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Abstract 
 
A mathematically simple transformation from the Judd (1951) modified CIE space into the 
space spanned by the cones is derived. The transformation is based on geometrical intuition 
(Pitt 1945). 
 
 
 
Light fluxes that initiate vision are transmitted into electrical signals by the photoreceptors. In day light 
these are the retinal cones. Most humans have three types of cones with spectral sensitivities in the 
short (S), middle (M) and long (L) part of the visible spectrum, and hence are called trichromats. 
Absorption of a photon leads to a structural change of photo pigment, which - through an enzymatic 
cascade - generates the electrical cone signal. In this process information about the wavelength of the 
photon is lost. Thus the cone signals processed further in the retina just depend on the numbers of 
photons that are absorbed in the respective type. Therefore colors can be described in a three-
dimensional space formed by the excitations of the three cone types (MacLeod & Boynton, 1973). 
When color metrics was developed, absorption spectra of cones were not known yet. Color 
perception had to be quantified using other means. Three primary colors (primaries) were defined, 
each chosen from a different range of colors. Human observers can match any color by varying the 
intensities of the primaries and hence define this color within the chosen metric (Judd & Wysecki 
1975). In some cases one of the primaries has to be added to the color being analyzed to make it 
appear less saturated. This procedure is the reason for the appearance of negative color mixture 
values.  
Colors perceived due to occurrence of energy in just one line of the spectrum are called spectral 
colors. The intensities of the three primaries needed to match spectral colors plotted over the 
wavelength are called color matching functions (CMF). CMFs can be transformed from one set of 
primaries to another using linear algebra. Obviously, each primary has a defined overlap with the 
absorption spectra of the cones. Thus changing the intensities of the primaries leads to proportional 
changes in the excitations of the cones. This means that we can find a linear transformation between 
the CMF and the spectral sensitivities of the cones. One way to derive these is based on the specific 
deficits of dichromats in discriminating between certain colors. Dichromats are naturally occurring 
mutants in (mostly male) humans, each of whom has only two of the three cone pigments found in 
trichromats. Though frequently used in color vision, transformations based on these findings still lack 
a simple interpretation. The aim of this paper is to give a simple geometric interpretation of this 
crucial step in color metrics from conventional color space (CIE) into cone space. We elaborate an 
earlier proposal (Pitt, 1945). We avoid technical details and emphasize the rather simple steps of the 
transformation. Elementary mathematical tools required are provided in the appendix. 
 
 
 
Brief describtion of CIE space 



 
Since the starting point of our transformation is the modified version of CIE-xy space (Judd, 1951), 
denoted x’y’-space, we will mention a few features of it. In 1931 the CIE (Commission 
Internationale de l‘Eclairage) recommended a special set of CMFs x(λ), y(λ), z(λ) as the standard 
colorimetric system. These functions were transformations of the results of color mixture experiments 
into a space of primaries which does not have a physical realisation. The reason for this choice was 
that all these CMFs have positive values and that the y(λ) function is proportional to Vλ, the 
photopic luminous-efficiency function (of the 1924 standard human observer). Vλ is the spectral 
distribution connected to the perception of brightness. The three numbers that characterize a color in 
CIE space are called the tristimulus values X, Y and Z, where Y corresponds to the luminance of the 
color. X, Y and Z are calculated by integrating the spectral radiance over the CMF. The CIE 
chromaticity diagram (CIE-xy space) is a normalized representation of the colors perceived by the 
standard observer formed by the tristimulus values X, Y and Z. It is calculated by the fractions of X 
and Y in terms of X+Y+Z. The x- and z-values are called chromaticity coordinates. 
The 1924 Vλ is known to be in error in the short wavelength region of the spectrum. Judd (1951) 
proposed a modified version of the luminous-efficiency function, which also implies the use of a 
modified set of CMF, denoted x’(λ), y’(λ) and z’(λ). 
Color mixture data show a large variability between different observers. The question which set of 
CMF is to be preferred over the others is discussed in detail by Stockman et al. (1993ab). In 
psychophysical experiments (see next section) these authors measured the spectral sensitivities of the 
S-, M- and L-cones in human observers using a transient chromatic adaptation method.  
  
