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Abstract
Data noise is present in many machine learning
problems domains, some of these are well stud-
ied but others have received less attention. In this
paper we propose an algorithm for constructing
a kernel Fisher discriminant (KFD) from train-
ing examples withnoisy labels. The approach al-
lows to associate with each example a probability
of the label being flipped. We utilise an expec-
tation maximization (EM) algorithm for updat-
ing the probabilities. The E-step uses class con-
ditional probabilities estimated as a by-product
of the KFD algorithm. The M-step updates the
flip probabilities and determines the parameters
of the discriminant. We demonstrate the feasibil-
ity of the approach on two real-world data-sets.

1. Introduction

The presence of noise in data is a common problem. In
the context of a supervised learning task this noise may ei-
ther be on input data,x, or on the observed ‘target data’,y,
which may take the form of a regression target or a class la-
bel. The most widely studied noise model is perhaps inde-
pendent Gaussian noise on a regression target. In this paper
we wish to concentrate on noisy class labels, noise of this
type may be present through data mis-labellings. To our
knowledge, this form of model has not been widely stud-
ied, although some work may be found in (Norton & Hirsh,
1993; Guyon et al., 1996; Graepel & Herbrich, 2001).

In the next section we describe the general form of a prob-
abilistic model which allows learning in the presence of
label noise. For the purposes of illustration we consider
specific, fairly restrictive, functional forms for the compo-
nent distributions of the model. Section 3 describes how
those distributions’ parameters may be optimised through
an expectation-maximisation (EM) algorithm, which is
demonstrated on some toy data in Section 4. We extend
the representational power of our model in Section 5 by
fitting the probabilistic models in a high dimensional fea-
ture space using ‘the kernel trick’. In the following section
(Section 6) the kernelised approach is evaluated using OCR
data as well as a photographic image data-set. Finally in
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Figure 1.Graphical representation of the underlying probabilis-
tic model. Such a representation signifies that the joint distribu-
tion of the variables may be factorised as followsp(x, y, ŷ) =
P (ŷ|y)p(x|y)P (y).

Section 7 we discuss some limitations of the approach and
how we hope to overcome them in future works.

Notationally we choose to represent a discrete probability
with P (·) and a probability density function byp(·).

2. The Probabilistic Model

The general approach we propose is to model the noise pro-
cess probabilistically, in particular we approach the entire
classification problem with agenerative modeland model
the noise process as one component part of that model.
Whilst it is thought that in a traditional classification task a
purely discriminative approach (such as a neural network or
a support vector machine) should be usually more effective,
casting the problem as a generative model allows us to in-
corporate our model for the label noise in a straightforward
manner. Specifically we assume that the joint distribution
of the variables factorises as in Figure 1.

The model may now be fully specified by describing the
functional form of the probabilistic relationships. Firstly,
the class conditional densities,p(x|y), could simply be
modelled by a Gaussian with meanmy and covarianceΣΣΣy,

p(x|y) = N (x|my,ΣΣΣy). (1)

Secondly, the probabilistic relationship between the noisy
observed class label,̂y, and the actual class label (the con-
ditional distributionP (ŷ|y)) could then be specified by a
probability table. For a two-class classification such a table
would be parameterised as follows
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y

Figure 2.Graphical representation of the underlying probabilis-
tic model. Such a representation signifies that the joint distribu-
tion of the variables may be factorised as followsp(x, y, ŷ) =
P (y|ŷ)p(x|y)P (ŷ). Note the difference between this plot and
Figure 1 is that the direction of the arrow betweeny andŷ is re-
versed.

ŷ
0 1

y 0 (1− γ0) γ0

1 γ1 (1− γ1).

The above table implies that a data-point,(xn, ŷn), is mis-
labelled with probabilityγ0 when the true class is0 andγ1

when the true class is1. The final distribution we need to
consider isP (y), the prior probability of classy.

