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A firm understanding of how the human visual system recognises and categorises objects 
is important in order to build a successful cognitive vision system. We have reviewed the 
relevant literature both on visual object recognition and categorisation (chapter 1). Based 
on this review and the technical annex of this project we have addressed several topics in 
a series of psychophysical experiments, focusing on structural aspects of recognition 
memory, object similarity in the context of categorisation, shape transformations in 
categorisation, the role of context in recognition and categorisation, and the interplay 
between object motion and shape for categorisation decisions (chapter 2). Based on our 
psychophysical results we present our view on recognition and categorisation, proposing 
an integrative framework that serves as a theoretical basis for a computational recognition 
system grounded in cognitive research (chapter 3). 
 

1 Models of object recognition and categorisation 
 
 Usually we are able to visually recognis e objects even when we see them from 
different points of view, in different sizes due to changes in distance, and in different 
positions in the environment. Even young children recognise objects so immediately and 
effortlessly that it seems to be a rather ordinary and simple task. However, changes in the 
spatial relation between observer and object lead to immense changes of the image that is 
projected onto the retina. Hence, to recognise objects regardless of orientation, size and 
position is not a trivial problem, and no computational system proposed so far can 
successfully recognise objects over a wide range of object categories and contexts. The 
question how we recognise objects despite spatial transformations is usually referred to as 
the first basic problem of object recognition. We are not only able to recognise identical 
objects, but we can effortlessly see an unknown dog as a dog, or as a beagle, even though 
we have never seen it before. But how do we see different instances as members of the 
same object class? This ability for class level recognition or categorisation is considered 
as the second basic problem of object recognition. Categorisation is a fundamental 
capacity; an organism without the  ability to categorise would be continually confronted 
with an ever -changing array of seemingly meaningless and unrelated perceptual 
experiences. 
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 Objects can be recognised or categorised on different levels of abstraction. For 
example, a specific object can be categorised as an animal, as a dog, as a collie, or as my 
dog Snoopy. One of these levels has perceptual priority, and is called the basic level of 
categorisation (Rosch, Mervis, Gray, Johnson & Boyes-Braem, 1976). The basic level is 
usually also the entry level of categorisation (Jolicoeur, Gluck & Kosslyn, 1984): 
Typically we recognise or name objects at the basic level, i.e. we see or name something 
as a dog, a cat, a car, a table, a chair, etc. The level above the basic level is called 
superordinate level (e.g., vehicle, animal), while the level below the basic level is the 
subordinate level (limousine, van, hatchback or collie, dachshund, beagle, etc.). Finally, 
objects can also be recognised at an exemplar level, i.e. an entity can be seen (or 
identified) as my dog Snoopy , or as John’s car. 
 
 Up to the present day, recognition and visual categorisation usually are treated as 
separate areas in the literature, even though the two terms are used almost exchangeable: 
Basically, to recognise an object on basic and subordinate level means to categorise it, 
and thus this separation seems artificial. The CogVis project aims at both recognition and 
categorisation of objects, and therefore models from both areas have to be considered. As 
a large number of approaches were suggested in the last decades, it is important to 
provide a survey over different models of recognition and categorisation. In order to get 
hold of the diversity of approaches, both recognition and categorisation models are 
classified within a single framework, using a modified version of Ullman’s (1989) 
classification scheme for recognition models. We distinguish between view-independent 
models (invariant property models, traditional feature models, structural description 
models) and view-dependent (image-based) models (alignment models on one hand and 
interpolation, pooling and threshold models on the other hand).1,2 Within every model 
type, both recognition and categorisation models will be introduced. 
 

1.1 Invariant property models 
 
 Invariant property models of object constancy and object recognition are based on 
the assumption that objects can be characterized by certain invariant properties, which are 
unaffected by transformations of the proximal stimulus on the retina that result from a 
change in the spatial relation between observer and object. The idea is that recognition 
can be explained on the basis of formless mathematical invariants that are common to all 
views of an object, usually defined relative to certain geometrical transformations (e.g., 
Todd, Chen & Norman, 1998; Van Gool, Moons, Pauwels & Wagemans, 1994; see 
already Cassirer, 1944; Gibson, 1950; Pitts & McCulloch, 1947). For example, the cross 
ratio is a frequently used invariant of the projective group (e.g., Cutting, 1986). Invariant 
property approaches may be mathematically appealing, but often the postulated invariants 

                                                 
1 We use the term view- or image -based to indicate that the representation is in some sense close to an 
image, based that recognition or categorisation performance depends systematically on image 
transformations. Note that we neither want to say that representations are pixel-based, nor that they are 
holistic in the sense of rigid holistic templates. 
2 The distinction between different view- or image-based models is not always trivial. Different 
classifications of image-based models seem possible. 
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could not be experimentally confirmed (e.g., Niall, 1992; Niall & Macnamara, 1990). In 
principle, invariant property models predict that recognition performance is independent 
of the amount of transformation, as the invariants are by definition unaffected by 
transformations (for further discussion see Wagemans, Van Gool & Lamote, 1996; 
Larsen & Bundesen, 1998). However, this stands in contrast to a large number of 
empirical studies (see chapter 1.4), and raises doubts whether invariant property models 
can be used to explain the recognition of individual exemplars. 
 What about object categorisation at the basic level? Invariant property models 
were not designed as models of categorisation. However, it can be argued that invariant 
property models can be enhanced to account for categorisation by extending them to 
topological invariants. Actually, there is evidence that topological invariants play a role 
in visual perception (e.g., Chen, 1982, 1985, 2001). However, it is not clear how 
categorisation can be modelled by invariant properties. To use Shimon Ullman’s words: 
“What simple invariances would distinguish, for example, a fox from a dog?” (1989, p. 
201). Probably for these reasons, invariant property models – i.e. models based on 
mathematical (formless) invariants – were not proposed in the categorisation literature, 
and are typically not discussed.  
 

1.2 Traditional feature models 
 
 Traditional feature models of recognition suggest that recognition is achieved 
through an extraction of – both visual and more abstract – features and a subsequent 
comparison with stored representations. Two subtypes of traditional feature models can 
be distinguished. In one subtype objects are represented as lists of features (e.g., Selfridge 
& Neisser, 1963), while in the other subtype objects are represented as points in a 
multidimensional space whose dimensions correspond to the feature dimensions (e.g., 
Shepard, 1957, 1987).  
 Many of the traditional recognition models can be regarded as feature models, and 
also nearly all present models of categorisation. These categorisation models likewise 
can be sub-classified into models in which objects (respectively categories) are 
represented as lists of (usually discrete and binary) features (e.g., Estes, 1986, 1994; 
Medin & Schaffer, 1978; Tversky, 1977), or as points or regions in a multidimensional 
feature space (e.g., Erickson & Kruschke, 1998; Kruschke, 1992; Lamberts, 1994; 
Nosofsky, 1986, 1988). In both feature list and feature space models, categorisation is 
based on the similarity between the perceived object and the category representation 
(which is conceptualised either as a prototype or as a set of exemplars). Depending on the 
subtype, similarity is either computed on a set -theoretical basis through the weighted 
number of common and distinctive features (Tversky, 1977), or determined geometrically 
as the distance in multidimensional space. Feature models that specify processes and thus 
predict the time course of categorisation were developed only recently (Ashby & 
Maddox, 1994, 1996; Cohen & Nosofsky, 2000; Lamberts, 1998; Nosofsky & Palmeri, 
1997).  

These models were quite successful with rather artificial st imulus material, but 
allow only a very limited description of the shape of objects, even though shape is of 
crucial importance for recognition and categorisation (e.g., Biederman & Ju, 1988; 
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Landau, Smith & Jones, 1988; Rosch et al., 1976). The features which are typically used 
in these categorisation models are of a rather abstract nature; for example a banana could 
be described by the attributes "yellow, long, sweet, peel, sections" (see e.g., the 
presentation in Barsalou & Hale, 1993). Also in experimental tests the problem of shape 
is largely avoided: If shapes are employed as stimuli (and not colours or other non-shape-
stimuli), they are constructed such that they vary along few salient dimensions and 
consequently can be described in a relative simple way (e.g., Ashby & Maddox, 1994, 
1996; Brooks, 1978; Medin & Schaffer, 1978; Nosofsky, 1986) – and hence look rather 
artificial and lack ecological validity.3 Therefore the problem remains unsolved how the 
similarity of shapes can be conceptualised, and how shape similarity influences 
categorisation performance. Moreover, it was argued that feature-based approaches are 
inadequate as models of similarity and categorisation, because they are unable to 
represent relationships between features (see Hahn & Chater, 1997; Medin, 1989).  

 

1.3 Structural description models 
 
 The basic idea of structural description models is that object recognition or 
categorisation is based on a structural representation, which is defined as a configuration 
of elementary object parts that are regarded as shape primitives (e.g., Marr & Nishihara, 
1978; Sutherland, 1968). Structural description models aim at supplying abstract and 
propositional descriptions of objects, which are immune to irrelevant spatial information. 
Therefore, structural description models typically predict that recognition performance is 
invariant regarding spatial transformations. Biederman's recognition-by-components 
(RBC) or geon structural description (GSD) model can be regarded as the best developed 
example of the structural description model type (Biederman, 1987; Biederman & 
Gerhardstein, 1993, 1995; Hummel & Biederman, 1992). According to this model objects 
are represented as configurations of elementary three-dimensional primitive parts, called 
geons. These geons are derived from nonaccidental properties (NAPs) in the image, i.e. 
from properties which unlikely arise by chance, and are more or less invariant over a 
wide range of views. For example, the properties straight vs. curved, symmetrical vs. 
asymmetrical, parallel vs. nonparallel are regarded as nonaccidental properties 
(nonaccidental properties were originally proposed within an image -based approach by 
Lowe, 1985, 1987). According to the model, geons and their spatial configuration are 
combined to a structural representation, called geon structural description. The spatial 
relations between parts are described in a categorical way, using relations like above , 
below, etc. Like other structural description models, Biederman's model predicts 
invariance in relation to position and size and also in relation to orientation in depth, as 
long as no parts are occluded. The model, however, does predict that recognition 
performance depends on the orientation of the stimulus in the picture plane, because the 
relations between parts are defined in a viewer-centred frame (Hummel & Biederman, 
1992). 

                                                 
3 Experiments conducted by Edelman (Edelman, 1995; Cutzu & Edelman, 1996) are an 
exception, because rather natural stimuli were used. However, Edelman’s Chorus model is not a 
usual feature model (see 2.4.2). 



 5 

 The question has to be raised whether objects can be decomposed into geons at 
all. It was argued that Biederman's RBC cannot be applied to a whole range of biological 
stimuli (Ullman, 1996, p. 30), or that biological shapes in general cannot be adequately 
described by structural description models (Kurbat, 1994; Leyton, 1992, p. 411-413). In 
accordance with these arguments, it is far from clear how the biological objects from the 
CogVis morph database can be described by the existing set of geons. This problem 
extends also to artefact categories like shoe , hat or backpack, which seem to exceed the 
scope of the geon model. Therefore it has to be doubted seriously that object parts are 
necessarily represented as geons, or as similar geometrical primitives (for further 
problems of RBC see Edelman, 1999; Tarr & Bülthoff, 1995, 1998; see also chapter 3). 
However, this does not mean that category representations do not have a part structure: 
Actually there is evidence that object parts have an important role in recognition and 
categorisation (e.g., Biederman, 1987; Biederman & Cooper, 1991; Tversky & 
Hemenway, 1984). It should be noted that it is not the notion of part structure in object 
representations by itself which is problematic, but the use of parts and relations as a basis 
to derive invariant recognition performance (see Graf & Schneider, 2001). 

Biederman’s RBC is already in some way a model of categorisation, because it 
was designed to account for entry level recognition (which usually corresponds to basic 
level categorisation), and it was claimed that it can be extended to subordinate level 
recognition (Biederman et al., 1999). In the last decade, categorisation models that are 
similar to structural description models were developed also in the traditional 
categorisation community. One example is Barsalou's (Barsalou, 1992; Barsalou & Hale, 
1993) frame model, in which categories are conceptualised as frames or schemata. But 
this model is not elaborated to account for the categorisation of familiar objects on the 
basis of their shapes, because category representations are conceptualised in terms of 
relatively abstract properties, similar to traditional feature approaches.  
 

1.4 Image-based (view-dependent) models 
 

In the last decade more and more studies accumulated which demonstrated that 
recognition is not view-independent. Orientation effects were found for novel objects 
(e.g., Bülthoff & Edelman, 1992; Edelman & Bülthoff, 1992; Tarr & Pinker, 1989), and 
also for common, familiar objects (e.g., Hayward & Tarr, 1997; Lawson & Humphreys, 
1996, 1998; Murray, 1997, 1999; Newell & Findlay, 1997; Palmer, Rosch & Chase, 
1981). Orientation-dependent performance could be verified with naming tasks, 
sequential matching tasks and priming tasks (for reviews see Jolicoeur & Humphrey, 
1998; Lawson, 1999), with a visual search task (Jolicoeur, 1992) and even with figure-
ground tasks (Gibson & Peterson, 1994). Orientation-dependent recognition performance 
is not limited to individual objects, like faces (e.g., Hill, Schyns & Akamatsu, 1997), or to 
objects on the subordinate level of categorisation (e.g., Edelman & Bülthoff, 1992; Tarr, 
1995), but also was demonstrated for bas ic level recognition (Hayward & Williams, 
2000; Jolicoeur et al., 1998; Lawson & Humphreys, 1998; Murray, 1998; Palmer, Rosch 
& Chase, 1981).  

Moreover, recognition performance is not only influenced by the orientation, but 
also by the size of the stimulus. Results are quite similar: Reaction times (RTs) and error 



 6 

rates depend on the extent of transformation that is necessary to align memory and 
stimulus representation. RTs increase in a monotonic way with increasing change of 
(perceived) size (e.g., Bundesen & Larsen, 1975; Bundesen, Larsen & Farrell, 1981; 
Cave & Kosslyn, 1989; Jolicoeur, 1987; Larsen & Bundesen, 1978; Milliken & Jolicoeur, 
1992; for a review see Ashbridge & Perrett, 1998). Several studies even showed a 
systematic relation between the amount of translation and recognition performance: 
Increasing displacement between two sequentially presented stimuli led to a deterioration 
of performance, both for novel objects (Dill & Edelman, 2001; Dill & Fahle, 1998; Foster 
& Kahn, 1985) and familiar objects (Cave et al., 1994). Overall, view-independent 
models are difficult to reconcile with these findings which indicate that recognition 
performance depends systematically on different spatial transformations. 
 A number of image-based models were developed in the recognition literature in 
order to account for the systematic dependency on spatial transformations. Image-based 
recognition models were originally designed to explain the recognition of individual or 
identical objects. Meanwhile, extensions to category level recognition were proposed for 
all of the major image-based approaches to recognition. 4   
 

1.4.1 Alignment models 
 
 The basic idea of the alignment approach is that the differences between the 
visual image and the stored image-like object representation, which are caused by 
differences in position, size, and orientation, are compensated by an alignment of 
memory representation and stimulus representation, so that both can be compared in a 
straightforward way in a subsequent matching. If the alignment process is assumed to be 
time -consuming and error -prone, orientation-dependency of recognition can be accounted 
for easily (e.g., Jolicoeur, 1985; 1990; Tarr & Pinker, 1989). There is psychophysical 
evidence (Bundesen, Larsen & Farrell, 1981; Kourtzi & Shiffrar, 2001) that analogue 
compensation processes may be involved in object recognition, i.e. that compensation 
processes are continuous or incremental and traverse intermediate stages of the 
transformational path. This is confirmed by neurophysiological evidence which indicates 
that the orientation of objects is continuously mapped in the visual cortex (Wang, 
Tanifuji & Tanaka, 1998). 

Several computational alignment models were developed, of which Ullman’s 
(1989, 1996) 3D alignment model and Lowe’s (1985, 1987) SCERPO model are 
probably the best known examples. Alignment models were originally designed for the 
identification of individual or identical objects. However, in the last years alignment 
models were extended to account for categorisation. In one attempt, entry level 
classification is explained by specific linear transformations and a subsequent tolerant 
matching (Yolles, in Ullman, 1996, p. 172-178). In this model the alignment is limited to 
                                                 
4 Even though image-based models play a prominent role in the recognition literature, up to now 
no detailed image-based models were suggested in the categorisation  literature. Barsalou’s 
(1999) framework of perceptual symbol systems is in some way close to an image-based model, 
because it suggests that spatial transformations may play a role in categorisation. However, 
Barsalou’s framework is not a model of perception and categorisation, as it does not explain how 
the fit between one representation and another is computed. 
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linear transformations. Shape differences between members of the same category are not 
accounted for by the alignment itself, but by a tolerant matching which occurs as a 
second step after normalization.  
 
 As an alternative to Ullman’s (1989) model that relies on 3D object 
representations, Ullman and Basri (1991) suggested an alignment model on the basis of 
2D views. In this model, an internal object model is constructed by a linear combination 
of a small number of stored 2D images. Thus, the alignment is not achieved by a spatial 
compensation process, but by linear combination of images. The intuition behind the 
linear combination approach can be explained in simple terms: Suppose that two views of 
the same three-dimensional object are stored, taken from somewhat different viewing 
directions. An intermediate view can then be described as a weighted sum of the views 
that are already stored.  
 Also for the linear combination approach an extension to class level recognition 
was proposed (Basri, 1996). Similar to Yolles’ model, the alignment is limited to affine 
transformations in such a way that view and shape variations are decoupled: While view 
variations are compensated by the alignment process, shape variations within different 
members of the same category are not compensated for by the alignment process itself, 
but are accounted for by a tolerant similarity measure.   
 

