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Chapter 1

Introduction

With electron tomography the 3D structure of an object can be obtained by

reconstructing from a tilt series of 2D projection. This method has been ben-

eficial in biologic research as a high volumetric resolution can be achieved.

It is used for the characterization of macromolecules, viruses, and cellular

organelles in in-vitro preparations [HA96][MBF+95][Rad88][ZPJ+94].

One of the limiting factors of the image quality obtained by the reconstruc-

tion is the precision of alignment of the projections [FM92]. There are dif-

ferent approaches to resolve the alignment step. One approach is to deposit

fiducial markers during the specimen preparation to get easy identifiable

high-contrast regions. At the present time, the acquisition of these mark-

ers often involves operator interaction. This process results in appropriate

accuracy but is tedious and time-consuming should numerous tilt images

come into register. In addition, operator based identification of markers is

a subjective process and requires extensive experience to get a satisfactory

result [RHS+99]. An automatic alignment is commonly done with cross-

correlation [FM92]. But this does not always result in a satisfactory accu-

racy.

In the following thesis, an alignment method combining cross-correlation with

the tracking of fiducial markers is described in detail. It can be broken down

into three steps: Preprocessing the images with cross-correlation, detection
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2 CHAPTER 1. INTRODUCTION

of fiducial markers with a pattern recognition algorithm, and establishment

of overlapping chains of indexed markers throughout the tilt series.

This thesis is structured as follows: In chapter two some background infor-

mation is given on the principles of transmission electron microscopy, basic

ideas of 3D electron microscopy and on state of the art aligning 2D projec-

tions using fiducial markers. Chapter three consists of a description of the

image data used and a specification of the registration algorithm. Chap-

ter four summarizes the results obtained with simulated data and real data,

and includes a description of the traceability of the fiducial markers. Chap-

ter five consists of a discussion and concludes with a brief summary of the

perspectives for this method.



Chapter 2

Theoretical Background

2.1 Transmission Electron Microscopy

The Transmission Electron Microscope (TEM) is similar to a slide projector

which is illustrated in Fig. 2.1. There, emitted light is parallelized by a

condenser lens. The light beam passes the slide (object) and is focused on

a screen by an objective lens. In TEM the light source is replaced by an

electron source. The optical lenses are substituted by magnetic lenses as

well as the screen is substituted by a fluorescent screen that emits light when

electrons hit it. The passage from the electron source to the fluorescent screen

is evacuated since the mean free path of electrons in air is very small. The

object has to be prepared extremely thin to ensure that electrons are able

to pass it: biological specimen are normally prepared in the order of some

100 nm thickness. In addition the TEM provides a high spatial resolution

(<1nm), which is described in more detail later in this chapter.

Effects of the Electron Beam

As the electron beam travels through the sample, scattering processes take

place. Mainly two types of scattering processes can be distinguished:

• elastic scattering, which is the interaction of the beam electrons and

the potential field around the nuclei and involves no energy loss, and

3
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Figure 2.1: The TEM in comparison with a slide projector. [phi]

• inelastic scattering, which is the interaction of the beam electrons with

the electrons of the sample and involves energy losses and absorption.

Fig. 2.2 shows the electromagnetic waves and electrons emitted by the spec-

imen as a result of the scattering processes. In the following the particular

processes are briefly reviewed.

1. Some electrons are absorbed by the specimen and scattering processes

modify the beam’s intensity. This effect is dependent on the specimen’s

density and its chemical composition (amplitude contrast).

2. Considering the electron beam as a wave, the interaction of the speci-

men with the beam results in shifts in the relative phases of the portions

of the beam contributing to the image (phase contrast).

3. In crystalline samples the elastic scattering is coherent and results in

spot patterns (Bragg diffraction).

