Automatic acquisition of exemplarbasedrepresentationsfor recognitionfrom
imagesequenes
Proceedingsof CVPR'01

ChristianWallraven* andHeinrich Bulthoff
Max-Planck-Institug for Biological Cybernetics
72076Tubingen,Germary
{christian.vallraven heinrich.luelthof} @tuebingen.ipg.de

Abstract

We presentan exemplarbasedobjectrecagnition system
which is capalle of on-line learning of representation of
scenesand objectsfrom image sequenes. Local appea-
ance featuiesare usedin a tracking framevorkto find ‘key-
frames’of the input sequenceluring learning Therepre-
sentationof the stored sequencewhich are usedfor recay-
nition of novelimagesconsistsonly of the appearance fea-
turesin thesekey-framesand contans no further a-priori
assumptias abou the underlyirg sequenes. The system
is ableto createsparseandextendatte representationsind
showsgoad recanition performarce in a variety of view-
ing corditionsfor datakasesof natural andsynthetiamage
sequenes.

1 Intr oduction

Many compuer vision recogtition systemstypically
followed Marr’'s appoach to vision in building three-
dimersional (3D) repiesentationsof objects and scenes
(e.g, [2]). The view-basedor exempar-basedapprach,
however, hasrecerly gainedmuch momentumdueto its
corceptualsimplicity and strongsupport from studieson
human percetion [5, 20]. In this apprach, an objectis
repesentedoy viewer-certered’snapshotsinsteadof an
objed-centeredD model.

In recentyears exenplar-basedvision systemsbased
on local image descripors have demorstratedimpressie
recaynition perfomance[l, 6, 8, 13, 18. Thesesystems
nomally work on a pre-defineddatabasef objects(in the
caseof [13] morethan1000images).However, one prob-
lem theseappracheshave hardy addresedis how to ac-
quire sucha database.When consideing an active agert
which hasto learn andlater recogiize objects,the visual
input the agentreceves consistsof a sequenc®f images.

The tempaal propertiesof the visual input thusrepresent
anotter soure of informationthe agentcanexploit [9].

In this work, we therdore want to go one stepfurther
and move from a datalaseof static imagesto image se-
guerces. We presenta low-leve recogition systemwhich
is capableof building ondine imagebasedscenerepresen-
tationsfor recogition from image sequenes. Thesese-
guercesareprocessedtby the systemto find ‘key-frames’-
frames wherethevisualchamein thescenas high (related
to theideaof ‘aspect-gaphs’'from [7]). Thesekey-frames
arethencharaterizedby local imagedescriptes on mul-
tiple scaleswhich areusedin the learningandrecogtition
stages. The systemusesthe sameframeawvork for learring
andfor recogiition which leadsto an efficient and simple
implementation. Furthernore, aninheent disadwartageof
thetraditionalimage-tasedappoacheds thatthey require
mary trainingimagesin orderto be ableto recoqize ob-
jectsin avarietyof viewing conditionsthusleadingto high
memay requiranents.Our framevork addressethis prob-
lem by offering an autonatic data-divenway of selecting
whichimagedatato keepandby usingonly asmallamaunt
of theimagedataitself for recogition.

We testedthe recognition systemon databaesof com-
puter rencered sequenes of facesand real-word video-
sequenes of cars. Recogiition resultsdemastratedthe
robustnessof the systemuncer a variety of viewing condi-
tions. We alsopresenpreliminary resultsfor anincremen-
tal learnirg stratgy whichis usedto expandthe key-frame
representation.

2 Overview

During learning(seeFigure 1), the input consistsof an
image sequene, which is processedn-line. In the first
framefeature areextractedatseveralscalesyhicharethen
trackedin thesubsequet frames.Oncetrackingfails,anew
key-frameis addedto the represetation anda new setof
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Figure 1. Overview of the learning stage.

featuesis extradedin this key-frame,andthe whole pro-
cessrepeatauntil the sequene ends. Thefinal repesenta-
tion of thesequenethenconsistof anumbe of key-frames
cortaining visual featureson multiple scales.For recoqi-
tion of novel testimages,local featuresare first extracted
andthenthesefeatuesandtheir configuationsarematched
aganstthekey-framesn all learnal repesentations.