1.4.2 Interpolation, pooling and threshold models 
 
 In the interpolation model, recognition is achieved by localization in a 
multidimensional representational space, which is spanned by stored views (Poggio, 
1990; Poggio & Edelman, 1990; Poggio & Girosi, 1990). The interpolation model is 
based on the theory of approximation of multivariate functions and can be implemented 
with radial basis functions (RBFs). In this scheme, the whole viewing space of an object 
is approximated by the learned views through a series of RBFs, which spread out the 
views in a high-dimensional feature space. Object recognition then means to examine 
whether a new point can be approximated by the existing tuned basis functions. Thus, 
recognition does not occur by transformation or reconstruction of an internal image, but 
by interpolation or approximation in a high-dimensional representational space. 
 Also categorisation models were developed within the interpolation approach 
(e.g., Ede lman, 1998, 1999; Riesenhuber & Poggio, 2000). A well-developed extension 
of an image-based model to entry level categorisation is the Chorus model (e.g., 
Edelman, 1998, 1999; Edelman & Duvdevani-Bar, 1997; Edelman, 1995). In order to 
extend the model to categorisation, the RBF-framework is interpreted as representing not 
just single views, but prototypical shapes. Objects are represented by their similarity to 
several of the stored prototypes (chorus of prototypes). Thus, the similarity between 
shapes is represented in the Chorus model, but not the geometry of the shapes per se. 
Edelman distinguishes a multidimensional distal shape space and a proximal 
representational space. To represent shape differences between a perceived object and the 
prototypes in the proximal space, a common parameterisation of the distal shape space is 
necessary – at least within object categories. In this common parameterisation nonrigid 
transformations of shape (morphings) are defined (Edelman, 1998; Edelman & 
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Duvdevani-Bar, 1997). Categorisation is not achieved in the Chorus model by 
transformations of pictorial representations, but by assigning a location in the proximal 
space to the stimulus, according to the similarity to a number of prototypical templates.  
 Edelman’s model is  an important step towards an integrative model of recognition 
and categorisation, but has some limitations (see commentaries in BBS to Edelman, 
1998; see also Riesenhuber & Poggio, 2000). For example, the assumption of a 
multidimensional feature space raises a number of difficulties (see e.g., Marko, 1973; 
Tversky, 1977), and the assumption of a linear representational space was criticized 
(Bonmassar & Schwartz, 1998; Gregson, 1998; van Leeuwen, 1998). Moreover, the 
holistic nature of representations in Chorus is problematic (e.g., Hummel, 2000; but see 
Edelman & Intrator, 2000, 2001).  
 
 At the end of the 90s, pooling and threshold models of recognition were 
developed (Perrett & Oram, 1998; Perrett, Oram & Ashbridge, 1998; Riesenhuber & 
Poggio, 1999, 2002; Wallis & Bülthoff, 1999). Recognition is explained on the basis of 
the behaviour of cells in IT cortex which are selectively tuned to specific image features 
(fragments or whole shapes) in a view-dependent (and size-dependent) way. A 
hierarchical pooling of the outputs of view-specific cells provides generalization over 
viewing conditions (Perrett & Oram, 1998). A similar proposal was made by Riesenhuber 
and Poggio (1999, 2002), reminiscent of the Pandemonium model (Selfridge and Neisser , 
1963; see Tarr, 1999). The threshold model (Perrett, Oram & Ashbridge, 1998) also 
accounts for the systematic relation between recognition latencies and the amount of 
rotation (and size-scaling): The speed of object recognition depends on the rate of 
accumulation of activity from neurons selective for the object, evoked by a particular 
viewing circumstance. For a familiar object, more tuned cells will be activated in the 
views most frequently presented, so that a given level of evidence (threshold) can be 
achieved fast. Whe n the object is seen in an unusual view, fewer cells will respond, and 
activity among the population of cells selective for the object’s appearance will 
accumulate more slowly. Consequently, these threshold models explain orientation-
dependency without the need to postulate transformation or interpolation processes.  
 How can pooling/threshold models account for basic level categorisation? In the 
model of Perrett et al. (1998), recognition depends only on how well the input image falls 
within the tolerance of neural representations of familiar objects. The speed of 
classification of an unfamiliar exemplar of a familiar object class (e.g., recognizing a new 
car model as a car) should depend only on the novel item’s similarity to familiar 
exemplars. Also Riesenhuber and Poggio (2000) extended their model to class level 
recognition, introducing one layer of units (RBFs) which cover the stimulus space and are 
tuned in unsupervised training, and above another task-specific layer of units which are 
tuned by supervised training. 
 Interpolation, pooling and threshold models are interesting, because they integrate 
neurophysiological and psychological modelling, but they bring up several problems: 
First, the models are difficult to reconcile with psychophysical evidence for position-
dependency in object recognition (Cave et al., 1994; Dill & Edelman, 2001; Dill & Fahle, 
1998; Foster & Kahn, 1985). Second, it seems difficult to reconcile these models with 
evidence for analogue compensation processes in recognition (e.g., Bundesen et al., 1981; 
Kourtzi & Shiffrar, 2001). Third, these approaches rely on the notion of shape similarity, 
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without being able to account for the similarity of shapes. Fourth, these models are purely 
bottom-up models. Present models are not compatible with evidence for massive top-
down processing in the cortex (e.g., Ullman, 1995). And fifth, the question how object 
structure can be dealt within these approaches needs further elaboration (see Edelman & 
Intrator, 2001; see also Perrett & Oram, 1998).  
 

1.5 Recent developments 
 

In the last years, several new developments can be traced in the literature on object 
recognition. We think that two of these developments are of special importance in the 
present context, as they provide possible extensions of the image-based approach to 
recognition and categorisation.  
 

Recently, attempts were made to integrate object parts or fragments into image-
based accounts of recognition and categorisation. Edelman responded to the criticism 
against the holistic nature of his Chorus model by postulating a Chorus of Fragments 
model which encodes object fragments and implicit spatial relations between them 
(Edelman & Intrator, 2000, 2001). He proposed part detectors (what + where neurons) 
which are coarsely tuned to the shapes of specific object fragments and a range of 
locations. Within this framework, configurations of parts can be represented, and 
illustrated by a pegboard whose spatial structure supports the arrangement of parts, which 
are suspended by pegs (see also Perrett & Oram, 1998).  
Another image-based model which integrates the part-structure of object representations 
was proposed by Basri, Costa, Geiger and Jacobs (1998). The authors showed that 
similarities of part structure can be captured with an elastic matching approach. The 
underlying idea is that corresponding parts can be aligned when they are represented in 
an elastic representation. Moreover, Ullman et al. (2002) proposed a model which 
extracts image features of intermediate complexity which may be involved in object 
categorisation. Thus, in general, there is a tendency in the literature to integrate structured 
representations in image -based models of recognition and categorisation. 
 

A second new development is related to the issue of shape transformations in basic 
level categorisation. One of the central questions in object categorisation is how the shape 
variability of different category members can be accounted for. Recently Graf (2001, 
2002) proposed that the shape variability within categories up to the basic level of 
categorisation can be described by continuous transformations of object shape 
(topological transformations), which can be illustrated by locally deforming a rubber 
sheet on which the shape of an object was printed (see Figure 1). Topological 
transformations seem not only suited to account for shape variations within biological 
categories (Thompson, 1917/1942), but also for many artefact categories (Graf, 2002). 
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Figure 1. A series of different heads can be created by a topological transformation. The 
transformation is illustrated by the deformation of the corresponding coordinate system (Shaw & 
Pittenger, 1977). 

 
A speeded categorisation experiment with line drawings demonstrated that 

categorisation performance depended systematically on the amount of shape 
transformation. Moreover, transformation times were sequentially additive, which 
suggests that analogue deforming transformation processes are involved in basic level 
categorisation, i.e. transformations which pass through intermediate positions in the 
transformational path. In order to account for these findings, the alignment approach was 
extended to nonlinear shape transformations (Graf, 2001, 2002). The basic idea is that 
basic level categorisation can be conceptualised simply by allowing for topological 
(warping or morphing) transformations which compensate for shape differences within 
category members. The model can be conceptualised on the basis of 2.5-D 
representations. This approach allows for an integrative model of recognition and 
categorisation up to the basic level, simply by using different transformations in 
recognition and categorisation. However, it still has to be investigated whether these 
results generalize to perceived simi larity, to the categorisation of more realistic grey-level 
stimuli, and to objects that underwent both shape changes and rotations. 

 
In summary, these two new developments provide interesting extensions which 

can overcome limitations of the existing image-based models of recognition, and 
therefore are the starting point for our own research within the CogVis project. 
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2 Psychophysical experiments 
 

As already described in chapter 1.4, recognition performance depends systematically  
on spatial transformations, like rotations and size -scalings. These findings cannot be 
accounted for by models which predict that recognition performance is invariant 
regarding spatial transformations (view-invariant models). Consequently, image-based 
models were developed in order to account for view-dependency in object recognition. 
However, present image-based models still have a number of limitations  (see 
introduction). One main issue is related to the question what role object parts play in 
object recognition and categorisation, and how structured representations can be 
integrated into an image-based model. A second major issue refers to the question how 
object categorisation, especially basic level categorisation, can be accounted for within an 
image-based approach. Furthermore, more research is required on the questions what role 
top-down processing, and dynamic aspects – like object motion – play in categorisation.  
Consequently, the following research questions arise:  

- Do parts and structured representations play an important role in object 
recognition and categorisation? How can structural representations be integrated 
in an image-based model?  

- Given that similarity is an essential determinant of categorisation: How are 
systematic changes of object shape reflected in perceived similarity? To put it 
more general: How can basic level object categorisation be accounted for within 
an image-based model? 

- What is the role of context and top-down information in object categorisation? 
- What is the interplay between object motion and shape for categorisation 

decisions? 
We have addressed these topics in a number of psychophysical experiments. The next 
section contains an overview of the studies and main results, followed by separate 
research reports for every study (chapters 2.1 – 2.5). 
 

The main approaches to explain human recognition and categorisation differ quite 
remarkably with regard to their assumptions on the structural aspects of recognition 
memory. Invariant property models, traditional feature models and structural description 
theories assume that local featural or part-based information plays a pivotal role in 
object recognition and categorisation, and assume the recognition and categorisation 
performance is essentially viewpoint-invariant. In contrast, many view-based models are 
holistic, i.e. they propose that objects are encoded and represented as unparsed perceptual 
wholes in which parts and spatial relations are not explicitly represented. In order to 
explore structural aspects of recognition memory we have developed a new 
psychophysical method for investigating the role of featural and spatial-relational 
information in recognition and categorisation (study 1). In the first experiments we have 
applied this method to old-new recognition of faces because this stimulus class has often 
been considered to be processed in an exclusively holistic way (e.g., Biederman & 
Kalocsai, 1997; Tanaka, & Farah, 1993, Farah, Tanaka, & Drain, 1995). Our results 
provided clear evidence that spatial-relational as well as featural information is important 
even for face recognition. This suggests that part information is even more important for 
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object recognition and categorisation.  By comparing the recognition of unfamiliar and 
familiar faces we have addressed the question how memory representations develop over 
the time course of learning. We showed that there is no qualitative shift in terms of using 
featural vs. spatial-relational information, even though familiar faces were better 
recognised than unfamiliar ones. 

A further central issue is how categorisation can be conceptualised within an 
image-based model. This question is essential, as we typically recognise objects at the 
basic level of categorisation – and thus categorise objects when we see them. As 
similarity has a central status in virtually all models of categorisation, we investigated 
object similarity in the context of categorisation (study 2). Using line-drawings, we found 
that object similarity is related in a systematic way to continuous transformations of 
object shape (topological transformations), which were produced by morphing between 
two images of the same basic level category. Thus, topological transformations seem well 
suited to account for the shape similarity of members of familiar categories on the basic 
level of categorisation. These findings are in accordance with the proposal that similarity 
judgements involve the alignment of corresponding parts (e.g., Markman, 2001) – as the 
morphing procedure relies on an alignment of corresponding features or parts.  

The role of object shape in categorisation was further explored with speeded 
categorisation tasks in study 3. Previous work has shown that the amount of shape 
transformation was systematically related to categorisation performance for line drawings 
(Graf, 2002). We investigated whether these results generalize to more realistic grey-
level images rendered from 3D object models (see CogVis object data base ). We also 
studied the effects of combined shape transformations and image -plane rotations on 
categorisation performance. The results confirm that categorisation performance is 
systematically related to the amount of shape transformation, both for line drawings and 
grey-level images, as well as for upright and plane rotated objects. In addition, orientation 
dependency was corroborated with a basic level categorisation task. Finally, 
categorisation processes which compensate for shape changes and plane rotations seem to 
be independent, confirming previous evidence of independent effects for other 
combinations of spatial transformations (e.g., Lawson et al., 2000). Overall, the results 
support an image-based model of basic level categorisation, as continuous shape changes 
are systematically related to categorisation performance. 

In study 4 the role of context in recognition and categorisation was studied. Many 
recognition schemes assume a purely bottom-up processing. This assumption is 
questionable when one considers the fact that almost every brain area used in visual 
cognition sends feedback to previous areas. Indeed, using an associative priming 
paradigm we demonstrated that looking at an object (e.g. , coffee spoon) can facilitate the 
recognition of noncanonical views of another object which is  related in associative 
memory (e.g., coffee cup). This result challenges most current recognition models that 
are purely bottom-up and suggests an important role of context in recognizing everyday 
objects. 

Finally, we examined the interplay between object motion and shape for 
categorisation decisions and perception (study 5). Previous studies on categorisation often 
have focused either purely on the static or on the dynamic domain (e.g., point-light 
walkers). In a first study we have taken a further step and investigated the relevance of 
static and dynamic cues in a categorisation task. Interestingly, we found that subjects 
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could readily use both types of cues and that there was no significant advantage of one 
cue type over the other. These results argue strongly for a cue -integrating processing 
strategy for categorisation, in which shape and rigid motion information is combined. In 
addition to rigid motion also non-rigid motion could play an important role for certain 
stimulus classes like living things or faces. Indeed, one of the most relevant types of 
information processing in everyday life is that of emotional expression. Interestingly, 
inverting the eyes and mouth in an upright faces creates a very bizarre facial expression 
which disappears when the face is turned upside down (Thatcher illusion, Thompson, 
1980). In the last study we investigated the interplay between nonrigid motion and shape 
for perception using “thatcherized” faces.  

In summary, we investigated different aspects of visual object recognition and 
categorisation. The findings both support and extend an image -based model of 
recognition and categorisation.  
 
 

2.1 Study 1: Structural aspects of recognition memory: a new method for 
measuring the role of featural and relational information 

As explained in the introduction, object recognition and categorisation theories 
differ with regard to their assumptions on the representations used. On one hand, 
invariant property approaches, traditional feature models and structural description 
theories assume that local features or parts play an important role for recognition and 
categorisation. On the other hand, view-based schemes have often been associated with 
holistic processing in which objects are processed as wholes without explicitly encoding 
and representing parts. 

Faces are one of the most relevant stimulus classes in everyday life. Moreover, 
they have been claimed by several authors to be the example for exclusive holistic 
processing (e.g., Biederman & Kalocsai, 1997; Farah, Tanaka, & Drain, 1995; Tanaka & 
Farah, 1993). These two properties make faces a very interesting stimulus class to 
examine the role of featural and relational information in recognition and categorisation. 

In computer vision many face recognition algorithms process the whole face 
without explicitly processing facia l parts. Some of these algorithms have been thought of 
being particularly useful to understand human face recognition and were cited in studies 
that claimed faces to be the example for exclusive holistic processing (e.g., Lades, 
Vorbrüggen, Buhmann, Lange, Malsburg, Würtz, & Konen, 1993 and Wiskott, Fellous, 
Krüger, & von der Malsburg, 1997 cited in Biederman & Kalocsai, 1997, or the 
computation models cited in Farah et al., 1995, p. 496). In contrast to these and other 
holistic algorithms like principal components analysis or vector quantization, recent 
computer vision approaches have started using local part-based or fragment-based 
information in faces (Heisele, Serre, Pontil, Vetter, & Poggio, 2001; Lee & Seung, 1999; 
Ullman & Sali, 2000). Since human observers can readily tell the parts of a face such 
algorithms bear a certain intuitive appeal. Moreover, potential advantages of such 
approaches are greater robustness against partial occlusion and less susceptibility to 
viewpoint changes. 

In the present study we used psychophysics to investigate whether human 
observers only process faces holistically, or whether they encode and store the local 
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information in facial parts (featural information) as well as their spatial relationship 
(configural information). In contrast to previous studies, we developed a method that did 
not alter configural or featural information, but eliminated either the one or the other. 
Previous studies have often attempted to directly alter the facial features or their spatial 
positions. However, the effects of such manipulations are not always perfectly selective. 
For example, altering featural information by replacing the eyes and mouth with the ones 
from another face could also change their spatial relations (configural information) as 
mentioned in Rhodes, Brake, and Atkinson (1993). Rakover has pointed out that altering 
configuration by increasing the inter -eye distance could also induce a part-change, 
because the bridge of the nose might appear wider (Rakover, 2002). Such problems were 
avoided in our study by using scrambling and blurring procedures that allowed 
investigating the role of featural and configural information separately. The current study 
extends previous research using these manipulations (e.g., Collishaw & Hole, 2000; 
Davidoff & Donnelly, 1990; Sergent, 1985) by ensuring that each procedure does 
effectively eliminate configural or featural processing.  

