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Multi-class SVMs for Image Classification using
Feature Tracking

Arnulf B. A. Graf & ChristianWallraven

Abstract. In this papera novel representation for imageclassificationis proposedwhich exploits the temporal
informationinherent in natural visual input. Image sequencesarerepresented by a setof salientfeatureswhich
arefound by tracking of visualfeatures. In thecontext of amulti-classclassificationproblemthis representationis
comparedagainst a representationusingonly raw imagedata.Thedatasetconsistsof imagesequencesgenerated
from a processedversionof theMPI facedatabase.We consider two typesof multi-classSVMs andbenchmark
themagainst nearest-neighbor classifiers.By introducing a new setof SVM kernel functionswe show that the
featurerepresentationsignificantlyoutperforms theview representation.

1 Intr oduction

Traditionally classificationof images—atleastin the
areaof computer vision—has beenconsideredusing
mostly static representations. Natural visual input,
however, consistsof spatio-temporalpatternsandpsy-
chophysicalstudiescorroboratethat thehumanvisual
systemis ableto exploit inherent temporal character-
istics[1].

If oneconsidersclassificationof imagesequences
a possibledata representationconsistsof individual
frames, i.e. the simplestview-basedrepresentation
containing only raw pixel data. In this paper, we
presenta secondrepresentation (basedon [2]) which
takesdynamic informationinto account. This is done
by extraction of interestpoints in the image(in our
case,corners) andconstruction of visual featuresby
using the corner positions togetherwith their local
pixel neighborhoods. A setof salientfeaturesis then
found by tracking thesevisual features over the input
sequence. This representation can be seenas incor-
porating thea priori knowledgeof a sequentialimage
presentation (temporalcontinuity).

In this paper Support VectorMachines (SVMs) are
benchmarkedagainst classifiersderived from nearest-
neighborapproachesusingvarioussimilaritymeasures
to assessthegeneralization capabilitiesof thetwo rep-
resentations. Multi-classSVMs in a normalizedfea-
ture spaceareconsideredfor classificationusingtwo
strategies: one versusthe rest (1-vs-r) in combina-
tion with winner-takes-all and oneversusone (1-vs-
1) via DirectedAcyclic Graph(DAG). Novel metrics
aredevelopedfor the kernelfunctionsin orderto ac-
commodateboth theclassificationof imagesandfea-
tures. The work which is mostcloselyrelatedto this
paperdealswith histogram-basedclassificationof im-

ages[3], whereappropriatemetricsin kernelfunctions
arestudiedandSVM-learning of partsof faces(or lo-
cal features)asproposedin [4]. Note,however, thatin
bothstudiesstaticrepresentationswereused.

Sec.2 presentstheoreticalconsiderationson multi-
class SVMs in a normalized featurespace,feature
trackingandmetricsderived from normalizedcross-
correlations. Sec. 3 describesthe databaseof image
sequencesandpresentsnumericalclassificationexper-
iments using imagesand features and gives results
from the comparison of SVMs and nearest-neighbor
classifiers.

2 Theoretical considerations

2.1 Multi-class SVMs

SVMs asbinaryclassifiershavedrawn muchattention
becauseof their high classificationperformanceand
thorough mathematicalfoundationsrootedin statisti-
cal learningtheory [5]. They arehereconsidered in
a normalizedfeaturespace[6] by usingmodifiedker-
nel functions

�����	�
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� �����	�
 �	�
 �������
 ���
 , the latter still satifying

Mercer’s theorem. Thedatain sucha spacelies on a
unit hypersphere. A modificationin theSV algorithm
taking advantageof this geometricalproperty is pro-
posedin [6] where theoffsetof theoptimal separating
hyperplane(OSH)is shifted. In thestandardSVM al-
gorithm, theOSHis placedin themiddleof themar-
gins. In anormalizedfeaturespace,however, theOSH
is chosenso as to separateequidistantly the unit hy-
perspherein betweenthemarginsasshown in figure1.
In otherwords,thedistancemetric is projectedon the
unit hypersphereandthecorrection of theoffsetcanbe
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Figure1: Correctionof  in a normalizedtwo-dimensional
featurespace.Notetheasymmetryof themarginsaroundthe
OSH.