P (y = 1) = π, (2)

P (y = 0) = (1− π). (3)

The above definitions and equations provide us with all the
details we require to perform inference and learning for a
classification problem with noisy labels. However it is con-
venient to consider a slightly different factorisation of the
joint distribution to implement the algorithm.

Whilst it may make intuitive sense to model the addition of
label noise as we have described above, in a practical set-
ting the prior distribution parameter,π, must be estimated.
Typically such priors are estimated by considering the pro-
portion of the data-set in each class, i.e., if out of a data-set
of N pointsN1 belong to class 1,π is estimated asN1

N .
When the labels are noisy however, such an estimate does
not always makes sense. It is easier to directly estimate
the parameters ofP (ŷ). Making use of the above defini-
tions we can obtain the prior associated with the observed
labels:

P (ŷ = 1) = (1− π)γ0 + π(1− γ1)
def= π̂, (4)

P (ŷ = 0) = (1− π̂). (5)

In fact we can rewrite our factorisation of the joint distribu-
tion, utilisingP (ŷ) (Figure 2) without affecting in any way
our model’s representative power.

The conditional distributionP (y|ŷ) can then be parame-
terised

y
0 1

ŷ 0 (1− γ̂0) γ̂0

1 γ̂1 (1− γ̂1).

where it can be shown that

γ̂1 =
(1− π)γ0

(1− π)γ0 + π(1− γ1)
, (6)

γ̂0 =
πγ1

(1− π)(1− γ0) + πγ1
. (7)

In summary, our model is a simple probabilistic model of
the class conditional densities and the noise generating pro-
cess. Next, we must consider how learning can occur in
such a model.

3. Optimising the Model Parameters

The process of optimising a generative model for classifi-
cation normally involves the fitting of the class conditional
densities,p(x|y), through maximisation of a likelihood or
log-likelihood function. Typically, for a data-set containing
N points,{xn, yn}N

n=1, the log-likelihood objective func-
tion, L(θθθ) will take the form1

L(θθθ) =
N

∑

n=1

ln p(xn|yn, θθθ), (8)

whereθθθ are the parameters of the class conditional density.
In the noisy label case, therefore, it seems reasonable to fit
the perceived class conditional density,p(x|ŷ), in a similar
manner.

L(θθθ) =
N

∑

n=1

ln p(xn|ŷn, θθθ). (9)

To determine eachp(xn|ŷn, θθθ) we must marginalise the as-
sociated latent variable,yn. This marginalisation is often
performed in combination with the optimisation through
an EM algorithm (Dempster et al., 1977). Here, rather
than performing the marginalisation explicitly, we optimise
a modified form of the log-likelihood

L(θθθ) ≥
∑

y

Q(y|x, ŷ) ln p(x, y|ŷ, θθθ)

+H(Q(y|x, ŷ)) def= L(θθθ), (10)

whereH(p(·)) is the entropy ofp(·) and we have dropped
the indexn for clarity of notation. The bound becomes
an equality ifQ(y|x, ŷ) = P (y|x, ŷ, θθθ). Maximisation of

1Note that this equation implies that the label noise is indepen-
dent across different data-points. More complex relationships are
conceivable, and in many situations they are warranted, but they
are beyond the scope of this paper.



the functional consists of two steps. The ‘expectation’ or
E-step consists simply of the computation of the posterior
distribution of the latent variabley,

P (y|x, ŷ, θθθ) =
p(x, y|ŷ, θθθ)
p(x|ŷ, θθθ)

, (11)

and then by settingQ(y|x, ŷ) = P (y|x, ŷ, θθθ) the bound is
made into an equality. The ‘maximisation step’ or M-step
is then the optimisation of the functionL(θθθ) with respect to
the parameters,θθθ. For our model, we achieve this through
differentiation and rearranging to form the following fixed
point update equations:

my =
1
νy

N
∑

n=1

P (y|xn, ŷn)xn, (12)

ΣΣΣy =
1
νy

N
∑

n=1

P (y|xn, ŷn)(xn −my)(xn −my)T,

(13)

γ̂0 =
1
νy

N
∑

n=1

P (y|xn, ŷn)(1− y)ŷn, (14)

γ̂1 =
1
νy

N
∑

n=1

P (y|xn, ŷn)(1− ŷn)y, (15)

whereνy =
∑N

n=1 P (y|xn, ŷn) is the expected number
of points in classy. The update equations for our EM al-
gorithm are very similar to those for EM in mixtures of
Gaussians.