4. Some electrons are reflected by the specimen (backscattered electrons).

5. Electrons hitting the specimen may cause emission of electrons (sec-

ondary electrons).
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Figure 2.2: Interactions of the electron beam with the specimen. [TG79]

6. Electrons hitting the sample may cause it to emit X-rays, whose energy

and wavelength is dependent on the elementary composition of the

sample.

7. Electrons hitting the specimen may cause the sample to emit photons

(light). This process is called cathodoluminescence.

8. Auger Electrons are the final electrons in the Auger emission process.

The primary beam removes an electron from a core level of a sample

atom and leaves a vacancy. Another electron falls from a higher level

into the vacancy thereby releasing energy. This energy is carried of

with the Auger Electron which is ejected from a higher energy level.

In a TEM the first two effects contribute to the image formation of a biological

specimen.
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Parts of the Transmission Electron Microscope

A substantial component of the transmission electron microscope is the elec-

tron gun. The electron gun provides a partially collimated stream of elec-

trons of the required energy. For example, a tungsten filament is heated up

to 2700◦C. Electrons are produced by thermionic emission1 of electrons from

this filament. The filament is held on a negative potential with respect to

the rest of the microscope in the height of the desired energy (typically 100 -

200 keV). The electrons are accelerated through a controlling Wehnelt elec-

trode through a hole in the anode. The Wehnelt cylinder focuses the electron

stream. Further on, the electrons are focused by two condenser lenses. The

area around the filament as well as the rest of the microscope is evacuated

to ensure that the electrons do not lose energy in scattering processes before

they hit the specimen. Improvements of the electron gun can be to use an-

other material with a lower work function2 for the thermionic emitter (e.g.

lanthanum hexaboride). The design of the electron gun should permit ad-

justments of the electron beam’s position and inclination. These settings are

usually done by magnetic coils which also include correction for astigmatism.

The emitted electron beam now enters the condenser lens system. This

modifies the beam so that the specimen is optimally illuminated. Usually

two condenser lenses are used to allow a wide range of intensities for a given

adjustment of the gun as well as a reduction of the illuminated area.

The specimen holder is used to move and tilt the specimen. To enable

the acquisition of data sets for 3D EM, the stage has two translation modes

to study different areas of the specimen at controllable positions in respect to

the microscope axis and the illuminating electron beam. In addition the stage

allows to tilt the specimen about at least one axis for ±70◦. To maintain the

vacuum the specimen is inserted through an airlock.

1Thermionic emission describes the process by which thermal energy is supplied to

weakly bounded electrons in order to form a source of electrons.
2The work function describes a certain level of energy that has to be supplied to allow

electrons to escape from the surface.



2.1. TRANSMISSION ELECTRON MICROSCOPY 7

Figure 2.3: A schematic drawing of a modern TEM. [TG79]

The optical magnification system of a TEM consists of the objective lens

followed by one or more projector lenses. The objective lens determines the

resolution and contrast of the image. The following lenses are used to magnify

the image for observation and recording. As the objective lens determines the

resolving power3 of the instrument and performs the first stage of imaging,

it is the most critical lens. A high resolution objective lens has a short focal

length, usually in the order of 1 - 3 mm. Normally the specimen holder is

located within the objective lens so it can be part of the condenser system.

3The resolving power of an instrument is the resolution which can be attained under

optimal viewing conditions.
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There are sets of apertures in three locations:

• In the condenser system to collimate the electron beam as well as to

modify its intensity;

• In the back focal plane to select electrons at a particular inclination for

a later magnification;

• In the image plane to select electrons from a particular area of interest

or for selected area diffraction.

The lenses are of magnetic type. They are supplied with a highly stabilized

current source which is in addition variable for focusing. The lenses are

designed for a high resolution, i.e. close to atomic level.