 
Cone fundamentals 
 
Psychophysical methods yield the cone absorption spectra or cone fundamentals including the 
spectral properties of the ocular media. Although the psychophysical methods are indirect, they give 
a more realistic measure for the cone signals actually relevant in human color perception. One of 
these psychophysical methods is based on chromatic adaptation and tries to isolate one cone system 
by selectively reducing the sensitivity of the other two systems with an adequately chosen 
background (Stockmann et al. 1993). Another method uses the specific deficits in the perception of 
color of the three types of dichromats.  
There are, in fact, more than three cone pigments found in humans, but this is not essential to the 
argument put forward here. Dichromats are usually called color blinds although they do have a well 
measurable ability to discriminate colors. In the CIE-xy space the locations of the colors confused by 
each type of dichromat are situated on a specific set of lines (see Wyszecki & Stiles 1982) and 
therefore these lines are called the confusion lines of the specific type of dichromat. These lines 
converge into a single point in CIE-xy space which is called the confusion point of that type of 
dichromat. Obviously dichromats fail to distinguish between the colors situated along the confusion 
lines because their two remaining cone systems yield a constant fraction of excitation for these colors. 
Hence at the confusion points the excitations of the two respective systems vanish (Vos & Walraven 
1970). Thus the position in CIE-space of the color (perceived by trichromats and) defined by the 
excitation of a single cone type can be determined and this can be done for all three cone types. This 
statement is based on the assumption that dichromats are lacking one and only one type of cone 
pigment (König & Dieterici 1886). 
 
 
A simple geometric transformation into cone space 
 
What happens to the confusion lines and the confusion points in a color space where the primaries 
had the same spectral shape as the cone fundamentals (Pitt, 1945)? The left part of figure 1 shows 
the locations of the confusion points in the x’y’-space. The right part of figure 1 shows a color space 
spanned by the cone fundamentals. Figure 2 shows the same space together with two colors denoted 
by P and Q.  
 
 
 



Let a normal trichromat view color P. S/he has three relationships from excitations of the three cone 
systems. So s/he is able to determine the exact location of the color in the three- dimensional color 
space. Let now a dichromat, say a protanope view the same color. Because  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1:Left half: x’y’-space together with the locations of the three confusion points of the three types 
of dichromats. The values of the confusion points are taken from Smith & Pokorny (1975). Right 
half: Relative representation of the cone space formed by primaries with the same spectral shape as 
the cone fundamentals. In this space the confusion points must be located at the base vectors. The 
arrows indicate the transformation from x’y’-space to the cone space.  
Fig. 2: Cone space formed by primaries with the same spectral shape as the cone fundamentals. 
Plotted are two colors P and Q that are situated on a confusion line of the protanope. All confusion 
lines of the protanope converge into the location of the first base vector. 
 
 
of her/his missing L-pigment there is no measure for the L-system versus the M-system and the L-
system versus the S-system. The only remaining relationship is between the excitations of the S- and 
the M-system.  
Let both, the trichromat and the protanope now view the other color denoted by Q. The trichromat 
has again three relationships two of them differing from the ones for color P, so s/he is able to 
determine the exact location of color Q in color space.  Both, the protanope and the trichromat yield 
the same relationship between the excitations of the M- and the S-system as for color P. Color Q 
looks the same for the protanope as color P, except for a possible luminance difference.  
All colors with the same fraction of M- and S-cone excitation must lie on a straight line. The 
intersection of this line with the abscissa at the point (1,0) represents the base vector with respect to 
the L coordinate, i. e. the L-cone pigment. There exists an infinity of those lines all converging to that 
point for the protanope. Corresponding considerations yield the location of the deuteranopic 
confusion point at position (0,1) and the tritanopic confusion point at position (0,0) in this color 
space. The confusion lines presented here are projections from the three-dimensional cone space on 
the plane given by S+M+L=1. This enables us to express the colors in the two-dimensional plane 
formed by the L- and M-cone excitations. The third coordinate of the cone space would elongate 

 



from the origin to the viewer and is given by S=1-M-L. For a detailed description of how the 
confusion lines are situated in the three-dimensional space see MacLeod & Boynton (1973). We 
conclude that in three-dimensional cone space the confusion points of dichromats are situated at the 
locations of the base vectors, as depicted in both figures. Following this conclusion we obtain the 
algorithm to transform from the x‘y‘z‘-space, (where the confusion points are determined 
experimentally) to the cone space (Wysecki & Stiles 1982). Our aim now is to find a matrix that 
converts the confusion points given in x‘y‘-space to the locations of the base vectors in cone space 
(Connections between the confusion points of the left and right half of Fig. 1) . The transformation 
matrix must convert the confusion points of the left half of Fig. 1 to the locations of the base vectors 
in the right half of Fig. 1. Thus it must fullfil the following three equations 
 
 

                     ,  ,                and                                         Eq. (1) 
 
 
where the vectors on the right side of the equations (1) represent the three base vectors of the cone 
space (L, M and S), the vectors on the left side are the locations of the confusion points in x‘y‘-
space (Smith & Pokorny 1975). The matrix M is a transformation matrix from x‘y‘-space to the 
cone space. By solving the equations (1) the matrix M is estimated to 
 
 
                                                                                                                              Eq. (2) 
 
 
 
Using this matrix we can transform any color from CIE to cone space. 
 