To implement the algorithm we must first initialise the
parameters, perhaps by assuming that the labels are noise-
less and then computing the covariances and means of the
Gaussian distributions. The posterior probability of each
data-point may then be computed (the E-step) and used in
the above update equations to obtain new parameter values
through optimisation of the fixed point equations (the M-
step). E and M-steps are then alternated until convergence
is achieved.

In the next section we demonstrate our approach on a sim-
ple toy data-set.

4. Toy Problem

To create our toy problem, we sampled from two Gaus-
sian distributions, one of which contains strong correlations
(y = 0) and the other of which contains weaker correla-
tions (y = 1). Each data-point was four times more likely
to be sampled from the weakly correlated Gaussian than
the strongly correlated Gaussian, i.e.,π = 0.8. In total
two hundred data-points were sampled. The sampled data
is shown in Figure 3 (b), where the dots are from weakly
correlated Gaussian and the crosses are from the strongly

correlated one. The labels of the data-set were then flipped
with a probability of 0.2 (γ0 = γ1 = 0.2) to form the ob-
served labels,̂y. The observed labels are shown in Figure 3
(a).

Two models were trained on the data. The first involved
fitting Gaussian class conditional distributions to the data
without modelling the label noise. The Gaussian distribu-
tions learnt by this model are represented in Figure 4(a) as
solid lines. Also shown are the true underlying Gaussians
which generated the data (dotted lines). The second model
made use of our model for label noise (Figure 4(b)).

Initialisation For training the model label noise was ini-
tialised withγ̂0 = γ̂1 = 0.3. The parameters of the Gaus-
sians were initialised as if there was no label noise present.

Training The EM algorithm was considered to have con-
verged when both the log-likelihood and the parameters
changed by less than10−2. Convergence occurred after
37 iterations of the EM algorithm.

Results The statistics learnt by the algorithm are sum-
marised in Table 1 along with statistics for data-sets with
more data-points. Note that asN is increased, the statistics
improve.

Table 1.Examples of the different statistic estimates against vary-
ing numbers of data-points,N , along with the true values of the
statistics.

N 200 2000 20000 TRUE

π̂ 0.6550 0.6755 0.6805 0.6800
γ̂0 0.4106 0.4746 0.5084 0.5000
γ̂1 0.0902 0.0669 0.0504 0.0508

Discussion Whilst these results are encouraging, we
should stress that real world problems are unlikely to be
as easily modelled as the toy problem we have proposed.
If the true class conditional densities are not well captured
by the Gaussian model, the label noise will be over or un-
der estimated. It is crucial to our approach that the com-
plexity of our approximating distributions is well matched
to the true underlying distributions. Gaussians are clearly
not flexible enough to fulfill this criterion. For many real
world problems, they will provide inaccurate estimates of
the posteriorP (y|x, ŷ). If the approximating distributions
are overly complex, these values will be over-estimated.
If the converse is true the values will be underestimated.
To resolve this issue we must utilise a more flexible model
of the class conditional densities. In the next section we
achieve this aim by seeking to model the class conditional
densities of the input data mapped into a high dimensional
feature space, rather than the input values directly.
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Figure 3.Two hundred data-points sampled the strongly and weakly correlated Gaussian. The observed labels associated with the data-
points are depicted by showing each point as either a dot, or a cross. In (b) we show the true labellings of the data. In (a) the noisy labels
are shown.

