial
form of the kernel covariance in (3.2.5) may be written

max (ch(%znf{ggznd) : cTIN(%%c <1, dTIzggznd <1

Introducing two new variables
~ 1/2 o - 1/2
a= (K@) e B=(KW.) 4
this becomes " "
max (c“v (Rn) " (R,) B) caTa<1,B B<L
&8

The Lagrangian is written

L(apan) =aT (Re) (k) - (aTa-1) —¢(87B-1).
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Using Slater’s condition [61, Section 7.3], we find that the zero derivatives of the above are the

~ 1/2 /. 1/2 o
stationary points of & (K%;n) (K%{;n) 3 with respect to the constrained &, 3. As in the
previous section, we get the system of equations

(Rin) " ()8 = e
(&) (k) e = 48
Substituting the first of these into the second, we obtain
(&) (&) (&) (&) "5 =5. (A22)
In other words,

V= H (f(%:zn)l/z RG) (R%)MH _ HR(z) K |

m mm mm

- 1/2
where the final equality is found by premultiplying (A.2.2) with (K,&%Zn) and making the change

. ~ 1/2
of variables 8 = (K%{;n) B (the norm here represents the largest eigenvalue of the matrix).

A.2.3 Solution restricted to a specific basis

In this section, we prove Theorem 4.2.3 by deriving the stationary directions of the normalised
covariance, in the case where these are restricted to be linear combinations of a specific set of basis
vectors. In other words, R .

a=Q¢, (B =Rd, (A.2.3)

where the columns of Q,R are vectors in the respective feature spaces Fx,Fy (hats are used
to distinguish these solutions from the unconstrained case in Section 3.2). To our knowledge,
this result is new: constrained solutions in the context of the canonical correlation are discussed
in [55], in which the projection directions are restricted to certain linear combinations of the
observed samples! x,y; and in [29], although the constraints in the latter case are inequalities on
the coefficients, and do not represent a restriction to a specific basis. The constrained empirical
estimate of (3.2.1) in Theorem 3.2.1 becomes?

~T ~ ~ “ AT~
cov (aTx,ﬁ y) —¢"Q"XY'R4,:a'a<1,8 B<1,

where we replace C,, with its empirical estimate XHY ', and the centered sample matrices )NC, Y
are defined in (3.1.8). The Lagrangian is written

L (é,&, A,g) =¢"Q'XYTRA-\(¢'Q"Qée—1) —¢ (&TRTR& - 1) .

The derivation of the solution then takes the same form as that used in Appendix A.2.1, and we

obtain .
0 Q'XY'™R|[[e] _.[QQ@ o é
RTYXTQ 0 a|=7 o RR||al|’

where the generalised eigenvalue is written 4 for consistency with (4.2.11) in Section 4.2.2. This
may be rearranged as

[ (RTR)‘E{T?XTQ (QTQ)_?TX?TR ] [ g ] :7[ g } '

IThe samples being mapped to their respective feature spaces.

1
2We neglect the constant factor (vavy)? required in Section 4.2.2; this has no effect on the reasoning in this
appendix.
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Q 0 ¢
0 R d
above is in the row space of this matrix for any non-zero 4. Doing this, and substituting the
definitions of &, 3 in (A.2.3), we obtain

P, 0
0 Pg

where we define the projection operators

We may premultiply by { without changing the values of 7, since the solution

YXT 0

0 X?THS}:&{%}, (A.2.4)

P,=Q(Q'Q) Q", Px=R(R'R) R".

A.3 Canonical correlation: definition and properties

A.3.1 Derivation of the projection directions

In this section, we derive the projection directions for the canonical correlation. The derivation is
a standard procedure, and is taken from [13, 55, 37]. The random variables x and y are defined
respectively on Fy and Fy, and we would like to find vectors «;,8;, i € (1,...,s) onto which
the inputs and outputs respectively project, such that the correlation p; between these projections
is a stationary point with respect to ay,3; (the stationary points are given the index ). The
linear variates a;,b; are written a; = ] (x — Ex (x)) and b; = 8, (y — Ey (y)), and the correlation
between these variates is

T )
pi = corr (ai, bl) = o Cacyﬁz (A31)

\/(ajcmai) (B;nyﬁ)’

where the covariance submatrices are defined in (3.1.1), (3.1.2), and (3.1.3), and it is assumed that
a; is not in the nullspace of C,,, and B, is not in the nullspace of C,, (these constraints are
important when empirical estimates of the covariance matrices are used). We note from the above
that a; and B3, can be multiplied by arbitrary constants, and these relations still hold. Let us then
normalise a and 3, such that

a'C,,a<1l and B'C,B<1.
We then obtain the equivalent Lagrangian
L(a, 8,06 =a'Cyf - (@ Cova = 1) —¢ (B7C,, B —1).