 
Conclusions 
 
The method of the confusion points depends to a large extent on the precision of the experimentally 
determined CMF and the confusion points. Derivations of the latter vary considerably between 
different studies. Another difficulty is to find a reasonable way to average the confusion points of 
different subjects in x‘y‘-space (Stockman et al. 1993). The cone fundamentals estimated by 
selective bleaching or the method of the confusion points do not differ very much, at least if broad 
band stimuli are used. The method of the confusion points assumes that dichromacy is a reduced 
form of trichromacy. The spectral shape of the cone fundamentals is determined by the locations of 
the confusion points in x‘y‘-space.  
The transformation to the cone space described above does not necessarily use the Judd (1951) 
modified CIE xy-space as its starting point. Each two-dimensional representation of a tristimulus 
color space might be used under the restriction that the exact location of the confusion points is 
known within this space. 
Tristimulus values are calculated by integrating the incident spectrum over CMFs. Use of a 
spectroradiometer allows straightforward calculation of cone excitations by integrating the spectrum 
directly over the cone fundamentals. In this case it is not necessary to calculate tristimulus X‘Y‘Z‘-
values which could be further transformed into cone excitations by the matrix multiplication described 
above. Most colorimeters express chromaticity coordinates and luminance with respect to the 1931 
CIE color matching functions. It is desirable to apply a matrix multiplication that converts these 1931 
CIE XYZ-tristimulus values into cone excitations, which could then be calculated from the XYZ 
output of the colorimeter. There is one caveat still: Judd & Wyszecki (1975) suggested a set of 
confusion points required for the 1931 CIE chromaticity diagram. Because the underlying color 
matching functions are calculated partly from the 1924 CIE luminous efficiency function which is 
seriously in error at short wavelengths the validity of this transformation is questionable. Especially 
the S-cone excitations obtained by this transformation suffer from uncertainties. A recent set of 
transformation values to convert 1931 CIE tristimulus values into M- and L-cone excitations was 
suggested by Stockman et al. (1993). Using these transformation values they obtained the best fit 
with their cone fundamentals based on the Stiles & Burch (1955) 2 degree CMF.  
Our goal in presenting still another transformation from (modified) CIE color space into cone space 
is to show that this is possible using a mathematically simple way following straightforward 

   

 



geometrical ideas (Pitt, 1945). The method of the confusion points thus provides clear insight into 
dichromatic and trichromatic color metrics. In spite of this, the amplitude of cone fundamentals 
remains an unsolved problem. It was shown that a value for the S-cone fundamental of about an 
eleventh of the L-cone fundamental and about a sixth of the M-cone fundamental leads to circular 
detection contours (Teufel & Wehrhahn 2000). 
 
 
 Appendix A. The fraction between M- and S-cone excitation is constant along a confusion 
line of the protanope.  
 
The parameterization of a line through a certain point in a two-dimensional space is given by:   
 

   y – y1 = m (x – x1),      Eq. (3) 
 

where m is the slope of the line and  (x1,y1) is a given point in the xy-plane. If the abscissa is the L-
cone excitation and the ordinate is the M-cone excitation, the parameterization of a line through the 
confusion point of the protanope (1,0) is given by   
 
   M = m . (L-1)                    Eq. 
(4) 
 
The two points P and Q that are situated on this line 
 

MP = m . (LP – 1)  and     MQ = m . (LQ – 1)          Eq. (5) 
   

must both satisfy the relative representation (S+M+L=1), thus   
 
 LP = 1 – SP – MP   and   LQ = 1 – SQ – MQ .   Eq. (6) 
 
Inserting equations (6) into equations (5) yields:  
 

              and          Eq. (7) 
  , 
which means that the fraction of M- and S-cone excitation is constant along the confusion lines of the 
protanope. 
 
 
Appendix B. The multiplication of a vector with a matrix 
 
A matrix A of range 3 is given by its 9 coefficients aij, where i and j are 1, 2 or 3. The vector v of a 
three-dimensional vector space is given by its 3 components vj, where j again is 1, 2 or 3. The matrix 
multiplication  
 
 
 

           Eq. (8)  
 
 
 
is performed by multiplying each component of a row of the matrix with the component of the vector 
having the same j as the coefficient of the matrix. Adding these three values yields the i‘th component 
of the resulting vector on the left of equation (8). 
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