writtenas:!"#%$& #('*),+.- /10�2 )�)�+3-�4�5�6879 �: 9�;=< 0�2 ),)�+3-�4�5?>@79 �: 9�;� A (1)

We considertwo strategies in orderto extendthe bi-
naryclassificationschemeto multiple classes,say B ,
without modifying theSV formulation(asopposedto
[7]). As a first approach, B classifiersaretrainedus-
ing a1-vs-rprotocolandclassificationis doneaccord-
ing to a winner-takes-all strategy over all the classes
for eachelementof the testingsubsetof thedatabase
[5,8]. In thesecondapproach, C � C 6D7 
E classifiersare
trainedfor eachpairof classesin thetrainingdatabase
according to a 1-vs-1 protocol (also called pairwise
classification,[9]). Classificationis then performed
using a DirectedAcyclic Graph over the classesfor
eachelement of the testingdatabase[10] insteadof a
voting schemeasproposedin [9]. In both cases,the
classificationerror in theexperimentspresentedin this
paperis the meanof the binary errors corresponding
to eachelementof the testingset. Datacompression
andredundancy is assessedbycomputing theSV ratio,
whichis theratioof themeannumber of SVsacrossall
classifiersandthe numberof elementsin the training
set.

2.2 Feature tracking

Evidence from psychophysical studiesshows thathu-
mansareableto exploit thetemporal continuity in the
natural visual input during learningof objectclasses
[1]. A computationalframework directlymotivatedby
theseresultsis introducedin [2] wherea sparseyet
powerful representationis generatedfrom dynamicvi-
sual input. The main ideabehind this approachis to
processa sequenceof imagesF 'HGJI�KML KONKQPDKQR to extract
salientfeaturesvia featuretracking.

Theproposedframeworkconsistsof twomainparts:
featureextraction and tracking (seefigure 2). First
of all, a Gaussianscalepyramid with 3 scalesis con-
structedfrom I K toenablemulti-scaleanalysis.Feature

local neighborhood
extract

Set of tracked features

for each frame

for each scale

Gaussian Pyramid

Feature extraction

at each feature

......

time

......

Track features
from Frame 1 to Frame n

3 scales

Frame n−1 Frame nFrame 1

Figure 2: Overview of the featureextraction and tracking
process.The large imageshows the featuretrajectoriesof
theinput sequence.

extractionisdonefor eachscalebydeterminingateach
pixel thesymmetric structure matrix S (seealso[11])
which is evaluated in a smallsquareneighborhood T
(typically 7x7pixels) centeredon this pixel:

S ' /VUXW #ZY�[Y 	 # E U\W^] YJ[Y 	`_ YJ[Y �baU Wc] YJ[Y 	 _ YJ[Y � a U W # YJ[Y � # E A
Thesmallerof thetwoeigenvaluesof H, d E ' KQe �gf 
Eihj 4 KQe �gf 
E ; E hlk3mJn 4 S ; , yields information about the
structureof T . The values of d E which are above
a pre-defined thresholdare considered further and
yield a set of o interest points in each image I K
of the sequence. A set of visual features p K 'G $qsr 4tI�K ;�u $v r 4tI�K ; LJwr P 7 is then constructedby using the
Cartesianpixel positions

$qDr 4tI�K ; of the interestpoints
togetherwith their pixel neighborhood T written in
vectorform as