Experiment 1 

The first experiment was designed to investigate whether human observers store 
featural information independent of configural information. In the first condition 
configural information was eliminated by cutting the faces into their constituent parts and 

scrambling them. If the local 
information in parts (featural 
information) is encoded and stored, 
it should be possible to recognise 
previously learnt intact faces even if 
they are scrambled. In condition 2 
the role of configural information 
was investigated. Previously learnt 
faces had to be recognised when 
they were shown as greyscale low-
pass filtered versions. These image 
manipulations destroyed featural 

information while leaving the configural information intact. In a control condition we 
confirmed that performance is reduced to chance when faces are low-pass filtered and 
scrambled, thus showing that our image manipulations eliminate featural and configural 
information respectively and effectively. Examples of the stimuli are shown in Figure 2. 

Thirty-six participants were randomly assigned to the different experimental 
conditions. Recognition performance was calculated using signal detection theory (Green 
& Swets, 1966). Face recognition performance was measured by calculating d' using an 
old-new judgement task (McMillan & Creelman, 1992).5 d' was calculated for each 
participant and averaged across each group (Figure 3, black bars). 

                                                 
5 This measure is calculated by the formula d' = z(H) –  z(FA), whereas H denotes the proportion of hits and 
FA the proportion of false alarms. A hit was scored when the target button was pressed for a previously 
learned face (target) and a false alarm was scored when the target button was pressed for a new face 

a b dca b dc

Figure 2. Sample Stimuli. a) intact face, b) scrambled, 
c) scrambled-blurred, d) blurred face. (From 
Schwaninger, Lobmaier, & Collishaw, 2002) 
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Scrambled faces were recognised above chance, suggesting that local part-based 
information has been encoded in the learning phase. These findings are contradictory to 
the view that faces are only processed holistically (Biederman & Kalocsai, 1997; Farah et 
al., 1995; Tanaka & Farah, 1991; Tanaka & Farah, 1993). The recognition of blurred 
faces was also above chance, confirming an important role of configural information for 
face recognition (Rhodes et al., 1993; Sergent, 1985). The control condition revealed that 
the blur filter eliminated all featural information since recognition was at chance when 
faces were blurred and scrambled.  

Our results suggest that unfamiliar face recognition in humans entails separate 
representations for featural information and for configural information. The aim of 
Experiment 2 was to investigate changes of recognition memory due to familiarity. More 
specifically, we were interested whether there is a quantitative or a qualitative shift in 
processing strategy when faces have become familiar. 

Experiment 2 

Thirty-six participants participated in this experiment. The materials and 
procedure were the same as in Experiment 1, but all the targets were faces of fellow 
students and thus familiar to the participants. 
The results of Experiment 2 replicated the clear effects from Experiment 1 and suggest an 
important role of local part-based and configural information in both unfamiliar and 

familiar face recognition. By comparing 
recognition performance from both experiments 
(Figure 3) we addressed the question to what 
extent familiar and unfamiliar face recognition 
differ quantitatively (e.g., generally a better 
performance when faces are familiar) or 
qualitatively (e.g., better performance for 
familiar faces using more accurate configural 
processing). To this end, a two-way analysis of 
variance (ANOVA) was carried out with the 
data from the scrambled and blurred conditions 
of Experiments 1 and 2 with familiarity 
(familiar vs. unfamiliar) and condition 
(scrambled vs. blurred) as between-subjects 
factors. There was a main effect of familiarity, 
F(1,42) = 12.80, p < .01, suggesting that 
familiar faces are more reliably recognised than 
unfamiliar faces (quantitative difference). There 

was also a main effect of condition, F (1,42) = 6.7, p < .05, indicating that blurred faces 
were better recognised than scrambled faces. The relative impact of blurring and 
scrambling did not differ between the two experiments, since there was no interaction 
between condition and familiarity, F(1,42) = 1.02, p = 0.32. This result suggests that 

                                                                                                                                                 
(distractor). In the formula z denotes the z-transformation, i.e. H and FA are converted into z-scores 
(standard-deviation units). 
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Figure 3. Recognition performance in 
unfamiliar and familiar face recognition 
across the three different conditions at 
test. ScrBlr: scrambled and blurred faces. 
Error bars indicate standard errors of the 
mean. (From Schwaninger, Lobmaier, & 
Collishaw, 2002) 
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there are no qualitative differences between familiar and unfamiliar face recognition on 
the basis of configural and featural information. In both cases both types of information 
are of similar importance. 

Conclusion 

In this study we have investigated the role of local part-based information and 
their spatial interrelationship (configural information). We used faces for two reasons: 
First, they are one of the most relevant stimuli in everyday life. Second, they have often 
been cited as the example for exclusive holistic processing (Biederman & Kalocsai, 1997; 
Farah et al., 1995; Tanaka & Farah, 1993). 

The results of our experiments provided clear evidence for the view that human 
observers process familiar and unfamiliar faces by encoding and storing configural as 
well as local information of facial parts. Moreover, when faces are familiar both featural 
and configural processing becomes more accurate. Interestingly, there is no qualitative 
change, i.e. the relative balance between the two types of processing remains the same. 

These results challenge the assumption that faces are processed only holistically 
and suggest a greater biological plausibility for recent machine vision approaches in 
which local features and parts play a pivotal role (e.g., Heisele et al., 2001; Lee & Seung, 
1999; Ullman & Sali; 2000). 

Neurophysiological evidence supports part-based as well as configural and 
holisitic processing assumptions. In general, cells responsive to facial identity are found 
in inferior temporal cortex while selectivity to facial expressions, viewing angle and gaze 
direction can be found in the superior temporal sulcus (Hasselmo, Rolls, & Baylis, 1989; 
Perret, Hietanen, Oram, & Benson, 1992). For some neurons, selectivity for particular 
features of the head and face, e.g., the eyes and mouth, has been revealed (Perret et al., 
1992; Perret, Mistlin, & Chitty, 1987; Perret, Rolls, & Caan, 1982). Other groups of cells 
need the simultaneous presentation of multiple parts of a face and are therefore consistent 
with a more holistic type of processing (Perret & Oram, 1993; Wachsmuth, Oram, & 
Perret, 1994). Finally, Yamane, Kaji, and Kawano (1988) have discovered ne urons that 
detect combinations of distances between facial parts, such as the eyes, mouth, eyebrows, 
and hair, which suggest sensitivity for the spatial relations between facial parts 
(configural information). 

In order to integrate the above mentioned findings from psychophysics, 
neurophysiology and computer vision we propose the framework depicted in Figure 4. 
Faces are first represented by a metric representation in primary visual areas 
corresponding to the perception of the pictorial aspects of a face. Further processing 
entails extracting local part-based information and spatial relations between them in order 
to activate featural and configural representations in higher visual areas of the ventral 
stream, i.e. face selective areas in temporal cortex6. In a recent study, repetition priming 
was used in order to investigate whether the outputs of featural and configural 
representations converge to the same face identification units (Schwaninger, Lobmaier, & 

                                                 
6  Although a role of the dorsal system in encoding of metric spatial relations has been proposed for object 
recognition it remains to be investigated, whether it does play a role for the processing of configural 
information in faces. 
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Collishaw, 2002). Since priming was found from scrambled to blurred faces and vice 
versa we propose that the outputs of featural and configural representations converge to 
the same face identification units. 

Although first used for 
faces, the method described 
above provides a general tool 
for separately investigating 
featural and spatial relational 
processing. It would be 
interesting to investigate 
whether features, parts and 
configuration play a different 
role for recognizing objects 
on superordinate, basic or 
subordinate levels. Further-
more, it would be worthwhile 
to explore whether there are 
qualitative differences depen-
dent on the task or context. 
 

 
 

2.2 Study 2: Object similarity in the context of categorisation 
 
 Similarity has a central status in categorisation: Most of the otherwise distinct 
theories of categorisation share the assumption that the likelihood of assigning an object 
to a category depends on the similarity of the object to the category representation (e.g., 
McClelland & Rumelhart, 1985; Medin & Schaffer, 1978; Nosofsky, 1986; Reed, 1972; 
Rosch & Mervis, 1975; Smith & Medin, 1981; Smith, Shoben & Rips, 1974; for a review 
see Hahn & Chater, 1997). Moreover, objects that are visually similar to each other are 
more likely perceived categorically (Newell & Bülthoff, 2002). But how can similarity be 
accounted for? In the last decade a host of evidence has accumulated which suggests a 
structural alignment model of similarity and categorisation (e.g., Gentner & Markman, 
1994, 1995; Goldstone, 1994a, 1994b, 1996; Goldstone & Medin, 1994; Markman & 
Gentner, 1993a, 1993b, 1997; Medin, Goldstone & Gentner, 1993; for a review see 
Markman, 2001): The basic idea is that similarity needs to be understood as a process, 
which brings aspects of the entities that are to be compared into correspondence. This 
alignment process is hypothesized to be a dynamic process, which supplies constraints 
for the similarity comparison, because it determines corresponding features or parts – and 
thus defines which aspects will be compared in the similarity matching.  
 It is still unclear, however, how the shape of common and familiar objects can be 
described on the basis of – usually more or less abstract – properties or features, which 
underlie most present approaches of similarity in the categorisation literature, and also 
the structural alignment approach. These rather abstract descriptions seem not adequate to 
capture object shape. Moreover, the existing recognition models in the recognition 
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Figure 4. Integrative model for unfamiliar and familiar face 
recognition. (From Schwaninger, Lobmaier, & Collishaw, 
2002) 
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literature either do not deal with class level recognition and the similarity of different 
(deformed) shapes (e.g., Poggio & Edelman, 1990; Poggio & Girosi, 1990), do not 
account for the similarity of deformed objects (e.g., Biederman, 1987; Hummel & 
Biederman, 1992), or just presuppose similarity – without explaining it (e.g., Edelman, 
1998; Perrett et al., 1998). Therefore, it is still an open question how shape similarity can 
be conceptualised. This shortcoming is critical, because object shape is a central 
determinant in categorisation at the basic and subordinate level (Rosch et al., 1976). For 
these reasons, an account of shape similarity seems to be essential to understand basic 
level and subordinate level categorisation. 
 Most previous studies on shape similarity that investigated systematic changes of 
object shape used unfamiliar shapes. Several studies employed novel blob-like shapes 
with closed contours, which were produced on the basis of radial frequency components 
(Fourier descriptors) (e.g., Cortese & Dyre, 1996; Op de Beeck, Wagemans and Vogels, 
2001; Shepard & Cermak, 1973). Psychophysical studies found an ordinal agreement 
between parametric configurations and their perceptual representation (as determined by 
multidimensional scaling), i.e. detected the same number of dimensions and the same 
stimulus order (Cortese & Dyre, 1996; Shepard & Cermak, 1973). In a recent study, this 
finding was confirmed both at the behavioural and neuronal level (Op de Beeck et al., 
2001). Only few studies were performed in which more common and natural stimuli were 
used: Cutzu and Edelman (1998, 1996) investigated the similarity of parametrically 
deformed animal-like computer-generated objects. Their results showed that planar 
configurations in a low-dimensional shape space were recovered by MDS from proximity 
tables derived from the subject data. This suggests that deforming shape transformations 
are systematically related to human performance. Overall, these studies indicate that 
shape similarity decreases monotonically with increasing amount of elastic deformation.  
However, it is not clear whether these results transfer to the more complex shapes of 
common and familiar objects , over a large set of categories.  
 How can shape similarity within common and familiar basic level categories be 
explained? It was proposed that the shapes of different objects from the same basic level 
category can usually be aligned by rather simple deforming transformations which 
continuously transform object shape (so-called topological transformations) (Graf, 2001). 
By extending the image-based alignment approach (e.g., Ullman, 1989) to shape 
transformations, the similarity of common and familiar object shapes can be explained 
(see Figure 5). The following predictions can be derived from this transformational (or 
alignment) model of similarity: The similarity of objects should decrease in a systematic 
way with increasing amount of topological transformation, leading to a high negative 
correlation between transformational distance and perceived similarity. Moreover, the 
decrease in similarity is expected to be monotonic. 
 
Experiment 
 In the experiment, subjects were asked to rate the similarity of objects from the 
same basic level category on a scale from 1 (very dissimilar) to 9 (very similar). Outline 
shapes (line drawings) of object pairs from 25 common and familiar categories (12 
biological and 13 artefact categories) were presented in a booklet. The amount of 
topological transformation between objects was manipulated. 
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Figure 5. Members of a specific category are produced by continuously transforming the shape of 
existing members. This method works for biological categories and for many artefact categories, 
as exemplified by line drawings of objects from the categories fish and pipe. The underlying 
morphing (or warping) transformations are well suited to describe the shape variability within 
basic level categories. 

 Mean similarity ratings were computed, averaged over categories. The factor 
distance was highly significant (F (4,140) = 1848.75; p < .001). Mean similarity ratings 
decreased with increasing transformational distance, as can be seen in Figure 6. This is 
confirmed by a very high negative Spearman correlation between transformational 
distance and the similarity ratings (rs = -.967, p < .001). The amount of topological 
transformation accounts for 93.5% of the variance in the similarity ratings. Also a highly 
significant linear trend was found in the data (F (1,35) = 5280.08; p < .001), which 
indicates a monotonic decrease.  
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Figure 6. Mean similarity ratings, averaged over categories and subjects. Perceived 
similarity decreased with increasing amount of topological transformation between the 
two objects (as specified in the morphing procedure). 
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 In a next step, it was tested whether this decrease in rated similarity can be found 
also for individual categories. For every category, an ANOVA with distance as factor 
was performed. For all 25 categories, the main effect distance was highly significant (p < 
.001). In all categories a linear trend proved to be highly significant (p < .001 in all 
categories), suggesting a monotonic decrease. In addition, high negative Spearman 
correlations between transformational distance and rated similarity were found for all 
categories, ranging from rs = -.850 to rs = -.935 (see Graf, 2002). Thus, perceived 
similarity decreased with increasing topological distance in each of the 25 categories. 
 Does the systematic relation actually result from topological transformations, or 
can alternative models account for it, without having to refer to topological 
transformations? First, can the effect be reduced to simple affine changes? In order to 
investigate this question, data analysis was repeated for those categories with little affine 
change (dinosaur, glass, bell , head , starfish). Again, similarity decreased with increasing 
transformational distance (F (4,140) = 1050.66; p  < .001). A very high negative 
correlation between transformational distance and the similarity ratings was found (rs = -
.951, p < .001), and a linear trend was highly significant (F (1,35) = 3697.19; p < .001). 
Thus, the pattern of results is highly similar to that for all objects, indicating that the 
systematic relation also holds for categories with little affine change. Second, can the 
systematic relation also be detected for categories in which the spatial configuration of 
parts is highly similar? Also for these categories (bell, bottle, light-bulb and turnip) 
perceived similarity decreased with increasing transformational distance (F (4, 140) = 
986.70; p < .001). This is confirmed by a very high negative Spearman correlation (rs = -
.959, p < .001); the linear trend was highly significant, as well (F (1,35) = 7949.64; p < 
.001). Therefore, the effect is not simply due to changes in the configuration of parts. To 
sum up, the systematic decrease of rated similarity with increasing amount of 
transformation cannot be reduced to affine transformations, or to the changes in the part 
configuration, but reflects the amount of topological transformation.  
 The increase of similarity with increasing transformational distance was found for 
both biological categories (F (4,140) = 1447.32; p < .001) and artefact categories (F 
(4,140) = 1552.78; p < .001). The Spearman correlations between transformational 
distance and rated similarity showed similar results: Very high negative correlations 
resulted both for biological objects (rs = -.965, p  < .001) and for artefact objects (rs = -
.962, p < .001). Also highly significant linear trends were detected, for biological 
categories (F (1,35) = 4510.74; p < .001) and artefact categories (F (1,35) = 5731.31; p < 
.001).  
 
Conclusions 
 The results matched well with the predictions. A very high negative correlation 
between similarity and transformational distance was found, and the results clearly 
showed that perceived similarity decreased monotonically with increasing amount of 
shape transformation. The effect of topological distance could not be reduced to simple 
affine changes, or to changes in the configuration of parts. Consequently, it is actually the 
deforming (or space-curving) nature of the transformations that influences perceived 
similarity. The decrease of similarity with increasing transformational dist ance was found 
for both biological and artefact categories, which suggests commonalities in shape 
processing for biological and artefact categories on this fundamental (and 
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“prefunctional”) level of visual similarity. Overall, the findings suggest that topological 
transformations are well suited to account for the shape similarity of basic level category 
members, both for biological and artefact categories. 
 The findings are in agreement with the proposal that similarity is determined by a 
dynamic alignment process (e.g., Medin et al., 1993). The proposed model may be 
regarded as an image-based extension of the structural alignment approach to similarity, 
and complements the structural alignment approach with a model that accounts for the 
similarity of shapes (see also Basri et al., 1998). Moreover, this account fits nicely with 
recent findings that suggest a transformational model of similarity (Hahn, Chater & 
Richardson, in press).  
 
 

2.3 Study 3: Shape transformations and image-plane rotations in object 
categorisation 

 
For quite some time there is evidence that category representations up to the basic 

level of categorisation are image-based (e.g., Rosch et al., 1976), but there is still 
relatively little research on the question how image-based categorisation is achieved in 
the human visual system (for exceptions see Edelman, 1998; Graf, 2002). One of the 
central questions in object categorisation is how the shape variability of different 
category members can be accounted for. Recently, Graf (2001, 2002) proposed that the 
shape variability within categories up to the basic level of categorisation can be described 
by topological transformations, i.e. by nonrigid continuous deformations which can be 
illustrated by locally deforming a rubber sheet on which the shape of an object was 
printed.  