The zero derivatives of the above are the stationary points of o' C,,/3 with respect to the con-
strained o and B according to Slater’s condition [61, Section 7.3]. In other words,

oL
oL
B C,,a—2C,,B8=0.

As in Appendix A.2, we can show that A = £, by premultiplying the first expression by e, and
the second expression by ,BT;

a'CpB-22a'Cppa = ' C,yB—2X=0,
BTCla—2B"CyB = B'CJa—26=0
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We therefore write p = 2A = 2¢, and the solution becomes a single generalised eigenvalue equation,
=p; . A3.2
[ C;y 0 } { Bi g 0 Cyy Bi ( )
An alternative form is
& G lla =05 e, 15
=14 p; . A33
o] [Soe, ] (433

A.3.2 Properties of the canonical correlation

In this section, we find the number of canonical correlations between two random vectors, and
describe the properties of these correlations, as summarised from [55, 37]. We begin with the
expression in (A.3.2), where we assume that C,,, C,,, with respective dimensions® n,,n,, have
full rank; and that C,, has rank s = min {n,,n,}. We expand out this solution to obtain

ERAIEARNR
0 Cy ][ CayBi LB

{ C;gglcmyﬁz = piQy

which becomes

C,,Clai = piB;
or 1 10T 2

Using Theorem A.1.4, and applying the spectral decomposition theorem (Theorem A.1.29), reveals
that the number of non-zero eigenvalues p? is s = min (ng,n,). Next, taking the first of these
expressions, we find

piai = C;CyyCpyCya
= (caiicii) e, (Gl e ) o], (G2 Cl?) e,

and thus .

pCH i = (€120, 0,17 (ClPe,,C 1) Clay.
Similarly,

-

PECL B, = (CL1CyCl ) (€120, %) CL2B,.

We may make our notation more compact by defining

A=l ... o] B:=[p ... B,], and B:=C;}/°C,,C, />

Thus, using the singular value decomposition (Theorem A.1.25), the columns of CJIEJ/EQA, which are
the eigenvectors of BB, satisfy

(C;QA)T C2A=ATC,A=1,,
and the columns of C;{?B, which are the eigenvectors of BT B, satisfy
(c;{f’B)T Cl2B=B7C,,B =1,
Finally, given that the singular value decomposition of B satisfies
B = (Ci2A)diag([ p1 .- . ]) (c;{fB)T :
we have

ATC,yB = (C;QQA)T (Coic,,c,\?) (clpB) = diag ([ ;- ps ).

3The dimensions follow from our simplifying assumption that Fx and X coincide, as do Fy and Y.
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A.3.3 A geometric interpretation, incorporating the sample

The following interpretation of the kernel canonical correlation is taken from [55], and is included
since it is crucial in understanding why kernel CCA requires the regularisation used in [7, 62] (as
seen in Appendix A.6.1). We begin with a sample ((x1,y1),.-.,(Xm,¥m)) of size m, where the
points are mapped to their respective feature spaces: x; € Fx and y; € Fy. We use the data
matrices defined in (3.1.5), and the empirical covariances in (3.1.6).

We now recall the equations describing the solution to the canonical correlation problem: from
(A.3.2), these are

{ Cacyﬁz = picmmai
T _
C,ai = piCyf;
If we explicitly incorporate the empirical expressions for the covariance matrices from (3.1.6), we
get
)N(?T,Bl = pi)NQNCTai
YXTa; = pYYTB; '

where )NC,SNK are the centered sample matrices, as described in (3.1.8). Making the substitutions
a; = X" a; and b; = YT 3, for the linear variates, we obtain

ibl = piiai,
Ya; = p;Yb;,

Now since a; is in the span of the columns of X, we may write a; = X 'y, (all steps are repeated
in the b; case). Thus

Xb: = pXXT (iiT)_ Xbi = piva
Xbi p’)~Q~(T7a and hence e
Yai = pZYY Yo (YYT) Yai = P

where we use the pseudoinverse to account for the fact that X and Y may not have full rank.
Premultiplying by X and YT respectively gives

XT (XiT)_ ibi = p;a;
YT (??T)7 ?ai = pib;

Comparing with Theorem A.1.8, we observe that p;a; is the projection of b; onto the column space
of X T, and p;b; is the projection of a; onto the column space of Y .

