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Abstract. We briefly describe the main ideas of statistical learning theory, support
vector machines, and kernel feature spaces. In addition, we present an overview of
applications of kernel methods in bioinformatics.*

1 An Introductory Example

In this Section, we formalize the problem of pattern recognition as that of classifying objects
called “pattern” into one of two classes. We introduce a simple pattern recognition algorithm
that illustrates the mechanism of kernel methods.

Suppose we are given empirical data

(X1, 91)s s (T, Ym) € X X {£1}. (1)

Here, the domain X is some nonempty set that the patterns x; are taken from; the y; are called
labels or targets. Unless stated otherwise, indices ¢ and ;5 will always be understood to run
over the training set, i.e., 7,7 = 1,...,m.

Note that we have not made any assumptions on the domain X other than it being a set. In
order to study the problem of learning, we need additional structure. In learning, we want to
be able to generalize to unseen data points. In the case of pattern recognition, given some new
pattern z € X', we want to predict the corresponding y € {+1}. By this we mean, loosely
speaking, that we choose y such that (x, y) is in some sense similar to the training examples.
To this end, we need similarity measures in X and in {£1}. The latter is easier, as two target
values can only be identical or different. For the former, we require a similarity measure

XXX — R
(z,2") — k(z,2'), (2)

i.e., a function that, given two examples = and 2/, returns a real number characterizing their
similarity. For reasons that will become clear later, the function & is called a kernel [28, 1, 9].

1The present article is partly based on Microsoft TR-2000-23, Redmond, WA.
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A type of similarity measure that is of particular mathematical appeal are dot products.
For instance, given two vectors x, x’ € R, the canonical dot product is defined as

(x-x) = 3 ol ©)

Here, [x],, denotes the n-th entry of x.

The geometrical interpretation of this dot product is that it computes the cosine of the
angle between the vectors x and x’, provided they are normalized to length 1. Moreover, it
allows computation of the length of a vector x as /(x - x), and of the distance between two
vectors as the length of the difference vector. Therefore, being able to compute dot products
amounts to being able to carry out all geometrical constructions that can be formulated in
terms of angles, lengths and distances.

Note, however, that we have not made the assumption that the patterns live in a dot product
space. In order to be able to use a dot product as a similarity measure, we therefore first need
to embed them into some dot product space #, which need not be identical to R . To this
end, we use a map

o: X — H
x = x:=d(x). (4)

The space # is called a feature space. To summarize, embedding the data into 7 has three
benefits.

1. It lets us define a similarity measure from the dot product in #,

k(z,a') = (x-x) = (®(x) - 2(2')). ()

2. It allows us to deal with the patterns geometrically, and thus lets us study learning algo-
rithms using linear algebra and analytic geometry.

3. The freedom to choose the mapping ¢ will enable us to design a large variety of learning
algorithms. For instance, consider a situation where the inputs already live in a dot product
space. In that case, we could directly use the dot product as a similarity measure. However,
we might still choose to first apply another nonlinear map to change the representation
into one that is more suitable for a given problem and learning algorithm.

We are now in the position to describe a simple pattern recognition algorithm. The idea is
to compute the means of the two classes in feature space,

1
¢ = m—l Z Xi, (6)
{i:yi=+1}
DY )
Cr = — X,
2 mg
{irgi=—1}

where m, and ms, are the number of examples with positive and negative labels, respectively.
We then assign a new point x to the class whose mean is closer to it. This geometrical con-
struction can be formulated in terms of dot products. Half-way in between c; and c, lies the
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point ¢ := (c; +c¢2)/2. We compute the class of x by checking whether the vector connecting
c and x encloses an angle smaller than 7 /2 with the vector w := ¢; — ¢, connecting the class
means, in other words

y = sgn((x—c)-w)
sgn ((x — (€1 +¢2)/2) - (€1 — ¢3))
= sgn((x-c1)—(x-cy)+0). 8)

<
|

Here, we have defined the offset

b= (lleall?  lleal?). ©

2
So, our simple pattern recognition algorithm is of the general form of a linear discriminant
function:
y =sgn ((W-x)+b) (10)

It will prove instructive to rewrite this expression in terms of the patterns z; in the input
domain X. Note that we do not have a dot product in X', all we have is the similarity measure
k (cf. (5)). Therefore, we need to rewrite everything in terms of the kernel %k evaluated on
input patterns. To this end, substitute (6) and (7) into (8) to get the decision function

Yy = sgn mi Z (X-xi)—i Z (x-x;)+b

1 {i:y;=+1} 2 {iy;=—1}
= sgn ! E k(x,z;) ! Z k(x,z;) +b (11)
- g my P} my Pd ) .
{i:y;=+1} {iy;i=—1}

Similarly, the offset becomes

1 1 1
b:= o = Z k(xi, ;) — — Z k(zi, x)) | - (12)
{(@.0)yi=y;=—1} {(4.9)yi=y;=+1}

So, our simple pattern recognition algorithm is also of the general form of a kernel clas-

sifier:
Yy = sgn (Z ak(z, ;) + b) (13)

