
Semi-Supervised Learning through

Principal Directions Estimation

Olivier Chapelle, Bernhard Schölkopf, Jason Weston
Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany

{first.last}@tuebingen.mpg.de

Abstract

We describe methods for taking into account unlabeled data in
the training of a kernel-based classifier, such as a Support Vector
Machines (SVM). We propose two approaches utilizing unlabeled
points in the vicinity of labeled ones. Both of the approaches effec-
tively modify the metric of the pattern space, either by using non-
spherical Gaussian density estimates which are determined using
EM, or by modifying the kernel function using displacement vectors
computed from pairs of unlabeled and labeled points. The latter is
linked to techniques for training invariant SVMs. We present ex-
perimental results indicating that the proposed technique can lead
to substantial improvements of classification accuracy.

1 Introduction

In semi-supervised learning, one is usually given a relatively small number of labeled
training examples

(x1, y1), . . . , (xn, yn) ∈ X × {±1} (1)

and a large amount of unlabeled points

x′

1, . . .x
′

nu
∈ X . (2)

Here, X is assumed to be a (nonempty) set.

A typical example of a semi-supervised problem is encountered in web page clas-
sification [1]. Here, the number of unlabeled examples is effectively unlimited, but
labeled data sets are small since they require human work. A review of the field of
semi-supervised learning has recently been given in [11].

The hope in semi-supervised learning is that the labeled examples provide informa-
tion about the decision function, while the unlabeled examples help to reveal the
structure of the data, giving us additional information on how to best deal with
the labeled data. This hope has been corroborated by a number of experimental
studies [1, 7, 8], where improved classification accuracies were obtained by adding
unlabeled data.

One might argue that this is futile, since the unlabeled points contain no infor-
mation about the conditional distribution dP (y|x) of the labels given the inputs.

Without any assumption, it turns out that the information they do provide, about
the marginal distribution dP (x), is useless [11].

However, one should bear in mind that actually, even the labeled data alone do not
allow us to generalize to previously unseen points (this is sometimes referred to as
the “no-free-lunch-Theorem”). It is well known that for learning to be successful,
we need both training data and a priori knowledge on the class of functions that
the estimate is taken from (e.g., in the form of a structure on the function space, or
via a prior distribution). This is where unlabeled data can help — if used wisely,
they can help us determining the function space we are using.

In the present paper, this is done by effectively adapting the metric that is used in
the pattern space (cf. also [4]), thus indirectly influencing the function class that is
being used.

The remainder of the article is organized as follows: in the next section, we review
the problem of risk minimization, and its connection to semi-supervised learning.
In Section 3, we expand the ideas developed in the previous section by utilizing
connections to invariant SVMs. The following section gives some algorithmic details
on how we carry out the approach in feature spaces associated with SVM kernels.
Section 5 summarized the practicalities of our algorithms. Finally, Section 6 reports
experimental results, followed by a brief discussion.

2 Vicinal Risk

The Vicinal Risk Minimization (VRM) induction principle introduced in [3] is an
extension of the Empirical Risk Minimization principle. It consists of two steps.
First, perform a Parzen window estimate of the true underlying probability distri-
bution,

dPest(x, y) =
1

n

n
∑

i=1

dPxi
(x)δyi

(y). (3)

Here, x,xi ∈ X , and dPxi
denotes a probability distribution on X , parametrized by

xi (e.g. the distribution corresponding to a kernel density estimator). We consider
the case of pattern recognition, where the outputs y, yi are elements of ±1.

The second step is to find the function (mapping into {±1}) minimizing the vicinal
risk,

Rvic(f) =

∫

If(x) 6= y dPest(x, y) =
1

n

n
∑

i=1

∫

If(x) 6= yi
dPxi

(x) (4)

Spherical GaussiansN (xi, σ
2) are an obvious choice of the local estimate dPxi

(x). If
σ = 0, the vicinal turns out to be the empirical risk whereas the function minimizing
the vicinal risk when σ → 0 over the set of linear functions is the maximum margin
solution [3].

When a lot of unlabeled data are available, it can be worth trying to estimate
more accurately the marginal distribution. For instance, let us suppose that to
each labeled sample xi, we associate a local covariance matrix Σi and let us rewrite
equation (3) as

dPest(x, y) =
1

n

n
∑

i=1

1

(2π)d/2
√

|Σi|
exp

(

−
1

2
(x− xi)

⊤Σ−1
i (x− xi)

)

δyi
(y). (5)

Summing equation (5) over y gives an estimate of the marginal distribution dP (x).
The matrices Σi can be estimated with EM in order to maximize the likelihood of

the unlabeled data with respect to this estimate of the marginal distribution. If the
data lie on a manifold of small dimension, Σi will be flat and equation (5) can be
seen as a special case of a Mixture of Factor Analyzers [5] with centers xi being the
training points and with equal minxing parameters 1/n.