5. Data Models in Feature Space

In this section we are going to make use of ‘the kernel trick’
to model our data in a high dimensional feature space. The
idea is that using a positive definite kernelk corresponds
to mapping the data into the feature space by a mapΦ, and
taking a dot product in that space,

k(x,x′) = Φ(x)TΦ(x′). (16)

There is a large class of kernels that can be used, leading to
a large class of available feature spaces. This allows us to
consider a range of more complex models, but carries with
it some further problems. We will seek to fit Gaussian dis-
tributions to the mapped data, however, in general, we will
be unable to calculate the likelihood of the data under these
distributions. The reason for this is that the kernel only al-
lows us to work with the data implicitly, in terms of dot
products. Only operations that can be reduced to dot prod-
ucts are feasible (Schölkopf et al., 1998). In the present
case, we must exploit the fact that, when the Gaussians are
subjected to certain constraints, incomputable terms in the
likelihoods will cancel when we consider ratios between
these likelihoods. These ratios are of the type we require to
perform EM updates.

Consider first a further constraint imposed on the Gaussian
class conditional densities. We constrain the covariance of
the Gaussians to be equal,ΣΣΣW = ΣΣΣ1 = ΣΣΣ0, where we call
ΣΣΣW the within class covariance matrix. With this constraint
the update equation forΣΣΣW becomes

ΣΣΣW =
1
N

∑

y

N
∑

n=1

P (yn|xn, ŷn)(xn −my)(xn −my)T.

(17)

At first sight this appears to be a foolish thing to do. We
have further constrained the complexity of our model. The
advantage is that the model may now be easily be ‘ker-
nelised’. In the absence of label noise (γ0 = γ1 = 0) the
model is recognised as a Fisher discriminant (FD) (Fisher,
1936; Fukunaga, 1990). Several authors (Mika et al., 1999;
Roth & Steinhage, 2000; Baudat & Anouar, 2000) have
shown how the Fisher discriminant may be kernelised. The
main trick centres around using theRayleigh coefficient,

J(w) =
wTΣΣΣBw
wTΣΣΣW w

, (18)

whereΣΣΣB is known as the between class covariance matrix,
and is given by

ΣΣΣB = (m1 −m0)(m1 −m0)T. (19)

When performed in the feature space, it has been found ad-
vantageous to add a small regularisation term to the denom-
inator of Eqn (18), either equal to a multiple of the identity
matrix, or of the kernel Gram matrix (Mika et al., 1999).

Fisher’s discriminant may be computed through maxi-
misation of the Rayleigh coefficient with respect tow.
Naturally in the standard version of the Fisher discrimi-
nant the means (m0 and m1) and the covariances (ΣΣΣW

andΣΣΣB) are not the posterior weighted versions, however
it can be shown that the M-step in our EM version of the
Fisher discriminant merely involves substituting the poste-
rior weighted versions of these parameters.

The optimum value ofw can be shown to be proportional
to ΣΣΣ−1

W (m0 − m1). This vector defines a discriminating
hyper-plane. Kernelisation of the Fisher discriminant relies
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Figure 4.In (a) Gaussians have simply been fitted to the data from Figure 3(a) assuming that there is no label noise. In (b) our approach
has been utilised to learn the label noise. The covariance of the Gaussians which generated the data are marked as dotted ellipses. The
lines in the ellipses represent the eigenvalues and eigenvectors of the covariance matrices. These lines cross at the mean of the generating
Gaussian. The learnt covariances are represented by solid ellipses. Note how the learnt covariances correspond to the true covariances
much better in (b) than in (a).

on expanding the direction of discrimination as

w =
N

∑

n=1

αnxn (20)

and substituting this into the Rayleigh coefficient. The re-
sulting matrices of dot products can be replaced with the
so-called Gram matrix(k(xi,xj))ij in order to perform the
algorithm in the feature space.

Kernelising the model introduces the flexibility required to
model a large variety of class conditional densities. The
complexity of the class conditional densities can be con-
trolled by varying the parameters of the kernel matrix, e.g.
in a squared exponential kernel2 we may vary the width
parameter. Kernelisation of the preceding update equations
proceeds in a straightforward manner, similar to that of the
standard kernel Fisher discriminant (KFD).