A.3.4 Link with the Gaussian mutual information

In this section, we demonstrate the link between the canonical correlation coefficients in Theorem
3.4.1 and the Gaussian mutual information in (4.1.1). The proof is an expansion on the discussion
wa

in [7, Appendix A]. Beginning with (3.4.4), we note that { 0 C
yy

] is positive definite, and

can be written

1/2
{ Ciz O ] —SS  wheres — | Ca® ?/2 and Cy, = CL,’CL/2,
0 Cyy 0 Cy
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and the matrix square roots are also symmetric. Making this replacement in (3.4.5), writing

g
[ &r BZT ] =S [ o ﬂiT ]T, and assuming S has full rank, yields

(3

Cez Cacy (67 o
= (1+4p;)SS
o lB ] = aeess| g
sz Czy :| -1 [ dl |: dz :|
S 9 = 1+ p;)S o
o cnlstE ] = o]
C C [ ] a;
S—l |: xTx Ty :| S—l -t — 1+ ; |: o :| )
Cp C, % L] = 0T

This decomposition is necessary to preserve the symmetry of the left hand matrix, which in turn
guarantees the eigenvalues are real. Note that the eigenvalues 1+ p; for which we are trying to solve
have not been changed by this procedure; moreover, when the covariance matrices have full rank,

there are min (l,,1,) pairs £p; of eigenvalues. Finally, we note that since S™! [ 8” 8“’ } S—!
yo Gy

is symmetric, the determinant may be written as the product of the eigenvalues,

C C
S—l |: T Ty j| S—l

:H(1+pi)(1—m):H(1_p?)’

i 12

in accordance with Theorem A.1.27. Using this result, we write the ratio of determinants in (4.1.1)

as
[ el e e & el
Cym ny — Cyﬂlc ny — Cyﬂlc ny
|Coal [Cyyl Cor O SS|
0 Cyy
C C
— Sl[ zx Ty :|Sl — 1— Z2
srle @ lsf-meea

A.4 Approximate mutual information between discretised dis-
tributions

In this section, we derive the approximate mutual information near independence for two discrete
random variables. The proof is taken from [7, Appendix B]. We define the joint distribution
Psg (4,7), where ¢ € {1,...,01;} and j € {1,...,l,}, and the associated marginal distributions
P (i) and Py (j). Writing Py (¢,7) = Px (i) Py (j) (1 + €;, ;) for an appropriate choice of ¢; j, where
€;,; is small near independence, we find

le Ly o
lo Iy
= Z > Px (D) Py () (14 €ij) log (1 +eij)

o Ly

Z > Py (D) Py (j) (e + €7 ;/2)

X
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using (1 + €) log(1 + €) ~ € + €2 /2 for small ¢, and

la Iy la Iy

I, ly
YNSPPy (e = DD Pi()Py(j) (L+eiy)— D> > Ps(i)Py(j)

i=1 j=1 i=1 j=1 i=1 j=1
lo Uy lo Uy
= DD Pay (i)=Y D Pe()Py ()
i=1 j=1 i=1 j=1
= 1-1=0.

A.5 Approximate mutual information between 2 Gaussians

A.5.1 Ratio of determinants for the Gaussian mutual information

The following result is stated without proof in [7, Appendix B]. Recall that the mutual information
between xg and yg is

‘ Dz - PszT T Pmy - PzPyT

T T

1 IC| 1 (P.y —pzp,) Dy —pyp,
I(xg;yg) = —=log <7> = ——log . (A5.1)

2 |sz| |ny| 2 |Dz - Pngﬂ |Dy - pypyT|
We make the expansion

P,, = pmp;— +D,eD, (A.5.2)
- D, (1,11,‘; + e) D, (A.5.3)

where € is the matrix which quantifies the departure from independence; this means (Pry)ij =
(P2)i(Py)j (1 + (€);,;). Then we use Theorems A.1.15 and A.1.16 to obtain

Dm - pmme T Pmy - Pngj
(P.y —p.p,) Dy—pyp,

C| _
|Caal [Cyyl Dz — p.Pp; | |Dy - pypgﬂ
(Dy - pypyT) - (Pmy - PzPyT)T (Dz - PzPI)il (Pmy - PzPyT) ‘
- Dy — pypy |

= ‘Ily - (ny - pmpyT)T (Dz - pmpr)il (Pacy - pwpyT) (Dy - pypyT)il‘

‘Ily - (ny - sz;)T (Dz - pmp;r)_l (Pacy - pacp;) (Dy - pyp;—)_

|
In the reasoning above, we glossed over the fact that both D, — p,p,; and D, - pyp?;r have rank

at most [, — 1 and [, — 1 respectively, and are not invertible*. To see this, we make the expansions

D,-p.,p, = D,(L, —1,p,)=D,E,,
D, - pyp;— = D, (Ily - llyp;) =D,E,,

where E, :=I;, —1;,p] and E, :=I;, — 1;,p, . Recall that normalisation requires

p,1,=1, p,1,=1

4This is not to say that the ratio of determinants in (A.5.1) is undefined: rather, we must define it as a limit
using matrices of full rank.
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Consequently, the final column of both E, and E, may be written as the negative sum of the
remaining columns.

We may get around this problem by adding a small diagonal term ¢I to both E, and E,, so that
Em = (1 + 5) Ilm — ]—lszT Ey = (1 + 5) Ily — ].lypyT.