Section3 presentshe databasewhich wereusedto test
the perfamanceof the system.Section4 descrilesthefea-
tureswhich areusedin the systemtogetter with the match-
ing algorithm thatis appliedbothfor tracking andrecogi-
tion. In Section5 the geneation of key-framesis analyzed
andrecoqition resultsfor the systemon the databaseare
presetedin Section6. In Section7 aschemdo extendal-
read existingmodelsis introducedandpreliminary results
aregiven Section8 consides the proposedframework as
an exenplarbasedappoachand addressesritical points
oftenbrowhtforward agairst this appoach.

3 Databases

The first databasewhich was used for trackng and
recanition experimentsin sectionss.1 and6.1 containst
shortvideo sequencesnainly usedfor optic flow bench-

marks! and 4 sequencesaken with an off-the-shelfcam-
corcer. Thisdatalasecontairs sequeneswith varioustypes
of motionin thescene.

The seconddatabaseonsistsof 30 sequenesof faces
turning from -90 degrees(left) profile view to +90 degrees
(right) profile view. The sequencesvere rencered from
mocels of 30 individualswhich wererecodedwith alaser
scanne(CYBERWARE™) to obtain highly realistic 3D
structue andtexture data. Eachof the sequenescontairs
61 framesat poseintervals of 3 degreesandwasrendeed
with a black backgound This databae was usedto test
thesystemundercontrdled motionandillumination condi-
tions (for a detailedexamiration of the perfamanceof the
systemunderillumination see[21]).

The third databaseconsistsof sequenes, which were
takenwith anoff-the-shelitamcoder(Sory DCR-TRV17).
We took 10 video sequenes of different carswhich were
recodedby walking with a video-cameraarourd a carun-
derdaylight lighting condtions. No effort wasmadeto con-
trol shakirg or distanceo the car For recogition we took
atest-seof 25phaosof 5 of thecarswith astandardligital
cameraOlympusC-14®, notethatthis alsomeandiffer-
entcameraoptics)uncer different viewing corditions. This
databaséogethemwith the photoscortainsall kinds of vari-
ationsin motionin thesceneanddifferert backgounds and
illumination in thetest-set.

All sequeneswereresizedto 512)512 pixels andpro-
cessingwas doneon the full color images except for two
morochrone sequenesin thefirst datatase.

4 Feature extraction and matching
4.1 Visual Features

We decidedto usecornes as the basisfor visual fea-
tures,sincethesewerefound to begoodandrobustfeatues
uncer mary viewing condtions in numerousother works
(e.0,[14]). In order to extract corrers we usea standard
algotithm [17] modfied to integrate information abou all
threecolor channés sincethis furthe improvedrobustness
in the color image sequencesve processed. Cornersare
found by inspectingthe structurein a 9x9 neigtborrood N
of eachpixd in thefollowing way:

) ol ol ) ol ol

H= N\ 8z’ 8z N \ 8z’ By
- E ol ol ) ol ol
N \ 8z’ By N \ 8y’ By

with <, > asdot-prodict and ] asthevecta of RGB-values

suchthatan elementof H is e.g. H(1,2) = 3 58k +

oI, 81, oI, 8l .

T e T o oy The smallerof the two eigemvalues),
1Available at

http://sam  pl.eng.ohio-s tate.edu/"sam  pl/database.
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Figure 2. Examples of feature tracking. The first frame of the sequence together with trajectories of

the tracked features from all scale levels is shown.

of H yieldsinformationabou thestructue of theneightor-
hoad.

In the next step, a hierachical clusteringalgorithm is
usedto clusterthevaluesof A, into two setsandusetheone
with the highe meanvalueasthefeatue set.Usinga clus-
tering algoiithm hasthe adwentagethat one doesnot need
to specifya hard-odedthresholdfor the valuesof X, for
eachimage.Furthernore,thehierachicalstructuremakesa
coase-to-finestrategyy possibleandthusspeedsiptheclus-
teringprocessconsideably.

