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Abstract

Wepresentanexemplar-basedobjectrecognition system
which is capable of on-line learning of representations of
scenesand objectsfrom image sequences. Local appear-
ance featuresareusedin a trackingframework to find ‘key-
frames’of the input sequenceduring learning. Therepre-
sentationof thestoredsequenceswhich are usedfor recog-
nition of novel imagesconsistsonly of theappearance fea-
tures in thesekey-framesand contains no further a-priori
assumptions about the underlying sequences. Thesystem
is ableto createsparseandextendable representationsand
showsgood recognition performance in a variety of view-
ing conditionsfor databasesof natural andsyntheticimage
sequences.

1 Intr oduction

Many computer vision recognition systemstypically
followed Marr’s approach to vision in building three-
dimensional (3D) representationsof objects and scenes
(e.g., [2]). The view-basedor exemplar-basedapproach,
however, hasrecently gainedmuchmomentumdue to its
conceptualsimplicity and strongsupport from studieson
human perception [5, 20]. In this approach, an object is
representedby viewer-centered ’snapshots’insteadof an
object-centered3D model.

In recent years exemplar-basedvision systemsbased
on local imagedescriptors have demonstratedimpressive
recognition performance[1, 6, 8, 13, 18]. Thesesystems
normally work on a pre-defineddatabaseof objects(in the
caseof [13] morethan1000images).However, oneprob-
lem theseapproacheshave hardly addressedis how to ac-
quire sucha database.Whenconsidering an active agent
which hasto learnand later recognize objects,the visual
input the agentreceives consistsof a sequenceof images.

The temporal propertiesof the visual input thusrepresent
another source of informationtheagentcanexploit [9].

In this work, we therefore want to go onestepfurther
and move from a databaseof static imagesto imagese-
quences.We presenta low-level recognition systemwhich
is capableof building on-line image-basedscenerepresen-
tationsfor recognition from imagesequences. Thesese-
quencesareprocessedby thesystemto find ‘key-frames’-
frames wherethevisualchangein thesceneis high(related
to the ideaof ‘aspect-graphs’from [7]). Thesekey-frames
arethencharacterizedby local imagedescriptors on mul-
tiple scaleswhich areusedin the learningandrecognition
stages.The systemusesthe sameframework for learning
andfor recognition which leadsto an efficient andsimple
implementation. Furthermore,an inherentdisadvantageof
the traditionalimage-basedapproachesis that they require
many training imagesin orderto be ableto recognize ob-
jectsin a varietyof viewing conditionsthusleadingto high
memory requirements.Our framework addressesthis prob-
lem by offering an automatic data-drivenway of selecting
whichimagedatato keepandby usingonly asmallamount
of theimagedataitself for recognition.

We testedthe recognition systemon databasesof com-
puter rendered sequences of facesand real-world video-
sequences of cars. Recognition resultsdemonstratedthe
robustnessof thesystemunder a varietyof viewing condi-
tions. We alsopresentpreliminary resultsfor anincremen-
tal learning strategy which is usedto expandthekey-frame
representation.

2 Overview

During learning(seeFigure 1), the input consistsof an
imagesequence, which is processedon-line. In the first
framefeaturesareextractedatseveralscales,whicharethen
trackedin thesubsequent frames.Oncetrackingfails,anew
key-frameis addedto the representation anda new setof
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Figure 1. Overview of the learning stage.

featuresis extracted in this key-frame,andthe wholepro-
cessrepeatsuntil thesequence ends.Thefinal representa-
tionof thesequencethenconsistsof anumber of key-frames
containingvisual featureson multiple scales.For recogni-
tion of novel test images,local featuresarefirst extracted
andthenthesefeaturesandtheirconfigurationsarematched
against thekey-framesin all learned representations.