Let us consider one well-known special case of this type of classifier. Assume that the
class means have the same distance to the origin (hence b = 0), and that £ can be viewed as
a density, i.e., it is positive and has integral 1,

/ k(z,2")dz =1 foralla’ € X. (14)
x

In order to state this assumption, we have to require that we can define an integral on X'.
If the above holds true, then (11) corresponds to the so-called Bayes decision boundary
separating the two classes, subject to the assumption that the two classes were generated from
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two probability distributions that are correctly estimated by the Parzen windows estimators
of the two classes,

pi(z) ;:mi > k(z) (15)
1{ifyi=+1}

pa(z) ::mi > k(a). (16)
? fiyi=—1}

Given some point z, the label is then simply computed by checking which of the two, p;(x)
or po(x), is larger, leading to (11). Note that this decision is the best we can do if we have no
prior information about the probabilities of the two classes, or a uniform prior distribution.
For further details, see [38].

The classifier (11) is quite close to the types of learning machines that we will be in-
terested in. It is linear in the feature space (Equation (10)), while in the input domain, it is
represented by a kernel expansion (Equation (13)). It is example-based in the sense that the
kernels are centered on the training examples, i.e., one of the two arguments of the kernels
is always a training example. The main point where the more sophisticated techniques to be
discussed later will deviate from (11) is in the selection of the examples that the kernels are
centered on, and in the weight that is put on the individual kernels in the decision function.
Namely, it will no longer be the case that all training examples appear in the kernel expan-
sion, and the weights of the kernels in the expansion will no longer be uniform. In the feature
space representation, this statement corresponds to saying that we will study all normal vec-
tors w of decision hyperplanes that can be represented as linear combinations of the training
examples. For instance, we might want to remove the influence of patterns that are very far
away from the decision boundary, either since we expect that they will not improve the gen-
eralization error of the decision function, or since we would like to reduce the computational
cost of evaluating the decision function (cf. (11)). The hyperplane will then only depend on a
subset of training examples, called support vectors.

2 Learning Pattern Recognition from Examples

With the above example in mind, let us now consider the problem of pattern recognition in a
more formal setting, highlighting some ideas developed in statistical learning theory [39]. In
two-class pattern recognition, we seek to estimate a function

f:X = {1} (17)

based on input-output training data (1). We assume that the data were generated indepen-
dently from some unknown (but fixed) probability distribution P(z,y). Our goal is to learn
a function that will correctly classify unseen examples (z,y), i.e., we want f(z) = y for
examples (x, y) that were also generated from P(z, y).

If we put no restriction on the class of functions that we choose our estimate f from,
however, even a function which does well on the training data, e.g. by satisfying f(z;) =
y; forall ¢ = 1,...,m, need not generalize well to unseen examples. To see this, note
that for each function f and any test set (Z1, 1), ..., (Tm, Um) € RY x {£1}, satisfying
{Z1,.. ., Zm 0 {21, ...,z } = {}, there exists another function f* such that f*(x;) = f(z;)
foralli = 1,...,m, yet f*(z;) # f(z;) forall i = 1,...,m. As we are only given the
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training data, we have no means of selecting which of the two functions (and hence which of
the completely different sets of test label predictions) is preferable. Hence, only minimizing
the training error (or empirical risk),

Remlf] = 3~ 217(e) = i, (19)

=1

does not imply a small expected value of the test error (called risk), i.e. averaged over test
examples drawn from the underlying distribution P(z, y),

Rf) = [ 51£@) =yl dP(a.y). (19)

Here, we denote by |.| the absolute value.

Statistical learning theory ([41], [39], [40]), or VC (Vapnik-Chervonenkis) theory, shows
that it is imperative to restrict the class of functions that f is chosen from to one which has a
capacity that is suitable for the amount of available training data. VC theory provides bounds
on the test error. The minimization of these bounds, which depend on both the empirical risk
and the capacity of the function class, leads to the principle of structural risk minimization.
The best-known capacity concept of VC theory is the VC dimension, defined as the largest
number h of points that can be separated in all possible ways using functions of the given
class. An example of a VC bound is the following: if A < m is the VC dimension of the class
of functions that the learning machine can implement, then for all functions of that class, with
a probability of at least 1 — 7, the bound

h lo
RU) < Ro(f) + 0 (2,250 ) (20)
m m
holds, where m is the number of training examples and the confidence term ¢ is defined as
h(log 2™ +1) —1 4
d}(ﬁ,log(n)):\/ (1og %2 +1) —log(n/4) -
m m m

Tighter bounds can be formulated in terms of other concepts, such as the annealed VC entropy
or the Growth function. These are usually considered to be harder to evaluate, but they play a
fundamental role in the conceptual part of VVC theory [39]. Alternative capacity concepts that
can be used to formulate bounds include the fat shattering dimension [3].