A database of basic level categories was crea ted by constructing morphable 3D 
models (using 3D Studio Max Version 4.2) of exemplars from 29 different categories , 
covering both biological and artefact categories. New members of each category can be 
produced by morphing between two category exemplars. The objects can be morphed and 
also rotated in space; they can be rendered as grey-scale images (see Figure 7).7 

The central question now is in what way categorisation performance is related to 
these shape transformations. As delineated in chapter 1.4, recognition performance (RTs 
and error rates) deteriorates with increasing amount of rotation, size-scaling or translation 
of the object. If performance for shape changes in categorisation was similar to that for 
orientation and size changes, then categorisation performance should deteriorate 
systematically with increasing topological distance. A systematic increase of 
categorisation latencies and error rates with increasing topological distance was found in 
a sequential matching experiment, using 2D outline shapes (line drawings) as stimuli 
(Graf, 2001; 2002). These findings provided first evidence that categorisation 
performance is systematically related to shape transformations. However, further research 
is needed: Can these findings be replicated with grey-scale images of familiar objects, 
using different morphing software? How is categorisation performance influenced by 

                                                 
7 We thank Christoph Dahl for substantial help in generating object models and morphs. 
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other transformations, like rotations, especially when objects are both deformed and 
rotated? 

 

 
Figure 7. Shape transformation by morphing, using 3D objects rendered as grey-level 
images. New category members can be created by morphing between existing members 
from the same basic level category, both for biological and artefact categories, as 
exemplified by the categories bird and pot. Intermediate morphs are surprisingly good 
category members. 

 
Experiment 1 : Speeded categorisation task with morphed objects. 
In a first experiment it was attempted to replicate the systematic relation between the 
amount of shape transformation and categorisation performance with more realistic grey-
scale images. Objects from 29 basic level categories were employed, of which two were 
used only in the practice phase. The stimuli were rendered from 3D models (CogVis 
object database). These objects are highly realistic compared to the stimuli which are 
typically employed in the categorisation literature (e.g., Goldstone, 1996; Maddox et al., 
1998; Nosofsky, 1986). Two objects were presented sequentially (backward masked), 
and subjects were required to decide whether both objects belonged to the same basic 
level category, or to a different category. The amount of topological transformation 
(morphing distance) between members of the same category was varied. 12 subjects 
participated in the experiment; every subject had to perform two sessions. 

Reaction times increased systematically with increasing amount of shape 
transformation (F (3,33)  = 59.44, p < .001) (see Figure 8). The increase showed a highly 
significant linear trend (F (1,11) = 69.82, p < .001). Thus, the relation between 
topological distance and categorisation latencies was replicated for the more realistic 
grey-level objects.  

Even though RTs decreased with practice (F (3,33) = 16.26, p < .001), the 
systematic effect of shape transformation did not diminish with practice (interaction not 
significant: F (9,99) = 1.13, p = .35). A similar increase of RTs was found for  those 
categories which undergo only little affine change (< 20%) (F (3,33) = 21.87, p < .001), 
or which have a highly similar part configuration (F (3,33) = 33.74, p < .001). Thus, the 
results are not simply due to affine changes, or to changes in the configuration of parts. 
The systematic effect was found for both artefact categories (F (3,33) = 43.28, p < .001) 
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and biological categories (F (3,33 = 37.46, p < .001). In contrast to the earlier study with 
2D shapes (Graf, 2002), transformation effects were larger for artefact categories than for 
biological categories, especially for higher transformational distances (indicated by a 
significant interaction between transformational distance and category type: F (3,33) = 
7.07, p  = .001). This may result from larger shape changes for artefact categories than for 
biological categories, which were often accompanied by comparatively larger changes in 
shading. 
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Figure 8. Basic level categorisation requires more time and is more error-prone with increasing 
amount of topological transformation. 

 
Sequential additivity of transformation times was investigated, in order to test 

whether analogue transformation processes are involved in categorisation. Sequential 
additivity means that the transformation times for a given interval can be described by the 
sum of its partial segments. A high correlation was found between the empirical values 
for distance 3 and the theoretical predictions under the hypothesis of sequential additivity 
(r = .87, p < .001). This suggests that the transformations are analogue, i.e. traverse 
intermediate stages of the transformational path. 

Also error rates increased with the amount of transformation (F (3,33) = 25.83, p  
< .001), indicating that the findings are not simply the result of a speed-accuracy trade -
off.  

In summary, the results for the more realistic 3D rendered objects nicely 
confirmed those of the previous study with 2D outline shapes. Categorisation takes 
longer and is more error-prone with increased shape transformation. 
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Experiment 2 : Simultaneous shape and orientation changes 
The objects from the CogVis database  can not only be morphed, but also rotated in 3D 
space. This allows to investigate in a single experiment how humans categorise familiar 
objects when both shape and orientation changes occur. The experiment serves several 
purposes: First, it allows to test whether the systematic dependency on topological 
transformations can be replicated in more demanding circumstances, when objects are not 
always presented in an upright orientation. Second, the question whether basic level 
categorisation performance is orientation-dependent or not is further addressed. Some 
experiments suggest that orientation-dependency is limited to subordinate level 
categorisation or identification (Hamm & McMullen, 1998), while other experiments 
demonstrated orientation-dependency also for basic level categorisation (Hayward & 
Williams, 2000; Lawson & Humphreys, 1998). And third, it helps to clarify whether 
compensation processes for shape and orientation differences are independent, or whether 
they interact.  

Stimuli from 26 basic level categories were created, using the CogVis object 
database. 24 categories were presented in the experiment; two additional categories were 
used in the practice phase. Objects were both morphed (within class) and rotated in the 
picture plane (see Figure 9). Two objects were presented sequentially, and subjects were 
required to decide whether both objects belonged to the same class, independent of 
orientation. Both the amount of shape transformation and the amount of image-plane 
rotation was varied. Twelve subjects participated in the experiment. 

 
Figure 9. In Experiment 2, both the amount of morphing and of image-plane rotation was varied 
systematically, exemplified by the category shoe. Objects are morphed within rows, and are 
rotated in the image-plane within columns.  

 
First, RTs increased systematically with increasing topological distance (F (3,33) 

= 22.38, p < .001). A linear trend was highly significant (F (1,11) = 37.08, p < .001), and 
also a quadratic trend was significant (F (1,11) = 10.69, p = .007) (see Figure 10). These 
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findings confirm and extend the results from Experiment 1: Categorisation performance 
deteriorates systematically with increasing amount of shape transformation, even when 
objects were presented in different orientations. Second, categorisation required more 
time with increasing orientation distance between the objects (F (2,22) = 15.81, p < .001). 
Again, a linear trend was significant (F (1,11) = 23.49, p  < .001). Thus, orientation 
dependency was found in basic level categorisation, even in a task which required 
matching different members from the same category. The orientation effect was small 
compared to other studies, which is in accordance with the finding that orientation effects 
on basic level usually are smaller when the distractors are not similar (see Lawson, 1999, 
p. 231-232). Third, there was no significant interaction between topological and 
orientation distance (F (6,66) = .67, p = .67), which suggests that both processes are 
independent (see Figure 10). This is in agreement with evidence for independent 
compensation processes for rotations in the picture plane and size -scalings (Bundesen et 
al, 1981), and for rotations in the picture plane and in depth (Lawson et al., 2000). 
Consequently, the independence of both compensation processes suggests that 
topological transformations of shape in categorisation are processed by the brain in a 
similar way as other spatial transformations (like rotations).  
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Figure 10. RTs increase with increasing amount of topological transformation for all 3 orientation 
conditions. RTs increased also with increasing orientation distance. Shape and orientation 
changes did not interact, which suggests that they are compensated by independent processes. 

 
In this aspect categorisation is different from discrimination tasks, where an interaction 
between view and shape changes was demonstrated (Lawson, Bülthoff & Dumbell, 



 26 

2002). In summary, both shape changes and orientation changes require processing time. 
Shape and orientation changes do not interact, and therefore seem to be compensated for 
independently, at least for plane rotations. 

Error rates increased systematically with increasing topological distance (F (3,33) 
= 12.49, p  < .001). Errors tended to increase also with increasing orientation difference, 
but this was not significant (F (2,22) = 1.86, p = .18). There was no speed-accuracy trade -
off. 
 
Conclusions and Outlook 

Both experiments demonstrated that categorisation performance depends 
systematically on the amount of shape transformation, also for quite realistic grey-scale 
stimuli, and even when objects were rotated in the picture plane. Compensation processes 
for shape deformations and disorientation seem to be independent, confirming previous 
findings for other types of transformations. The results suggest an image-based model of 
categorisation. There is some evidence that analogue transformation processes are 
involved in categorisation, which favours the transformational (alignment) account of 
categorisation (Graf, 2001, 2002). However, other image-based models cannot be 
excluded with certainty. In order to further investigate the nature of human basic level 
categorisation, a study with functional MRI was conceptualised; first scans will start this 
year. Using fMRI we try to find evidence which allows to differentiate better between 
different image-based models of categorisation. Moreover, further psychophysical 
experiments are planned which will investigate categorisation performance for 
simultaneous topological transformations and rotations in depth.  
 
 

2.4 Study 4: Role of context in recognition and categorisation: top-down 
processing and viewpoint-dependence 

 
The overview of different object recognition theories in the introduction illustrates 

that most theoretical approaches to recognition and categorisation assume a serial 
bottom-up process. For some researchers this is consistent with recent evidence for an 
ultra-rapid categorisation. Van Rullen & Thorpe (2001) found evidence that the 
categorisation of objects can be very fast, i.e. within 350-400 ms. According to Fabre-
Thorpe, Richard, & Thorpe (1998), monkeys seem to be even faster than humans, at least 
in some tasks. Event-related studies are consistent with the assumption of very fast 
bottom-up processing. For example Thorpe, Fize, & Marlot (1996) showed that event-
related potentials (ERPs) to target and distractor images diverge strongly at roughly 150 
ms in humans. Interestingly, for these authors the processing is so fast, that they conclude 
that categorisation and perception occur in parallel, whereas some processes involved 
may be shared. Moreover, recurrent top-down processing for categorisation seems to be 
implausible when these fast response times are taken into account. Note however, that 
deciding whether something is living or non-living could be based on elementary features 
like curvature and certain textures. For object recognition or naming such features rarely 
provide enough information. In fact, Humphreys, Van Ridden, & Price (1997) propose 
that bottom-up activation of semantic knowledge from vision may be insufficient to 
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invoke a name. Object naming requires recurrent activation of stored perceptual 
knowledge to differentiate activation from a target object from that present in other 
representations. In the same paper several results form from neuropsychology and 
functional imaging are discussed that provide further evidence in favour of top-down 
processing in object recognition. 

Another interesting result was revealed by Liter and Bülthoff (1997). They found 
that object naming was orientation sensitive, but name verification was not. This result 
could be related to top-down activation, too. If it is assumed that an object consists of a 
collection of more or less viewpoint-specific descriptions, showing the name in advance 
could activate many views of the object. Such a pre-activation would help to resolve the 
competition with another object that has similar viewpoint-specific descriptions. 

In the present study we further investigated this hypothesis using an associative 
priming paradigm.8 Instead of showing the name prior to the object that has to be 
recognised (name verification) a more natural situation would be to show an object that is 
associated with the object to be recognised. For example tea spoons tend to be near to tea 
cups. Thus, it could be expected that looking at a tea spoon activates the viewpoint-
specific descriptions of a tea cup, which would help to recognise it even in unusual 
views. 
 
Experiment 
 
Twelve participants (6 females, 6 males) had to name 64 common objects as fast and as 
accurately as possible. Half of the objects served as priming stimuli, whereas the other 
half was defined as target stimuli. Of each target stimulus, a canonical and a 
noncanonical view was used. For the priming stimuli, only one view was used and it was 
chosen to be between the two views of the target stimulus. Each trial started with a 1000 

ms fixation cross followed by the priming 
stimulus. After the participants named the 
prime, a masking stimulus was presented 
for 1000 ms, followed by the target object. 
Half of the trials were consistent, i.e. the 
prime was associated with the target (e.g., 
tea spoon and tea cup). The remaining 
trials were inconsistent, i.e. the prime was 
not related to the target (e.g., tea spoon and 
car). There were 4 blocks of 32 trials each. 
In each block all 32 target stimuli were 
presented randomly and the experimental 
condition (consistent -canonical, 
inconsistent-noncanonical, consistent-

noncanonical, inconsistent-canonical) was counterbalanced so that in one block each 
condition occurred 8 times. There was a total of 128 trials per experiment: 2(consistent 
vs. inconsistent prime) * 2 (canonical vs. noncanonical target) * 32(target stimuli). 

                                                 
8 We thank Franziska Hofer, Stefan Michel, and Gisela Schoch, Department of Psychology, 
University of Zurich for their help with this study. 

Figure 11 Reaction times for the four 
conditions used in Experiment 1. Error bars 
represent SEM. 
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Individual data were averaged across different objects in order to eliminate an 
item-specific factor. Trials in which naming or technical errors occurred were excluded 
from the analysis and outliers were eliminated9. The means and standard errors for the 
different experimental conditions are depicted in Figure 11. A two factor analysis of 
variance (ANOVA) with consistency (consistent vs. inconsistent prime) and view 
(canonical vs. noncanonical target) as within-subjects factors was carried out on reaction 
times of the correct trials. There were reliable main effects of consistency, F(1, 11) = 
9.44, p < .05, and view F(1, 11) = 56.71, p < .001 , and there was an interaction between 
consistencies and view F(1, 11) = 10.60, p < .01. In order to investigate the time course 
of the priming effect, a three factor analysis of variance (ANOVA) with block, 
consistency and view as within-subjects factor was computed. There was a significant 
main effect of block F(1,77, 19.48) = 37.05, p < .001, consistency F(1, 11) = 9.69, p < 
.01, and view F(1, 11) = 67.40, p < .001. In addition, there was a significant interaction 
between consistency and view F(1, 11)  = 15.03, p < .01, and a marginal interaction 
between block, consistency and view F(1.95, 21.42) = 3.05, p = .07. 
 
Conclusion 
We found clear evidence for top-down influences in object recognition. The interaction 
between consistency and view found in Experiment 1 shows that a priming stimulus, 
which is  related to a target stimulus, can minimize the viewpoint dependency in 
recognizing the target object. Note that there are several earlier studies related to the 
question whether object recognition is facilitated when an object is semantically 
consistent rather than inconsistent with the scene in which it appears (see Hollingworth & 
Henderson, 1999 for a review). The main new finding by our own study and Liter and 
Bülthoff (1997) is however, that associated objects can activate a multiple views 
representation of another object. Such a ‘pre-activation’ could be especially helpful for 
recognizing objects in non-canonical views, because it can help to resolving the 
competition with another object that has similar viewpoint-specific descriptions (Liter & 
Bülthoff, 1997).   
 
 

2.5 Study 5: Interplay between object motion and shape for recognition and 
categorisation decisions 

. 
(a) The role of motion and shape for object categorisation (Huber, Newell, 
Wallraven)  
In this study we investigated, which perceptual cues play a role in forming perceptual 
categories and in the task of categorizing new objects. Object recognition and object 
categorisation have been typically studied either with static objects (i.e., with no dynamic 

                                                 
9 From the total of 1536 trials  (12 participants*128 trials) 112 trials (7.3%) were excluded from the 
statistical analysis because of naming errors. Additionally, 73 trials (4.8%) were discarded either because 
the microphone didn’t record the voice or because participants started with some lutes prior to the name of 
the target. To eliminate possible effects of name retr ieval problems reaction times greater than the mean + 2 
standard deviations were also discarded (30 trials or 2%). Taken these exclusions together, 1321 trials 
(86%) were analyzed.  
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information) or with dynamically presented point-light displays (i.e., with almost no 
shape information). But how are dynamic and static features integrated in object 
representation? In particular, what is the role of movement for object recognition and 
categorisation when the object is presented in its entirety, i.e. when static and dynamic 
features are presented together?  
We report three experiments where novel objects were categorised on the basis of two 
spatial properties (colour and shape), and two dynamic properties (action and path). The 
'action' of an object referred to its intrinsic motion pattern, whereas 'path' referred to an 
object's extrinsic motion pattern, i.e. the route an object took. The task for the participant 
was to first learn to categorise prototype objects and then categorise new exemplar 
objects, which varied in number and type of properties which they shared with the 
prototype.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 12 This figure shows the four prototypes used in our experiments together with their 
constituting properties. Stimuli were created using 3D Studio Max 3.0 and rendered as 
320x160 pixel avi sequences (Indeo-Codec) consisting of 300 frames with 30 frames/sec. The 
shapes were defined by discontinuous and continuous curves in two dimensions, which were 
rotated around the upright axis to create three-dimensional objects. All paths had equal length 
and were determined by a rectangular and sinusoidal wave pattern and by a smooth and sharp 
loop, respectively. The four colours were pure red, green, blue and yellow. Four types of 
actions were defined by either a swinging or a continuous rotation of the objects around the 
upright or horizontal axis such that each action was completed four times during the sequence. 
Objects were placed in a ‘room’ consisting of a checkerboard-pattern floor and two grey walls 
with the start point of the sequence in one corner of the room and the end point in the opposite 
corner. A spot-light illuminated the scene from above to create a shadow of the object on the 
floor in order to facilitate perception of depth and object motion. Prototypes were defined by 
selecting four sets of four features. Exchanging one or more features between prototypes 
yielded the whole set of stimuli for the experiments. 
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Experiment 1: The design of experiment 1 was based on a two-way mixed design with 
one between-subjects factor (paired prototypes learned) and one within -subjects factor 
(feature changes from prototype). The between group factor had two levels (AB, CD 
prototype pairings or AC, BD prototype pairings). The within group factor had five levels 
indicating the feature differences between the exemplar and the prototype (shape, colour, 
path, action and shape+colour/path+action).  
The experiment consisted of two phases: a learning phase with feedback followed by a 
test phase without feedback. In the learning phase, each subject was shown a movie file 
and instructed to learn the object and press one of two buttons indicating one of the two 
learned prototypes. Six trials were presented and subjects received feedback for each 
trial. Test stimuli were derived from the prototype either by changing a dynamic feature 
or a static feature. Feature changes were counterbalanced across all participants. In the 
test phase, the task for the subject was to correctly associate each exemplar under either 
one or two feature changes with the appropriate category. The experiment consisted of 
two blocks and participants could take a self-timed break between blocks. Each block 
consisted of a pair of prototypes. The order of the blocks was counterbalanced across 
subjects. Participants were told to categorise each object as accurately as possible and to 
consider all information present in the stimulus as relevant for categorisation. 
Results: The error rates across subjects for all trials were then calculated as a bias from 
the actual percentage difference between the exemplar and the prototype. The mean 

percentage bias for each feature 
change is presented in Figure 13. A 
positive bias means that the 
participants were sensitive to this 
feature and tended to over-estimate 
changes from the prototype with 
changes to that feature. A negative 
bias, on the other hand, meant that the 
participants did not use changes to this 
feature in their categorisation 
decisions. The only statistically 
significant bias we could find was a 
negative bias for the path feature (Z = 
3.95, p < 0.001).  
Discussion: The two major findings 

from this experiment were that path was effectively ignored and that participants are as 
likely to use dynamic cues as static cues for object categorisation. One reason for the 
negative path bias might be that path per se is not as indicative of category membership 
as the other features (we seldom would classify e.g., an animal as a predator by using its 
walking path). In order to test whether path as a feature is used at all, we conducted a 
second experiment. 
 