Whilst likelihoods under the class conditional distribution,
p(x|ŷ), may not be computable, ratios of the likelihoods
may be computed because the determinant will cancel. We
may thus obtain the necessary posterior probabilities in
Eqn (11). It is for this reason that we constrain the class
conditional variances to be equal.3

One problem with kernelisation of the algorithm is that it
increases the complexity fromO(I3), whereI is the num-
ber of input features, toO(N3). As we shall see, in the
applications we envisage, this may be a serious handicap.
For the moment though we do not seek to fully resolve this

2Sometimes referred to as a Gaussian kernel.
3Other workarounds are possible and being considered, see

Tipping, 2001.

issue. We simple sub-sample the matrix in a random man-
ner to reduce the computational complexity.

6. Method Evaluation

Now that our entire algorithm is described we turn to two
further evaluations of the approach. The first, an artificial
OCR problem, is purely illustrative. The second however,
an image understanding problem, shows how the algorithm
may be utilised in practice.

6.1 Artificial Digits Problem

To understand better the characteristics of our approach we
took data from the US Postal Service CEDAR CD-ROM
of the digits 0 and 1. The data was pre-processed so that
the digits were16 × 16 gray-scale images. We then added
artificial label noise to the data and trained a KFD using a

squared exponential kernel4 k(x,x′) = exp
(

−‖x−x′‖2
128

)

.

To decrease computation time we constrainedw to lie in
the spaced spanned by only200 of the possible feature
vectors5, i.e. if we define the set of200 sub-sampled data
points to beΞ,

w =
∑

n∈Ξ

αnxn, (21)

reducing the computational complexity toO(2003). We
implemented our algorithm, initialisinĝγ0 = γ̂1 = 0.1, as

4This kernel (with the width 128) has proved effective in previ-
ous works (Scḧolkopf et al., 1997) on data of the same dimension.

5Another way of looking at this is that wea priori constrain
all but two hundred of theαns to be zero.



well as the standard KFD (i.e.,̂γ0 = γ̂1 = 0). Ten differ-
ent models were trained using different sub-samples of the
kernel matrix. The label noise modelling results utilised
a maximum of ten iterations of the EM algorithm. Predic-
tions were then made on the test set, to which no label noise
had been added. The results are depicted in Figure 5 and
the region of interest (between label noise of 0.4 and 0.6)
is shown at a larger scale in Figure 6.
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Figure 5.Plot of test set error vs. induced label noise for the digit
classification problem. Dotted line is the standard KFD, solid line
is KFD with label noise.
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Figure 6.Detail of the test set error vs. induced label noise plot
between noise of 0.4 and 0.6. Dotted line is the standard KFD,
solid line is KFD with label noise.

Whilst the label noise modelling KFD did perform better in
some regions than the standard approach, the standard KFD
did slightly better up to about 30 % label noise. However,
the performance of the standard KFD did drop off fairly
rapidly after this point whilst the label noise modelling ap-
proach was almost unaffected up to a label noise of around
44 %.

6.2 Real-world Image Problem

Whilst in the digit problem above some improvement was
seen in the performance of the model for large levels of la-
bel noise, the performance of the standard KFD was very
good for low levels of label noise. If the label noise is the
product of occasional mis-labellings by a human expert,
therefore, we are unlikely to be operating in the central re-
gions of Figure 5 so where is the merit in the approach?

Let us formulate our classification task with the merits of

our new algorithm in mind. Consider an image problem
where the task is to label pixels as being ‘sky’ or ‘not sky’.
The standard machine learning approach to the problem is
to create a training set containing labelled examples of sky
pixels and not-sky pixels. However the creation of such a
training set by a human expert is a wearisome task. The
task is much simplified if the expert merely has to say
whether the picture contains sky or not. If the data is la-
belled in this manner on an image by image basis, yet we
apply the labels to the data on a pixel by pixel basis we have
constructed a problem with a noisy labelling. The noise in
the not-sky class,̂y = 0, is, γ̂0 = 0. However the noise
in the sky class,̂y = 1, is large. If the proportion of sky
in those pictures containing sky is typically30% then we
haveγ̂1 = 0.7. Whilst this noise level is greater than50%,
learning should still be possible because the other class is
noiseless.