Section3 presentsthedatabaseswhichwereusedto test
theperformanceof thesystem.Section4 describesthefea-
tureswhichareusedin thesystemtogetherwith thematch-
ing algorithm that is appliedbothfor tracking andrecogni-
tion. In Section5 thegenerationof key-framesis analyzed
andrecognition resultsfor thesystemon thedatabasesare
presentedin Section6. In Section7 a schemeto extendal-
ready existingmodelsis introducedandpreliminary results
aregiven. Section8 considers theproposedframework as
an exemplar-basedapproachand addressescritical points
oftenbrought forward against this approach.

3 Databases

The first database,which was used for tracking and
recognition experimentsin sections5.1 and6.1 contains6
short video sequencesmainly usedfor optic flow bench-

marks1 and 4 sequencestaken with an off-the-shelfcam-
corder. Thisdatabasecontainssequenceswith varioustypes
of motionin thescene.

The seconddatabaseconsistsof 30 sequencesof faces
turning from -90 degrees(left) profile view to +90 degrees
(right) profile view. The sequenceswere rendered from
modelsof 30 individualswhich wererecordedwith a laser
scanner(CYBERWARE��� ) to obtain highly realistic 3D
structure andtexture data. Eachof thesequencescontains
61 framesat poseintervals of 3 degreesandwasrendered
with a black background. This database was usedto test
thesystemundercontrolled motionandillumination condi-
tions(for a detailedexaminationof theperformanceof the
systemunderillumination see[21]).

The third databaseconsistsof sequences, which were
takenwith anoff-the-shelfcamcorder(Sony DCR-TRV17).
We took 10 video sequencesof different carswhich were
recordedby walking with a video-cameraaround a carun-
derdaylight lightingconditions. No effort wasmadeto con-
trol shaking or distanceto thecar. For recognition we took
atest-setof 25photosof 5 of thecarswith astandarddigital
camera(OlympusC-1400, notethat this alsomeansdiffer-
entcameraoptics)underdifferent viewing conditions.This
databasetogetherwith thephotoscontainsall kindsof vari-
ationsin motionin thesceneanddifferent backgroundsand
illumination in thetest-set.

All sequenceswereresizedto 512x512 pixels andpro-
cessingwasdoneon the full color images except for two
monochrome sequencesin thefirst database.

4 Feature extraction and matching

4.1 Visual Features

We decidedto usecorners as the basisfor visual fea-
tures,sincethesewerefound to begoodandrobustfeatures
under many viewing conditions in numerousother works
(e.g.,[14]). In order to extract corners we usea standard
algorithm [17] modified to integrate information about all
threecolor channels sincethis further improvedrobustness
in the color imagesequenceswe processed.Cornersare
found by inspectingthestructurein a 9x9neighborhood �
of eachpixel in thefollowing way:�	��
��
�������������� ��������� 
���� ��������� �!����"!�
���� �!������� ������"!� 
��#� ������"!� ������"!�

$%
with & �(' asdot-product and )* asthevector of RGB-values
suchthat anelementof

�
is e.g. +�,.- �0/21 � 
 � �43��� � �53��"76� �48��� � �98��" 6 � �9:��� � �9:��" . The smallerof the two eigenvalues ;�<

1Available at
http://sam pl.eng.ohio-s tate.edu/˜sam pl/database.
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a) desk − 11 frames b) sflowg − 12 frames c) MOVI − 4 frames d) car01 − 8 frames e) osu−1 − 7 frames

Figure 2. Examples of feature trac king. The fir st frame of the sequence tog ether with trajectories of
the trac ked features from all scale levels is sho wn.

of
�

yieldsinformationabout thestructureof theneighbor-
hood.

In the next step,a hierarchical clusteringalgorithm is
usedto clusterthevaluesof ; < into two setsandusetheone
with thehigher mean-valueasthefeature set.Usinga clus-
tering algorithm hasthe advantagethat onedoesnot need
to specifya hard-codedthresholdfor the valuesof ; < for
eachimage.Furthermore,thehierarchicalstructuremakesa
coarse-to-finestrategy possibleandthusspeedsuptheclus-
teringprocessconsiderably.