Experiment 2: In the second experiment we tested for differences in perceptual saliency 
of the four features in order to ensure that no single feature (in particular path) would be 
overpowered by the other features. The experiment was based on a 2 way, repeated 
measures design using number of feature differences (1 or 3) and feature type (shape, 

Figure 13. Results from Experiment 1. The bars 
depict the mean percent bias from the expected 
results. 
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colour, action and path) as factors. In any one trial, subjects had to rate the similarity of 
two objects using a scale from 1 to 7, where a rating of 1 indicated a high degree of 
similarity. One of the objects was always a prototype object and the other an exemplar 
object. The exemplar differed from the prototype either in 1 feature or 3 features. The 
two objects were presented next to each other and started moving at the same time. The 
position of the prototype (left or right) was counterbalanced. Participants had to 
participate in four blocks which were presented in random order. The blocks differed in 
the pair of prototypes used (AB, AC, BD, or CD). In each block participants conducted 2 
similarity ratings for each 1 and 3 feature change and each prototype resulting in 32 trials 
per block. In particular, if all features have a similar perceptual saliency, the similarity 
ratings for single feature change as well as for a three feature change should show no 
difference between feature types.  
Results: The mean ratings per feature for 12 participants are shown in Figure 14. We 

found a significant difference between 
the one and three feature changes (F 
(3,33) = 3.89, p < 0.05). The only 
significant effect for one feature 
changes was that colour changes were 
rated as more similar than action 
changes (p < 0.05). There were no 
significant differences between the 
three feature changes, however. 
Discussion: The main result of the 
second experiment was that no feature 
can overshadow all the other features 
in the categorisation task. Thus there 
seems to be a largely uniform saliency 
for all four features. The difference for 
the colour change seems not to have an 

overall effect as it is not present in the three feature changes. 
 
Experiment 3: Experiment 2 revealed that path was perceptually salient. Thus, the cause 
for not using path for categorisation in Experiment 1 was not due to the fact that path was 
not perceived by the participants. Instead, it could be possible that path was 
overshadowed by a stronger action feature. To test this hypothesis, we conducted a third 
experiment, in which action was the same for all prototypes and thus reduced the set of 
discriminating features to colour, shape and path. The design followed that outlined in 
Experiment 1 for the AC, BD group of participants only. Feature changes were therefore 
counter-balanced across prototype pairs for each subject. The experiment was based on a 
repeated measures design with feature type as the main factor (shape, colour, path). Trials 
were randomly presented across subjects according to the constraints of feature allocation 
to the learning and test trials described in Experiment 1 above. 
Results: The mean percentage bias for 16 participants calculated as in experiment 1 for 
each feature change is presented in Figure 15. We found no evidence of a bias for any of 
the features (shape, Z = 0.25, n.s.; colour, Z = 1.25, n.s.; path, Z = .25, n.s.). However, an 

Figure 14. Results from Experiment 2. The bars 
show the mean similarity ratings for either one- 
or three-feature changes. 
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analysis of only the test trials revealed that colour was significantly different from path (p  
< 0.05). 

Discussion: The major result of the 
third experiment was that with a 
redundant feature action, path was 
used as readily as shape and colour to 
categorise the objects. Again, the 
dynamic cue was as readily used as 
the static cues. Thus, path is not a 
feature that is not used per se for 
categorisation. The significant 
difference between colour and path, 
however, seems to indicate that 
participants still have a tendency to 
use object intrinsic features such as 
colour and shape (and also action, see 
experiment 1) more often than object 
extrinsic features such as path.  

 
General Discussion 
Traditionally, categorisation and recognition have often been studied exclusively in the 
static or dynamic domain. We presented results from experiments on categorisation, 
which aimed to bring both types of cues together in a perceptually relevant and realistic 
task of categorisation of novel objects. Our main result is that when presented with a 
number of static and dynamic cues, participants readily made use of both types of 
information. First of all, this shows that all of these features are accessible to visual 
memory and thus are part of the stored and learned representations of these objects. This 
again supports the results from Wallis et al. (2001), where it was shown that the dynamic 
properties of objects were encoded during learning. It also supports the view that – 
without any prior information about cue saliency – there is no intrinsic advantage of static 
cues in such a task (this is e.g., in contradiction to results from Mak et al., 1999). Our 
second main finding was that there seems to be a slight disadvantage in cue saliency for 
extrinsic cues such as the path an object takes, which was found in experiments 1 and 3. 
In an ecological perspective such a strategy makes sense as extrinsic properties of an 
object are less salient with regard to its identity than intrinsic ones (the path an animal 
takes will be less indicative than the way it moves or its shape). In general, it can be said 
that this line of experiments speaks in strong favour of a cue integration model of object 
recognition – more specifically, the cues present in our experiments seem to have been 
represented independently (we found virtually no interactions between features) as 
largely orthogonal dimensions in the object representation. Our findings thus explicitly 
support the computational research on cue integration strategies, which is an integral part 
of the CogVis project. 
 
 
 

Figure 15. Results from Experiment 3. Shown here 
is the mean percent bias for the three types of 
feature changes 
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(b) Effects of motion and orientation upon featural and configural processing of 
emotional perception 
 

In addition to rigid motion also non-rigid motion could play an important role in 
processing the shape of an object. For example Knappmeyer, Thornton and Bülthoff 
(submitted) have shown recently that during the computation of identity the human face 
recognition system accesses and integrates individual non-rigid facial motion and 
individual facial form. Another highly relevant example for an interaction between non-
rigid motion and shape is the processing of emotional expression in faces. We have 
shown in study 1 that part-based information and their spatial relations (configural 
information) play both an important role in face recognition (Schwaninger et al., 2002) . 
Interestingly, inverting the eyes and mouth in an upright faces creates a very bizarre 
facial expression which disappears when the face is turned upside down (Thatcher 
illusion, Thompson, 1980). In this study we investigated to what extent non-rigid motion 
and shape information interact in affecting this illusion (Schwaninger, Cunningham, & 
Kleiner, 2002).  

It was revealed in study 1 that faces are processed by encoding part-based 
information as well as spatial relational information between many facial features 
(configural information). According to the model presented in study 1 (see Figure 4) both 
types of information are integrated in order to activate identification units. As a 
consequence, thatcherized eyes and a mouth presented in isolation should be rated as less 
bizarre than when they are shown within the facial context because configural 
information is drastically reduced. It has been shown by several previous studies that 
processing configural information is impaired when faces are rotated (for a review see 
Valentine, 1988; Schwaninger, Carbon, & Leder, in press). Therefore, it is very difficult 
to perceive that the eyes and mouth have been altered in an inverted Thatcher face. In 
other words, an interaction between condition (isolated parts vs. whole Thatcher face) 
and orientation is predicted. By comparing static vs. moving conditions we could 
investigate the interaction between non-rigid motion on one hand and processing featural 
and configural information on the other hand. 

Experiment 1 

Twenty undergraduates (10 females) from the University of Zürich participated in 
this study. Stimuli were created by recording a single subject with a stereo camera system 
while talking and smiling. A 3D facial form algorithm was used to fit a three dimensional 
morphable model (Blanz & Vetter, 1999) to the video images in order to extract images 
of the facial texture and eliminate effects of rigid head motion and orientation. In each 
texture image, thatcherized versions were created by mirroring the regions of the eyes 
and mouth around the horizontal axis. The modified texture was reapplied to the subjects 
3D head model and the model was rendered in front of a black background using 
standard computer graphics. For Experiment 1, 4 sequences were selected. Each sequence 
contained one smile and lasted 1.5 s (30 frames). Static versions were created by 
selecting the frame representing the peak of the smile. Moving and static stimuli were 
shown upright and inverted and as whole faces as well as parts (i.e., just the eyes and 
mouth). Examples of the static stimuli are shown in Figure 16. Each trial started with a 1 
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s fixation cross, followed by a 1.5 s stimulus presentation. Apparent bizarreness was rated 
from 0 to 9. There were 32 
trials per block: motion 
(moving vs. static) * 
orientation (upright vs. 
inverted) * information 
type (parts vs. wholes) * 4 
sequences. These trials 
were repeated four times in 
separate blocks resulting in 
a total of 128 trials. The 
order of trials was 
randomized within each 
block. 

Static Thatcher faces were rated as more bizarre upright than when inverted (7.73 
vs. 2.68, p < .001). This large difference validates the use of bizarreness ratings for 
investigating the Thatcher illusion. Static upright Thatcher faces were rated as more 
bizarre than the isolated parts (7.73 vs. 6.18, p < .01). This result is consistent with the 
assumption that for upright faces two sources of information contribute to perceived 
bizarreness, namely processing featural as well as configural information.  

The bizarreness ratings of static stimuli were subjected to a two-way ANOVA 
with orientation and information type as within-subjects factors. There was a main effect 

of orientation, and an interaction 
between orientation and 
information type (all F’s (1, 9) > 
17, p’s < .01). This interaction is 
consistent with the assumption 
that inversion impairs configural 
processing more than processing 
featural information (for a review 
see Valentine, 1988; Schwaninger 
et al, in press). 

The effect of motion was 
investigated using a three-way 
ANOVA with orientation, 
information type , and motion as 
within-subjects factors. There was 
a main effect of motion, F(1,9) = 

12.59, p < .01, indicating that 
motion increases bizarreness. Interestingly, there were no significant interactions (all F’s 
(1,9) < .3). That is, motion increased perceived bizarreness by about the same amount 
regardless of orientation or information type. 
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Figure 17. Results from Experiment 3. Shown here 
is the mean percent bias for the three types of 
feature changes 

Figure 16. Sample stimuli (static condition only). 
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Experiment 2 

Experiment 2 replicates and extends Experiment 1 to talking faces. The materials 
and procedure were identical to Experiment 1 except that talking instead of smiling 
sequences were used. The static faces were created by selecting one of the 30 frames on a 
random basis. 

The data were analyzed using the same methods as in Experiment 1. The main 
results were replicated. The two-way ANOVA on bizarreness ratings of static stimuli 
revealed a main effect of orientation and an interaction between orientation and 

information type (all F’s (1, 
9) > 10.03, p’s < .05). The 
effects of motion were again 
analyzed using a three-way 
ANOVA. There was again a 
main effect of motion, F(1,9) 
= 10.91, p < .01. As in 
Experiment 1, neither the 
information type by motion 
interaction nor the three-way 
interaction were significant 
(both F’s (1, 9) > 1.52, p’s > 
.24). There was, however, an 
interaction between 
orientation and motion, F(1, 
9) = 13.88, p < .01: Motion 

increased perceived bizarreness for all conditions, although not by much in the inverted 
whole talking faces condition. 

Conclusion 

Face context can increase the perceived bizarreness of the parts, which is 
especially evident in smiling faces. Moreover, in both experiments inversion reduced 
bizarreness of whole Thatcher faces more than for part versions. These results are 
consistent with the idea of configural and featural processing for upright faces and 
impaired processing of configural information when faces are inverted (for a review see 
Schwaninger et al., in press). 

Motion seemed to increase bizarreness similarly in nearly all conditions. There are 
at least two general classes of explanations for this. First, motion provides some form of 
global conflict. For example, eye blinks consist primarily of upper lid motion. When the 
eyes were rotated, however, the eyes closed primarily from the direction of the mouth. 
Second, it has been proposed that static facial information is processed in the ventral 
stream and motion in the dorsal stream (O`Toole, Roark, & Abdi, 2002). The addition of 
motion, then, could simply increase static bizarreness. 
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Figure 18 Results from Experiment 2 (talking faces). 
Mean bizarreness ratings for upright and inverted faces 
and parts presented in motion or static. 
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3 Conclusions: Our view on recognition and categorisation 
 

In summary, the main aim of our studies was to investigate a number of issues in the 
field of object recognition and categorisation, which are of central importance in order to 
build a successful cognitive vision system. We focused on the questions whether parts 
play a role in recognition, how shape similarity and basic level categorisation can be 
accounted for, whether context and top-down information is important, and how object 
motion and shape interact. Our results confirm and complement existing image-based 
model of recognition and categorisation. In this chapter we present our view on 
recognition and categorisation, which extends existing models summarized in chapter 1, 
and is based on our psychophysical studies described in chapter 2. Our view is illustrated 
in Figure 19, which depicts an integrative framework that serves as a theoretical basis for 
a computational recognition system grounded in cognitive research. We will first present 
the foundations of our basic approach, and provide a more detailed picture afterwards , 
based on the results of our psychophysical studies. 

 
Visual recognition and categorisation is achieved by matching the visual input to 

stored memory representations. The input can be envisaged as a pictorial, appearance-
based and dynamic flow of visual information which is induced by the  object or scene. A 
preprocessing stage  extracts low-level features like colour, orientation, motion, texture 
and other properties. These features can be used to select possible candidate 
representations from visual memory in order to match them against the input for 
recognition and categorisation.  
 

 
Figure 19. Integrative model of recognition and categorisation, based on the res ults of our 
studies (indicated by numbers 1-5). 
 

The matching can occur both on the basis of featural and configural information 
(study 1). The outputs of featural and configural matching is pooled by view-units. Up to 
the basic level of categorisation, recognition and categorisation rely on image-based or 
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pictorial category representations. The recognition of disoriented objects is based on 
distributed and view-based representations. The temporal coherence of the visual input 
plays a fundamental role in the learning of object representations (e.g., Wallis & 
Bülthoff, 2002). Basic level categorisation is achieved by an alignment process which 
brings corresponding parts of the stimulus representation and memory representation into 
correspondence. The alignment involves time-consuming and error-prone shape 
transformations (which can be conceptualised as spatial transformations). Thus, the 
matching requires more time with increasing amount of shape transformation which is 
necessary for an alignment. Processes which compensate for changes of shape and 
image-plane orientation seem to be independent (study 2, 3). Moreover, the recognition 
and categorisation process can be modulated by expectations which are provided by the 
scene context. Especially unfamiliar views are facilitated by contextual information, 
which suggests that top-down processing can bias the competitive interactions between 
groups of neurons that encode object representations, or pre-activate specific memory 
representations (study 4). Recognition and categorisation can also be mediated by rigid 
and non-rigid motion information in addition to shape cues (study 5). 

