A NOTE ON PARAMETER TUNING FOR ON-LINE SHIFTING
ALGORITHMS

OLIVIER BOUSQUET

ABSTRACT. In this short note, building on ideas of M. Herbster [2] we
propose a method for automatically tuning the parametdreoFIXED-
SHARE algorithm proposed by Herbster and Warmuth [3] in thretext

of on-line learning with shifting experts. We show that tbén be done
with a memory requirement ad(nT') and that the additional loss in-
curred by the tuning is the same as the loss incurred for astimmthe
parameter of a Bernoulli random variable.

1. SETTING

How setting is the same as in [3]. We considexxperts and at each time
periodt = 1,...,T they make predictions and incur a la5&, i) (i being
the index of the expert) which we model here as a negativéikeghood,
so that the probability that experimakes a correct prediction at tinnes
e~L9)  We consider a Bayesian setting which we will use to motiviage t
updates.

In each step one expert is supposed to be better than theastesr(i.e.
having smaller loss) and this best expert changes from tnenie. This
is the so-called shifting experts framework. We denoteythe observed
outcome and by, the index of the best expert at timeE; will denote the
random variable which models this index. Boldface notatiorresponds
to sequences, e.g, = y1,-- ., Y-

2. FIXED

We now model the way the best expert changes (or shifts). ihiene
via the following probabilistic model

11—« if €t = €41

Pee_q1) = )
(eclecr) {ﬁ otherwise

with P(e;) = % This means that initially all the experts are equally kel
and then at each step the next expert can be the same as tlmuprene

with probability 1 — « and can be any other (equally likely) with probability
1
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a. We thus get the following prior over sequences witbhifts:

er) = tlip(et]etl) _ %(1 R <%>k

Now let us define the weights associated to the experts ag(tl# same
notations as in [3]),

Vti = P(Et = Z'|’yt—1)
and
U:ﬁ = P(E, =ily.).
We easily get by the Bayes rule the so-called Loss Update,

L,
Um S € K t"lvtﬂv
tg n L+ - .
’ nist, .
Zj:l € TV

Moreover, we have

P(Epp1 =ily,) = Y _ P(Eppq = ilE, = j,y) P(E, = jly.).,
j=1
which gives the so-called Share Update
Vi1 = (1 —a)vfy + va
J#
This shows that we recover the FIXED-SHARE algorithm of [3]e Will

use this method of motivating updates to derive a tuning oeefor the
parametery.

3. TUNING «

Now let's consider the case whetieis unknown. As usual in Bayesian
approaches, we model this uncertainty by some prior digtdh P(«) for
a € [0,1]. The prior over possible sequences of experts is thus ddfiped

Pler) = [ Plerla)P(a)da.
where
T
P(er|a) = HP edler_1, ),
t=1

with, as before

- otherwise

n—

1-— if e, = e,
P(et‘et—ha) :{ “ et (.Bt ! )

=

andP(ej]a) = =
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For a sequence;, let s(e;) denote the number of shifts in that sequence,
that is the number of indicgssuch that, .| # ¢;.

We now formulate an assumption on the shape of the gtier) which
actually corresponds to an assumption on the distribufim). This as-
sumption will allow us to obtain closed-form update rules.

Assumption 1. We assume that the prid?(e,) can be computed recur-
sively and depends only on the number of shifts in the sequérat is, we
assume there exist numbeys; for eacht and eachk < ¢ such that
P(et) = Vt,s(er)
and
Ve = (M = 1)Yeg1pr1 + Ve k

Notice that ifs(e;) = k we get, under the above assumption, the follow-
ing relationship

Yt+1,k H

JitLk if e, =€

Plevale) =4 e 0
e otherwise

3.1. Updates for Recursive Priors. We now introduce additional vectors
that will be maintained by the algorithm and derive the updates implied
by the assumption we introduced. We define/for ¢,

Vtik = P(Et =1, S(Bt) = k‘yt—l)
and
'Utmzk; = P(E; = 1i,5(et) = klyy)
and as before
UVt = P(Et = i|yt_1)
'U]T,Z = P(Et = Z’yt)
We have the following result.