$v r 4OI�K ; .
The feature trackingalgorithmasproposedby [12]

and further developed by [13] matchestwo feature
sets, p K N and p KQx , by constructing a pair-wise simi-
larity matrix y given by:z 4Q{ u}|3; '�~J�^����4 $v r u $v�� ;=< �����������c� h k {�� n 4 $qsr u $q � ;��� E� r�� K �
where { u}| index interestpoints of p KON u p K x respec-
tively, k {�� n is a spatialsimilarity measure(suchasthe
Euclideandistancein the imageplane)and �^��� a
featuresimilaritymeasure(suchasanormalizedcross-
correlation, seebelow). If wedefinethestandardSVD
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of thesimilarity matrixto be y '�� ���������
, thema-

trix definedby yc� '*� ��� �
thenyieldsaone-to-one

featuremapping betweenp K N and p KQx by taking the
largest elements eachin row andcolumnof y � [12].
Oneof the advantagesof this approachis the combi-
nationof a correlation termanda distancetermin the
similarity measurewhich increasesthe robustness of
the matching process considerably [2,13]. A similar
approachis consideredin section2.3for thedefinition
of new metricsusedin thekernel functionsof SVMs.

For this studythe feature representationconsistsof
thesetof featuresp which could be trackedover the
wholeinput imagesequence F (larger imagein figure
2). Theset p thusrepresentsa setof salientfeatures
which is determinedin a purelydata-drivenway from
dynamicvisualinputbyexploiting temporal continuity
through featuretracking.

2.3 Normalized cross-correlation functions

Presentedbelow arevariousmetricsto beincorporated
into thekernel functionsof theSVM for imageor fea-
tureclassification.Whencomparingimageswhosein-
tensitiesare represented by the vectors

$� and
$� , the

mostbasicmetric is the pixel-basedEuclidean norm:#b$� h $� # . Anotherpossibility is to usethenormalized
cross-correlations(NCCs)betweenthetwo imagesas:��4 $� u $� ; ' ] $� h $� �	 _ $� h $� �� a#b$� h $� �	 #.#b$� h $� �� # (2)

where
$� �	 u $� �� are the vectors of the meanvalue of$� u $� respectively. Clearly, h �*� ��4 $� u $� ; ���

and��4 $� u $� ; ' ��4t¡ $� < " uM¢ $� < k ; for ¡ u " u£¢�u k¥¤§¦ . ��4 $� u $� ;
is thusinvariant to an affine transformationof image
intensities.

For the classificationof the featuresas presented
above, the following two approachescan be used
as metrics in the kernel functions. Assume the
two images are represented by position and fea-
ture vectors asdefinedbefore: G $q r 4 $� ;�u $v r 4 $� ; L�wr P 7 andG $q¨r 4 $� ;�u $v r 4 $� ; L�©r P 7 . The metric evaluatedon the fea-
turesonly is definedas:

�%ªs4 $� u $� ; ' �o w« r P 7�¬ 0 �� P 7 
®­®­®­®
 © ��4 $v r 4 $� ;�u $v � 4 $� ;�; (3)

Themorecompletemetricusingpositionand feature
informationis expressedas:��¯�ªb4 $� u $� ; ' 7w U wr P 7 ¬ 0 � � P 7 
®­®­®­®
 ©±°4?��4 $v r 4 $� ;�u $v � 4 $� ;�;@< � ;����� 4 h � #¨$q r 4 $� ; h $q � 4 $� ; # E ; h �,² (4)

Theabove NCC metricsareincorporatedin thekernel
functionsof theSVM asshown below. Thesekernels

arepositive definiteandthusallow SVM training. It
is not known, however, whetherthey satisfyMercer’s
conditionsandthereis thusnoguaranteethatthemar-
gin in feature spaceis maximized [3].