There are three major aberrations: spherical aberration (the lens fails to

bring central and peripheral rays into a common focus), chromatic aberration

(the lens fails to bring electrons of a different wavelength into a common

focus) and astigmatism (a circle in the specimen transform to an ellipse in

the image). The spherical aberration is closely related to the design and

the manufacturing of the lens. Chromatic aberrations can be reduced by

stabilizing the accelerating voltage and by using thin specimen, since the

velocity and thus the wavelength of electrons is influenced by fluctuations in

the high tension supply, and by the influence of inelastic scattering with the

specimen. The wavelength of electrons is closely related to their velocity, see

Eq. 2.4. Astigmatism can be corrected by the application of a compensating

magnetic field.

The described parts of the TEM are shown in Fig. 2.1.

Depth of field and focus. In comparison to a light microscope the

depth of field and focus is extremely large. This effect is a result of the small

electron wavelength and the small angular apertures of the imaging lenses.

The depth of field is the distance along the axis on the object side over which

the object can be moved and still resulting in a maximally sharp image. As
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Figure 2.4: Separation of object points P and Q is the resolution limit d. Rays

from these points cross the optical axis at A and B and are equally

sharp. T = A−B is the depth of field. [TG79]

shown in Fig. 2.4 the depth of field T is given as

d

2
=

T

2
tan α, (2.1)

where α is the lens aperture and d is the resolution, or

T =
d

α
(since tan α ' α for α � 1). (2.2)

For d = 1nm and α ' 2 · 10−3rad(≈ 1◦),

T = 500nm,

which is much larger than possible with light microscopy because in the latter

α may be 1.22rad (70◦) [TG79]. Hence for an object of ∼ 1
2
µm thickness all

features of the object are focused at once, and a projection of the in focus

three-dimensional object is obtained.

The depth of focus is a finite distance along the optical axis where the

image appears equally sharp. The depth of focus Tf and the depth of field

T are related by the magnification M , as follows [TG79]:

Tf = TM2 =
dM2

α
. (2.3)

Tf can be considered as infinite for all practical purposes, and so it is not

necessary to refocus when exposing plates or film which are not located at

the viewing screen.
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Figure 2.5: Plot showing resolution d as a function of accelerating voltage and

spherical aberration coefficient Cs. [TG79]

Resolution. As mentioned before, a feature of the TEM is its high spatial

resolution. The resolution is determined by the spherical aberration coeffi-

cient Cs of the objective lens and the the electron wavelength λ, given by the

de Broglie wave relation:

λ =
h

mv
. (2.4)

with h = Planck’s constant, m = the electron’s mass, and v = the electron’s

velocity.

When passing through a potential difference V an electron is accelerated

to a velocity of

v =

√
2eV

m
, (2.5)

with e = charge of the electron.

Substituting Eq. 2.5 in Eq. 2.4, the wavelength of an electron is given by:

λ =
h√

2meV
. (2.6)

Fig. 2.5 shows the resolution d as a function of accelerating voltage and

spherical aberration coefficient Cs. If the spherical aberration coefficient is
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maintained constant the resolution can be raised by increasing the accelerat-

ing voltage (through decreasing λ). So at 500kV or higher, atomic resolution

becomes theoretically possible even in close-packed structures. The optimum

voltage is determined by the specimen stability and knock-on damage and

by the voltage stabilization [TG79].

2.2 Electron Tomography

Tomography is a method to reconstruct the interior of an object from its

projections. Literally, the word tomography means visualization of slices.

Nowadays the term electron tomography (ET) is used for any technique that

utilizes the TEM to collect projections of an object and reconstructs the

object and its entirety by using these projections.

To properly understand the possibility to reconstruct objects by using its

projections the underlying ideas are briefly summarized.

A fundamental mathematical theorem, the so called Fourier slice theorem

[Jac96], states that the measurement of a projection is equivalent to a mea-

surement of a single central plane of the object’s three-dimensional Fourier

transform. The Fourier transform is an alternative representation of the ob-

ject and breaks down the object’s density distribution into sine waves. The

following condition must be fulfilled for a complete coverage of the object in

Fourier space:

• The strengths (amplitudes) and phase shifts of all sine waves traveling

in all possible directions and having wavelengths down to d/2 have to

be known, where d is the desired resolution of the three-dimensional

object.