Theorem 1. Under Assumption 1, the Bayes rule leads to the following
algorithm. The prediction at triat is computed using the weights

The Loss Updates fdr < t — 1 gives

e iy,

P —
ti,k — n oL, -
EAd] nLst, .
2]’:16 Ut
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and the Share Update fdr <t — 1 gives

Ve+1k m Vi+1,k m
’Ut+1717k - ,.y ,Utﬂ,k} + ,->/ t7j7k_1
t.k t,k—1 7
’ ' J#i
and fork = t we get
M1t m
Vt41,it = t,g,t—1
Vet—1 T
J#i

Proof. The Loss Update follows from an application of the Bayes rule
P(E, = 1i,s(e;) = k|y)

Plyls(er) = k, By = i) P(Ey = i,s(er) = klyi—1)

2?21 22;10 P(yls(er) =k, Ey = j)P(E, = j, s(e) = klyi-1)
Py By = i) P(Ey = i, s(er) = k|yi—1)

Sy Yoo Pl Br = 5)P(E, = j, s(e)) = klyi1)

P(y:|Ey = 1) P(Ey = i,s(e;) = kly; 1)

> i1 Pyl By = ) P(Ey = jlye-1)

For the Share Update, we write
P(Ey1 =1, s(€ei1) = kly:)
= Z P(Et+1 = ?:7 5<et+1> = k|€t, yt)P(et|yt>
ei:s((ier))=k

= Z P(E 11 =ile))Pedy:)

ei:s((i,er))=k

= Z P(E 1 = ile)) P(ed]yy)

ei:s(et)=k,er=i

+ Z P(Et_H = i|€t)P(et’yt)

ei:s(er)=k—1,er#£1

-y Bpey,

Y.k

et:s(et):k,et:i

> Py

ei:s(er)=k—1,et#1

= 1k pE, =i s(e) = kly.)
Y.k

+ LN P(E, = o s(er) = k — 1]y,
Yt k—1 oy
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For the Share Update with= ¢, we have
P(Et_;,_l == Z., 3(et+1) - t|yt)
= Y P(Eq =i s(em) = tle, y) Pley,)

es:s((i,er))=t

= Z P(Eiyq = ile;) Plet]yy)

es:s((i,e¢))=t

= Z P(Ei1 = ile) Ple]yy)

ei:s(er)=t—1,et#i

= Y Hlpefy

et:s(et):t—l,etii 7t7t_1

= UNTPE = js(e) =t — Ly,)
VYet—1 Iy

O

The outcome of the above theorem is that it is possible toempht a
meta-expert algorithm for the search of the optimatithout maintaining
one weight vector for each possible valuecobut we need one weight
vector at each time period. This means that the storageresgent of this
algorithm will grow linearly in the time.

This can be an issue in practice and it might be possible tadeses
similar to the ones in [1]

3.2. Applications. Now let’s see some examples where Assumption 1 holds.
We consider two simple and widely used priors on the paramégBernoulli
random variable: the uniform and tlie/2, 1/2)-Dirichlet priors.

Proposition 1. If we put a uniform prior over the values afthe coefficients
Y1 are recursively defined by

1
Y0,0 = —
n
and
t—k
Vi+1,k = P 1%,k
k+1

Ve+1,k+1 = m%,k
and the Share Update is

t—k .
Ut+1,i,k - H—lvt,i,k + (n _ 1)(t + 1) ;Utvjvkl
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Proof. We have, for a sequeneg with £ shifts,
11 « F
P(e) = /P(et]a)P(&)da —/0 5(1 ) (m) do
The initial condition is trivial, then we have