Visual featues are then extracted by storingthe image
locationof eachcornertogethemwith theintensityvaluesin
a 11x11 pixel imagepatchsurraundirg the corne. Thisis
doreonall threescalego getacoarse-tefinerepresetation
of theimageconsistingof abou 200featuresn total.

4.2 Feature matching for tracking and recogni-
tion

Both tracking and recoqition in the proposedsystem
corsist of finding corresponénceshetweenfeaturesetsin
two images For tracking,matchirg is donebetweerfeatue
setsfrom themostrecentkey-frameof thesequencandthe
currentframe. For recogiition, matchingis dore between
the testframe andall the key-framesin the mocel. As a
corsequenceave usethe samematchingalgoithm for both
tracking andrecogition which leadsto an efficientimple-
mentatia.

The method which we shortly summarizeis basedon
[12] (wher it wasusedfor stereamatching) and[15] andis
avariationon thewell-knovn Procrustegproblem of rotat-
ing two dataset®ntoeachother

Thealgorithmconstructsa similarity matrix A with each
entry A(i, j) givenby two contrituting terms:

—5— (—dist(f3,f;)) -

.. 5— (1-NCC(fi f))
A(i, ) = e 2%dist - e%Nce

wheref; is the positionof feature; in oneimageand f; of
featue j in anotlterimageands, j index all featurepairsin

thetwo images.

The first term measues the image distance(dist) from
featue i to featurej with o4i5¢ Setto smallvaluesthusgiv-
ing atenteng toward closematchesn distance.The sec-
ondtermmeasurethenomalizedcross-carelation(NCC)
of the neighhorhoodsfrom featuesi andj, with o ncc set
to valueslargerthan0.5,thusbiasingtheresultstowardfea-
turesthataresimilar in appearace. TheNCC is evaluated
in thesmallimagepatchsurromndingeachfeature.

Fromthe SingularValueDecompaition of A

A=U.v-WT

thematchirg algorithm constructshemodifiedSVD of this
matrix, definedby

A'=U-1-WT

wherel is theidentity matrix. Featuresg andj arematched
if they have boththehighestentrarcein thecolumnandrow
of A’ andif the NCC exceed a given thresholdthncc.
This methodeffectively provides a least-squareanappng
betweerthe featuresetsandat the sametime ensureghat
thereis a one-teone mappng of featues®. For recoqi-
tion andtracking purposeswe court the nunberof matctes
in a testframewith respecto a givenreferere frameand
usethe percentaye of matdesasthe decisioncriterion for
matchirg.

The resulting algoithm is capalle of matchirg under
affine featuretransfomatiors betweertwo imagesensumng
reliableandflexible trackirg andrecogiition.

5 Key-frames

5.1 Tracking between Key-frames

As showvn in Figure 1, a represetation of the sequence
is genergedby trackirg thefeatuesfoundin thefirst frame

2Note, thatthefeatre mappingcanoccu betwea sub-set®f features.



Figure 3. Key-frames for two face sequences and two car-sequences.

until trackirg fails at sometime. We use the matching
algotithm to matchfeaturesfrom the first to the currert

frame. The paranetersareog;ss = 10,20,40 pixels for
eachof thethreescalego restrictfeatue displacemenand
oncc = 0.7 andthnoe = 0.7 to find featueswhich are
similar in appearace. Trackingfails oncethe percemage
of matche falls below thi.ac = 25%; at this time a new
key-frameis insertedinto the mockl, a new setof featues
is found andthe processrepeatsuntil thesequeneends.In

theend,the modé of the sequenceorsistsof a nunmber of

key-frameswith visualfeaturesat severalscales.

Figure2 shavsexamplesfromthetrackingprocessising
five sequenesfrom thefirst databae. Thesequencén Fig-
ure 2a containsmainly translatioml motion orthogonal to
the viewing direction and Figure 2b contans translatiorl
motion in depth Figure 2c shows trackirg for rotatioral
andFigure2d for rotatinal andtranslatioml motion,while
thesequenein Figure2e contairs amorecomgicatedmo-
tion of a facegettingnearerto the camera.ln all casesthe
motion in theimageis accuately captued by the tracking
procedure.

