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ABSTRACT. In this short note, building on ideas of M. Herbster [2] we
propose a method for automatically tuning the parameter of the FIXED-
SHARE algorithm proposed by Herbster and Warmuth [3] in the context
of on-line learning with shifting experts. We show that thiscan be done
with a memory requirement ofO(nT ) and that the additional loss in-
curred by the tuning is the same as the loss incurred for estimating the
parameter of a Bernoulli random variable.

1. SETTING

How setting is the same as in [3]. We considern experts and at each time
periodt = 1, . . . , T they make predictions and incur a lossL(t, i) (i being
the index of the expert) which we model here as a negative log-likelihood,
so that the probability that experti makes a correct prediction at timet is
e−L(t,i). We consider a Bayesian setting which we will use to motivate the
updates.

In each step one expert is supposed to be better than the otherones (i.e.
having smaller loss) and this best expert changes from time to time. This
is the so-called shifting experts framework. We denote byyt the observed
outcome and byet the index of the best expert at timet. Et will denote the
random variable which models this index. Boldface notation corresponds
to sequences, e.g.yt = y1, . . . , yt.

2. FIXED α

We now model the way the best expert changes (or shifts). Thisis done
via the following probabilistic model

P (et|et−1) =

{

1 − α if et = et−1

α
n−1

otherwise

with P (e1) = 1
n
. This means that initially all the experts are equally likely

and then at each step the next expert can be the same as the previous one
with probability1−α and can be any other (equally likely) with probability
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α. We thus get the following prior over sequences withk shifts:

P (eT ) =
T

∏

t=1

P (et|et−1) =
1

n
(1 − α)T−k−1

(

α

n − 1

)k

Now let us define the weights associated to the experts as(using the same
notations as in [3]),

vt,i = P (Et = i|yt−1)

and
vm

t,i = P (Et = i|yt) .

We easily get by the Bayes rule the so-called Loss Update,

vm
t,i =

e−ηLt,ivt,i
∑n

j=1 e−ηLt,jvt,j

.

Moreover, we have

P (Et+1 = i|yt) =
n

∑

j=1

P (Et+1 = i|Et = j,yt)P (Et = j|yt) ,

which gives the so-called Share Update

vt+1,i = (1 − α)vm
t,i +

α

n − 1

∑

j 6=i

vm
t,j .

This shows that we recover the FIXED-SHARE algorithm of [3]. We will
use this method of motivating updates to derive a tuning method for the
parameterα.

3. TUNING α

Now let’s consider the case whereα is unknown. As usual in Bayesian
approaches, we model this uncertainty by some prior distribution P (α) for
α ∈ [0, 1]. The prior over possible sequences of experts is thus definedby

P (eT ) =

∫

P (eT |α)P (α)dα ,

where

P (eT |α) =
T

∏

t=1

P (et|et−1, α) ,

with, as before

P (et|et−1, α) =

{

1 − α if et = et−1

α
n−1

otherwise
,

andP (e1|α) = 1
n
.
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For a sequenceet, let s(et) denote the number of shifts in that sequence,
that is the number of indicest such thatet+1 6= et.

We now formulate an assumption on the shape of the priorP (et) which
actually corresponds to an assumption on the distributionP (α). This as-
sumption will allow us to obtain closed-form update rules.

Assumption 1. We assume that the priorP (eT ) can be computed recur-
sively and depends only on the number of shifts in the sequence, that is, we
assume there exist numbersγt,k for eacht and eachk < t such that

P (et) = γt,s(et)

and

γt,k = (n − 1)γt+1,k+1 + γt+1,k

Notice that ifs(et) = k we get, under the above assumption, the follow-
ing relationship

P (et+1|et) =

{

γt+1,k

γt,k
if et+1 = et

γt+1,k+1

γt,k
otherwise

3.1. Updates for Recursive Priors. We now introduce additional vectors
that will be maintained by the algorithm and derive the update rules implied
by the assumption we introduced. We define fork < t,

vt,i,k = P (Et = i, s(et) = k|yt−1)

and
vm

t,i,k = P (Et = i, s(et) = k|yt)

and as before
vt,i = P (Et = i|yt−1)

vm
t,i = P (Et = i|yt)

We have the following result.