The bound (20) deserves some further explanatory remarks. Suppose we wanted to learn
a “dependency” where P(z,y) = P(x) - P(y), i.e., where the pattern = contains no infor-
mation about the label y, with uniform P(y). Given a training sample of fixed size, we can
then surely come up with a learning machine which achieves zero training error (provided
we have no examples contradicting each other). However, in order to reproduce the random
labellings, this machine will necessarily require a large VC dimension A. Thus, the confi-
dence term (21), increasing monotonically with A, will be large, and the bound (20) will not
support possible hopes that due to the small training error, we should expect a small test er-
ror. This makes it understandable how (20) can hold independently of assumptions about the
underlying distribution P(x, y): it always holds (provided that 2 < m), but it does not always
make a nontrivial prediction — a bound on an error rate becomes void if it is larger than the
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maximum error rate. In order to get nontrivial predictions from (20), the function space must
be restricted such that the capacity (e.g. VC dimension) is small enough (in relation to the
available amount of data).

The principles of statistical learning theory that we just sketched provide a prescription
to bias the choice of function space towards small capacity ones. The rationale behind that
prescription is to try to achieve better bounds on the test error R[f]. This is related to model
selection prescriptions that bias towards choosing simple models (e.g., Occam’s razor, mini-
mum description length, small number of free parameters). Yet, the prescription of statistical
learning theory sometimes differs markedly from the others. A family of functions with only
one free parameter may have infinite VC dimension. Also, statistical learning theory predicts
that the kernel classifiers operating in spaces of infinite dimension that we shall introduce can
have a large probability of a low test error.

3 Optimal Margin Hyperplane Classifiers

In the present section, we shall describe a hyperplane learning algorithm that can be per-
formed in a dot product space (such as the feature space that we introduced previously). As
described in the previous section, to design learning algorithms, one needs to come up with a
class of functions whose capacity can be computed.

Vapnik and Lerner [42] considered the class of hyperplanes

W-x)+b=0 weR" beR, (22)
corresponding to decision functions
f(x) =sgn((w-x)+b), (23)

and proposed a learning algorithm for separable problems, termed the Generalized Portrait,
for constructing f from empirical data. It is based on two facts. First, among all hyperplanes
separating the data (assuming that the data is separable), there exists a unique one yielding
the maximum margin of separation between the classes,

max min{||x — x| :x €eRY, (W -x) +b=0,i=1,...,m}. (24)

Second, the capacity can be shown to decrease with increasing margin.
To construct this Optimum Margin Hyperplane (cf. Figure 1), one solves the following
optimization problem:

minimize (W) = %||w||2 (25)
subject to yi-(W-x;)+0)>1, i=1,...,m. (26)

This constrained optimization problem is dealt with by introducing Lagrange multipliers «;; >
0 and a Lagrangian

LW, b, a) = ||w||2 Z% yi - (% - W) +b) —1). (27)



Statistical Learning and Kernel Methods in Bioinformatics 7

\

\ . b=+1
{x [(w-x) +b=-1}| x l\(W 9=+l Note:
) (W-x)) +b=+1
|;| Vi =+1 (w- xz) +b=-1
: | E => (W ()&—XZ)) =2
4 y G W 2
=T A\ = ({79 = [Twil
o 4 \
cH \ -
,,,,,,,,,,,,,,,,,,, =Y ]{x | (W-X)\+b— o}‘

Figure 1: A binary classification toy problem: separate balls from diamonds. The Optimum Margin Hyperplane
is orthogonal to the shortest line connecting the convex hulls of the two classes (dotted), and intersects it half-
way between the two classes. The problem being separable, there exists a weight vector w and a threshold b
suchthaty;- ((w-x;)+b) >0( = 1,...,m). Rescaling w and b such that the point(s) closest to the hyperplane
satisfy |(w-x;) + b| = 1, we obtain a canonical form (w, b) of the hyperplane, satisfying y; - (w-x;) +b) > 1.
Note that in this case, the margin, measured perpendicularly to the hyperplane, equals 2/||w||. This can be seen
by considering two points x;, X2 on opposite sides of the margin, i.e., (W-x;)+b=1,(w-x3)+b = —1,and
projecting them onto the hyperplane normal vector w/||w|| (from [35]).

The Lagrangian L has to be minimized with respect to the primal variables w and & and
maximized with respect to the dual variables «; (i.e., a saddle point has to be found). Let us
try to get some intuition for this. If a constraint (26) is violated, then y; - (w-x;)+b)—1 < 0,
in which case L can be increased by increasing the corresponding «;. At the same time, w
and b will have to change such that L decreases. To prevent —a; (v; - (W - x;) + b) — 1) from
becoming arbitrarily large, the change in w and b will ensure that, provided the problem is
separable, the constraint will eventually be satisfied. Similarly, one can understand that for all
constraints which are not precisely met as equalities, i.e., for which y; - (w-x;) +b) — 1 > 0,
the corresponding «; must be 0, for this is the value of «; that maximizes L. This is the
statement of the Karush-Kuhn-Tucker conditions of optimization theory [6].