 
In the following we will provide a more detailed description of this basic model of 

recognition and categorisation, based on the results of our psychophysical studies.  
The models described in the introduction (chapter 1) differ with regard to their 

assumptions on structural and temporal aspects of recognition memory. On one hand, 
invariant property models, classical feature models and structural description models 
generally assume viewpoint-independent performance. In contrast, most image-based 
models predict viewpoint dependent performance. In the last two decades a remarkable 
amount of psychophys ical evidence showed that performance usually is viewpoint 
dependent. This was confirmed for different object classes as well as different tasks like 
priming, naming, old-new or matching tasks (for a review see Jolicoeur & Humphreys, 
1998; Lawson, 1999; Tarr & Bülthoff, 1998). Our own studies are consistent with the 
large body of evidence suggesting that recognition and categorisation performance is 
essentially viewpoint dependent (see our studies 1, 3, and 4). Although models predicting 
view-invariant performance bear little psychophysical plausibility, we do not claim that 
all aspects of these models are wrong. Instead, we actually provided evidence that part-
based information is important for recognition (study 2), which is in accordance with 
several other studies (Biederman & Cooper, 1991; Goldstone, 1996; Tversky & 
Hemenway, 1984). 
One potential caveat of view-based schemes is that most of them are holistic, i.e. they 
process the whole object without representing parts or features explicitly. In our study 1 
we revealed that even the perception of faces – a stimulus class that has often been cited 
as the example for exclusive holistic processing in adults - relies on featural information 
in parts and relational information specifying the position of the pa rts (configural 
information). According to the model proposed by Schwaninger et al. (2002) both types 
of information are processed, represented in memory, and used for recognition. The idea 
of representing objects by their parts and spatial relations has been proposed many years 
ago by structural description theories (e.g., Biederman, 1987; Marr, 1982). Note however, 
that several important differences exist between these structural description models and 
our concept of featural and configural information (see also Wallraven, Schwaninger, 
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Schuhmacher & Bülthoff, 2002). First, in contrast to the traditional approaches by Marr 
and Biederman, our model does not rely on edge -based representations. Second, the parts 
we propose are completely different both conceptually and computationally from the 
geometrical primitives (geons) used in the approaches in Biederman (1987) and Hummel 
and Biederman (1992). Geons are defined by using Lowe’s (1987) nonaccidental 
properties and are meant to be viewpoint-independent (or at least for a certain range of 
views, see Biederman & Gerhardstein, 1993). In contrast to view-invariant geons, we 
propose that part-based representations are formed by grouping image features, which 
often are viewpoint dependent. Indeed, there are several lines of evidence against the 
concept of viewpoint-invariant recognition based on geons. For example Tarr, Bülthoff, 
Zabinski, & Blanz, (1997) have shown reliable effects of viewpoint for the recognition of 
objects that were made of 1, 3, or 5 different geon-like parts. Moreover, Hayward and 
Tarr (1997) have found viewpoint dependent performance for geon-like objects although 
view-invariant performance would have been predicted for such objects even according 
to an extended version of RBC proposed by Biederman and Gerhardstein (1993). Most 
importantly, Tarr, Williams, Hayward, & Gauthier (1998) have revealed that already the 
processing of one geon is dependent on viewpoint, which accounted for sequential 
matching, matching to sample and naming tasks. Finally, another aspect in which our 
view differs from structural description models is the number of parts and how they are 
acquired. According to RBC theory a small and fixed set of geons suffices to explain the 
relevant aspects of human object recognition (36 geons according to Biederman, 1987, 
and 24 geons according to Biederman, 1995). From our point of view, human recognition 
performance relies on many more features, which often are determined by perceptual 
learning, and therefore are not fixed, but dependent on the history of the subject and the 
task (Schyns, Goldstone  & Thibaut, 1998; Schyns & Rodet, 1997). 

Another important question to be addressed with regard to structural aspects of 
recognition memory is how featural information and information about their spatial 
relations (configural information) can be combined to an integrated image-based 
representation. Wallraven et al. (2002) have shown that human recognition performance 
can be modelled by a slightly modified version of the key-frame model proposed by 
Wallraven and Bülthoff (2001). In this scheme, objects are represented by a set of 
temporally associated key-frames. Key-frames consist of a number of salient features and  
their spatial relationship that are relatively stable for a limited set of neighbouring views. 
This framework thus explicitly represents featural and relational information in a 
viewpoint-dependent manner. The recognition process is modelled by matching the input 
representation to key-frames using n-nearest neighbours and is therefore similar to 
interpolation models  of recognition discussed in chapter 1.4.2. The recognition process in 
the key-frame approach combines featural information and information about their spatial 
layout (configural information). In addition, the key-frame framework can also account 
for the findings of Bülthoff and Edelman (1992), Edelman and Bülthoff (1992), and 
Wallraven et al. (2002) , who compared different view-based approaches with regard to 
their predictive validity for recognizing unfamiliar objects (wire-frame like objects and 
amoebae) as well as highly over learned stimuli (faces). The results of all three studies 
provided converging evidence against view-independent models. The results were 
compatible with interpolation models and were highly consistent with the detailed 
predictions derived from the key-frame model proposed by Wallraven et al. (2001, 2002). 
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However, the findings could not be explained by a linear combination of 2D views 
(Ullman & Basri, 1991), or by a 3D alignment model (Lowe, 1987; Huttenlocher & 
Ullman, 1990) which relies on an alignment process that is not error-prone.  
 

Studies 2 and 3 dealt with the question how a model of basic level categorisation 
should be conceptualised. Starting point was the observation that different members of 
the same basic level category usually can be aligned by rather simple deforming shape 
transformations. Thus, shape variability within common and familiar basic level 
categories can be described well with continuous deforming shape transformations (see 
also the morphed objects we created for the CogVis object data base). We investigated 
whether categorisation performance and perceived similarity are systematically related to 
these deforming shape transformations. Study 2 showed that perceived similarity of line 
drawings is systematically related to the amount of shape transformation. These results 
were not simply due to affine transformations or changes in the configuration of parts, 
because highly similar results were found also for those categories with little affine 
change, or with small changes in the configuration of parts. Study 3 investigated 
performance in a speeded categorisation task. Experiments with grey-level images from 
the CogVis object data base showed that categorisation performance deteriorated 
systematically with increased shape transformation, confirming previous findings with 
line drawings. Moreover, the systematic deterioration of categorisation performance with 
increased shape transformation was also found when objects were rotated in the image -
plane. Overall, the systematic dependency on the amount of shape transformation was 
demonstrated for rating tasks and speeded categorisation tasks, for line drawings and 
grey-level images, as well as for upright and plane rotated objects. When both topological 
distance and image -plane orientation were manipulated, the two effects did not interact, 
which suggests that they were compensated independently. This  is in accordance with 
independent effects for other combinations of spatial transformations. 

In summary, these findings suggest an image -based model of categorisation, 
which is in accordance with earlier findings (e.g., Rosch et al., 1976). The systematic 
relation between categorisation performance and the amount of shape transformation is 
reminiscent of the dependency of recognition performance on the amount of rotation and 
size-scaling. In principle, different image-based models may account for these results. 
However, for a number of reasons an alignment model of categorisation seems best 
suited, in which categorisation is achieved by an alignment of memory representation and 
stimulus representation. First, sequential additivity of transformation times provides some 
evidence that transformations are ana logue processes, i.e. pass through intermediate 
points on the transformational path (study 3). This result is best compatible with an 
alignment model of categorisation, which relies on analogue spatial compensation 
processes. Second, the alignment model also explains the systematic relation between 
similarity and the amount of shape transformation (study 2), while other image-based 
models only assume this relation, but cannot explain it. Moreover, the proposed model is 
compatible with a number of studies from the categorisation literature which advocated a 
structural alignment model of similarity and categorisation (for review see Markman, 
2001). Overall, the alignment model seems to provide the most parsimonious account, 
but at present, other image-based models of categorisation – like the interpolation or 
threshold model – cannot be excluded. We are currently planning to perform further 
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investigations in order to distinguish between different image-based models of 
categorisation.  

Categorisation within the alignment approach can be conceptualised on the basis 
of 2.5D representations (Graf, 2002). The category representation can be conceptualised 
as a superposition composite (i.e. average) of the category exemplars, containing 
information both about the exemplars and the prototype at the same time. A category can 
be defined by an averaged shape and a range of tolerable shape transformations. The 
range of tolerable transformations can be influenced by context and top-down processing 
(e.g., Labov, 1973). To extend the alignment approach to deforming transformations has 
further advantages, because this allows to account for the recognition of deformable 
objects (like animals), or articulated objects, like scissors (see already Ullman, 1989).  

It should be noted that alignment models are not limited to holistic processing of 
objects. Even though Hummel (2000) argued that image-based models with linear 
compensation processes are in principle not compatible with structured representations, 
he had to admit that his arguments do not apply to models that involve deformable 
transformations. The proposed alignment model with deforming transformations implies 
that corresponding parts or features are identified and brought into alignment, and thus 
already entails the notion of structured representations. Therefore, an alignment that 
allows for deforming transformations is compatible with the notion of structured category 
representations, and – unlike the structural description approach – does not imply the 
problematic notion of invariance regarding spatial transformations. Similarly, Basri et al. 
(1998) argued that structured representations can be combined with elastic matching 
methods. Moreover, structural alignment models of similarity and categorisation were 
suggested in which categorisation is achieved by aligning corresponding object parts in 
structured representations (e.g., Markman, 2001; Markman & Gentner, 1993; Markman 
& Wisniewski, 1997; Medin, Goldstone & Gentner, 1993). Current structural alignment 
models are still propositional and not image-based, but they indicate that the alignment 
approach is nicely compatible with structured representations (which entail featural and 
relational information, see study 1), and offer an interesting alternative to structural 
description models (Biederman, 1987; Hummel & Biederman, 1992; Marr, 1982). 
 Flexible (or deformable) template models from the computer vision literature are 
highly similar to the alignment approach, as they are based on flexible deformation 
processes prior to matching (e.g., Jain, Zhong & Lakshmanan, 1996; Yuille, 1991; Yuille, 
Ferraro & Zhang, 1998). These models are in agreement with the finding that 
categorisation performance depends systematically on shape transformations – if they 
assume time-consuming deformation processes. One of the best known flexible template 
models was developed by v.d. Malsburg and collaborators (Lades et al., 1993). It was 
designed as a general model of object recognition, but not as a model of basic level 
categorisation. Recently, however, deformable template models of categorisation were 
suggested (e.g., Belongie, Malik & Puzicha, 2002). 
 

The matching of stimulus representation and memory representation is usually 
performed first at the basic level of categorisation, i.e. the stimulus representation is 
aligned with a rather coarse shape representation of the category. Thus, basic level 
categorisation is achieved before the object is identified as an individual ( e.g., Liu, Harris 
& Kanwisher, 2002). For subordinate level classification additional perceptual processing 
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is necessary, while superordinate level categorisation requires additional conceptual 
exploration (Jolicoeur et al., 1984; Rosch et al., 1976; Tanaka, Luu, Weisbrod & Kiefer, 
1999). However, the entry point of recognition can shift down to the subordinate level for 
atypical objects (e.g., penguin instead of bird, see Jolicoeur et al., 1984) or – with 
increasing expertise – even to the level of the individual exemplar (e.g., Tanaka, 2001). 

Recognition and categorisation performance also depends on the orientation of the 
objects. Moreover, study 3 indicated that the effects of shape and orientation changes are 
independent – and thus are compensated for independently. A possible 
neurophysiological model that accounts for these  findings can be created according to the 
findings of Wang et al. (1998), which indicate that the orientation of objects is 
continuously mapped in the visual cortex: The positions of activation spots changed 
gradually along the cortical surface as the stimulus face was rotated in depth. 
Intermediate orientations are coded in intermediate locations on the cortical surface. This 
organisation of views in the cortex also corresponds to the spatio-temporal view patterns 
of the visual input, and is compatible with the key-frame approach (Wallis & Bülthoff, 
2002; Wallraven et al., 2001, 2002). When an object in an unusual orientation has to be 
recognised, the activation may have to proceed along these cortical paths, such that more 
time  is required for increasing orientation differences. In an analogous manner, shapes  
and shape transformations may be organised systematically in the cortex: Similar shapes 
may be located in nearby positions in the cortex, in such a way that shapes of 
intermediate transformational dist ances are located in intermediate positions.10 Again, the 
matching of similar shapes may proceed along these neuronal pathways, corresponding to 
analogue compensation processes. Compensation processes for orientation and shape 
may then be processed independently, i.e. by different modules in the cortex. This model 
provides a possible implementation for our integrative model depicted in Figure 19.  

Moreover, this framework is compatible with findings which indicate the 
importance of temporal order and temporal binding in object recognition: Memory 
representations of different images of the visual input stream, that were perceived in 
temporal contiguity, are bound together to the same category or object identity (Wallis & 
Bülthoff, 2001; Wallis et al., 2001). It also seems that the direction of time flow is 
encoded in the object representation and is actively used during recognition (Stone, 1998, 
1999). This can be accounted for in two ways – within the key-frame model and within a 
transformational approach. First, the key-frame model (see Wallraven et al., 2001, 2002) 
provides a temporal binding of spatio-temporal input. In this approach, the dynamic 
visual input is processed on-line in order to segment it into coherent parts. The segments 
are defined by how long a set of visual features can be tracked reliably across the 
sequence. In this way, one can use the temporal contiguity of the input to automatically 
learn important views of the sequence which are given by the endpoints of the segments. 
The final representation of the system then consists of a number of temporally linked key-
frames, each of which contains a set of salient visual features. These key-frames can also 
be seen as a set of connected view-tuned units, which represent a specific exemplar of a 
category and incorporate explicit temporal information. Second, the temporal aspects can 
be accounted for within a transformational (alignment) approach by assuming that 
knowledge about perceived transformations (e.g., Landau, 1994; Zaki & Homa, 1999) is 
                                                 
10 This does not imply that categories are represented by separate modules in the cortex. Instead, we assume 
a distributed representation (e.g., Ishai, Ungerleider, Martin & Haxby, 2000). 
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encoded and used for recognition. Both approaches are difficult to distinguish 
experimentally.  
 

The role of context was explored in study 4. Objects in the real world do not 
occur in a random manner. Looking for coffee is more successful in kitchens than in 
woods and tea spoons  tend to be near tea cups. A cognitive system, which is adapted to 
the environment, would take such co-occurrences into account and use top-down driven 
expectancies for faster and less viewpoint dependent recognition. This could be achieved 
by priming image-based representations in visual memory (top-down arrow and green 
area in top left of Figure 19). Such pre-activation would be especially helpful when non-
canonical views have to be recognised, which often tend to be similar to views of  other 
objects. Indeed, we found in our study 4 that non-canonical views of an object were 
recognised much faster, when they were primed by another object that tends to co-occur 
in the same  scene. Top-down processing could be related to competitive interac tions 
between object representations. The biased competition model, which has been derived 
from neurophysiological evidence, explains how this could be implemented in the brain 
(Chelazzi, Duncan, Miller, & Desimone, 1998; Chelazzi, Miller, Duncan, & Desimone, 2001; 
Luck, Chelazzi, Hillyard, & Desimone, 1997). According to this model, object 
representations compete for input. Competitive Interactions are strongest when stimuli 
activate cells in the same local region of cortex (V4 and IT) and the competitive 
interactions are biased in favour of one stimulus. This bias not only includes stimulus-
driven bottom-up process but also top-down processes. The main source of the top-down 
bias is thought to derive from prefrontal cortex (working memory). The feedback bias is 
not purely spatial, i.e. processing can be biased in favour of stimuli possessing a specific 
behaviourally relevant shape, texture, colour, and so on, in parallel throughout the visual 
field. Thus, top-down effects are not restricted to pre-activations in visual memory. They 
could also be used to prime preprocessing mechanisms and even influence what is being 
encoded from the input representation (for a review see Humphreys et al., 1997; Kosslyn, 
1994). 

In another series of experiments (study 5)  we showed that both static and dynamic 
cues are important for categorisation of objects. We have found evidence for an increased 
perceptual weighting of object intrinsic cues (shape, colour and action) over extrinsic 
cues (path). In addition, however, we have demonstrated that in the absence of a stronger 
cue, the weaker cue is readily used in the categorisation task. Again, this argues for an 
explicit cue integration strategy, which in addition should be task-dependent and 
constantly updating its cue saliencies. Furthermore, the results from the experiments hint 
at the richness of object and category descriptions in visual memory, which one has to 
take into account when developing truly cognitive systems. This seems to be particularly 
true for objects with diagnostic non-rigid motion as illustrated by the perception of 
moving thatcherized stimuli. 

To summarize, our investigations both confirm and extend existing image-based 
models of recognition and categorisation, providing the following main results: First, 
recognition involves both featural and relational information. Second, similarity ratings 
and basic level categorisation performance are systematically related to shape variations 
within basic level categories. Third, top-down contextual expectations play a role in 
object categorisation.  Fourth, motion cues can be integrated with form cues for 
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categorisation decisions. Image-based models can account for these findings, and they are 
in accordance with previous findings showing viewpoint dependency of recognition and 
categorisation. 
 
 
References 
 
Ashbridge, E., & Perrett, D.I. (1998). Generalizing across object orientation and size. In 

V. Walsh & J. Kulikowski (Eds.), Perceptual constancy. Why things look as they do 
(192-209). Cambridge: Cambridge University Press. 

Ashby, F.G., & Maddox, W.T. (1994). A response time theory of perceptual separability 
and perceptual integrality in speeded classification. Journal of Mathematical 
Psychology, 38 , 423-466. 

Ashby, F.G., & Maddox, W.T. (1996). Perceptual separability, dec isional separability, 
and the identification – speeded classification relationship. Journal of Experimental 
Psychology: Human Perception and Performance, 22, 795-817.  

Barsalou, L.W. (1992). Frames, concepts, and conceptual fields. In E. Kittay and A. 
Lehrer (Eds.), Frames, fields, and contrasts: new essays in lexical and semantic 
organization. Hillsdale, N.J.: Erlbaum. 

Barsalou, L.W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 
577-660. 

Barsalou, L.W., & Hale, C.R. (1993). Components of conceptual representation: from 
feature lists to recursive frames. In I. Van Mechelen, J. Hampton, R.S. Michalski, & 
P. Theuns (Eds.), Categories and concepts. Theoretical views and inductive data 
analysis (97-144). London: Academic Press. 

Bartlett, J.C., & Searcy. J. (1993). Inversion and configuration of faces. Cognitive 
Psychology, 25(3), 281-316. 

Basri, R. (1996). Recognition by prototypes. International Journal of Computer Vision, 
19, 147-167. 

Basri, R., Costa, L., Geiger, D., & Jacobs, D. (1998). Determining the similarity of 
deformable shapes. Vision Research, 38 , 2365-2385. 

Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition 
using shape contexts. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 24 , 509-522. 