By tilting the object around a single axis through a range of ±90◦, the Fourier

transform is completely sampled. Here, the angular increments have to be

small enough to prevent information loss. The relation between resolution d
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(a) Spatial domain, projections

along the z-axis are taken while the

plane is tilted around the axis.

(b) Missing data in the frequency do-

main: Since the tilt angle is mechani-

cally restricted to ±70◦, a part of the

fourier transform of the object is not

measured.

Figure 2.6: Single axis tilting.

and tilt angle increment ∆α is given by the Crowther relation [KGT+97]:

d = D∆α =
πD

N
(2.7)

with D = diameter of the object, N = the number of projections recorded

at equally spaced tilt angles over a range of 180◦.

Due to physical limitations based on the specimen holders and the sam-

ples themselves, which are in most cases thin but large, the tilting range

in electron tomography today is usually limited to ±70◦. For example, a

100-nm-thick specimen at a 70◦ tilt angle will be 2.7 times thicker and at a

80◦ tilt so much as 5.7 times thicker. So a high tilt angle results in a loss of

image contrast caused by multiple electron scattering. The tilt increments

range from 1◦ − 5◦.

The limited tilting range implies that a significant part of the Fourier

transform can not be measured. This is illustrated in Fig. 2.6. In Fig. 2.6(a)
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a single axis tilt is illustrated. In Fig. 2.6(b) the missing spatial frequencies

in Fourier space are illustrated. Due to the limited tilt angle a wedge shaped

area is missing[Fra92].

Finally the series of two-dimensional data obtained is processed to obtain

a three-dimensional image. For this, the 2D-images have to be aligned with

respect to each other in order to refer them to a common 3-D coordinate

system describing the object to be computed. Up till now, the alignment is

usually done by cross-correlation [FM92] or manually. The 3D-image is then

computed using a reconstruction algorithm of which several types are avail-

able, e.g. Fourier reconstruction methods, weighted backprojection methods,

or iterative direct space methods. A detailed description of reconstruction

methods used in ET is given in [Fra92].

2.3 Image Registration

A major delimiting factor of resolution in the 3D volume is the accuracy

of alignment of the tilt series. Tomographic approaches need to acquire

an image series over a large angular range (usually ±70◦) with small incre-

ments (usually 1◦ − 5◦). The specimen can not be made perfectly eucentric.

Thus specimen tilting results in both X-Y-translation and changes in focus.

Although recently developed systems for automated acquisition of tilt se-

ries [KGT+97] keep track of image shifts and refocusing steps, an additional

alignment step prior to the 3D-reconstruction is necessary.

Alignment. Alignment is an operation that is meant to register one or

more images that contain a common motif. Due to imperfections in the

tilting stage and the necessity of refocusing during the acquisition, the tilt

series set has to be aligned before the 3D reconstruction. Registration and

alignment are used synonymously.

Fiducial marker. As the word fiducial implies this marker is meant to be

imaged reliably throughout the tilt series. In EM usually gold beads are

used. Due to their high density gold beads are imaged as clearly shaped
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dark spots. In the following, the markers are also referred to as gold beads

or beads. During the registration, an image processing algorithm identifies

features in the projections that look like beads. These features are called

candidates.

Indexing. In order to align an image series it is necessary to establish a cor-

respondence from one image to another. For this, the previously mentioned

fiducial markers are used. These markers not only need to be detected in

every image but also associated to a detected marker in subsequent projec-

tions. The process of associating a detected marker with its corresponding

marker in the next or previous projection respectively is called indexing.