The condition that at the saddle point, the derivatives of L with respect to the primal
variables must vanish,

0 0
%L(W, b, (X) = 0, a—WL(W, b, (X) = 0, (28)
leads to .
Z a;y; = 0 (29)
i=1
and .
i=1

The solution vector thus has an expansion in terms of a subset of the training patterns, namely
those patterns whose «; is non-zero, called Support Vectors. By the Karush-Kuhn-Tucker
conditions

;- lyi((x;-wW)+0)—1]=0, i=1,...,m, (31)
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the Support Vectors satisfy y;((x; - W) +b) — 1 = 0, i.e., they lie on the margin (cf. Figure 1).
All remaining examples of the training set are irrelevant: their constraint (26) does not play
a role in the optimization, and they do not appear in the expansion (30). This nicely captures
our intuition of the problem: as the hyperplane (cf. Figure 1) is geometrically completely
determined by the patterns closest to it, the solution should not depend on the other examples.

By substituting (29) and (30) into L, one eliminates the primal variables and arrives at the
Wolfe dual of the optimization problem (e.g., [6]): find multipliers a;; which

. “ 1 &
maximize W(Oé) = Zz; Q; — 5 1; OéiOéjyiyj(Xi . Xj) (32)
subject to a; >0, i=1,...,m, and Y iy =0. (33)

=1

By substituting (30) into (23), the hyperplane decision function can thus be written as

f(x) =sgn (Z yi; - (X - x;) + b) , (34)

=1

where b is computed using (31).

The structure of the optimization problem closely resembles those that typically arise in
Lagrange’s formulation of mechanics. There, often only a subset of the constraints become
active. For instance, if we keep a ball in a box, then it will typically roll into one of the corners.
The constraints corresponding to the walls which are not touched by the ball are irrelevant,
the walls could just as well be removed.

Seen in this light, it is not too surprising that it is possible to give a mechanical interpre-
tation of optimal margin hyperplanes [11]: If we assume that each support vector x; exerts a
perpendicular force of size «; and sign y; on a solid plane sheet lying along the hyperplane,
then the solution satisfies the requirements of mechanical stability. The constraint (29) states
that the forces on the sheet sum to zero; and (30) implies that the torques also sum to zero,
via Y. x; X gy - W/ ||w|| =w x w/||jw|| = 0.

There are theoretical arguments supporting the good generalization performance of the
optimal hyperplane ([41], [47], [4]). In addition, it is computationally attractive, since it can
be constructed by solving a quadratic programming problem.

4 Support Vector Classifiers

We now have all the tools to describe support vector machines [9, 39, 37, 15, 38]. Everything
in the last section was formulated in a dot product space. We think of this space as the feature
space # described in Section 1. To express the formulas in terms of the input patterns living
in X', we thus need to employ (5), which expresses the dot product of bold face feature vectors
x, X’ in terms of the kernel % evaluated on input patterns z, 2/,

k(x,z') = (x - x). (35)

This can be done since all feature vectors only occured in dot products. The weight vector
(cf. (30)) then becomes an expansion in feature space, and will thus typically no longer cor-
respond to the image of a single vector from input space. We thus obtain decision functions
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- - Figure 2: Example of a Support Vec-
. tor classifier found by using a ra-
dial basis function kernel k(z,z') =
exp(—||lz — 2'||?). Both coordinate
- - - axes range from -1 to +1. Circles
o . and disks are two classes of train-
ing examples; the middle line is the
decision surface; the outer lines pre-
cisely meet the constraint (26). Note
that the Support Vectors found by
the algorithm (marked by extra cir-
cles) are not centers of clusters, but
examples which are critical for the
given classification task. Grey values
code the modulus of the argument
S yicy - k(z,2;) + b of the de-
cision function (36) (from [35]).)

-
-
[

of the more general form (cf. (34))

f(z) = sgn (Z yic - (B(x) - (x;)) + b)

= sgn (i yic - k(x, ;) + b) : (36)

and the following quadratic program (cf. (32)):

i - 1 &
maximize W(a) = Zz:; ai— g ij::l e yyik(z, 5) (37)
subject to a; >0, i=1,...,m, and Y oy =0. (38)
i=1

In practice, a separating hyperplane may not exist, e.g. if a high noise level causes a large
overlap of the classes. To allow for the possibility of examples violating (26), one introduces
slack variables [14]

>0, i=1,...,m (39)

in order to relax the constraints to

A classifier which generalizes well is then found by controlling both the classifier capacity

(via ||w]|) and the sum of the slacks ) . &;. The latter is done as it can be shown to provide an

upper bound on the number of training errors which leads to a convex optimization problem.
One possible realization of a soft margin classifier is minimizing the objective function

1

(w.&) = Swl’ +C )& (41)
=1
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subject to the constraints (39) and (40), for some value of the constant C' > 0 determining the
trade-off. Here, we use the shorthand & = (&4, . . ., &,,). Incorporating kernels, and rewriting it
in terms of Lagrange multipliers, this again leads to the problem of maximizing (37), subject
to the constraints