The resulting matrices are invertible, and may be made arbitrarily close to E, and E, as £ drops
to zero. We may therefore use this limiting case to determine the ratio of determinants in (A.5.1).
The inverses of D,E, and D,E, may be greatly simplified, using the results

D,'p,=1, and p,D,'p,=p,1;, =1,

(with analogous results for D, and p,) along with Theorem A.1.21 to expand out the inverses;

(DxEm) Lo (D, (1+&) —popy)
(1+¢ *D;'p.p, D;!
1-(1+& ' p/D:'p,

D,'p,p, D, !
(1+& —p]D:'ps
D;'p,p, D;!

3

(1+&'Dt+¢'1,1/.

(1+& "Dyt +

= 1+97'D +

(1+67'D;' +

We know, however, that

l l
Ejy:1 (Pwy)Lj Y ij:1 (Pacy)1,j
(Pay = PPy ) 1,1, = : :
l l
2=t Pay)y, 5 2 (Pay)y,
l l
Yt (pepy ), 0 X (Pepy),

Eé'yzl (pmpyT)zm,j

= [pe P ]=[P: o P ]=

with an analogous result for (Pg, — pmpyT)T 1;,1; . Therefore,

- —1 - —1
(Pacy - sz;—)T (Dsz) (Pacy - pmp;) (DyEy) = (1 + 5)_2 (Pacy - pacp;)T

Thus,

T -1 -1
‘Ily - (sz - PzPyT) (Dz - PzP;) (sz - PzPyT) (Dy - pypyT) ‘ =
-1
lim
£§—0

Izy - (sz - PzP;—)T (DzEz)_l (sz - prp;—) (DyE?J)

. - T - -
gg‘xly—(lﬁ) *(Psy —pop,) D;' (Psy—pop,) Dyl\ =

N )
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A.5.2 Approximation to the mutual information near independence

The following result is proved in [7, Appendix B]. We wish to approximate the ratio of determinants

C|
Caz| [Cyy

Ily - (ny - PxP;)T D;I (Pacy - pacp;) Dg;l‘

L, -D,' (P,,—p.p,) D, (P,, - pzp;)‘
near independence. We again start with the expansion in (A.5.2), from which it follows that
P, - pmpyT =D,eD,.
Thus
(P.y —p.p,) D;' (P, —p.,p;)D;' = (D,eD,)' D;!(D,eD,)D;’
DyeTDme.

Next, we write
L, -Dye'D,e| = |, - D}/ >D}/%e DY/>DL/%
‘D;ﬂ‘ ‘D;l/Q - D;/QJDWD;/%‘
= |1, - Dy DYDL 2D}
Now since Dgl/zeTDi/zDgl/zeD?l/2 is symmetric, we may write it as
D}/?¢'D}/?D}/?eD,/? = EAE",

where EET =1, using Theorem A.1.29. Thus

“jlog (olfe) = ~blos(I-BAET)) = —jlog(jB||I-A|[ET))
= g (I 0-0) = ~13log (1- )
- _1 ) _Aj_ﬁ_ﬁ_ ) ~ lz,)\j
= tu (D)% DeD)?) = Sl Y (7, 00 (By);

where we use Theorem A.1.28 in the penultimate step.

A.6 Discussion of Bach and Jordan’s derivation of the KGV

A.6.1 Computation of the unregularised kernel canonical correlations

In this section, we prove Lemma 3.4.5, which is used to show a regularised empirical estimate for
the kernel canonical correlates is needed when the associated RKHSs have high dimension. We
begin with (3.4.6), which we restate below for reference;

~ 2
0 Rmﬁml[q]_, (Kiin) o {q}
KK 0 4 | 0o (R )2 d; |
This is equivalent to
2 o ~
0 (Kfon ) KShK { o } [ o }
2 - ) = pPi R
(i) KRS, 0 d d
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where we use the pseudoinverses since the Gram matrices do not have full rank. If we recall that
H is the centering matrix, then the solutions p; correspond to the solutions of

ol (K& ) KK,

(ki) KRS, 1

1 2 . 2.0~
ot ot = 2 (s ) Ry iy (K0 ) R,
p

— |l ‘pI - 1H‘
p
m—1
m (PP — 1)
- pm—2 ’

which has m — 1 roots +1, m — 1 roots —1, and 2 roots 0. To avoid this problem, a regularised
empirical estimate is used, as discussed in Bach and Jordan [7].