1 1
(n = DY + Ver1h1 = n(n— 1)k / (1—a) "+ (1—a) o da
- 0
1 1
= 7n(n Iy / (1-— a)t_k_lakdoz = Ytk
- 0
Also, by integration by parts
1 ! _
Ve+1.k 7n(n ) /0 (1—a)ada
t—k ! ke
= e+ Da(n— 1 /0 (1= o)™ o da
(t—k)(n—1)
T 1 1 Yt+1,k+1
which gives the updates by simple algebra. O

Proposition 2. If we put a(%, %)-Dirichlet prior over the values of the

coefficientsy, , are recursively defined by

1
Y0,0 = —
n
and
t—k—1/2
Yi+1,k = f%,k
E+1/2

Ve+1,k+1 = (n — 1)t’Yt,k
and the Share Update is
t—k—1/2 k—1/2 .
Vip1ik = f”ﬁ',k (0 = 1)t 2 Uik
J#i
Proof. We have, for a sequeneg with & shifts,

1 1
P(e) = /P(€t|0é)da - m/o (1— a)t—k—1—1/2ak—1/2da
For the initial condition we write

w/2
dsin29:/ 2d0 =7
0

1 1 w/2 1
= da= - -
/o V(1 —a)a “ /0 sin  cos 0
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Then we have

(n — D)Yg16 + Vet k41
1
e e AR e N (R A S
m™Tnin — 0
1

1
_ Trn(n 1>k/ (1 . Oé)tfkflfl/2oélcfl/2da = Yok
- 0

Also, by integration by parts

1 1
1 — a)t—h—1/26-1/2
m™(n — 1)k/0 (1-a) “ “

t—k—1/2 ! 1
N (k+1/2)mn(n — 1)k /o (=) T el
(t—k—1/2)(n—1)
k+ 1/2 Ve+1,k+1

which gives the updates by simple algebra. O

Vi+1,k

4. BOUNDS

In this section we derive bounds that generalize the restift3] to the
case wherev is tuned online.

We denote by, 1 4 the loss incurred by the algorithm from timeto 7’
and byL; 7., the loss incurred by an ideal algorithm which would use the
sequence of experts to make up its predictions. Our goal is to compare
the loss of the algorithm to the loss of the best such sequence

In [3] results are given for a fixed choice afand it is shown that the
bound is optimized whea = k/(T — 1) wherek is the number of shifts in
the sequence.

We have the following theorems

Theorem 2. With the uniform prior, the following bounds holds

Ll..T,A S Ll..T,eT + clnn + Cl{f ln(n — 1)

T7—-1 T7—-1

1 T—k—1)In —
+ckIn + ¢( k >nT—k—1

+cln2 + gln(T - 1)

and thus the additional cost of estimatingcompared to setting = %
is

cln2+gln(T— 1)
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Proof. The proof follows from the same arguments as in [3] or [1]. By th
fundamental Lemma of [1] we have

Lira < —cnP(yr) = Li.re, — clnPler),
where in our case

1
InP(er) =Inn+ kln(n — 1) + ln/ (1—a)"*1a*P(a)da,
0

which we can write

T
In P(er) ZlnP eclei—1) Z _ale) In 7 s(er)

=1 Jt—ls(ei—1)

Using the recursion formulas, it is easy to check that

1 T-1\"
Tk = nn—1F\ k

O
Theorem 3. With the Dirichlet prior, the following bounds holds
Ligza < Lire,+clnn+cklnln—1)
-1 T-1
+Ck1n k‘ +C(T—k’—1>lnm
+cln2 + gln(T -1)
and thus the additional cost of estimatingcompared to setting = %
is
cln2+ - 5 ln(T -1)
Proof. We have
k T—k—1
1 1(1_a)Tk: 1-1/2 ,k=1/24,, 1 1 k T—-k—-1
Pt Jo 2 VT T-1
thus
> 1 1 T k _ 1 T—k—1
'7Tk_2 (n—1F T -1 _
O

Notice that the additional loss due to the adaptive tuning of exactly
the cost of estimating the parameter of a Bernouilli sequence
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