Visual featuresarethenextractedby storingthe image
locationof eachcornertogetherwith theintensityvaluesin
a 11x11 pixel imagepatchsurrounding thecorner. This is
doneonall threescalestogetacoarse-to-finerepresentation
of theimageconsistingof about 200featuresin total.

4.2 Feature matching for tracking and recogni-
tion

Both tracking and recognition in the proposedsystem
consist of finding correspondencesbetweenfeaturesetsin
two images.For tracking,matching is donebetweenfeature
setsfrom themostrecentkey-frameof thesequenceandthe
current frame. For recognition, matchingis done between
the test frameandall the key-framesin the model. As a
consequencewe usethesamematchingalgorithm for both
tracking andrecognition which leadsto anefficient imple-
mentation.

The method, which we shortly summarize, is basedon
[12] (where it wasusedfor stereomatching) and[15] andis
a variationon thewell-known Procrustesproblemof rotat-
ing two datasetsontoeachother.

Thealgorithmconstructsasimilaritymatrix = with each
entry >?,A@ �5BC1 givenby two contributing terms:>D,A@ �4BE1 �GFIHJ5K JL.M NPORQAS�T�U VAW.QYX M[Z X \^]A]�_ F HJ5K J`baca QedfS�g!hih�QYX M Z X \ ]A]
where j2k is thepositionof feature@ in oneimageand jml of
feature B in another imageand @ �5B index all featurepairsin

thetwo images.
The first term measures the imagedistance(dist) from

feature @ to featureB with n T�U VoW setto smallvaluesthusgiv-
ing a tendency towardclosematchesin distance.Thesec-
ondtermmeasuresthenormalizedcross-correlation(NCC)
of theneighborhoodsfrom features @ and B , with n g�h�h set
to valueslargerthan0.5,thusbiasingtheresultstowardfea-
turesthataresimilar in appearance. TheNCC is evaluated
in thesmall imagepatchsurroundingeachfeature.

FromtheSingularValueDecompositionof == �qp _srt_(uwv
thematching algorithm constructsthemodifiedSVD of this
matrix,definedby =yx!z �qp _�{|_su v
where{ is theidentitymatrix. Features@ andB arematched
if they haveboththehighestentrancein thecolumnandrow
of = x and if the NCC exceeds a given threshold }�~ g!hih .
This methodeffectively provides a least-squaremapping
betweenthe featuresetsandat the sametime ensuresthat
thereis a one-to-one mapping of features2. For recogni-
tion andtracking purposeswecount thenumberof matches
in a testframewith respectto a givenreferenceframeand
usethepercentage of matchesasthedecisioncriterion for
matching.

The resulting algorithm is capable of matching under
affinefeaturetransformationsbetweentwo imagesensuring
reliableandflexible tracking andrecognition.

5 Key-frames

5.1 Tracking between Key-frames

As shown in Figure1, a representationof thesequence
is generatedby tracking thefeaturesfoundin thefirst frame

2Note, thatthefeaturemappingcanoccur between sub-setsof features.
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Figure 3. Key-frames for two face sequences and two car-sequences.

until tracking fails at sometime. We use the matching
algorithm to match featuresfrom the first to the current
frame. The parametersare n T(U VoW � -�� ��/ � ��� � pixels for
eachof thethreescalesto restrictfeature displacement andn g!hih � �i��� and }�~ g!hih � ���Y� to find featureswhich are
similar in appearance. Trackingfails oncethe percentage
of matches falls below }�~ W^�A����� � /2�b� ; at this time a new
key-frameis insertedinto themodel, a new setof features
is found andtheprocessrepeatsuntil thesequenceends.In
theend,themodel of thesequenceconsistsof a numberof
key-frameswith visualfeaturesatseveralscales.

Figure2showsexamplesfromthetrackingprocessusing
fivesequencesfrom thefirst database.Thesequencein Fig-
ure 2a containsmainly translational motion orthogonal to
the viewing direction andFigure2b contains translational
motion in depth. Figure2c shows tracking for rotational
andFigure2dfor rotationalandtranslational motion,while
thesequence in Figure2econtainsamorecomplicatedmo-
tion of a facegettingnearerto thecamera.In all cases,the
motion in the imageis accuratelycapturedby the tracking
procedure.