Biederman, I. (1987). Recognition-by-components: a theory of human image 
understanding. Psychological Review, 94, 115-147. 

Biederman, I. (1995). Visual object recognition. In S. M. Kosslyn & D. N. Osherson 
(Eds.), An Invitation to Cognitive Science: Visual Cognition, 2nd ed., Vol. 2, pp. 
121-165. Cambridge, MA: MIT Press. 

Biederman, I., & Cooper, E.E. (1991). Priming contour-deleted images: Evidence for 
intermediate representations in visual object recognition. Cognitive Psychology, 23 , 
393-419. 

Biederman, I., & Gerhardstein, P.C. (1993). Recognizing depth-rotated objects: evidence 
and conditions for three-dimensional viewpoint invariance. Journal of Experimental 
Psychology: Human Perception and Performance, 19, 1162-1182. 



 44 

Biederman, I., & Gerhardstein, P.C. (1995). Viewpoint-dependent mechanisms in visual 
object recognition: reply to Tarr and Bülthoff (1995). Journal of Experimental 
Psychology: Human Perception and Performance, 21, 1506-1514. 

Biederman, I., & Ju, G. (1988). Surface vs. edge-based determinants of visual 
recognition. Cognitive Psychology, 20, 38-64. 

Biederman, I., & Kalocsai, P. (1997). Neurocomputational bases of object and face 
recognition. Philosophical Transactions of the Royal Society of London, B, 352 , 
1203-1219. 

Biederman, I., Subramaniam, S., Bar, M., Kalocsai, P., & Fiser, J. (1999). Subordinate-
level object classification reexamined. Psychological Research, 62, 131-153. 

Blanz, V., & Vetter, T. (1999). A model for the synthesis of 3D faces”, Computer 
Graphics Proceedings SIGGRAPH 99, 187-194. 

Bonmassar, G., & Schwartz, E.L. (1998). Representation is space-variant. Behavioral and 
Brain Sciences, 21, 469-470. 

Brooks, L.R. (1978). Non-analytic concept formation and memory for instances. In E. 
Rosch & B.B. Lloyd (Eds.), Cognition and concepts (169-211). Hillsdale, N.J.: 
Erlbaum. 

Bülthoff, H.H., & Edelman, S. (1992). Psychophysical support for a two-dimensional 
view interpolation theory of object recognition. Proceedings of the National 
Academy of Sciences of the United States of America, 89, 60-64. 

Bundesen, C., & Larsen, A. (1975). Visual transformation of size. Journal of 
Experimental Psychology: Human Perception and Performance, 1, 214-220. 

Bundesen, C., Larsen, A., & Farrell, J.E. (1981). Mental transformations of size and 
orientation. In J. Long & A. Baddeley (Eds.), Attention and Performance, IX (279-
294). Hillsdale, N.J.: Erlbaum. 

Cassirer, E. (1944). The concept of group and the theory of perception. Philosophy and 
Phenomenological Research, 5, 1-35.  

Cave, C.B., & Kosslyn, S.M. (1989). Varieties of size-specific visual selection. Journal 
of Experimental Psychology: General, 118, 148-164. 

Cave, K.R., Pinker, S., Giorgi, L., Thomas, C.E., Heller, L.M., Wolfe, J.M. & Lin, H. 
(1994). The representation of location in visual images. Cognitive Psychology, 26, 1-
32. 

Chelazzi, L., Duncan, J., Miller, E.K., & Desimone, R. (1998). Responses of neurons in 
inferior temporal cortex during visual search. Journal of Neurophysiology, 80, 2918-
2940. 

Chelazzi, L., Miller, E.K., Duncan, J., & Desimone, R. (2001). Responses of neurons in 
macaque area V4 during memory-guided visual search. Cerebral Cortex, 11, 761-
772. 

Chen, L. (1982). Topological structure in visual perception. Science, 218, 699-700. 
Chen, L. (1985). Topological structure in the perception of apparent motion. Perception, 

14, 197-208. 
Chen, L. (2001). Perceptual organization: To reverse back the inverted (upside-down) 

question of feature binding. Visual Cognition, 8, 287-303. 
Cohen, A.L., & Nosofsky, R.M. (2000). An exemplar-retrieval model of speeded same-

different judgments. Journal of Experimental Psychology: Human Perception and 
Performance, 26, 1549-1569. 



 45 

Collishaw, S.M., Hole G.J. (2000). Featural and configurational processes in the 
recognition of faces of different familiarity. Perception, 29, 893-910. 

Cortese, J.M., & Dyre, B.P. (1996). Perceptual similarity of shapes generated from 
fourier descriptors. Journal of Experimental Psychology: Human Perception and 
Performance, 22, 133-143. 

Cutting, J.E. (1986). Perception with an eye for motion. Cambridge, MA.: MIT Press. 
Cutzu, F., & Edelman, S. (1996). Faithful representation of similarities among three-

dimensional shapes in human vision. Proceedings of the National Academy of 
Sciences, 93, 12046-12050. 

Cutzu, F., & Edelman, S. (1998). Representation of object similarity in human vision: 
Psychophysics and a computational model. Vision Research, 38, 2229-2257. 

Davidoff, J., & Donnelly, N. (1990). Object superiority: a comparison of  complete and 
part probes, Acta Psychologica, 73, 225–243. 

Dill, M., & Edelman, S. (2001). Imperfect invariance to object translation in the 
discrimination of complex shapes. Perception, 30, 707-724.  

Dill, M., & Fahle, M. (1998). Limited translation invariance of human visual pattern 
recognition. Perception & Psychophysics, 60 , 65-81. 

Edelman, S. (1995). Representation of similarity in three-dimensional object 
discrimination. Neural Computation, 7, 408-423. 

Edelman, S. (1998). Representation is representation of similarities. Behavioral and 
Brain Sciences, 21, 449-498. 

Edelman, S. (1999). Representation and recognition in vision. Cambridge, MA: MIT 
Press. 

Edelman, S., & Bülthoff, H.H. (1992). Orientation dependence in the recognition of 
familiar and novel views of three-dimensional objects. Vision Research, 32 , 2385-
2400. 

Edelman, S., & Duvdevani-Bar, S. (1997). Similarity, connectionism, and the problem of 
representation in vision. Neural Computation, 9, 701-720. 

Edelman, S., & Intrator, N. (2000). (Coarse coding of shape fragments) + (retinotopy) ≈ 
representation of structure. Spatial Vision, 13 , 255-264. 

Edelman, S., & Intrator, N. (2001). A productive, systematic framework for the 
representation of visual structure. In T.K. Lean, T.G. Dietterich, & V. Tresp (Eds.), 
Advances in neural information processing systems 13 (10-16). Cambridge, MA: 
MIT Press. 

Erickson, M.A., & Kruschke, J.K. (1994). Rules and exemplars in category learning. 
Journal of Experimental Psychology: General, 127, 107-140. 

Estes, W.K. (1986). Array models for category learning. Cognitive Psychology, 18, 500-
549. 

Estes, W.K. (1994). Classification and cognition. Oxford: Oxford University Press. 
Fabre-Thorpe, M., Richard, G., & Thorpe, S. J. (1998). Rapid categorisation of natural 

images by rhesus monkeys. Neuroreport, 9, 303-308. 
Farah, M. J., Tanaka, J. W., & Drain, H. M. (1995). What causes the face inversion 

effect? Journal of Experimental Psychology: Human Perception and Performance, 
21, (3), 628-634. 



 46 

Foster, D.H., & Kahn, J.I. (1985). Internal representations and operations in visual 
comparison of transformed patterns: effects of pattern point-inversion, positional 
symmetry, and separation. Biological Cybernetics, 51, 305-312. 

Gentner, D., & Markman, A.B. (1994). Structural alignment in comparison: No 
difference without similarity. Psychological Science, 5 , 152-158. 

Gentner, D., & Markman, A.B. (1995). Similarity is like analogy. In C. Cacciari (Ed.), 
Similarity in language, thought, and perception (111-148). Brussels, Belgium: 
Brepols. 

Gibson, J.J. (1950). The perception of the visual world . Boston: Houghton Mifflin. 
Gibson, B.S., & Peterson, M.A. (1994). Does orientation-independent object recognition 

precede orientation-dependent recognition? Evidence from a cuing paradigm. 
Journal of Experimental Psychology: Human Perception and Performance, 20, 299-
316. 

Goldstone, R.L. (1994a). Similarity, interactive activation, and mapping. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 20 , 3-28. 

Goldstone, R.L. (1994b). The role of similarity in categorization: providing a 
groundwork. Cognition, 52, 125-157. 

Goldstone, R.L. (1996). Alignment-based nonmonotonicities in similarity. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 22 , 988-1001. 

Goldstone, R.L., & Medin, D.L. (1994). Time course of comparison. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 20 , 29-50. 

Graf, M. (2001). Analog topological transformations in basic level object recognition 
[Abstract]. Journal of Vision, 1(3), 98a, http://journalofvision.org/1/3/98, DOI 
10.1167/1.3.98. 

Graf, M. (2002). Form, space and object. Geometrical transformations in object 
recognition and categorization. Wissenschaftlicher Verlag Berlin, Berlin. 

Graf, M., & Schneider, W.X. (2001). Structural descriptions in HIT - a problematic 
commitment. Behavioral and Brain Sciences, 24, 483-484. 

Green, D.M., & Swets, J.A. (1966). Signal detection theory and psychophysics. New 
York: Wiley. 

Gregson, R.A.M. (1998). Metric assumptions are neither necessary nor sufficient to 
describe similarities. Behavioral and Brain Sciences, 21 , 473. 

Hahn, U., & Chater, N. (1997). Concepts and similarity. In K. Lamberts & D. Shanks 
(Eds.), Knowledge, concepts, and categories (43-92). Cambridge, MA: MIT Press. 

Hahn, U., Chater, N., & Richardson, L.B.C. (in press). Similarity as transformation. 
Cognition. 

Hamm, J.P., & McMullen, P.A. (1998). Effects of orientation on the identification of 
rotated objects depend on level of identity. Journal of Experimental Psychology: 
Human Perception and Performance, 24 , 413-426. 

Hasselmo, M.E. , Rolls, E.T., & Baylis, C.G. (1989). The role of expression and identity 
in the face-selective responses of neurons in the temporal visual cortex of the 
monkey. Experimental Brain Research, 32, 203-218. 

Hayward, W.G., & Tarr, M.J. (1997). Testing conditions for viewpoint invariance in 
object recognition. Journal of Experimental Psychology: Human Perception and 
Performance, 23, 1511-1521. 



 47 

Hayward, W.G., & Williams, P. (2000). Viewpoint dependence and object 
discriminability. Psychological Science, 11, 7-12. 

Heisele, B., Serre, T., Pontil, M., Vetter, T., and Poggio, T. (2001). Categorisation by 
learning and combining object parts. NIPS proceedings. 

Henderson JM, Hollingworth A. (1999). High-level scene perception. Annual Review of 
Psychology, 50, 243-271. 

Hill, H., Schyns, P.G., & Akamatsu, S. (1997). Information and viewpoint dependence in 
face recognition. Cognition, 62, 201-222. 

Humphreys, G. W., Riddoch, M. J., & Price, C. J. (1997). Top-down processes in object 
identification: evidence from experimental psychology, neuropsychology and 
functional anatomy. Philosophical Transactions of the Royal Society of London, B, 
352, 1275-1282. 

Hummel, J.E. (2000). Where view-based theories of human object recognition break 
down: the role of structure in human shape perception. In E. Dietrich & A.B. 
Markman (Eds.), Cognitive Dynamics: conceptual change in humans and machines  
(157-185). Hillsdale, NJ: Erlbaum.  

Hummel, J.E., & Biederman, I. (1992). Dynamic binding in a neural network for shape 
recognition. Psychological Review, 99, 480-517. 

Huttenlocher, D. P., & Ullman, S. (1990). Recognizing solid objects by alignment with 
an image. International Journal of Computer Vision, 5, 195-212. 

Ishai, A., Ungerleider, L.G., Martin, A., Haxby, J.V. (2000). The representation of 
objects in the human occipital and temporal cortex. Journal of Cognitive 
Neuroscience, 12, 35-51. 

Jain, A.K., Zhong, Y., & Lakshmanan, S. (1996). Object matching using deformable 
templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 , 
267-278. 

Jolicoeur, P. (1985). The time to name disoriented natural objects. Memory & Cognition, 
13, 289-303. 

Jolicoeur, P. (1987). A size-congruence effect in memory for visual shape. Memory & 
Cognition, 15, 531-543. 

Jolicoeur, P. (1990). Identification of disoriented objects: a dual-systems theory. Mind & 
Language, 5, 387-410). 

Jolicoeur, P. (1992). Orientation congruency effects in visual search. Canadian Journal 
of Psychology, 46, 280-305. 

Jolicoeur, P., Corballis, M.C., & Lawson, R. (1998). The influence of perceived rotary 
motion on the recognition of rotated objects. Psychonomic Bulletin & Review, 5, 
140-146. 

Jolicoeur, P., Gluck, M.A., & Kosslyn, S.M. (1984). Pictures and names: making the 
connection. Cognitive Psychology, 16, 243-275. 

Jolicoeur, P., & Humphrey, G.K. (1998). Perception of rotated two-dimensional and 
three-dimensional objects and visual shapes. In V. Walsh & J. Kulikowski (Eds.), 
Perceptual constancy. Why things look as they do (69-123). Cambridge: Cambridge 
University Press. 

Knappmeyer, Thornton, & Bülthoff (submitted). Interactions between facial form and 
facial motion during the processing of identity. Vision Research. 



 48 

Kosslyn, S. M. (1994). Image and Brain. The resolution of the imagery debate. 
Cambridge, Massachusetts: MIT Press. 

Kourtzi, Z., & Shiffrar, M. (2001). Visual representation of malleable and rigid objects 
that deform as they rotate. Journal of Experimental Psychology: Human Perception 
and Performance, 27, 335-355. 

Kruschke, J.K. (1992). ALCOVE: an exemplar-based connectionist model of category 
learning. Psychological Review, 99 , 22-44. 

Kurbat, M.A. (1994). Structural description theories: is RBC/JIM a general-purpose 
theory of human entry-level object recognition? Perception, 23, 1339-1368. 

Labov, W. (1973). The boundaries of words and their meanings. In C.-J.N. Bailey & 
R.W. Shuy (Eds.), New ways of analyzing variations in english. Washington, D.C.: 
Georgetown University Press. 

Lades, M., Vorbrüggen, J.C., Buhmann, J., Lange, J., v.d. Malsburg, C., Würtz, R.P., & 
Konen, W. (1993). Distortion invariant object recognition in the dynamic link 
architecture. IEEE Transactions on Computers, 42 , 300-311. 

Lamberts, K. (1994). Flexible tuning of similarity in exemplar-based categorization. 
Journal of Experimental Psychology: Learning, Memory, & Cognition, 20, 1003-
1021. 

Lamberts, K. (1998). The time course of categorization. Journal of Experimental 
Psychology: Learning, Memory, & Cognition, 24, 695-711. 

Landau, B. (1994). Object shape, object name, and object kind: representation and 
development. In D.L. Medin (Ed.), The Psychology of Learning and Motivation, 31  
(253-304). New York: Academic Press. 

Landau, B., Smith, L.B., & Jones, S.S. (1988). The importance of shape in early lexical 
learning. Cognitive Development, 3, 299-321. 

Larsen, A., & Bundesen, C. (1978). Size scaling in visual pattern recognition. Journal of 
Experimental Psychology: Human Perception and Performance, 4, 1-20. 

Larsen, A., & Bundesen, C. (1998). Effects of spatial separation in visual pattern 
matching: evidence on the role of mental translation. Journal of Experimental 
Psychology: Human Perception & Performance, 24, 719-731. 

Lawson, R. (1999). Achieving visual object constancy across plane rotation and depth 
rotation. Acta Psychologica, 102, 221-245. 

Lawson, R., Bülthoff, H.H., & Dumbell, S. (2002). Interactions between view changes 
and shape changes in picture-picture matching. Technical Report No. 95, Max Planck 
Institute for Biological Cybernetics, Tübingen, Germany. 
http://www.kyb.tuebingen.mpg.de/ publications /pdfs/pdf1609.pdf. 

Lawson, R., & Humphreys, G.W. (1996). View-specificity in object processing: 
Evidence from picture matching. Journal of Experimental Psychology: Human 
Perception and Performance, 22, 395-416. 

Lawson, R., & Humphreys, G.W. (1998). View-specific effects of depth rotation and 
foreshortening on the initial recognition and priming of familiar objects. Perception 
& Psychophysics, 60 , 1052-1066. 

Lawson, R., Humphreys, G.W., & Jolicoeur, P. (2000). The combined effects of plane 
disorientation and foreshortening on picture naming: One manipulation are two? 
Journal of Experimental Psychology: Human Perception and Performance, 26, 568-
581. 



 49 

Lee, D.D., & Seung, S. (1999). Learning the parts of objects by non-negative matrix 
factorization. Nature, 401 , 788-791. 

Leyton, M. (1992). Symmetry, causality, mind. Cambridge, MA.: MIT Press. 
Liter, J. C., & Bülthoff, H. H. (1997). View Canonicality Affects Naming But Not Name 

Verification Of Common Objects. Technical Report No. 50. Max Planck Institute for 
Biological Cybernetics, Tübingen, Germany.  

Liu, J, Harris, A., & Kanwisher, N. (2002). Stages of processing in face perception: an 
MEG study. Nature Neuroscience, 5, 910-916. 

Lowe, D.G. (1985). Perceptual organization and visual recognition. Boston, MA: 
Kluwer. 