The matchirg algoiithm is capableof handlirg also
larger feature displacerents betweenframes, so that it
coud even be implementedin real-time sinceit does not
needto procesevery singleframe.

5.2 Key-framegeneation

In the tracking phase,the algorithm hasfour parane-
terswhich contrd its behaiour: o4ist, once, thneo and
thyrack. FOr the settingsgivenin the previous sectionwe
first analyzedhekey-framesfor theface-andcardaabase.

Forthecontrdled motionin theface-datahsethesystem
found 7 key-framesfor eachof the 30 sequeneswith each
key-framerougHy in thesamepose(Tablel andFigure3).

Key-frame | 1 2 3 |4]5]|6 |7
Pose(dey) || -90 | -61 | -33 | -6 | 18 | 44 | 73

Table 1. Averageposein degrees for eachkey-frame

Theangular distanceébetweerkey-framess smallestor
the frontd poses(betweenKey-frames4 and5). This is
dueto thefactthatarotationaroundthefrontal view causes
larger variaionsin featues(suchasearsdisapparing and
appeang) whichleadsto anearliertermirationof trackirg.

For the cardatalasewith varying amounts of motion
we found that a similar numker of key-frameswas gener
atedoverall, with thekey-framesroughly covering thesame
viewpaints of the cars(Figure 3 shavs somecorresponihg
key-framesfrom two carsequenes).

In geneal, we found that increasingthrack, oncC,
thnoco anddecreasig ogist leadsto morereliabletracking



Figure 4. Reconstruction of two images from
their feature representations.

but alsogeneratea large numter of key-frames.Ourchoice
of paranetersreflectsatradeoff betweergeneatingavery
sparsaepresetationreliablerecogition betweerthe gen-
eratedkey-frames.

5.3 Sizereduction

Thefinal represetationof the systemconsistof anum-
ber of key-framescontairing small image patcles which
resultsin a large size reductio for the processedimage
sequenes. This is an essentialproperty for ary image-
basedsystemworking on sequenessinceothemwise huge
amounts of datawould have to be stored.

In orderto calculatethe sizerediction of the represen-
tation, we compaed the size of the final sequene mocels
for both databaseto the raw pixel dataandto the size of
mpeg2-ercodedsequenes’. For the cardaabaseraw data
corsistedof 512)612 pixel frames with 25 framesper sec-
ond and on average 322 second of image datayielding
a total of 603.8MByte, mpay-2 compesseddatasize was
onaverag 22.1MByte. For theface-atabaseaw datasize
was45.8VIByte, mpeg-2 compessiorresultedn 1.6MByte
onaverage.

The modelsfrom the cardatabae geneated172 key-
frames on avergge with eachkey-frame contairing 200
featues and 11x11 pixels per feature,yielding a total of
1.2MByte; this leadsto size reduction of 998% for raw
dataand94.®6 for mpeg2-compessediata. Thefacemod-
els consistedf 7 keyframesandresultedin sizerediction
of 989% and69.7% respectidy. The lower sizereduc-
tion for the mpeg2-conpressedace-@tabasaevas due to
the concentation of all 200 featureswithin the region of
the facewhich resultedin larger ovetdap of feature over

STheencodris availableathttp://ww  w.mpeg.org/MP EG/MSSG/.
For all experimentsthe default parameg¢rswereused.

scales.

While mary otherappr@achescharaterizefeature with
a lower-dimensionalfeatue vector([6, 8, 10, 13, 18]) and
thuscoudd provide even further sizereductio, we wantto
emptasizethat with the propsedframevork someof the
original imagecortentis still available.