A.6.2 Further discussion of KGV proof

In this section, we describe some possible problems in the derivation of the kernel generalised
variance in [7, Appendix B]. We assume that X" and ) are both bounded intervals on R. Recall
from Definition 3.4.4 that the kernel canonical correlations can be written

p = corr(f(x),9(y))) (A.6.1)
L Ey () - E(K) Ey <g(y>> | n62)
VE(£209) — E2 () /E, (92() — EZ (9())
where f € Fx and g € Fy . We approximate f, g using the expansions
lo
Flx) =~ zpmu—m:émﬁ, (A.6.3)
I
90) & Ddik(y-yy) =d'K, (A6.4)
where®
KO =[ (a)) - (a) ] kY =[(yr) o (yr,) ], (A.6.5)

and the grids g and r over X’ and ) are defined in Section 4.1.2. Substituting these approximations
n (A.6.2), we get

prp = &7 (Ew (klm (kl(y))T> E (kl(x)) E, (kl(y))T> 5
o (e (4 () ) - () e ) )
x{3T<Ey<ww(ky07>._EyOéw)Ey(ww)T>a]_U2

Replacing the random vectors x,y with the observations X, Y, we obtain (4.2.21) in Section 4.2.4,
which is then used to derive the KGV. It is still not clear in what manner the population expression

5Note that the superscripts (x), (y) used below are sans serif, which indicates that x,y in the inner products are
random vectors, and not the sample x, y.
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p above relates to the Gaussian approximation to the discretised mutual information ((4.1.13) in
Section 4.1.3): we now address this problem.

We begin by restating the argument of the logarithm in (4.1.13) in the form found in Appendix
A.5.1; in other words,

Dz - PszT T Pmy - PzPyT
c || Pay—pepy) Dy—pyp,
|Cz| |Cyy |D. — p.p; | |Dy — pyp, |

Comparing with our expression for p, we observe that the link between the Gaussian approximation
to the discrete mutual information and the KGV could be shown by demonstrating

P,, ~ E, (k,(X) (k,(Y))T) , D, ~E, (k}x) (k}x))T> . P ~E (k) (A.6.6)

under appropriate conditions, with similar results for the terms in y (certain constants related
to the grid spacing are neglected here: see below). We consider the case where both kernels are
Gaussian; that is,

(x,qi) =k(z —q;) = \/#—U%QXP (_%) ’
(y,rj) =kly—rj) = ! exp <_M> ,

bearing in mind that the impulse function is a limiting case [14];

o1 (@—a)”\ _
o (1) = Jimy —as P (‘W = lim k(@ = gi).

To compute the covariance structure of the vectors in (A.6.5), we require expressions for the

expectations
e (0 ) ) ) e (k)
E, (klm (klm)T) g (klm)

-
The expectation of individual entries in the matrix kl(x) (kly)) is

Eey [ @) (y.r)] = / / B — 4i)k(y — 1)y (2, y)dady
= [k@)k() *Fuy (@ 9)] (05,7,

which is the convolution of the product of kernels with the underlying (unknown) density fyy(z,y)
of the random variables x,y in input space, evaluated at g;,r;. Since the kernels are normalised,
then the above expectation is also a probability density ff,y (z,y), where the superscript & indicates
that it represents the density f, ,(x,y) smoothed by k(z)k(y). Similarly,

E [(x, a) (x,qj)] = /X k(e — k(@ — g)fx(z)de
{W(m)*fx(x)] (@) =]

X

0 otherwise ’
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where the above assumes o, < A, < 1. Note, however, that

2
E(r—q) = ! exp _za) (A.6.7)
! 2mo2 o2
_ 1 1 (z — ;)"
= W X \/ﬁ exp (-7 5 (AGS)

and thus k%(z) is not a probability density (the integral over R is equal to ﬁ) Finally,

Ex[(x,qi)] = Rk(ﬂf—%)fx(ﬂf)dl”

= [k(z) x Fu(2)] (2:)-

In the light of these observations, it might seem that the relations in (A.6.6) ought to hold in the
limit as A;, Ay — 0 and 0,,0, — 0, so long as 0, < A, and o, < Ay: the grid size must be
small to allow us to make the approximations

¢i+Az
Ps (i) = / fi (z)de ~ A f (¢;)

qi

and

¢i+Ae pri+Ay
Pay (ir)) = / / Fo, (oy)dady ~ DA foy (@i,7)),
i rj

and the kernel size is made small so that the kernel functions approach delta functions (although
the squared kernel functions do not do so). Ignoring for the moment the problem of dealing with
the factors A,, A, (which are in any case assumed to decrease much more slowly than the kernel
sizes, and do not impact upon the limiting argument below), we can write population expression
for the kernel generalised variance, in the limit of small kernel size, as

lim ./\/(Px7y,.7:x,.7:y)

= impin 1 (e (9 (6) ) - )5 (7))
(e (0 00)) e ) (0) )
(e (7 (1)) e (k) 8, () )
(B (4 () ) = ()5 (4))