3 Numerical experiments

3.1 Databaseand representation

Thedatabaseusedin thefollowing experimentsis the
MPI human headdatabaseasdevelopedanddescribed
in [14] andis composedof 100maleand100 female
three-dimensionalheadmodels. From this database
sequencesshowing a horizontal 180³ rotation of the
headsare generated. Individual frames consist of
256x256 pixel 8 bit greyscale imageswith a black
background. The imagesarepre-processedsuchthat
the heads have the samemeanintensity, samenum-
ber of pixels andsamecenterof mass. The removal
of theseobvious cuesis doneto make classification
a hardertask. In the following experiments we re-
port resultsfrom a random subsetof 100headstaken
from the whole processeddatabase. We first split
thefull rotationsequenceinto 3 subsequencesdefined
by the following views: 4 hµ´�¶ ³¸· hº¹�» ³ u h ��¼ ³½·��¼ ³ and ¹�» ³ · ´.¶ ³ ; yielding 6 trainingvectors. The
separatetestsetis chosento studytheinterpolationca-
pabilitiesof theclassifiersandconsistsof 2 intermedi-
atesubsequences,namely 4 h¿¾ � ³ · hµÀ�Á ³ and ¶ ³ ·À�Á ³ ; yielding 4 testingvectors.

The simplest representation of the above image
sequencesconsistsof the raw pixel data from the
views as definedabove, which are reduced to 32x32
pixel imagesfor the sake of numerical tractability.
Trainingandtestingarethenperformedon the 1024-
dimensional vector obtained from the corresponding
imagematrix. Featurerepresentationsareextractedby
featuretrackingaccording to section2.2from thesub-
sequencesof the training setandtestingset,resulting
in 6 featuresetsp usedfor trainingand4 setsfor test-
ing. The size of the local pixel neighborhood T of
eachinterestpoint is chosento be7x7andthenumber
of trackedfeaturesis setto 21(seesection3.3).

3.2 Classificationof images

This section presents results from classificationof
images using the raw pixel representation. We
first consider two types of benchmark classifiers,
namely the K-nearest-neighbors (KNN) and K-
highest-correlations(KHC) classifiers.A KNN clas-
sifier assignsan unknown pattern

$Â to the class� � Ã 4 $Â ; � B according to:
Ã 4 $Â ; '0�2£Ä ¬�ÅgÆ r P 7 
®­®­®­®
 Ç U � È P 7 #s$Â h $É rÈ # where

$É rÈ ¤ TËÊ 4 $Â ;
is in the Euclidean neighborhood of

$Â . Conse-
quently, we defineKHC classificationaccording to:Ã 4 $Â ; ' 0�2£Ä ¬ 0 � r P 7 
®­®­®­®
 Ç U � È P 7 �ÍÌ�ÎJÎ�4 $Â u $É rÈ ; where
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$É rÈ ¤ TËÏ 4 $Â ; belongs to thevectorswith highestcor-
relationsto

$Â . Setting �ÍÌ�Î�Î�4 $� u $� ; 'Ð��4 $� u $� ; yields
classificationerror curvesasshown in figure 3. The
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Figure3: BenchmarkKNN andKHC classification:themin-
imum classificationerror for KNN is 39.25% andfor KHC
is 38.25%, bothfor K=2.

behavior of theKNN andKHC classifiersaresimilar
with a slight performanceadvantagefor KNN on av-
erage. The large decreaseof classificationerror forÑ ' �

is dueto theselectionof thetrainingandtest-
ing sets.Theviews in thetestingsetarein betweenthe
trainingviews suchthat

Ñ ' �
yieldsthebestgener-

alization.

The numerical resultsreportedin table 1 are ob-
tained using multi-classSVMs with or without the
NCC metric for heuristically-determined optimal pa-
rametersof the kernelfunctions. The SVM trade-off
parameter � is set to a relatively high value of

� ¶�¶
which favors separabilityover correct classification.
Furthernumerical experiments,however, show thatthe
classificationperformanceis to a largeextent insensi-
tive to this value. Whenconsidering RBF kernels,the
correlation function slightly increasesclassificationer-
ror with respectto theEuclideannorm. In thecaseof
the polynomial kernel, the classificationperformance
is unaffectedby thechoiceof thecorrelation function
or the norm. This behavior is valid for both multi-
classstrategies. Sincecomputationalcostsfor NCC
arelargerthanfor theEuclideannorm,it seemssuffi-
cientto usethesimplerEuclidean norm in this case.