Figure 4 showvs two examges of the recorstruction of
imagedatafrom local featuresin the representation.Re-
constretion is doneby drawing all features at the coarsest
scale,exparding theimageto the next scaleandrepeding
this procesauntil the finestscaleis reached In the reca-
structedmages small-scaldeatuesappea sharpwhereas
large-scaleeatuesareblurred

6 Recognitionof Images

In the following we will descrile three expetiments,
which testedthe recogition performanceof the systemon
singleimages.Thefirst expeimentwasdore with avariety
of imagedegradatiors to testthe robustnesof the system
uncer syntheticnoise. In the secondexperiment, we tested
usingface-ctabasavith facesvarying in poseandillumi-
nationintensity Thethird recogition experimentwasdone
onthecarsequencewith atest-sebf 25 picturestakenun-
derdifferen viewing condtions (with adifferentcameraon
differentdays).

In all expeiments agan the matchirg algoithm was
usedto recoqize a givenimageby matchingthe featues
from thisimageto eachframe in the databaseFor thefirst
experimentmatchingwvasdore agairstall individual frames
of the original sequenes whereasn the secondandthird
experimentthe key-framerepresetation was used. In all
casestheframewith thehighest percentagof matcteswas
selectedasthebestmatchirg frame.

6.1 Imagedegradations

Forty randan imagesfrom thefirst databasef shortse-
guercesweredegradedwith 7 typesof imagedegradation
(seeTable 2) rangng from changsin intensity to warp-
ing theimage. Also shown in Table2 is the meanmatch
percemage of the best matchirg frame and the recoqi-
tion rate. Larger recognition failuresoccured only in the
sheay zoom and occlusioncorditions, wherefeatue dis-
tanceswveresometimegloserto neightoring framesdueto
the geoméric transfomations. To demorstratethe limits
of the featurebasedapprach,we randanly superimpsed
12x12 pixel squaresn theocclusioncordition over theim-
agessothat15% of theimagewasoccluced. Thisledto a
drasticreductian in recoqition rate dueto the almostde-
stroyedlocalimagestatistics.

4Note, thatthe inter-framedistane in the first daabasds small, mak-
ing this ahardtask.



Figure 5a shavs one correctly recogrized test image
from condtion 8.

type match recogtition
percemage rate
1. brightnesst+60% 664% 97.%%
2. contiast+60% 656% 97.9%
3. noise+40% 576% 95.0%
4. equdized color 533% 95.0%
5. shear 319% 85.00%
6. zoomx 1.5 329% 82.9%
7. occluck 15% 5.8% 47.%%
[ 8.allof1,2345 [ 283% | 77.5% |

Table 2. Recogiition resultsfor imagedegradations
6.2 Facedatabase

For the face-datasewe createdfour test-setsthefirst
test-setconsistedof all framesof the original sequenes
which werenot key-frames.This wasdoneto testwhether
the systemgereratesa consistentepresentatiorfor all se-
guences. In the secondsetwe rendeed all 30 sequenes
agan with two differert strengthsof lighting, andthe third
setcontaired posevariationby +15 degrees orthagonalto
the direction of rotation. Finally, the fourth test-setcom-
binedall threesetsinto one.Table3 liststhematchpercent-
ageandtherecoqition ratefor all test-setandFigure5bc
shav recaynition resultsfrom the secondandthird test-set.

between lighting pose all
key-frames | variations| variations|| three
match 60.2% 33.5% 39.5% 44.5%
percenage
recogrition 100% 90.1% 98.2% 81.2%
rate

Table 3. Recogition resultsfor theface-atabase

While recogiition resultsfor eachtest-setalone were
vely goad, recogiition perfomancedroppedfor the com-
bined test-setdue to a greaterrate of falsematches. Al-
mostall falsematclesfor a given faceF occured for im-
agesof otherfacesin the sameposeasthe key-framesfor
faceF. Theseviews led to a higher percentag of matches
thanviews of faceF underdifferentlighting in poseswhich
arefar away from key-frameviews.

Interestindy, the bestmatchirg key-framecorrespnded
to thecorrectposein 99.2% of all test-image regardlessof
faceidentity. Thisresultshavsthatthesystemis capableof
reliablepose-estimatio(seealso[21]).