0<a; <C, i=1,...,m,and ¥ ayy; = 0. (42)
=1
The only difference from the separable case is the upper bound C' on the Lagrange mul-
tipliers «;. This way, the influence of the individual patterns (which could be outliers) gets
limited. As above, the solution takes the form (36). The threshold b can be computed by ex-
ploiting the fact that for all SVs x; with «; < C, the slack variable &; is zero (this again
follows from the Karush-Kuhn-Tucker complementarity conditions), and hence

Zyjaj . ]f(.’L’Z, l‘j) + b = Y. (43)
7=1

Another possible realization of a soft margin variant of the optimal hyperplane uses the
v-parametrization [38]. In it, the parameter C' is replaced by a parameter » € [0, 1] which
can be shown to lower and upper bound the number of examples that will be SVs and that
will come to lie on the wrong side of the hyperplane, respectively. It uses a primal objective
function with the error term ﬁ > & — p, and separation constraints

Yi- (W-x) +0) > p—&, i=1,...,m. (44)

The margin parameter p is a variable of the optimization problem. The dual can be shown to
consist of maximizing the quadratic part of (37), subjectto 0 < «; < 1/(vm), Y. oy = 0
and the additional constraint > . a; = 1. The advantage of the »-SVM is its more intuitive
parametrization.

We conclude this section by noting that the SV algorithm has been generalized to prob-
lems such as regression estimation [39] as well as one-class problems and novelty detection
[38]. The algorithms and architectures involved are similar to the case of pattern recognition
described above (see Figure 3). Moreover, the kernel method for computing dot products in
feature spaces is not restricted to SV machines. Indeed, it has been pointed out that it can
be used to develop nonlinear generalizations of any algorithm that can be cast in terms of
dot products, such as principal component analysis [38], and a number of developments have
followed this example.

5 Polynomial Kernels

We now take a closer look at the issue of the similarity measure, or kernel, k.

In this section, we think of X as a subset of the vector space RY, (N € N), endowed with
the canonical dot product (3). Unlike in cases where X’ does not have a dot product, we thus
could use the canonical dot product as a similarity measure £. However, in many cases, it is
advantageous to use a different £, corresponding to a better data representation.
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Figure 3: Architecture of SV ma-
output - 6 (2 v; k (xx;)) chines. The input z and the Sup-
port Vectors x; are nonlinearly
mapped (by @) into a feature space
H, where dot products are com-
puted. By the use of the kernel
dot product (®(x)-P(x;))=k(x,x) k, these two layers are in prac-
tice computed in one single step.
The results are linearly combined
by weights v;, found by solving
a quadratic program (in pattern
support vectors X, ... X, recognition, v; = y;«;). The lin-
ear combination is fed into the
function o (in pattern recognition,
o(x) = sgn (z + b)) (from [35]).

weights

) |G)

D(xy) D(x,)

mapped vectors P(x;), P(x)

4 test vector x

5.1 Product Features

Suppose we are given patterns = € RY where most information is contained in the d-th order
products (monomials) of entries [z]; of z,

[x]jl [x]jz s [x]jd’ (45)

where jq,...,jq € {1,..., N}. Inthat case, we might prefer to extract these product features,
and work in the feature space # of all products of d entries. In visual recognition problems,
where images are often represented as vectors, this would amount to extracting features which
are products of individual pixels.

For instance, in R?, we can collect all monomial feature extractors of degree 2 in the
nonlinear map

PR - H=F (46)
([#]i,[22) = (2], [2]2 [2hi[2]2)- (47)

Here the dimension of input space is N = 2 and that of feature space is N3; = 3. This
approach works fine for small toy examples, but it fails for realistically sized problems: for
general N-dimensional input patterns, there exist

(N+d—1)!

N = "v =1y

(48)
different monomials (45), comprising a feature space # of dimensionality N. For instance,
already 16 x 16 pixel input images and a monomial degree d = 5 yield a dimensionality of
1019,

In certain cases described below, there exists, however, a way of computing dot products
in these high-dimensional feature spaces without explicitely mapping into them: by means of
kernels nonlinear in the input space RY . Thus, if the subsequent processing can be carried
out using dot products exclusively, we are able to deal with the high dimensionality.

The following section describes how dot products in polynomial feature spaces can be
computed efficiently.
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5.2 Polynomial Feature Spaces Induced by Kernels

In order to compute dot products of the form (®(z)-®(z')), we employ kernel representations
of the form
k(z,2') = (2(x) - 2(2')), (49)

which allow us to compute the value of the dot product in A without having to carry out the
map ®. This method was used by Boser, Guyon and Vapnik [9] to extend the Generalized
Portrait hyperplane classifier of Vapnik and Chervonenkis [41] to nonlinear Support Vector
machines. Aizerman et al. [1] call  the linearization space, and used it in the context of the
potential function classification method to express the dot product between elements of A in
terms of elements of the input space.