The matching algorithm is capableof handling also
larger feature displacements betweenframes, so that it
could even be implementedin real-time, sinceit does not
needto processeverysingleframe.

5.2 Key-framegeneration

In the tracking phase,the algorithm hasfour parame-
terswhich control its behaviour: n T�U VAW , n g!hih , }�~ g!h�h and}�~ W��A���5� . For the settingsgiven in the previous sectionwe
first analyzedthekey-framesfor theface-andcar-database.

For thecontrolledmotionin theface-databasethesystem
found 7 key-framesfor eachof the30 sequenceswith each
key-frameroughly in thesamepose(Table1 andFigure3).

Key-frame 1 2 3 4 5 6 7
Pose(deg) -90 -61 -33 -6 18 44 73

Table 1. Averageposein degrees for eachkey-frame

Theangulardistancebetweenkey-framesis smallestfor
the frontal poses(betweenKey-frames4 and 5). This is
dueto thefactthatarotationaroundthefrontal view causes
larger variations in features(suchasearsdisappearingand
appearing)whichleadsto anearlierterminationof tracking.

For the car-databasewith varying amounts of motion
we found that a similar number of key-frameswasgener-
atedoverall, with thekey-framesroughly covering thesame
viewpointsof thecars(Figure3 showssomecorresponding
key-framesfrom two carsequences).

In general, we found that increasing }�~ W^�^���5� , n g�h�h ,}�~ g!h�h anddecreasing n T(U VoW leadsto morereliabletracking

4



Figure 4. Reconstruction of two images from
their feature representations.

butalsogeneratesalargenumberof key-frames.Ourchoice
of parametersreflectsa trade-off betweengeneratingavery
sparserepresentationreliablerecognition betweenthegen-
eratedkey-frames.

5.3 Sizereduction

Thefinal representationof thesystemconsistsof anum-
ber of key-framescontaining small imagepatches which
resultsin a large size reduction for the processedimage
sequences. This is an essentialproperty for any image-
basedsystemworking on sequencessinceotherwise huge
amountsof datawouldhave to bestored.

In orderto calculatethe sizereduction of the represen-
tation,we compared the sizeof the final sequence models
for both databasesto the raw pixel dataandto the sizeof
mpeg2-encodedsequences3. For thecar-databaseraw data
consistedof 512x512pixel frames with 25 framespersec-
ond and on average32.2 seconds of imagedatayielding
a total of 603.8MByte, mpeg-2 compresseddatasizewas
onaverage 22.1MByte. For theface-databaseraw datasize
was45.8MByte, mpeg-2compressionresultedin 1.6MByte
onaverage.

The modelsfrom the car-database generated17.2 key-
frames on average with each key-frame containing 200
features and 11x11 pixels per feature,yielding a total of
1.2MByte; this leadsto size reduction of 99.8% for raw
dataand94.7% for mpeg2-compresseddata.Thefacemod-
elsconsistedof 7 keyframesandresultedin sizereduction
of 98.9% and69.7% respectively. The lower size reduc-
tion for the mpeg2-compressedface-databasewas due to
the concentration of all 200 featureswithin the region of
the facewhich resultedin larger overlap of features over

3Theencoderis availableathttp://ww w.mpeg.org/MP EG/MSSG/.
For all experimentsthedefault parameterswereused.

scales.
While many otherapproachescharacterizefeatures with

a lower-dimensionalfeature vector([6, 8, 10, 13, 18]) and
thuscould provide evenfurther sizereduction, we want to
emphasizethat with the proposedframework someof the
original imagecontentis still available.

Figure 4 shows two examples of the reconstructionof
imagedatafrom local featuresin the representation.Re-
construction is doneby drawing all features at thecoarsest
scale,expanding the imageto thenext scaleandrepeating
this processuntil the finestscaleis reached. In the recon-
structedimages,small-scalefeaturesappear sharpwhereas
large-scalefeaturesareblurred.