The optimal parameters found for both multi-class
strategies are different which is due to the intrinsic
structureof the two protocoles. The 1-vs-1strategy
outperformsherethe1-vs-r strategy andwe alsofind
higher invarianceof the classificationerror with re-
spectto the kernel function. As far as the number
of SVs is concerned, all elementsof the training set
areSVsfor a 1-vs-1strategy, whereasonesixth of the
training set are SVs in the caseof a 1-vs-r strategy.
The1-vs-1strategy thusneedsmoresupport vectors in
total for a slightperformance gain.

3.3 Classificationof features

In this section,we present classificationresultsfor the
featurerepresentation.As mentioned before, the na-
ture of the interpolation problem consideredhereim-
plies a minimal classificationerror for theKHC clas-
sifier at

Ñ ' �
. The benchmark experiments us-

ing KHC classifiersare thus donefor this caseand
yield classificationerrors of 55.00% for �ÍÌ�ÎJÎ�4 $� u $� ; '�1ª¨4 $� u $� ; andof 23.50% for �ÍÌ�ÎJÎ�4 $� u $� ; 'Ò�µ¯�ªs4 $� u $� ;
with

� ' À �s� ¶ 6¨Ó . Consideringfeaturesalonethus
degradesthe classificationperformance compared to
a KNN or KHC classifierapplieddirectly to the raw
imagedata(eventhough classificationperformanceis
above chancelevel). However, thecombinationof po-
sitionandfeatureinformationclearlyoutperformsboth
benchmark classifierson the images(23.50% com-
paredto 38.25%, cf. figure3). The informationcon-
tainedin the tracked featureset is thus bettersuited
for classificationthantheonecontainedin theimages
without explicit tracking. In the following, we only
considerthecombinationof spatialandfeatureinfor-
mation.

Theclassificationresultsreportedin table2 areob-
tainedby integratingthe �µ¯�ªb4 $� u $� ; metricin thekernel
function. In this case,experimentalpre-runs indicate
theimportancetocomputethesumin equation4overa
subsetof valuesgivenby the ¬ 0 � -function,whichare
higher thana pre-definedthreshold Ô (in the follow-
ing experiments,we usetheoptimalvalueof Ô ' ¶ÖÕ � )
in order to avoid noisein thecorrelation function. In
addition, only the × ' ���

highestvalues of the ¬ 0 � -functionin equation 4 areconsidered,i.e.,all features
arefed into the kernel andonly

���
areevaluated. In

this way, thenumber of effective components usedby
theSVM whenconsidering features (

���µ� ».´ ) is of the
sameorder of magnitudeasfor images( À �¿� À � )1.

Themainresultis that theuseof the featurerepre-
sentationyieldsa significantperformanceincreasefor
bothmulti-classprotocols (a decreasein classification
errorfrom 19.50% to 5.50% for 1-vs-r and16.25% to
8.00%for 1-vs-1). This confirms thata representation
which exploits only a small amount of prior knowl-
edgeaboutthedata(temporal continuity) canresultin
a large performancegain without increaseof the di-
mensionalityof theinputvectors.