What does & look like for the case of polynomial features? We start by giving an example
[39] for N = d = 2. For the map

Cy : ([z]h. [2]2) = ([2]3, [2]2, [ [2]2, [2]a[a]y), (50)
dot products in A take the form
(Ca(2) - Co(a')) = [2 o'} + [23]a"]; + 2[ahi[z]afa'la[a']y = (x - 2')?, (51)

I.e., the desired kernel k is simply the square of the dot product in input space. The same
works for arbitrary N, d € N [9]:

Proposition 1. Define C,; to map = € RY to the vector C,4(z) whose entries are all possible
d-th degree ordered products of the entries of =. Then the corresponding kernel computing
the dot product of vectors mapped by C, is

k(z,a') = (Ca(2) - Cala)) = (z - 2')". (52)

Proof. We directly compute
(Cale) - Cala’)) = 37 [y lalyy oo [, (53)
= (Z[»’L‘]j'[f]j) = (-2)". (54)

O

Instead of ordered products, we can use unordered ones to obtain a map ®, which yields
the same value of the dot product. To this end, we have to compensate for the multiple oc-
curence of certain monomials in C,; by scaling the respective entries of &, with the square
roots of their numbers of occurence. Then, by this definition of ®,, and (52),

(Pa(2) - Pa(a')) = (Calz) - Ca(2")) = (z - 2')". (55)

For instance, if p of the j; in (45) are equal, and the remaining ones are different, then the
coefficient in the corresponding component of @, is \/(d — p + 1)! (for the general case, cf.
[38]). For @5, this simply means that [39]

®y(2) = ([2]7, 213, V2 [2]i[2]2). (56)
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If 2 represents an image with the entries being pixel values, we can use the kernel (z - z')?
to work in the space spanned by products of any d pixels — provided that we are able to
do our work solely in terms of dot products, without any explicit usage of a mapped pattern
®,(x). Using kernels of the form (52), we take into account higher-order statistics without the
combinatorial explosion (cf. (48)) of time and memory complexity which goes along already
with moderately high NV and d.

Finally, note that it is possible to modify (52) such that it maps into the space of all
monomials up to degree d, defining

k(z,2) = ((z-2') + 1) (57)

6 Examples of Kernels

When considering feature maps, it is also possible to look at things the other way around,
and start with the kernel. Given a kernel function satisfying a mathematical condition termed
positive definiteness, it is possible to construct a feature space such that the kernel computes
the dot product in that feature space. This has been brought to the attention of the machine
learning community by [1], [9], and [39]. In functional analysis, the issue has been studied
under the heading of Hilbert space representations of kernels. A good monograph on the
theory of kernels is [5].

Besides (52), [9] and [39] suggest the usage of Gaussian radial basis function kernels [1]

/ [l — 2'|”
k(x,z") = exp <_W (58)
and sigmoid kernels
k(z,2") = tanh(k(z - 2') + ©). (59)

where o, k, and © are real parameters.

The examples given so far apply to the case of vectorial data. In fact it is possible to con-
struct kernels that are used to compute similarity scores for data drawn from rather different
domains. This generalizes kernel learning algorithms to a large number of situations where a
vectorial representation is not readily available ([35], [20], [43]). Let us next give an example
where X is not a vector space.

Example 1 (Similarity of probabilistic events). If A is a o-algebra, and P a probability
measure on A4, and A and B two events in A, then?

k(A,B)=P(ANB) - P(A)P(B) (60)
Is a positive definite kernel.

Further examples include kernels for string matching, as proposed by [43] and [20].

There is an analogue of the kernel trick for distances rather than dot products, i.e., dis-
similarities rather than similarities. This leads to the class of conditionally positive definite
kernels, which contain the standard SV kernels as special cases. Interestingly, it turns out that
SVMs and kernel PCA can be applied also with this larger class of kernels, due to their being
translation invariant in feature space [38].

2A o-algebra is a type of a collection of sets which represent probabilistic events, and P assigns probabilities
to the events.
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7 Applications

Having described the basics of SV machines, we now summarize some empirical findings.

By the use of kernels, the optimal margin classifier was turned into a classifier which
became a serious competitor of high-performance classifiers. Surprisingly, it was noticed that
when different kernel functions are used in SV machines, they empirically lead to very similar
classification accuracies and SV sets [36]. In this sense, the SV set seems to characterize (or
compress) the given task in a manner which up to a certain degree is independent of the type
of kernel (i.e., the type of classifier) used.

Initial work at AT&T Bell Labs focused on OCR (optical character recognition), a prob-
lem where the two main issues are classification accuracy and classification speed. Conse-
quently, some effort went into the improvement of SV machines on these issues, leading to
the Virtual SV method for incorporating prior knowledge about transformation invariances
by transforming SVs, and the Reduced Set method for speeding up classification. This way,
SV machines became competitive with (or, in some cases, superior to) the best available
classifiers on both OCR and object recognition tasks ([8], [11], [16]).