6 Recognitionof Images

In the following we will describe three experiments,
which testedtherecognition performanceof thesystemon
singleimages.Thefirst experimentwasdonewith avariety
of imagedegradations to test the robustnessof the system
under syntheticnoise.In thesecondexperiment,we tested
usingface-databasewith facesvarying in poseandillumi-
nationintensity. Thethird recognition experimentwasdone
onthecarsequenceswith a test-setof 25picturestakenun-
derdifferent viewing conditions(with adifferentcameraon
differentdays).

In all experiments again the matching algorithm was
usedto recognize a given imageby matchingthe features
from this imageto eachframe in thedatabase.For thefirst
experimentmatchingwasdoneagainstall individualframes
of theoriginal sequences, whereasin thesecondandthird
experimentthe key-framerepresentation was used. In all
cases,theframewith thehighestpercentageof matcheswas
selectedasthebestmatching frame.

6.1 Imagedegradations

Forty random imagesfrom thefirst databaseof shortse-
quencesweredegradedwith 7 typesof imagedegradation
(seeTable 2) ranging from changes in intensity to warp-
ing the image. Also shown in Table2 is the meanmatch
percentage of the best matching frame and the recogni-
tion rate. Larger recognition failuresoccurred only in the
shear, zoom andocclusionconditions, wherefeature dis-
tancesweresometimescloserto neighboring framesdueto
the geometric transformations4. To demonstratethe limits
of the feature-basedapproach,we randomly superimposed
12x12pixel squaresin theocclusioncondition over theim-
agesso that15%of theimagewasoccluded. This led to a
drasticreduction in recognition ratedueto the almostde-
stroyedlocal imagestatistics.

4Note, that the inter-framedistance in thefirst databaseis small,mak-
ing this a hardtask.
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Figure 5a shows one correctly recognized test image
from condition 8.

type match recognition
percentage rate

1. brightness+60% 66.4% 97.5%
2. contrast+60% 65.6% 97.5%
3. noise+40% 57.6% 95.0%
4. equalized color 53.3% 95.0%
5. shear 31.9% 85.0%
6. zoomx 1.5 32.9% 82.5%
7. occlude 15% 5.8% 47.5%

8. all of 1,2,3,4,5 28.3% 77.5%

Table 2. Recognition resultsfor imagedegradations

6.2 Face-database

For the face-databasewe createdfour test-sets:thefirst
test-setconsistedof all framesof the original sequences
which werenot key-frames.This wasdoneto testwhether
thesystemgeneratesa consistentrepresentationfor all se-
quences. In the secondsetwe rendered all 30 sequences
again with two different strengthsof lighting, andthethird
setcontainedposevariationby �?- � degrees orthogonalto
the direction of rotation. Finally, the fourth test-setcom-
binedall threesetsinto one.Table3 lists thematchpercent-
ageandtherecognition ratefor all test-setsandFigure5b,c
show recognition resultsfrom thesecondandthird test-set.

between lighting pose all
key-frames variations variations three

match 60.2% 33.5% 39.5% 44.5%
percentage
recognition 100% 90.1% 98.2% 81.2%
rate

Table 3. Recognition resultsfor theface-database

While recognition resultsfor eachtest-setalonewere
very good, recognition performancedroppedfor the com-
bined test-setdue to a greaterrate of falsematches. Al-
mostall falsematchesfor a given faceF occurred for im-
agesof other facesin thesameposeasthekey-framesfor
faceF. Theseviews led to a higher percentage of matches
thanviewsof faceF underdifferentlighting in poses,which
arefaraway from key-frameviews.

Interestingly, thebestmatching key-framecorresponded
to thecorrectposein 99.2%of all test-images regardlessof
faceidentity. Thisresultshowsthatthesystemis capableof
reliablepose-estimation(seealso[21]).