The featurerepresentation increasesthe number of
SVs for the1-vs-rstrategy whencomparedto theim-
agerepresentation(16.00%to 37.67%). This indicates
on theonehanda more difficult classificationtaskbut
ontheotherhandalsoshowsthatthefeaturerepresen-
tationis lessredundant.As thenumber of SVsfor the
1-vs-1strategy is alreadyat ceiling for theimagerep-

1Using all valuesinsteadof the 21 highestdid not im-
prove theclassificationperformance.
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Table1: Classificationerrorandnumberof SVsfor SVM imageclassification.
SVM 1-vs-r classifierandwinner-takes-allÑ 4 $� u $� ; class.errorin Ø SV ratio in Ø����� 4 h%Ù #b$� h $� # E ; with Ù ' � Á �.� ¶ 6¨Ú 18.75 15.67����� 4 h%Ù 4 � h ��4 $� u $� ;M;�; with Ù ' � Õ ´ 19.50 16.004 � < ] $� _ $� a ; � with k ' » 19.25 15.834 � < ��4 $� u $� ;�; � with k ' » 19.25 16.00

SVM 1-vs-1classifierandDAGÑ 4 $� u $� ; class.errorin Ø SV ratio in Ø����� 4 h%Ù #b$� h $� # E ; with Ù ' ¾ ��� ¶ 6¨Ú 16.00 100����� 4 h%Ù 4 � h ��4 $� u $� ;M;�; with Ù ' � Õ � 16.25 1004 � < ] $� _ $� a ; � with k ' À 16.00 1004 � < ��4 $� u $� ;�; � with k ' À 16.00 100

Table2: Classificationerrorandnumberof SVsfor SVM featureclassification.
SVM 1-vs-rclassifierandwinner-takes-allÑ 4 $� u $� ; class.errorin Ø SV ratio in Ø����� 4 h%Ù 4 � h � ¯�ª 4 $� u $� ;�;�; with Ù ' �J� u � ' ¹ �.� ¶ 6¨Ó 5.50 37.67

SVM 1-vs-1classifierandDAGÑ 4 $� u $� ; class.errorin Ø SV ratio in Ø����� 4 h%Ù 4 � h � ¯�ª 4 $� u $� ;�;�; with Ù ' ¼ u � ' Á ��� ¶ 6ZÓ 8.00 100

resentationa further increasein number of SVs is not
possible.Thismightbethereasonfor thelowerclassi-
fication performanceof the 1-vs-1strategy compared
to 1-vs-r(8.00% comparedto 5.50%).

In contrast to thepreviousresultswherepolynomial
kernelsperformedaswell asRBF kernels,thefeature
representation yields ratherinconsistentperformance
for thesekernelsandthe resultsarethusnot reported
here. Furtheranalysis shows that they result in over-
fitting of thedatawhich indicatespoor generalization
ability.

4 Conclusions

In thispaperwehaveproposedarepresentationfor im-
agesequenceswhichconsistsof asetof trackedvisual
features. This representationsignificantly decreased
theclassificationerrorwhencomparedwith a simpler
representationcontaining only raw pixel datafor both
SVM andbenchmark classifiers.For SVM classifiers,
a new metric was developedwhich performs feature
matching directlyin thekernelfunctionusingbothpo-
sition andpixel informationof the trackedvisual fea-
tures.Theproposedframework seemsto beaneffec-
tive andefficient way to exploit thedynamic informa-
tion in visualinput.

We also investigated the effectivenessof the DAG
strategy for multiple classproblems which resulted
in sometimessignificantgains in classificationperfor-
mance.Thisbehaviourmightbedueto thefactthatthe

numberof classesconsideredhereis large( B ' � ¶.¶ ).
However, onecannot draw thegeneralconclusionthat
the 1-vs-1strategy alwaysperforms best,which mo-
tivatesfurther researchinto multi-class extensions of
binaryclassificationalgorithms.

Futureresearchwill investigatethepropertiesof the
SVs(number, relativeencoding andsparseness)which
shouldprovidefurther insightsinto thecompactnessof
thedifferentrepresentations.Anotherline of research
concerns thegeneralization capabilitieswith regard to
noisein thelearningandtestingdata(e.g.,occlusions
andimagenoise).In addition, wearecurrently explor-
ing differentkinds of visual featureswhich aremoti-
vatedby biological findings andwhich could further
improve theperformanceof theproposedframework.
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