Theorem 1. Under Assumption 1, the Bayes rule leads to the following
algorithm. The prediction at trialt is computed using the weights

vt,i =
t−1
∑

k=0

vt,i,k

The Loss Updates fork ≤ t − 1 gives

vm
t,i,k =

e−ηLt,ivt,i,k
∑n

j=1 e−ηLt,jvt,j
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and the Share Update fork ≤ t − 1 gives

vt+1,i,k =
γt+1,k

γt,k

vm
t,i,k +

γt+1,k

γt,k−1

∑

j 6=i

vm
t,j,k−1

and fork = t we get

vt+1,i,t =
γt+1,t

γt,t−1

∑

j 6=i

vm
t,j,t−1

Proof. The Loss Update follows from an application of the Bayes rule

P (Et = i, s(et) = k|yt)

=
P (yt|s(et) = k,Et = i)P (Et = i, s(et) = k|yt−1)

∑n
j=1

∑t−1
k=0 P (yt|s(et) = k,Et = j)P (Et = j, s(et) = k|yt−1)

=
P (yt|Et = i)P (Et = i, s(et) = k|yt−1)

∑n
j=1

∑t−1
k=0 P (yt|Et = j)P (Et = j, s(et) = k|yt−1)

=
P (yt|Et = i)P (Et = i, s(et) = k|yt−1)

∑n
j=1 P (yt|Et = j)P (Et = j|yt−1)

For the Share Update, we write

P (Et+1 = i, s(et+1) = k|yt)

=
∑

et:s((i,et))=k

P (Et+1 = i, s(et+1) = k|et,yt)P (et|yt)

=
∑

et:s((i,et))=k

P (Et+1 = i|et)P (et|yt)

=
∑

et:s(et)=k,et=i

P (Et+1 = i|et)P (et|yt)

+
∑

et:s(et)=k−1,et 6=i

P (Et+1 = i|et)P (et|yt)

=
∑

et:s(et)=k,et=i

γt+1,k

γt,k

P (et|yt)

+
∑

et:s(et)=k−1,et 6=i

γt+1,k

γt,k−1

P (et|yt)

=
γt+1,k

γt,k

P (Et = i, s(et) = k|yt)

+
γt+1,k

γt,k−1

∑

j 6=i

P (Et = j, s(et) = k − 1|yt)
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For the Share Update withk = t, we have

P (Et+1 = i, s(et+1) = t|yt)

=
∑

et:s((i,et))=t

P (Et+1 = i, s(et+1) = t|et,yt)P (et|yt)

=
∑

et:s((i,et))=t

P (Et+1 = i|et)P (et|yt)

=
∑

et:s(et)=t−1,et 6=i

P (Et+1 = i|et)P (et|yt)

=
∑

et:s(et)=t−1,et 6=i

γt+1,t

γt,t−1

P (et|yt)

=
γt+1,t

γt,t−1

∑

j 6=i

P (Et = j, s(et) = t − 1|yt)

�

The outcome of the above theorem is that it is possible to implement a
meta-expert algorithm for the search of the optimalα without maintaining
one weight vector for each possible value ofα but we need one weight
vector at each time period. This means that the storage requirement of this
algorithm will grow linearly in the time.

This can be an issue in practice and it might be possible to useideas
similar to the ones in [1]

3.2. Applications. Now let’s see some examples where Assumption 1 holds.
We consider two simple and widely used priors on the parameter of a Bernoulli
random variable: the uniform and the(1/2, 1/2)-Dirichlet priors.

Proposition 1. If we put a uniform prior over the values ofα the coefficients
γt,k are recursively defined by

γ0,0 =
1

n

and

γt+1,k =
t − k

t + 1
γt,k

γt+1,k+1 =
k + 1

(n − 1)(t + 1)
γt,k

and the Share Update is

vt+1,i,k =
t − k

t + 1
vm

t,i,k +
k

(n − 1)(t + 1)

∑

j 6=i

vm
t,j,k−1
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Proof. We have, for a sequenceet with k shifts,

P (et) =

∫

P (et|α)P (α)dα =

∫ 1

0

1

n
(1 − α)t−k−1

(

α

n − 1

)k

dα

The initial condition is trivial, then we have

(n − 1)γt+1,k + γt+1,k+1 =
1

n(n − 1)k

∫ 1

0

(1 − α)t−kαk + (1 − α)t−k−1αk+1dα

=
1

n(n − 1)k

∫ 1

0

(1 − α)t−k−1αkdα = γt,k

Also, by integration by parts

γt+1,k =
1

n(n − 1)k

∫ 1

0

(1 − α)t−kαkdα

=
t − k

(k + 1)n(n − 1)k

∫ 1

0

(1 − α)t−k−1αk+1dα

=
(t − k)(n − 1)