3 The Connection to Invariant SVMs

Let us add the additional constraint that in equation (5) all the covariances matrices
are equal Σ1 = · · · = Σn = Σ. This constraint might seem very restrictive, but as we
shall see, doing so in feature space yields already significant improvements.1 Now
let us consider the following linear transformation of the input space: x̃ = Σ−1/2x.
After this transformation, the ellipsoidal Parzen window estimate (5) of the density
becomes spherical. But remember that in the case of a spherical Parzen window
with a bandwidth going to 0, the linear function minimizing the vicinal risk is the
maximum margin one (provided that the training set is linearly separable) [3]. For
this reason, we suggest to run a linear SVM on the transformed patterns x̃i.

This kind of preprocessing for linear SVMs has already been used to train invariant
SVMs [9]. Suppose that one knows a set of transformations L1

t , . . . ,L
p
t , such that for

any k and for any small value of the transformation parameter t, an input pattern
x should belong to the same class as its transformed version Lk

t (x). For instance,
on a digit recognition task, the invariance transformations include horizontal and
vertical translations, rotations or dilatations. The vector dkxi = ∂Lk

t (xi)/∂t is
called a tangent vector and represents a direction of invariance. In [9], the authors
propose to compute the tangent covariance matrix,

B =
1

np

n
∑

i=1

p
∑

k=1

dkxi dkx
⊤

i ,

and to perform the following linear transformation of the input space before training
a linear SVM,

x← (γB + (1− γ)I)−1/2x, (6)

where γ is a parameter between 0 and 1. Performing such a preprocessing is equiv-
alent to finding the hyperplane which tries to maximizing the margin, while being
parallel to the tangent vectors (this trade-off being controlled by the value of γ).

The common point between the approach proposed in this paper for semi-supervised
learning and invariant SVMs is that in both cases, we try to take into account the
principal directions of the data, or in other words, the orientation of the manifold
on which the data lie. The only difference is that the local covariance matrix Σ is
not computed from known invariances as γB + (1 − γ)I, but is estimated directly
from the set of unlabeled data.

4 Kernelization

Up to now, we only considered linear decision boundaries. It is possible to extend
the algorithm presented in this paper to the non-linear case by using the so-called
“kernel trick”: the data are mapped implicitely to a high-dimensional feature space
through a mapping function Φ : X d 7→ H in which the linear algorithm is carried

1Essentially, the restriction is similar to the one underlying SVMs, i.e., that the data are
usually fairly well separable by a hyperplane in the feature space, provided a “sufficiently
nonlinear” kernel is chosen. In both cases, a seemingly severe restriction is made, but the
space of possible solutions is extended by the freedom of using kernels.

out. If the algorithm depends only on dot products, the mapping Φ does not
need to be carried out explicitly; instead only the dot products in feature space
Φ(x) · Φ(y) = K(x,y) have to be computed through the kernel function K.

Unfortunately, this approach cannot be implemented directly for our algorithm since
it is not expressed only in terms of dot products: for instance, after having mapped
the data in feature space, the covariance matrix Σ has the size of the dimension of
the feature space and cannot be inverted if this latter is very high. For this reason,
we propose an alternative method. The idea is to use directly the so-called kernel
PCA map, first introduced in [10] and extended in [12]. It was also used in [2]
to extend linear invariant SVMs to the non-linear case and in [6] to construct an
algorithm for nonlinear ICA.

This map is based on the fact that even in a high dimensional feature space H, a
training set {x1, . . . ,xn} of size n when mapped to this feature space spans a sub-
space E ⊂ H whose dimension is at most n. More precisely, if (v1, . . . ,vn) ∈ En is
an orthonormal basis of E with each vi being a principal axis of {Φ(x1), . . . ,Φ(xn)},
the kernel PCA map ψ : X → R

n is defined coordinatewise as

ψp(x) = Φ(x) · vp, 1 ≤ p ≤ n.

Each vi has a linear expansion in terms of the training points {Φ(xi)} and the coef-
ficients of this expansion are obtained using kernel PCA [10]. Writing the eigende-
compostion of the kernel matrix K as K = UΛU⊤, with U an orthonormal matrix
and Λ a diagonal one, it turns out that the the kernel PCA map reads

ψ(x) = Λ−1/2U⊤k(x), (7)

where
k(x) = (K(x,x1), . . . ,K(x,xn))⊤.

Note that by definition, for all i and j, Φ(xi) and Φ(xj) lie in E and thusK(xi,xj) =
Φ(xi) · Φ(xj) = ψ(xi) · ψ(xj). This reflects the fact that if we retain all principal
components, kernel PCA is just a basis transform in E, leaving the dot product of
training points invariant.