6.3 Car-database

Thetest-setfor thecar-databaseconsistedof 25pictures
of carsfrom the databasein differentviewing conditions.
Thesecanbe broadly categorized into changesin lighting
conditions (Figure5d), differentviewing distances(Figure
5e)andocclusionby otherobjects(Figure 5f). In order to
reduce falsematchesdue to large feature distancesin the
imageplane,eachtestimagewasdisplacedby 40 pixelsin
four different directions andthe matchalgorithmwasrun
for eachdisplacement.Table4 lists againthepercentageof
matchesandthe numberof falsematchesandFigure5d-f
show recognition resultsfor eachof thethreeviewing con-
ditions.

lighting viewing occlusion
variations distance

(12 images) (8 images) (5 images)

match 19.1% 17.2% 18.5%
percentage
false 2 1 1
matches

Table 4. Recognition resultsfor thecar-database

Comparedto the face-databasethe average percentage
of matcheswasmuchlower dueto the large variations in
appearance. A closer analysisof the recognized frames
showedthatthepercentageof matchesdroppedverysharply
around thebestmatching key-frame,whereasall othertest
imagesgave a nearly constant amount of matchesover all
key-frames.

7 Incr emental Learning

Sincethefirst frameof a sequence alwaysbecomes the
first key-frame,the resultingsetof key-frameswill bedif-
ferent for aslightly differentstartingpoint. In orderto over-
comethisproblemandalsoto provideageneral framework
for incremental learning of models,anadditional stepin the
learning phaseis introduced.

The first learningphasegenerates a set of key-frames
from a sequenceasan initial reference representation.For
eachnew sequence,again,key-framesareextracted. Then,
eachkey-frame is compared to the alreadylearnedkey-
frames with the recognition algorithm. If no match is
found5, theframeisaddedto therepresentation,whereasfor
eachmatchahit-counterfor thecorresponding key-frameis
increased.

5The threshold for rejection of a frame is set to �A�.�e�������A�c� �e�9�o� to
ensureconsistency
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The resulting representation is a connected graph of
characteristicviews of the presented sequenceswith addi-
tional information about the frequency of eachview. This
additional informationcanthenbeusedto speedupmatch-
ing sinceit is morelikely thatanew framematchesahighly
frequentedview6.

Here, we want to present preliminary results for this
incremental learning schemewhich were obtained with
the face-database. We rendered additional sequences of
two faceswith threedifferent poseanimations. Figure 6
shows thesesequencesfor onefacetogether with the con-
nectedkey-framerepresentation in its final statein a view-
ing sphererepresentation with eachkey-frameat its corre-
spondingposition.

Thelearningprocessstartedwith thefirst sequence(run-
ning along the horizontal axis in Figure6) which created
theinitial representation, thenthesecondsequence wasin-
tegrated(runningalongtheverticalaxis)whichresultedin 6
additional key-framesin theperiphery. Thethird sequence
(diagonalfrom top left to bottomright) againadded6 key-
frames.Thefinal test-sequenceconsistedof 32imagescov-
eringa circle in theviewing sphere(thesolid circle in Fig-
ure 6), which resultedin 9 key-frameson its own. Since
theviewing spherewasalreadycoveredin many areas,only
3 key-frameswere added to the representation(shown in
Figure6 with exclamation marks). The key-framewhich
receivedthemostmatchesduring thelearningprocesswas
theframein thecenter.

8 The Bigger Picture: The proposedframe-
work asan exemplar-basedapproach

The proposedframework is purelyexemplar-based,i.e.
it doesnot rely on pre-constructedmodelsor high-level a-
priori knowledge, but insteadconstructs a representation
closelyconnectedwith theoriginal inputdata.

Some of the main argumentsagainst exemplar-based
methods, which areoften put forward andwhich we want
to addresswithin theproposedframework, arethat� they require a large numberof trainingexamples,� they uselarge amounts of storagefor the representa-

tions,� indexing into therepresentationtakesa longtime.