1
li —=1
am,(ITI;l—)O 2 8 <

= 0,

X

where the penultimate line retains only those terms that remain large in the limit as o, o, approach
zero (in other words, the smaller terms are set to zero), and we use the expression for the squared
kernel in (A.6.8). This problem reveals the need to enforce the opposite assumption to that made
above, namely that o, > A, and oy > A, (see Section 4.2).
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A.7 Some miscellaneous proofs

A.7.1 Effect on norm of taking sums of rows

In this section, we prove Theorem 4.2.2; namely, that if B is a symmetric n X n matrix with positive
elements b; j, and c an arbitrary n x 1 vector with elements ¢;, then

c¢'diag (B1,)c > c¢'Bc.
We first give the expansion

n m

c'diag (Bl,)c = 203 Z bi,j
i=1 j=1
= Zc?bi,i + Z Z bij (cf +¢) -
i=1 i=1 j=i+1

Next, we expand
n n n
¢'Be = chbz,z + 2 Z Z CiCjbiJ'.
i=1 i=1 j=i+1
For any c;c; € R,
cd+ci = 2cici+ (¢ — c]-)2

J
> 2cc;.

By comparing terms with equal b; j, and bearing in mind that b; ; > 0, we complete the proof.

A.7.2 The centered kernel matrix is singular

In this section, we show that f<£,f2n is singular. To see why, we first make use of Theorem A.1.9,
which yields

Ko, | = 18] (K, | 1H],
and |H| = |I - %lmlm = 0 using Theorem A.1.14, since its rank is less than m (any column of
H can be expressed as the negative of the sum of the remaining columns).

A.7.3 Proof that centering matrix is idempotent

We define )
H=1I- E1,711;.

1 1
(I - Elm1;> (I - Elm1;>

2, 474 T T
I- Elmlm + Wlm (1,1,)1

Then

HH

m
2 T m T

= H.



A.8. BASIC RESULTS IN INFORMATION THEORY 81

A.8 Basic results in information theory

The following material is taken from [25, 42]. We mostly omit the proofs, since the intent is simply
to give an overview of useful results and definitions.

A.8.1 Information theory in discrete spaces

Any signal (for instance, a piece of music or a film) may be interpreted as the output of a random
process. This output can be characterised by the entropy, a quantity introduced by Shannon to
describe the lower bound on how far the signal can be compressed.

Definition A.8.1 (Entropy). The entropy of a discrete random variable x with possible values
i € {1,...,n} and probabilities P; (i) is

Z P: (i) log, (Px(7)) = Ex (—log, (Px(X))) -

This can be interpreted as the average number of bits required to describe the random variable, or
as the average uncertainty in the random variable. It is measured in bits, if the logarithm is base
2, or nats, if it is base e (in the subsequent discussion, we omit the subscript of the log, since the
units are not important in our context).

The joint entropy is a measure of the average number of bits required to represent several random
variables, and the conditional entropy is the entropy of a random variable given one or more random
variables (for instance, the average number of bits needed to represent X if y is known). Thus, given
a discrete random variable x with possible values i € {1,...,n} := X and probabilities P (i), and
a discrete random variable y with possible values j € {1,...,m} := ) and probabilities Py (j), the
following definitions apply.

Definition A.8.2 (Joint entropy for two random variables).

—ZZ %3 (1, 5) log (Pxy (i, 7)) -

Definition A.8.3 (Conditional entropy for two random variables).

—ZZ iy (i,7) log (P (ily = 7)),

It is important to note that the mean in the conditional entropy is taken using the joint distribution,
and not the conditional distribution.

A simple result of the above definitions is
H(x,y) = H(x) + H(y|x) = H(y) + H(x[y).
Next, we define the relative entropy, or the Kullback Leibler divergence.

Definition A.8.4 (Kullback Leibler divergence). Given two probability measures Pg, Qx de-
fined on a finite set X,

Dict, (P5|Qs) = Y Pi(i) 1g(38>

ieEX
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H{(y)

H
H(x|y) (v1x)

I(x;y)

Figure A.8.1: Relations between entropies and related quantities for random variables x,y. H(x)
is represented by the entire area of the circle indicated by the relevant arrow; H(x|y) is the area
shaded in red.

This has a number of interpretations. First, it is the expected log likelihood ratio for data generated
according to the distribution Py, given a hypothesis Qg. It also describes the average number of
extra bits that must be sent when a set of code words designed for the distribution Q; is used
to transmit data generated by the distribution Py, as compared with the average number of bits
needed when the code words are designed for Py, so as to achieve an almost zero probability of
error. A crucial property of the KL divergence is given in the following theorem.

Theorem A.8.5 (Positivity of the KL divergence). Dxi, (Px||Qx) > 0, and Dk1, (Px||Qz) =0
if and only if Py = Qx.