As a consequence, training a nonlinear SVM on {x1, . . . ,xn} is equivalent to training
a linear SVM on {ψ(x1), . . . , ψ(xn)} and thus, thanks to the nonlinear mapping ψ,
we can work directly in the linear space E and use exactly the method described for
the linear case in the previous sections. Note however that if only the labeled points
are used to compute the kernel PCA map, the unlabeled points do not necessarily
belong to E and by projecting them onto E some information might be lost. Adding
some additional unlabed points for the computation of the empirical kernel PCA
map increases the computational complexity (since the eigendecompostion of the
Gram matrix scales as the cube of the number of points), but also enlarges the space
E and less information is lost by projecting the points onto E. In our experiments,
a good trade-off consists in selecting around 500 points to compute the map.

5 Practical Implementation

In summary, the proposed algorithm is the following,

1. Fix a kernel function K

2. Compute the empirical kernel PCA map ψ as described in section 4 using p
randomly selected labeled or unlabeled points. For computational reasons,
p should not be much more than 1000.

3. For each labeled, unlabeled and test point, compute ψ(x) ∈ R
p. Now, linear

techniques can be used on these transformed points in R
p.

4. Use the EM algorithm to find the matrix Σ ∈ R
p×p which maximizes the

likelihood of the unlabeled data under the model (5).

5. Train a linear SVM on the labeled points Σ−1/2ψ(xi) and get w ∈ R
p and

b the hyperplanes parameters.

6. A test point is classified as the sign of w · Σ−1/2ψ(xi) + b.

We give the details of step 4 and then propose a fast approximation of it.

5.1 Details of the EM step

The EM algorithm yields a sequence a covariances matrices Σ(1), . . . ,Σ(q), . . . com-
puted as follows. At the q-th iteration, the E step consists of estimating the posterior
probabilities

P (x|xi) =
1

(2π)d/2
√

|Σ(q)|
exp

(

−
1

2
(ψ(x)− ψ(xi))

⊤(Σ(q))−1(ψ(x)− ψ(xi))

)

,

for each labeled training point xi and each unlabeled point x = x′
1, . . . ,x

′
nu

. And
the M step is

Σ(q+1) =
1

nu

n
∑

i=1

nu
∑

j=1

P (xi|x
′

j)(ψ(xi)− ψ(x′

j))(ψ(xi)− ψ(x′

j))
⊤, (8)

where P (xi|x
′

j) is computed using Bayes rule as

P (xi|x
′

j) =
P (x′

j |xi)P (xi)
∑

k P (x′

j |xk)P (xk)
=

P (x′

j |xi)
∑

k P (x′

j |xk)
. (9)

The last equality comes from the fact that we decided to set the mixing coefficients
between the different Gaussians to P (xi) = 1/n.

A possible improvement is the following: modify the calculation of P (xi|x
′

j) (equa-
tion 9) by adding a constant ε in the denominator. By doing so, the unlabeled points
x′

j which are far away from the labeled ones (i.e. for which P (x′

j |xi)≪ ε, ∀i) will
give P (xi|x

′

j) ≈ 0, ∀i, and will be neglected in the calculation of the covariance
matrix. This is a desirable feature since we want to estimate a local covariance
matrix and unlabeled points which are away from all the labeled ones should not
be taken into account.

This modification can be seen as the solution the EM algorithm applied to the
following model of the input distribution,

P (x) =
1− ε′

n

n
∑

i=1

1

(2π)d/2
√

|Σ|
exp

(

−
1

2
(ψ(x)− ψ(xi))

⊤Σ−1(ψ(x)− ψ(xi))

)

+ε′P0,

where P0 is a uniform density and ε′ = ε/P0(x).

5.2 Estimation Using Nearest Neigbors

Actually, we did not estimate Σ (step 4) using the EM algorithm because of com-
puational reasons: the sum (8) has n×nu terms and the compuational cost of using
EM can can be quite large.

0 1 2 3 4 5 6 7 8 9

0.18

0.2

0.22

0.24

− log (1−gamma)

te
st

 e
rr

or

1−NN
2−NN
4−NN
10−NN
20−NN

0 1 2 3 4 5 6 7 8 9
0.06

0.065

0.07

0.075

0.08

0.085

0.09

− log(1−gamma)

te
st

 e
rr

or

1−NN
2−NN
4−NN
10−NN
20−NN

Figure 1: Test error on the USPS database using invariant SVMs and where in-
variances are computed from the k nearest neighbors (k = 1, 2, 4, 10 or 20. Results
averaged over different training sets of size 30 (left) or 317 (right). The value γ = 0,
i.e. the left end of the x-axis, corresponds to no usage of unlabeled data (cf. (6)); as
one moves to the right, more and more emphasis is places on utilizing the tangent
vectors computed from unlabeled points.