While theamount of trainingexamplesin ourframework
is presumably still higher to obtain invariant recognition
thanwith anunderlying model (e.g., [3] for faces),thecom-
bination of configurational information and appearance-
basedinformation in the local featurematching process

6In Psychophysics terminology the framewith the highest numberof
matcheswould be called the canonical view (see[11] andalso [4] for a
recentstudy), which playsanimportant role in humanobject recognition.

shows increasedrobustnessin many viewing situations
(suchasocclusion,change in lighting conditions[21], sen-
sor noise). This property thusenablesthe systemto gen-
eralize over more casesin comparison to other image-
basedtechniquesusingwholeimages,which in turn results
in fewer training examples. The matchingalgorithm es-
sentiallycombineselementsof two prominent approaches
which arepursued in objectrecognition - thefeature-based
andtheappearance-basedapproach.

In addition, as shown in Section5.3, our framework
createssparserepresentations, where the selectionof lo-
cal featuresover severalscalesstill allows for someactual
imageinformation to be presentin the representation (see
Figure4). This represents a compromisebetweenthe two
extremes of pure image-basedapproachesand highly ab-
stractedmodel-basedapproaches.

With regard to matching timesfor recognition, thecom-
plexity of matching is linearwith theamount of trainedse-
quences,linear with the amount of key-framesfound and
cubicin theamount of featuresin eachkey-frame.Thein-
cremental learning techniquedescribedin theprevioussec-
tion, however, allows for a reduction in both training and
recognition timesinceatsomepoint thewholeimagespace
will becoveredwith key-frames.In addition, theconcept of
thecanonical view reducesrecognition time by takinginto
account the presentation statisticsof the learnedrepresen-
tation. Furthermore,more sophisticateddatabaseindexing
techniqueswouldoffer further improvement for recognition
time. A possiblesolutionto overcomethecubiccomplexity
for SVD will beto usesparsematrix techniques(asalready
suggestedin [12]). This is basedon the observation that
any given feature normally hasonly a low numberof pos-
siblematchcandidatesthusmaking thesimilarity matrix =
sparse.

Theproposedexemplar-basedframework thusis ableto
addressthesecritical pointsandoffer solutionsto improve
the performanceof image-basedsystems. On the other
hand, the representationof this systemconsistingof local
featurescanbeusedasthebasisfrom which to constructa
higher-level representation. Analysisof thefeaturesin key-
framesacrossmodelsbelongingtoonecategory(e.g.,faces)
canbeusedto find commonfeatures or even groupsof fea-
tures(seealso[19]) which arecharacteristic for this cate-
gory. This would representa steptowards creating model-
basedknowledgefrom existingexemplar-basedmodels.

9 Conclusionand Outlook

We have presented an exemplar-basedrecognition sys-
tem which is capableof on-line learningof sparsescene
representationsfrom arbitrary image sequences.It uses
a simple and efficient framework both for learning and
recognition. The useof sequencestogether with the key-
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framing technique enablesthe systemto createrepresen-
tationswhich reflect the amount of visual change in the
scenes. Recognition performanceon databasescontain-
ing syntheticandreal-world imagedatademonstratedthat
the systemis capableof recognition and reliable pose-
estimationunder a varietyof different viewing conditions.
In addition, results for the incremental learning scheme
showedthat thekey-framerepresentationcanbeeasilyex-
tended.

Thesystemcurrently operatesin closed-loop conditions
(i.e. theinputconsistsof pre-cut andlabelledsequencesfor
learning). With theuseof moregloballyevaluatedfeatures
suchascolorandtexturehistograms[10, 16] thesystemwill
decide autonomouslywhento begin a new model. In addi-
tion, theresultingmodelswill includeinformationabout the
object andthe surroundings sincethe systemusesno seg-
mentation. While therecognition experimentshave shown
that thesystemcancopewith backgroundvariations, in an
active vision paradigm an attentionmodule could actively
selectthefeaturesbelongingto oneparticular object,while
theothers arediscardedandnot tracked.
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Figure 5. Recognition results with a) degraded and b)-f) novel images. Test images are depicted in
the upper row.
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Figure 6. Key-frame representation after three additional sequences were integrated.
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