Definition A.8.6 (Mutual information for two random variables). The mutual information
takes the following, equivalent forms:

I(x;y) = H(x)— H(X|y

= Dxw (Pxl[PxPy)

B o Py (i, 7)
- Zxputeoes ()

i€EX jEY

The mutual information represents the reduction in the average number of bits needed to represent
x after being given y (that is, the saving we make when representing x given knowledge of y, relative
to when we do not know y). In other words, this can be interpreted as the average number of bits
needed to transmit the information that X and y have in common. Alternatively, it represents (via
the KL divergence) the penalty incurred in assuming that x and y are independent. A summary
of these various relations is given in Figure A.8.1.

A.8.2 Information theory in continuous spaces
Basic definitions

We now present quantities analogous to those defined above in the case of discrete spaces, but for
continuous spaces. We begin by defining the differential entropy.
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Definition A.8.7 (Differential entropy). Given a continuous random variable x defined on a
support set X' C R, with density fy, then the differential entropy is defined as

>
—~
[
X
<~
I
>
—~
X
N
I

- / fi(z)log fy(z)dx.
X

This is distinguished from the entropy by the lower case "h".

One interpretation of the above is that it represents the logarithm of the equivalent side length of
the smallest set that contains most of the probability; for further detail, see [25, Chapter 9]. We
now describe the link between differential entropy and the entropy definition for a discrete random
variable (Definition A.8.1).

Theorem A.8.8 (Entropy and differential entropy). We discretise the support X C R of the
continuous random variable x using n intervals of size A. Let X be a discrete random variable,
taking value i € {1,...,n} with probability Ps(i) when x € [iA, (i + 1)A). Then the mean value
theorem requires that there exist some x; € [iA, (i + 1)A) such that

(i+1)A

Py (i) = / fo(x)dx = fi(z;)A.
iA

Consequently, it can be shown that

iiino (H(X) +log A) = h(x).

By analogy with the joint and conditional entropies in the previous section, we define similar
differential quantities below.

Definition A.8.9 (Joint differential entropy). Given the random vector x = [x;, . ..,x,] with
density fy defined on X C R",

h(x) = — /XfX(X) log (fx(x)) dx.

Definition A.8.10 (Conditional differential entropy). If random vectors x,y, defined respec-
tively on X C R* and Y C R™, have joint density fxy, then

h(xly) = — /X /y oy (%, y) log (Fx(xly)) dxdy.

Finally, the KL divergence between two continuous random variables, and the mutual information,
are defined in a manner consistent with the previous section.

Definition A.8.11 (KL divergence in terms of densities). Given two densities fy, gx defined

on X C R”, then
fx(x)>
D fxx:/fxxb( dx.
KL (fx||gx) . (x) log Py

The following theorem gives some useful properties of the KL divergence.

Theorem A.8.12 (Properties of the KL divergence on continuous spaces). The KL di-
vergence between densities fy, gx has the properties:
e D1 (fx||gx) > 0 with equality if and only if fx = gx almost everywhere,

o Dy (fx||gx) is invariant with respect to the invertible transform f(x) of x; i.e. Dky, (fx||gx) =
D1 (frl18100) = D (fr-100l187-100))
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e Dki,(fx||gx) is invariant with respect to random permutation of the components of x

Definition A.8.13 (Mutual information between continuous random vectors). Given two
random vectors x,y, defined respectively on X C R* and J C R™, and with joint density fyy, the

mutual information is
fry(x,y)
I(x,y) = //fx xylog( )dxdy
) y F 00 (y)

= h(x)+h(y)—h(xy)
= h(X)— (xly)
= h(y) —h(ylx)

= DxkL (fx,y”fxfy)-

In this case, convention dictates that we not use a lowercase "I". Relations with the differential
entropies and KL divergence are analogous to the discrete case. A nice consequence of the above
definition is that the mutual information between continuous random variables is defined as the
limit of the discrete mutual information as the discretisation parameter A approaches zero, without
the need for the log A term. Thus, if X and y are discretised random variables in the sense of
Theorem A.8.8, then

lim (I(5,9)) = I(x,y).

The Gaussian case

The joint differential entropy of the Gaussian distribution is given by the following theorem.

Theorem A.8.14 (Differential entropy of Gaussian random variables). Given a random

vector x = [xq,. .. ,xn]T with Gaussian probability density,
— 1 1 T ~—1
fu(x) = WGXP <—§(X—ﬂ) C (X—H)> )

then the joint differential entropy is

h(x) = %log (2me)" |C|.

This is a useful result, since the Gaussian distribution can easily be shown to have the maximum
differential entropy of any distribution with the same covariance matrix, as stated in the next
theorem.

Theorem A.8.15 (Gaussian random variables have highest differential entropy). If the
random vector X = [Xq, ... ,xn]T has zero mean and covariance matriz C, then

1
h(x) < 3 log (2re)" C],
with equality if and only if fx(x) is a Gaussian density.