We tested our approach on a data-set of construction im-
ages taken from The Corel Gallery 1,000,000 Collection
(Corel Corporation Ltd, 1998). In the training set there
were twenty images containing sky and twenty images
without sky. The input data was taken from a9 × 9 block
of pixels. The aim was to predict the central pixel’s label,
i.e., the true label was considered to be sky if the central
pixel was thought to be from a sky portion of the picture.
Not all the pixels in the block were utilised, they were sub-
sampled as in the Figure 7. The seventeen sub-samples
across three channels (red, green and blue) led to 51 input
values for each data-point. The full training data-set was

Figure 7.Arrangement of the pixels from each9×9 block. Black
pixels are those that were utilised.

uniformly sub-sampled to obtain the actual training data.
The images were256 × 384 pixels in size which would
have led to98, 304 data-points in each image. We used
1, 176 uniformly spaced samples from each image leading
to a total training set of47, 040 points. This sub-sampling
also leads to greater independence between the data-points.
Once again we sub-sampled kernels for computational rea-
sons. Once again, for computational reasons, we assumed
a priori that the solution forw lay in the space spanned by
only 200 of the possible47, 040 data-points. A squared ex-
ponential kernel was used, the width of which was chosen



as 15 through using alabelled validation setof 20 images,
sampled in the same manner to the training set. The per-
formance of the algorithms was evaluated on alabelled test
setof a further 20 images, again pre-processed in a similar
manner to the validation and training sets.

We compared both a FD and KFD with label noise to the
standard KFD algorithm. We also trained a standard FD
and KFD on a labelled version of the data-set. The results
are summarised in Table 2.

Table 2.Summary of results for the image understanding prob-
lem. In the table, ‘labelled data’ refers to the case where the train-
ing set was labelled pixel-wise by a human observer.

Method Test accuracy
Standard KFD 84.5%
FD with label noise 91.1%
KFD with label noise 94.2%
FD with labelled data 91.9%
KFD with labelled data 95.9%
(Fraction of sky 34.2%)

In Figure 8 and Figure 9 we show two of the original test
images alongside the corresponding images with the sky
removed.

Note that our kernelised and linear approaches obtained
98.2 % and 99.1% respectively of the accuracy of the cor-
responding fully labelled data approaches with much less
effort from the human expert.

7. Discussion

To summarise, we have proposed an algorithm for perform-
ing classification in the presence of noisy data labels. Ini-
tial results are promising. Whilst there appears to be lit-
tle benefit in utilising the approach when the label noise is
small, we have shown how modelling the noise allows us
to perform ‘sloppy labellings’ like in the sky problem. For
an alternative approach to this type of problem see (Keeler
et al., 1991; Maron & Lozano-Prez, 1998).

Issues remain with the approach. Standard cross validation
techniques do not really make sense for model selection
with the algorithm. In our sky example we made use of a
validation set to determine the correct model complexity.
This rather basic approach could be refined by incorporat-
ing a proportion of the accurately labelled data with the
sloppily labelled data.

The algorithm may also be utilised to perform active learn-
ing (Cohn et al., 1996; Freund et al., 1997). In active learn-
ing the aim is to select data for labelling such that it would
provide the most information for the classifier. Data about

which the algorithm is uncertain, i.e., the posterior of the
true class label is close to 0.5, could be passed to a human
expert for accurate labelling.

The approach could also use unlabelled data, in which case
the label noise could be initialised in accordance with the
class prior probabilities (see also Roth & Steinhage, 2000).

We mentioned earlier the computational problems associ-
ated with large data-sets and kernel methods. Future work
will focus on resolving these issues (see for example Smola
& Schölkopf, 2000).
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