6.3 Car-database

Thetest-sefor the cardaabaseconsistedf 25 pictures
of carsfrom the databaseén differentviewing condtions.
Thesecanbe broady categyorized into chargesin lighting
condtions (Figure5d), differentviewing distancegFigure
5e) andocclusionby otherobjects(Figure 5f). In order to
redwce false matchesdueto large featue distancedn the
imageplane,eachtestimagewasdisplacedy 40 pixelsin
four different directiors and the matchalgorithmwas run
for eachdisplacenent. Table4 lists againthe percetageof
matchesandthe numberof falsematchesand Figure 5d-f
shav recanition resultsfor eachof thethreeviewing con-
ditions.

lighting viewing occlusion
variatiors distance
(12images)| (8images)| (5images)
match 191% 172% 18.%%
percemage
false 2 1 1
matches

Table 4. Recogtition resultsfor the cardaabase

Comparedo the face-datahsethe averag percemage
of matcheswvas muchlower dueto the large variations in
appeaance. A closeranalysisof the recogiized frames
shavedthatthepercentgeof matcheslroppedverysharply
arownd the bestmatchirg key-frame,wheteasall othertest
imagesgave a nealy constah amoun of matchesover all
key-frames.

7 Incremental Learning

Sincethe first frame of a sequene alwaysbecome the
first key-frame,the resultingsetof key-frameswill be dif-
ferert for aslightly differentstartingpoint. In orderto over-
comethis problemandalsoto provide ageneal framevork
for incrememal learnirg of models,anadditioral stepin the
learnirg phases introduced.

The first learningphasegenertes a set of key-frames
from a sequene asaninitial refererce representation.For
eachnew sequenceagain key-framesareextracted Then,
eachkey-frame is compredto the alreadylearnedkey-
frames with the recogtition algoithm. If no matchis
found®, theframeis addedo therepresentationwherea for
eachmatcha hit-counterfor the correspondiny key-frameis
increased

5The threshold for rejection of a frameis setto threj = thirack tO
ensureconsistecy



The resulting represent#on is a conneted graph of
chaacteristicviews of the preseted sequeneswith addi-
tional information abaut the frequeng/ of eachview. This
addtional informationcanthenbe usedto speedip match-
ing sinceit is morelik ely thatanew framematches ahighly
frequentedview®.

Here, we want to preseh preliminary resultsfor this
incrermental learnirg schemewhich were obtaired with
the face-déabase. We rendeed additicnal sequenes of
two faceswith threedifferent poseanimatims. Figure 6
shaws thesesequenesfor onefacetogetter with the con-
nectedkey-framerepresent#on in its final statein a view-
ing sphererepresentatio with eachkey-frameat its corre-
spording position

Thelearningprocessstartedwith thefirst sequencérun-
ning alongthe horizontal axis in Figure 6) which created
theinitial representatio, thenthe secondsequene wasin-
tegrated(runring alongtheverticalaxis)whichresultedn 6
addtional key-framesin the peripkery. Thethird sequene
(diagonalfrom top left to bottomright) againadded 6 key-
frames. Thefinal test-sequenceonsistedf 32imagescov-
eringacircle in theviewing sphergthe solid circle in Fig-
ure 6), which resultedin 9 key-frameson its own. Since
theviewing spherevasalreadycoveredin mary areaspnly
3 key-frameswere addel to the representation(shavn in
Figure 6 with exclamatian marks). The key-framewhich
recevedthe mostmatchesduring thelearningprocesswas
theframein thecenter

8 The Bigger Picture: The proposedframe-
work asan exemplarbasedapproach

The proposedframework is purely exempar-basedj.e.
it doesnot rely on pre-castructedmodelsor high4evel a-
priori knowledge, but insteadconstruts a represetation
closelycomectedwith theoriginalinput data.

Some of the main argumentsaganst exenplar-based
methals, which are often put forward andwhich we want
to addesswithin the proposedframenork, arethat

o they require alarge nunberof trainingexamges,

e they uselarge amourts of storagefor the repesenta-
tions,

e indexing into therepresentatiortakesalongtime.