On the basis of the above theorem, we may use the Gaussian differential entropy to upper bound the
entropy of any discrete random variable. This involves finding a continuous (piecewise constant)
random variable with the same entropy as the discrete variable, and using Theorem A.8.15 to
bound this continuous variable.

Theorem A.8.16 (Upper bound on the entropy using a Gaussian approximation). Con-
sider the discrete random variable X , with possible values i € {1,...,n} and probabilities Ps(i).
Then

1

H(f()géog%'e ZP i —(ZP ) +E
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Finally, we investigate the effect on entropy of applying invertible transforms to random variables.
This is a classic result; see for instance [49].

Theorem A.8.17 (Effect of an invertible transform on entropy). Consider two random
vectors X, y, related by an invertible transform y = f (x), and let Jf be the Jacobian of f. Then

h(y) = h(x) + Ex (log |det (Jf (x))]) .
Proof. The densities fy (y) and fy (x) are related by

£ (71 ()
|det (Jf (f=* (y))]

Making this replacement in the definition of differential entropy, we find

—/f()log( (v)) dy

)
) . (F1(y)
DI <|det IFG <y>>>|> dy

log (Fx (f " (y))) dy

fy(y) =

h(y)

_ Fo (/-
- / Idet(Jf (Fr

)
(
/ ')
T
fx (f 1(3’)) 1
| Tt o (e 01 (7 ) oy

We then make the substitution

F ' (y)=x and dx =dy|detJf (x)|""

to complete the proof. O

A.9 Cumulants, characteristic functions, and the Gram-Charlier
expansion

In this section, we introduce cumulants, Hermite polynomials, and the Gram-Charlier expansion,
using material taken from [42, 49]. We first define the characteristic function of a random vector.

Definition A.9.1 (Characteristic function). The characteristic function of a random vector
x € R" is
p(w) = Ex (exp (w " x)) ,

where w € R”.

The cumulant generating function is the logarithm of the characteristic function. In the case where
x is univariate, this has the Taylor expansion

pw)=ln(p@) = rel
k=0

where kj are the cumulants. The first four cumulants are given below as functions of the relevant
moments;

k1 = E((x),

R2 = EX(X2)_(EX(X))2:

k3 = Eo(x*) = 3E. (x*) Ex(x) + 2 (Ex (x))*,

mio= E(x!) —4E. (¢) B (x) — 3 (E« (%) + 12E. (¢) (Ex (x))? — 6 (Ex (x))"
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The final expression is known as the kurtosis. In the zero mean case, this becomes
2
kg = Ey (X4) -3 (EX (x2)) .

A well known application of the kurtosis is in measuring non-Gaussianity, since the kurtosis is
zero for Gaussian distributions®. More generally, the kurtosis is a measure of the “fatness” of a
distribution: when the kurtosis is negative, the distribution is called sub-Gaussian, and tends to
be less peaked and possess shorter tails than the Gaussian (for instance, the uniform distribution);
when the kurtosis is positive, the distribution is called super-Gaussian, and is more peaked with
long tails (e.g. the Laplacian distribution). We next define the Hermite polynomials.

Definition A.9.2 (The Hermite polynomials). The Hermite polynomials Hy, (z) are defined
using the recursion

Hyyy (z) = zHy () — kHip—1 (z).

These are biorthogonal with the mth order derivatives of the Gaussian distribution.

We now use these definitions to specify approximations of arbitrary densities, by expanding around
the Gaussian density. We consider here the Edgeworth and Gram-Charlier expansions, which were
respectively proposed in [24] and [4] for use in computing ICA contrast functions.

Definition A.9.3 (Edgeworth expansion around the Gaussian density). Let f, (z) be a
probability density with zero mean and unit variance, and g, (z) a Gaussian random variable with
the same mean and variance. Then we may expand f, (z) as
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Definition A.9.4 (Gram-Charlier expansion around the Gaussian density). Let f, (z) be
a probability density with zero mean and unit variance, and g, (z) a Gaussian random variable
with the same mean and variance. Then we may expand fy (z) as

fo(2) = g, () (1 +> <m>> ,
k=3

where the coefficients ¢ are functions of the cumulants: the first four non-zero coefficients are

X
)

Ka

c3 = 6 C4 = L 24 )
—_ K —
s = 155, 6 = 5 (/is + 1053) .

The Gram-Charlier approximation is obtained by computing the power series expansion of the
cumulant generating function, and then taking an inverse Fourier transform. When f, (z) is close
to Gaussian, only the low order terms in both expansions need be retained. Note, however, that
care must be taken when truncating the Gram-Charlier expansion, so as to discard terms of similar
magnitude, whereas the terms in the Edgeworth expansion decrease uniformly.

6There exist non-Gaussian distributions with zero kurtosis, however, so this is simply a heuristic.
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