k + 1
γt+1,k+1

which gives the updates by simple algebra. �

Proposition 2. If we put a(1
2
, 1

2
)-Dirichlet prior over the values ofα the

coefficientsγt,k are recursively defined by

γ0,0 =
1

n

and

γt+1,k =
t − k − 1/2

t
γt,k

γt+1,k+1 =
k + 1/2

(n − 1)t
γt,k

and the Share Update is

vt+1,i,k =
t − k − 1/2

t
vm

t,i,k +
k − 1/2

(n − 1)t

∑

j 6=i

vm
t,j,k−1

Proof. We have, for a sequenceet with k shifts,

P (et) =

∫

P (et|α)dα =
1

πn(n − 1)k

∫ 1

0

(1 − α)t−k−1−1/2αk−1/2dα

For the initial condition we write
∫ 1

0

1
√

(1 − α)α
dα =

∫ π/2

0

1

sin θ cos θ
d sin2 θ =

∫ π/2

0

2dθ = π
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Then we have

(n − 1)γt+1,k + γt+1,k+1

=
1

πn(n − 1)k

∫ 1

0

(1 − α)t−k−1/2αk−1/2 + (1 − α)t−k−1−1/2αk+1/2dα

=
1

πn(n − 1)k

∫ 1

0

(1 − α)t−k−1−1/2αk−1/2dα = γt,k

Also, by integration by parts

γt+1,k =
1

πn(n − 1)k

∫ 1

0

(1 − α)t−k−1/2αk−1/2dα

=
t − k − 1/2

(k + 1/2)πn(n − 1)k

∫ 1

0

(1 − α)t−k−1−1/2αk+1/2dα

=
(t − k − 1/2)(n − 1)

k + 1/2
γt+1,k+1

which gives the updates by simple algebra. �

4. BOUNDS

In this section we derive bounds that generalize the resultsof [3] to the
case whereα is tuned online.

We denote byL1..T,A the loss incurred by the algorithm from time1 to T
and byL1..T,eT

the loss incurred by an ideal algorithm which would use the
sequenceeT of experts to make up its predictions. Our goal is to compare
the loss of the algorithm to the loss of the best such sequence.

In [3] results are given for a fixed choice ofα and it is shown that the
bound is optimized whenα = k/(T − 1) wherek is the number of shifts in
the sequence.

We have the following theorems

Theorem 2. With the uniform prior, the following bounds holds

L1..T,A ≤ L1..T,eT
+ c ln n + ck ln(n − 1)

+ck ln
T − 1

k
+ c(T − k − 1) ln

T − 1

T − k − 1

+c ln 2 +
c

2
ln(T − 1)

and thus the additional cost of estimatingα compared to settingα = k
T−1

is

c ln 2 +
c

2
ln(T − 1)
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Proof. The proof follows from the same arguments as in [3] or [1]. By the
fundamental Lemma of [1] we have

L1..T,A ≤ −c ln P (yT ) = L1..T,eT
− c ln P (eT ) ,

where in our case

ln P (eT ) = ln n + k ln(n − 1) + ln

∫ 1

0

(1 − α)T−k−1αkP (α)dα ,

which we can write

ln P (eT ) =
T

∑

t=1

ln P (et|et−1) =
T

∑

t=1

ln
γt,s(et)

γt−1,s(et−1)

= ln γT,s(eT )

Using the recursion formulas, it is easy to check that

γT,k =
1

n(n − 1)k

(

T − 1

k

)−1

�

Theorem 3. With the Dirichlet prior, the following bounds holds

L1..T,A ≤ L1..T,eT
+ c ln n + ck ln(n − 1)

+ck ln
T − 1

k
+ c(T − k − 1) ln

T − 1

T − k − 1

+c ln 2 +
c

2
ln(T − 1)

and thus the additional cost of estimatingα compared to settingα = k
T−1

is

c ln 2 +
c

2
ln(T − 1)

Proof. We have

1

pi

∫ 1

0

(1−α)T−k−1−1/2αk−1/2dα ≥ 1

2

1√
T − 1

(

k

T − 1

)k (

T − k − 1

T − 1

)T−k−1

thus

γT,k ≥ 1

2n(n − 1)k

1√
T − 1

(

k

T − 1

)k (

T − k − 1

T − 1

)T−k−1

�

Notice that the additional loss due to the adaptive tuning ofα is exactly
the cost of estimating the parameter of a Bernouilli sequence.
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