Insteas, we derived a more direct approach involving the nearest neighbors. For
each labeled point xi, let xunl(i,1), . . .xunl(i,k) be the k nearest unlabeled points
from xi in the kernel PCA space. Then we defined

Σ ≡
1

nk

n
∑

i=1

k
∑

j=1

(ψ(xi)− ψ(xunl(i,j)))(ψ(xi)− ψ(xunl(i,j)))
⊤. (10)

Note that equation (10) and (8) are very similar: the only difference is that P (xi|x′

j)
is replaced by 0 or 1 according to whether or not the unlabeled point x′

j is a nearest
neigbor of xi.

In high dimensions, if n and k are small, Σ might not be invertible. As in the case
of invariant learning (cf equation (6)), we actually considered a regularized version
of Σ, Σγ = γΣ + (1− γ)I.

Estimating Σ using equation (10) instead of EM gives a much more direct inter-
pretation in terms of invariant learning: since it is likely that the nearest neighbors
of a labeled points are of the same class, the vectors ψ(xi) − ψ(xunl(i,j)) can be
interpreted as tangent vectors and the invariant SVM algorithm [2] coincides with
the one presented in this paper.

6 Experiments

Experiments have been carried on the USPS database using a polynomial kernel of
degree 3 and the task being to discriminate digits 0 to 4 from 5 to 9. The kernel
PCA map has been computed using a random set of p = 500 examples. The training
set of 7291 has been divided in either 23 subsets of 317 examples or 243 of size 30.
For each subset of n = 30 or 317 labeled examples, the 7291−n remaining examples
form the unlabeled set. Results are presented in figure 1 and seem very promising.

On this problem, we also tried the Transductive SVM algorithm [7] which finds the
hyperplane maximizing the margin on both labeled and unlabeled data, but we did

not succeed in obtaining an improvement with this algorithm. eventhough it demon-
strated significant improvements in test error when applied to semi-supervised text
classification tasks [7].

7 Discussion

We have proposed an approach for incorporating unlabeled data into kernel methods
by effectively changing the metric of the pattern space. Our initial experimental
results are rather promising, and indicate that the present approach may well be
a good candidate solution for two problems that have recently received significant
attention in the machine learning community: the problem of utilizing unlabeled
data, and the problem of choosing a kernel function suitable for a given task.

References

[1] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training.
In COLT: Proceedings of the Workshop on Computational Learning Theory. Morgan
Kaufmann Publishers, 1998.

[2] O. Chapelle and B. Schölkopf. Incorporating invariances in nonlinear Support Vector
Machines. In Advances in Neural Information Processing Systems, volume 14, 2001.

[3] O. Chapelle, J. Weston, L. Bottou, and V. Vapnik. Vicinal risk minimization. In
Advances in Neural Information Processing Systems, volume 13, 2000.

[4] C. Domeniconi and D. Gunopulos. Adaptive nearest neighbor classification using
support vector machines. In Advances in Neural Information Processing Systems,
volume 14, 2001.

[5] Z. Ghahramani and G. Hinton. The EM algorithm for mixtures of factor analyzers.
Technical Report CRG-TR-96-1, Departement of Computer Science, University of
Toronto, 1997.

[6] S. Harmeling, A. Ziehe, M. Kawanabe, and K.-R. Müller. Kernel feature spaces and
nonlinear blind source separation. In T.G. Dietterich, S. Becker, and Z. Ghahramani,
editors, Advances in Neural Information Processing Systems, volume 14. MIT Press,
2002.

[7] T. Joachims. Transductive inference for text classification using support vector ma-
chines. In Proceedings of the 16th International Conference on Machine Learning,
pages 200–209. Morgan Kaufmann, San Francisco, CA, 1999.

[8] K. Nigam, A. K. McCallum, S. Thrun, and T. M. Mitchell. Learning to classify text
from labeled and unlabeled documents. In Proceedings of AAAI-98, 15th Conference
of the American Association for Artificial Intelligence, pages 792–799, Madison, US,
1998. AAAI Press, Menlo Park, US.

[9] B. Schölkopf, P. Y. Simard, A. J. Smola, and V. N. Vapnik. Prior knowledge in
support vector kernels. In MIT Press, editor, NIPS, volume 10, 1998.

[10] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

[11] M. Seeger. Learning with labeled and unlabeled data. Technical report, Edinburgh
University, 2001.

[12] K. Tsuda. Support vector classifier with asymmetric kernel function. In M. Verleysen,
editor, Proceedings of ESANN’99, pages 183–188, 1999.