Another initial weakness of SV machines, less apparent in OCR applications which are
characterized by low noise levels, was that the size of the quadratic programming problem
scaled with the number of Support Vectors. This was due to the fact that in (37), the quadratic
part contained at least all SVs — the common practice was to extract the SVs by going
through the training data in chunks while regularly testing for the possibility that some of the
patterns that were initially not identified as SVs turn out to become SVs at a later stage (note
that without this “chunking,” the size of the matrix would be m x m, where m is the number of
all training examples). What happens if we have a high-noise problem? In this case, many of
the slack variables &; will become nonzero, and all the corresponding examples will become
SVs. For this case, a decomposition algorithm was proposed [30], which is based on the
observation that not only can we leave out the non-SV examples (i.e., the x; with a; = 0)
from the current chunk, but also some of the SVs, especially those that hit the upper boundary
(i.e., a; = C). In fact, one can use chunks which do not even contain all SVs, and maximize
over the corresponding sub-problems. SMO ([33]) explores an extreme case, where the sub-
problems are chosen so small that one can solve them analytically. Several public domain
SV packages and optimizers are listed on the web page http:/www.kernel-machines.org. For
more details on the optimization problem, see [38].

Let us now discuss some SVM applications in bioinformatics. Many problems in bioin-
formatics involve variable selection as a subtask. Variable selection refers to the problem
of selecting input variables that are most predictive of a given outcome.® Examples are
found in diagnosis applications where the outcome may be the prediction of disease vs. nor-
mal [17, 29, 45, 19, 12] or in prognosis applications where the outcome may be the time of
recurrence of a disease after treatment [27, 23]. The input variables of such problems may
include clinical variables from medical examinations, laboratory test results, or the measure-
ments of high throughput assays like DNA microarrays. Other examples are found in the pre-
diction of biochemical properties such as the binding of a molecule to a drug target ([46, 7],
see below). The input variables of such problems may include physico-chemical descriptors
of the drug candidate molecule such as the presence or absence of chemical groups and their

3We make a distinction between variable and features to avoid the confusion between the input space and
the feature space in which kernel machines operate.
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relative position. The objectives of variable selection may be multiple: reducing the cost of
production of the predictor, increasing its speed, improving its prediction performance and/or
providing an interpretable model.

Algorithmically, SVMs can be combined with any variable selection method used as a
filter (preprocessing) that pre-selects a variable subset [17]. However, directly optimizing
an objective function that combines the original training objective function and a penalty
for large numbers of variables often yields better performance. Because the number of vari-
ables itself is a discrete quantity that does not lend itself to the use of simple optimization
techniques, various substitute approaches have been proposed, including training kernel pa-
rameters that act as variable scaling coefficients [45, 13]. Another approach is to minimize
the ¢; norm (the sum of the absolute values of the w weights) instead of the ¢, norm com-
monly used for SVMs [27, 23, 24, 7]. The use of the ¢; norm tends to drive to zero a number
of weights automatically. Similar approaches are used in statistics [38]. The authors of [44]
proposed to reformulate the SVM problem as a constrained minimization of the /4 “norm”
of the weight vector w (i.e., the number of nonzero components). Their algorithm amounts
to performing multiplicative updates leading to the rapid decay of useless weights. Addition-
ally, classical wrapper methods used in machine learning [22] can be applied. These include
greedy search techniques such as backward elimination that was introduced under the name
SVM RFE [19, 34].

SVM applications in bioinformatics are not limited to ones involving variable selection.
One of the earliest applications was actually in sequence analysis, looking at the task of trans-
lation initiation site (TIS) recognition. It is commonly believed that only parts of the genomic
text code for proteins. Given a piece of DNA or mRNA sequence, it is a central problem in
computational biology to determine whether it contains coding sequence. The beginning of
coding sequence is referred to as a TIS. In [48], an SVM is trained on neighbourhoods of
ATG triplets, which are potential start codons. The authors use a polynomial kernel which
takes into account nonlinear relationships between nucleotides that are spatially close. The
approach significantly improves upon competing neural network based methods.

Another important task is the prediction of gene function. The authors of [10] argue that
SVMs have many mathematical features that make them attractive for such an analysis, in-
cluding their flexibility in choosing a similarity measure, sparseness of solution when dealing
with large datasets, the ability to handle large feature spaces, and the possibility to identify
outliers. Experimental results show that SVMs outperform other classification techniques
(C4.5, MOC1, Parzen windows and Fisher’s linear discriminant) in the task of identifying
sets of genes with a common function using expression data. In [32] this work is extended
to allow SVMs to learn from heterogeneous data: the microarray data is supplemented by
phylogenetic profiles. Phylogenetic profiles measure whether a gene of interest has a close
homolog in a corresponding genome, and hence such a measure can capture whether two
genes are similar on the sequence level, and whether they have a similar pattern of occurence
of their homologs across species, both factors indicating a functional link. The authors show
how a type of kernel combination and a type of feature scaling can help improve performance
in using these data types together, resulting in improved performance over using a more naive
combination method, or only a single type of data.