While theamoun of trainingexamgesin ourframework
is presumably still higher to obtain invariant recogiition
thanwith anundelying modé (e.g, [3] for faces)thecom-
bination of configuratioral information and appearace-
basedinformation in the local feature matching process

6In Psychophysis terminology the framewith the highest numberof
matcheswould be called the canontal view (see[11] andalso[4] for a
recentstudy) which playsanimportart role in humanobject recoqition.

shavs increasedrobustnessin mary viewing situations
(suchasocclusionchang in lighting conditins[21], sen-
sor noise). This propety thusenableghe systemto gen-
eralize over more casesin compaison to other image-
basedechniqiesusingwholeimageswhichin turnresults
in fewer training exampges. The matchingalgorittm es-
sentiallycomhbnes elementsof two prominent appra@aches
which arepursuel in objectrecoqition - thefeature-lased
andtheapparance-bsedapproah.

In additian, as shavn in Section5.3 our framework
createssparserepresetations, where the selectionof lo-
cal featuesover several scalesstill allows for someactual
imageinformation to be presentin the represetation (see
Figure4). This represets a comgomisebetweerthe two
extremes of pureimage-lasedappioachesand highy ab-
stractedmockl-basedappoaches.

With regard to matcting timesfor recoqition, the com-
plexity of matchiry is linearwith theamoun of trainedse-
guerces, linear with the amouwnt of key-framesfound and
cubicin theamouwnt of featuesin eachkey-frame. Thein-
cremertal learnirg techriquedescribedn the previous sec-
tion, however, allows for a reductio in both training and
recoqition time sinceat somepoint thewholeimagespace
will becoveredwith key-frames.In addition theconcep of
the canorncal view reducesecogition time by takinginto
account the preseration statisticsof the learnedrepresen-
tation. Furthemore, more sophisticatedlatabaséndexing
techniqieswould offer further improvemert for recogtition
time. A possiblesolutionto overcomethecubiccompleity
for SVD will beto usesparsamatrixtechnigies(asalready
suggestedn [12]). This is basedon the obseration that
ary givenfeatue nomally hasonly a low number of pos-
sible matchcandidéesthusmakirg the similarity matrix A
sparse.

The propsedexemplarbasedframevork thusis ableto
addessthesecritical pointsandoffer solutionsto improve
the perfamanceof imagebasedsystems. On the other
hand the repesentatiorof this systemconsistingof local
featuescanbe usedasthe basisfrom which to constructa
higher-level representizon. Analysisof thefeaturesn key-
framesacrossnodelsbelorgingto onecateyory(e.g. faces)
canbeusedto find comnon features or even groupsof fea-
tures(seealso[19]) which are charactastic for this cate-
gory. This would repiesenta steptowards creatirg model-
basecknowledge from existing exenplar-basednodels.

9 Conclusionand Outlook

We have presentd an exempar-basedrecogtition sys-
tem which is capableof on-line learningof sparsescene
representationsfrom arbitrary image sequences. It uses
a simple and efficient frameavork both for learning and
recoqition. The useof sequenestogetter with the key-



framing technige enablesthe systemto createrepresen-
tations which reflectthe amoun of visual charge in the

scenes. Recognitim perfamanceon databaes contain-
ing syntheticandreal-world imagedatademorstratedthat
the systemis capableof recogiition and reliable pose-
estimationuncer a variety of different viewing condtions.

In addition resultsfor the incremental learning scheme
shavedthatthe key-framerepresetation canbe easily ex-

tenda.

The systemcurrerily operatesn closed-lop conditiors
(i.e.theinput consistsof pre-cu andlabelledsequenesfor
learnirg). With theuseof moreglobally evaluatedfeatues
suchascolorandtexturehistogams[10, 16] thesystermwill
decice autoromouslywhento begin anew model. In addi-
tion, theresultingmodelswill includeinformationabaitthe
objed andthe surraindings sincethe systemusesno segy-
mentatim. While therecogiition expeimentshave shavn
thatthe systemcancopewith backgoundvariatians,in an
active vision paradign an attentionmodule could actively
selectthe featureshelongingto oneparticdar object,while
theothes arediscareéédandnottracked
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Figure 5. Recognition results with a) degraded and b)-f) novel images. Test images are depicted in
the upper row.

Figure 6. Key-frame representation after three additional sequences were integrated.
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