Lowe, D.G. (1987). Three-dimensional object recognition from single two-dimensional 
images. Artificial Intelligence, 31, 355-395. 

Luck, S.J., Chelazzi, L., Hillyard, S.A., & Desimone, R. (1997). Neural mechanisms of 
spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal 
of Neurophysiology, 77, 24-42. 

Maddox, W.T., Ashby, F.G., Gottlob, L.R. (1998). Response time distributions in 
multidimensional perceptual categorization. Perception & Psychophysics, 60, 620-
637. 

Mak, Benise S.K., Vera, Alonso H. (1999). The role of motion in children's 
categorisation of objects. Cognition, 71, 10. 

Markman, A.B. (2001). Structural alignment, similarity, and the internal structure of 
category representations. In U. Hahn & M. Ramscar (Eds.), Similarity and 
categorization (109-130). Oxford, Oxford University Press. 

Markman, A.B., & Gentner, D. (1993). Splitting the differences: a structural alignment 
view of similarity. Journal of Memory and Language, 32, 517-535. 

Markman, A.B., & Gentner, D. (1993b). Structural alignment during similarity 
comparisons. Cognitive Psychology, 25, 431-467. 

Markman, A.B., & Gentner, D. (1997). The effects of alignability on memory. 
Psychological Science, 8 , 363-367. 

Markman, A.B., & Wisniewski, E.J. (1997). Similar and different: The differentiation of 
basic-level categories. Journal of Experimental Psychology: Learning, Memory, and 
Cognition, 23, 54-70. 

Marko, H. (1973). Space distortion and decomposition theory. A new approach to pattern 
recognition by vision. Kybernetik, 13, 132-143. 

Marr, D. (1982). Vision. San Francisco: Freeman. 
Marr, D., & Nishihara, H.K. (1978). Representation and recognition of the spatial 

organization of three-dimensional shapes. Proceedings of the Royal Society, London, 
B, 200, 269-294. 

McClelland, J.L., & Rumelhart, D.E. (1985). Distributed memory and the representation 
of general and specific information. Journal of Experimental Psychology: General, 
114, 159-188. 

McMillan, N.A., & Creelman, C.D. (1992). Detection theory: A user’s guide. New York: 
Cambridge University Press. 

Medin, D.L. (1989). Concepts and conceptual structure. American Psychologist, 44 , 
1469-1481. 



 50 

Medin, D.L., Goldstone, R.L., & Gentner, D. (1993). Respects for similarity. 
Psychological Review, 100, 254-278. 

Medin, D.L., & Schaffer, M.M. (1978). Context theory of classification learning. 
Psychological Review, 85 , 207-238. 

Milliken, B, Jolicoeur, P. (1992). Size effects in visual recognition memory are 
determined by perceived size. Memory & Cognition, 20 , 83-95. 

Murray, J.E. (1997). Flipping and spinning: Spatial transformation procedures in the 
identification of rotated natural objects. Memory & Cognition, 25 , 96-105. 

Murray, J.E. (1998). Is entry-level recognition viewpoint invariant or viewpoint 
dependent? Psychonomic Bulletin & Review, 5, 300-304. 

Murray, J.E. (1999). Orientation-specific effects in picture matching and naming. 
Memory & Cognition, 27 , 878-889. 

Newell, F.N. & Bülthoff, H.H. (2002). Categorical perception of familiar objects. 
Cognition, 85, 113-143. 

Newell, F.N. , & Findlay, J.M. (1997). The effect of depth rotation on object 
identification. Perception, 26, 1231-1257. 

Niall, K.K. (1992). Projective invariance and the kinetic depth effect. Acta Psychologica, 
81, 127-168. 

Niall, K.K., & Macnamara, J. (1990). Projective invariance and picture perception. 
Perception, 19, 637-660. 

Nosofsky, R.M. (1986). Attention, similarity, and the identification-categorization-
relationship. Journal of Experimental Psychology: General, 115, 39-57. 

Nosofsky, R.M. (1988). Similarity, frequency, and category representations. Journal of 
Experimental Psychology: Learning, Memory, & Cognition, 14, 54-65. 

Nosofsky, R.M., & Palmeri, T.J. (1997). An exemplar-based random walk model of 
speeded classification. Psychological Review, 104 , 266-300. 

Op de Beeck, H., Wagemans, J., & Vogels, R. (2001). Inferotemporal neurons represent 
low-dimensional configurations of parameterized shapes. Nature Neuroscience, 4, 
1244-1252. 

O’Toole, A.J., Roark, D.A., & Abdi, H. (2002). Recognizing moving faces: a 
psychological and neural synthesis. Trends in Cognitive Sciences, 6(6), 261-266. 

Palmer, S.E., Rosch, E., & Chase, P. (1981). Canonical perspective and the perception of 
objects. In J. Long & A. Baddeley (Eds.), Attention and Performance IX (135-151). 
Hillsdale, N.J.: Erlbaum.  

Perret, D.I., Hietanen, J.K., Oram, M.W., & Benson, P.J. (1992). Organization and 
functions of cells in the macaque temporal cortex. Philosophical Transactions of the 
Royal Society of London, B, 335, 23-50. 

Perret, D.I., Mistlin, A.J., & Chitty, A.J. (1987). Visual neurones responsive to faces. 
Trends in Neuroscience, 10, 358-364. 

Perret, D.I., & Oram, M.W. (1993). The neurophysiology of shape processing. Image and 
visual computing, 11 , 317-333. 

Perrett, D.I., & Oram, W.M. (1998). Visual recognition based on temporal cortex cells: 
viewer-centred processing of pattern configurations. Zeitschrift für Naturforschung, 
C, 53 , 518-541. 



 51 

Perrett, D.I., Oram, W.M., & Ashbridge, E. (1998). Evidence accumulation in cell 
populations responsive to faces: an account of generalization of recognition without 
mental transformations. Cognition, 67, 111-145. 

Perret, D.I., Rolls, E.T., & Caan, W. (1982). Visual neurones responsive to faces in the 
monkey temporal cortex. Experimental Brain Research, 47, 329-342. 

Pitts, W., & McCulloch, W.S. (1947). How we know universals: The perception of 
auditory and visual forms. Bulletin of Mathematical Biophysics, 9, 127-147. 

Poggio, T. (1990). A theory of how the brain might work. The Brain: Cold Spring 
Harbour Symposia on Quantitative Biology, N.Y.: CSH Laboratory Press, 899-910. 

Poggio, T., & Edelman, S. (1990). A network that learns to recognize three-dimensional 
objects. Nature, 343 , 263-266. 

Poggio, T., & Girosi, F. (1990). Regularization algorithms for learning that are equivalent 
to multilayer networks. Science, 247, 978-982. 

Rakover, S. S. (2002). Featural vs. configurational information in faces: A conceptual 
and empirical analysis. British Journal of Psychology, 93, 1-30. 

Reed, S.K. (1972). Pattern recognition and categorization. Cognitive Psychology, 3, 382-
407. 

Rhodes, G., Brake, S., & Atkinson, A.P. (1993). What's lost in inverted faces? Cognition, 
47, 25-57. 

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in 
cortex. Nature Neuroscience, 2 , 1019-1025. 

Riesenhuber, M., & Poggio, T. (2000). CBF: A new framework for object categorization 
in cortex. In S.-W. Lee & H.H. Bülthoff (Eds.), Biologically motivated computer 
vision. Berlin: Springer. 

Riesenhuber, M., & Poggio, T. (2002). Neural mechanisms of object recognition. Current 
Opinion in Neurobiology, 12, 162-168. 

Rosch, E., & Mervis, C.B. (1975). Family resemblances: studies in the internal structure 
of categories. Cognitive Psychology, 7, 573-605. 

Rosch, E., Mervis, C.B., Gray, W.D., Johnson, D.M., & Boyes -Braem, P. (1976). Basic 
objects in natural categories. Cognitive Psychology, 8, 382-439. 

Schwaninger, A., Carbon, C.C., & Leder, H. (in press). Expert face processing: 
Specialisation and constraints. In Schwarzer, G. & Leder, H. (Eds.), The 
Development of Face Processing. 

Schwaninger, A., Cunningham, D.W., & Kleiner, M. (2002). Moving the Thatcher 
illusion. Poster presented at the 10th Annual Workshop on Object Perception and 
Memory, Kansas City, November 21, 2002. 

Schwaninger, A., Lobmaier, J.S., & Collishaw, S.M. (2002). Role of Featural and 
Configural Information in Familiar and Unfamiliar Face Recognition. Lecture Notes 
in Computer Science, 2525, 643-650. 

Schwaninger A., Lobmaier, J., & Collishaw, S, M. (2002). Role and interaction of 
featural and configural processing in face recognition. Vision Sciences Society, 2nd 
annual meeting, Sarasota , Florida, May 10-15, 2002. 

Schyns, P.G., Goldstone, R.L., & Thibaut, J.-P. (1998). The development of features in 
object concepts. Behavioral and Brain Sciences, 21, 1-54. 

Schyns, P. G., & Rodet, L. (1997). Categorization creates functional features. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 23(3), 681-696l. 



 52 

Selfridge, O.G., & Neisser, U. (1963). Pattern recognition by machine. In E.A. 
Feigenbaum & J. Feldman (Eds.), Computers and thought. New York: McGraw-Hill. 

Sergent J. (1985). Influence of task and input factors on hemispheric involvement in face 
processing. Journal of Experimental Psychology: Human Perception and 
Performance, 11(6) , 846-61. 

Shaw, R., & Pittenger, J. (1977). Perceiving the face of change in changing faces: 
implications for a theory of object perception. In R. Shaw & J. Bransford (Eds.), 
Perceiving, acting, and knowing. Toward an ecological psychology. Hillsdale, N.J.: 
Erlbaum. 

Shepard, R.N. (1957). Stimulus and response generalization: a stochastic model relating 
generalization to distance in psychological space. Psychometrika, 22, 325-345. 

Shepard, R.N. (1987). Toward a universal law of generalization for psychological 
science. Science, 237, 1317-1323. 

Shepard, R.N., & Cermak, G.W. (1973). Perceptual-cognitive explorations of a toroidal 
set of free-form stimuli. Cognitive Psychology, 4, 351-377. 

Smith, E.E., & Medin, D.L. (1981). Categories and concepts. Cambridge, MA: Harvard 
University Press. 

Smith, E.E., Shoben, E.J., & Rips, L.J. (1974). Structure and process in semantic 
memory: a featural model for semantic decisions. Psychological Review, 81, 214-
241. 

Stone, J. V. (1998). Object recognition using spatio-temporal signatures. Vision 
Research, 38, 947-951. 

Stone, J. V. (1999). Object Recognition: View-Specificity and Motion-Specificity, Vision 
Research, 39, 4032-4044. 

Sutherland, N.S. (1968). Outlines of a theory of visual pattern recognition in animals and 
man. Proceedings of the Royal Society, London, B, 171 , 297-317. 

Tanaka, J.W. (2001). The entry point of face recognition: evidence for face expertise. 
Journal of Experimental Psychology: General, 130, 534-543. 

Tanaka J. W. & Farah, M. J. (1991). Second-order relational properties and the inversion-
effect: Testing a theory of face perception. Perception & Psychophysics, 50, 367-
372. 

Tanaka, J. W. & Farah, M. J. (1993). Parts and wholes in face recognition. Quarterly 
Journal of Experimental Psychology, 79 , 471-491. 

Tanaka, J., Luu, P., Weisbrod, M., & Kiefer, M. (1999). Tracking the time-course of 
object categorization using event-related potentials. NeuroReport, 10, 829-835. 

Tarr, M.J. (1995). Rotating objects to recognize them: a case study on the role of 
viewpoint dependency in the recognition of three-dimensional objects. Psychonomic 
Bulletin & Review, 2, 55-82. 

Tarr, M.J. (1999). News on views: Pandemonium revisited. Nature Neuroscience, 2 , 932-
935. 

Tarr, M.J., & Bülthoff, H.H. (1995). Is human object recognition better described by 
geon structural descriptions or by multiple views? Comment on Biederman and 
Gerhardstein (1993). Journal of Experimental Psychology: Human Perception and 
Performance, 21, 1494-1505. 



 53 

Tarr, M.J., & Bülthoff, H.H. (1998). Image-based object recognition in man, monkey and 
machine. In M.J. Tarr & H.H. Bülthoff (Eds.), Object recognition in man, monkey, 
and machine (1-20). Cambridge, MA: MIT Press. 

Tarr, M. J., Bülthoff, H. H., Zabinski, M., & Blanz, V. (1997). To what extent do unique 
parts influence recognition across changes in viewpoint? Psychological Science, 8, 
282-289. 

Tarr, M.J., & Pinker, S. (1989). Mental orientation and orientation-dependence in shape 
recognition. Cognitive Psychology, 21, 233-282. 

Tarr, M. J., Williams, P., Hayward, W. G., & Gauthier, I. (1998). Three-dimensional 
object recognition is viewpoint dependent. Nature Neuroscience, 1, 275-277. 

Thompson, D'A.W. (1917). On growth and form. Second edition, 1942: Cambridge: 
Cambridge University Press. 

Thompson, P. (1980). Margaret Thatcher -- A new illusion. Perception, 9, 483-484. 
Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual 

system. Nature, 381(6582), 520-522. 
Todd, J.T, Chen, L., & Norman, J.F. (1998). On the relative salience of Euclidean, affine, 

and topological structure for 3-D form discrimination. Perception, 27, 273-282. 
Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327-352. 
Tversky, B., & Hemenway, K. (1984). Objects, parts, and categories. Journal of 

Experimental Psychology: General, 113 , 169-193. 
Ullman, S. (1989). Aligning pictorial descriptions: an approach to object recognition. 

Cognition, 32, 193-254. 
Ullman, S. (1995). Sequence seeking and counter streams: A computational model for 

bidirectional information flow in the visual cortex. Cerebral Cortex, 5 , 1-11. 
Ullman, S. (1996). High-level vision. Object recognition and visual cognition. 

Cambridge, MA: MIT Press. 
Ullman, S., & Basri, R. (1991). Recognition by linear combinations of models. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 13, 992-1006. 
Ullman, S., & Sali, E. (2000). Object Classification Using a Fragment-Based 

Representation. BMCV 2000. Lecture Notes in Computer Science, 1811, 73-87. 
Ullman, S., Vidal-Naquet, M. , & Sali, E. (2002). Visual features of intermediate 

complexity and their use in classification. Nature Neuroscience, 5, 682-687. 
Valentine, T. (1988). Upside -down faces: a review of the effect of inversion upon face 

recognition. British Journal of Psychology, 79, 471-491. 
Van Gool, L.J., Moons, T., Pauwels, E., & Wagemans, J. (1994). Invariance from the 

Euclidean geometer's perspective. Perception, 23, 547-561. 
Van Leeuwen, C. (1998). Regular spaces versus computing with chaos. Behavioral and 

Brain Sciences, 21, 482-483. 
Van Rullen, R., & Thorpe, S. J. (2001). Is it a bird? Is it a plane? Ultra-rapid visual 

categorisation of natural and artifactual objects, Perception, 30, 655-668. 
Wachsmuth, E., Oram, M.W., & Perret, D.I. (1994). Recognition of objects and their 

component parts: responses of single units in the temporal cortex of the macaque. 
Cerebral Cortex, 4, 509-522. 

Wagemans, J., Van Gool, L., & Lamote, C. (1996). The visual systems measurement of 
invariants need not itself be invariant. Psychological Science, 7, 232-236. 



 54 

Wallis, G., & Bülthoff, H. (1999). Learning to recognize objects. Trends in Cognitive 
Sciences, 3, 22-31. 

Wallis, G. M. , Bülthoff H.H. (2001). Effect of temporal association on recognition 
memory. Proceedings of the National Academy of Science USA, 98, 4800-4804. 

Wallis, G., & Bülthoff, H.H. (2002). A brief introduction to cortical representations of 
objects. Technical Report No. 97, Max Planck Institute for Biological Cybernetics, 
Tübingen, Germany. http://www.kyb.tuebingen.mpg.de/publications/pdfs/ 
pdf1646.pdf. 

Wallraven, C. & Bülthoff, H.H. (2001). Automatic acquisition of exemplar-based 
representations for recognition from image sequences. CVPR 2001 - Workshop on 
Models vs. Exemplars 

Wallraven, C., Schwaninger, A., Schuhmacher, S., & Bülthoff, H.H. (2002). View-Based 
Recognition of Faces in Man and Machine: Re-visiting Inter-Extra-Ortho. Lecture 
Notes in Computer Science, 2525, 651-660. 

Wang, G., Tanifuji, M., & Tanaka, K. (1998). Funcitional architecture in monkey 
inferotemporal cortex revealed by in vivo optical imaging. Neuroscience Research, 
32, 33-46. 

Wiskott, L., Fellous, J.M., Krüger, N., & von der Malsburg, C. (1997). Face Recognition 
by Elastic Bunch Graph Matching. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 19(7), 775-779. 

Yamane, S., Kaji, S., & Kawano, K. (1988). What facial features activate face neurons in 
inferotemporal cortex of the monkey. Experimental Brain Research, 73, 209-214. 

Yuille, A.L. (1991). Deformable templates for face recognition. Journal of Cognitive 
Neuroscience, 3, 59-70. 

Yuille, A.L., Ferraro, M., & Zhang, T. (1998). Image warping for shape recovery and 
recognition. Computer Vision and Image Understanding, 72 , 351-359. 

Zaki, S. R. & Homa, D. (1999). Concepts and transformational knowledge. Cognitive 
Psychology, 39 , 69-115. 