Another core problem in statistical bio-sequence analysis is the annotation of new protein
sequences with structural and functional features. To a degree, this can be achieved by re-
lating the new sequences to proteins for which such structural properties are already known.
Although numerous techniques have been applied to this problem with some success, the
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detection of remote protein homologies has remained a challenge. The challenge for SVM
researchers in applying kernel techniques to this problem is that standard kernel functions
work for fixed length vectors and not variable length sequences like protein sequences. In
[21] an SVM method for detecting remote protein homologies was introduced and shown to
outperform the previous best method, a Hidden Markov Model (HMM) in classifying protein
domains into super-families. The method is a variant of SVMs using a new kernel function.
The kernel function (the so-called Fisher kernel) is derived from a generative statistical model
for a protein family; in this case, the best performing HMM. This general approach of com-
bining generative models like HMMs with discriminative methods such as SVMs has applica-
tions in other areas of bioinformatics as well, such as in promoter region-based classification
of genes [31]. Since the work of Jaakkola et al. [21], other researchers have investigated us-
ing SVMs in various other ways for the problem of protein homology detection. In [26] the
Smith-Waterman algorithm, a method for generating pairwise sequence comparison scores,
is employed to encode proteins as fixed length vectors which can then be fed into the SVM as
training data. The method was shown to outperform the Fisher kernel method on the SCOP
1.53 database. Finally, another interesting direction of SVM research is given in [25] where
the authors employ string matching kernels first pioneered by [43] and [20] which induce
feature spaces directly from the (variable length) protein sequences.

There are many other important application areas in bioinformatics, only some of which
have been tackled by researchers using SVMs and other kernel methods. Some of these prob-
lems are waiting for practitioners to apply these methods. Other problems remain difficult
because of the scale of the data or because they do not yet fit into the learning framework of
kernel methods. It is the task of researchers in the coming years to develop the algorithms to
make these tasks solvable. We conclude this survey with three case studies.

Lymphoma Feature Selection As an example of variable selection with SVMs, we show
results on DNA microarray measurements performed on lymphoma tumors and normal tis-
sues [2, 12]. The dataset includes 96 tissue samples (72 cancer and 24 non-cancer) for which
4026 gene expression coefficients were recorded (the input variables). A simple preprocess-
ing (standardization) was performed and missing values were replaced by zeros. The dataset
was splitinto training and test set in various proportions and each experiment was repeated on
96 different splits. Variable selection was performed with the RFE algorithm [19] by remov-
ing genes with smallest weights and retraining repeatedly. The gene set size was decreased
logarithmically, apart from the last 64 genes,which were removed one at a time. In Figure 4,
we show the learning curves when the number of genes varies in the gene elimination process.

For comparison, we show in Figure 5 the results obtained by a competing technique [18]
that uses a correlation coefficient to rank order genes. Classification is performed using the
top ranking genes each contributing to the final decision by voting according to the magnitude
of their correlation coefficient. Other comparisons with a number of other methods including
Fisher’s discriminant, decision trees, and nearest neighbors have confirmed the superiority of
SVMs [19, 12, 34].

KDD Cup: Thrombin Binding The Knowledge Discovery and Data Mining (KDD) is the
premier international meeting of the data mining community. It holds an annual competition,
called the KDD Cup (http://www.cs.wisc.edu/~dpage/kddcup2001/), consisting of several
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datasets to be analyzed. One of the tasks in the 2001 competition was to predict binding of
compounds to a target site on Thrombin (a key receptor in blood clotting). Such a predictor
can be used to speed up the drug design process. The input data, which was provided by
DuPont, consists of 1909 binary feature vectors of dimension 139351, which describe three-
dimensional properties of the respective molecule. For each of these feature vectors, one
is additionally given the information whether it binds or not. As a test set, there are 636
additional compounds, represented by the same type of feature vectors. Several characteristics
of the dataset render the problem hard: there are very few positive training examples, but a
very large number of input features, and rather different distributions between training and
test data. The latter is due to test molecules being compounds engineered based on previous
(training set) results.
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There were more than 100 entries in the KDD cup for the Thrombin dataset alone, with
the winner achieving a performance score of 68%. After the competition took place, using
a type of correlation score designed to cope with the small number of positive examples to
perform feature selection combined with an SVM, a 75% success rate was obtained [46].
See Figure 6 for an overview of the results of all entries to the competition, as well as the
results of [46]. This result was improved further by modifying the SVM classifier to adapt to
the distribution of the unlabeled test data. To do this, the so-called transductive setting was
employed, where (unlabeled) test feature vectors are used in the training stage (this is possible
if during training it is already known for which compounds we want to predict whether they
bind or not.) This method achieved a 81% success rate. It is noteworthy that these results were
obtained selecting a subset of only 10 of the 139351 features, thus the solutions can provide
not only prediction accuracy but also a determination of the crucial properties of a compound
with respect to its binding activity.

8 Conclusion

One of the most appealing features of kernel algorithms is the solid foundation provided
by both statistical learning theory and functional analysis. Kernel methods let us interpret
(and design) learning algorithms geometrically in feature spaces nonlinearly related to the
input space, and combine statistics and geometry in a promising way. This theoretical ele-
gance is also matched by their practical performance. SVMs and other kernel methods have
yielded promising results in the field of bioinformatics, and we anticipate that the popularity
of machine learning techniques in bioinformatics is still increasing. It is our hope that this
combination of theory and practice will lead to further progress in the future for both fields.
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