Single-axis tilting of a fiducial marker. For a perfect single-axis tilt

the marker would move on an orbit with radius r around the tilt axis. As

previously described TEM-images are projections along the optical axis. The

orbit projected in a 2D-image results in a line that is perpendicular to the tilt

axis. Line recognition is a well-known procedure in digital image processing

and can be used to recognize regions of interest. The x- and y-coordinates

of the marker as a function of the tilt angle result in a sinusoid according to

the geometric properties of an orbit’s projection.

2.4 Methods for Automatic Alignment of Tilt

Series Using Fiducial Markers

At least two methods of automatic alignment of tilt series using fiducial

markers have been published so far.

Fungh et al. [FLR+96] initially segment out all features throughout the

tilt series that possibly represent beads. Out of the identified gold beads

a set of gold beads in a reference view is interactively determined. These

markers are tracked over the rest of the tilt series. This is done by a simple

prediction of the position of a marker in the next projection. If a candidate

is found near the predicted position, it is taken. If not enough bead positions
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were found throughout the entire data stack a more vigorous search is started

which again involves a prediction of the bead position. The method requires

for the prediction a knowledge of the tilt axis which is not known in all cases.

Ress et al. [RHS+99] primarily specify the number of markers to be de-

tected. Here, the threshold for each image is adjusted in a way that the

predefined amount of markers were detected. The binary images containing

the markers are then cross-correlated in order to obtain the relative image

offsets. These offsets are used to compare the markers acquired in the refer-

ence image with those in the unindexed image. If the minimum distance of

an unindexed position falls below a tolerance, the marker is accepted. The

newly accepted markers now serve as the new reference. Compared to Fungh

et al. the selection of candidates to track is more restrictive: Only markers

detected in the zero-tilt reference were tracked.

The approach proposed in this thesis is more flexible concerning the selec-

tion of markers to be tracked. The selection is fully automatic. Furthermore,

the marker must not be represented in a reference view, so it is not necessary

to track a marker over the whole tilt series and it should be feasible to track

markers independently tracked in the begin and end of the series. Besides,

the proposed method does not require a knowledge of the tilt axis like the

procedure of Fung et al. although a prediction is as well included. Thus, this

algorithm should provide more flexibility and a better performance as the

two previously published algorithms.



Chapter 3

Materials and Methods

3.1 Phantom Data

To verify if the rough alignment with the cross-correlation function (CCF) is

working properly, a phantom data set was created using the script language

RADONIS. One data set created represented a perfect single axis tilting

without any shifts. In a second data set the images were shifted with respect

to each other. These shifts were protocolled in a floating point.

3.2 Real Data

The data of a pore in a hyphal cell of rhizoctonia solani1 was obtained by

Bram Koster, University of Utrecht. The Philips CM120 TEM was used. The

images were digitalized with a 10242 charge-coupled device (CCD) camera.

The pixel size is 0.86nm. As manual data collection is very time consuming

an automated data collection routine was used as described in [KGT+97].

The obtained data set included 146 projections. The tilt range goes from

−66◦ up to 79◦ with an increment of 1◦. Though the data set includes

images with a higher tilt angle than 70◦ and these images were taken into

considaration for the later described calculations, but they do not contain

1Rhizoctonia solani is a plant pathogen fungus.

16
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(a) −46◦ tilt angle (b) 0◦ tiltangle

Figure 3.1: Two projections of a pore in a hyphal cell of rhizoctonia solani.

much information due to inelastic scattering at high tilts, see p. 12.

Fig. 3.1 shows two exemplary images at different tilt angles.

3.3 Misalignment Estimation by

Cross-Correlation

The cross-correlation function (CCF) can be used as a tool to roughly align

projections. Here the CCF is used to eliminate major deviations.

The mathematical fundamentals are described in appendix A.

With the CCF similarities between two data sets can be found. Two

successive images of the tilt series can be seen as similar but not identical

sets of data. The difference that is caused by the geometric properties of

tilting the object is equalized by cosine stretching prior to the computation

of the CCF, see section 3.3.1. To reduce the computational burden of the

CCF the images are Fourier transformed.
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(a) −1◦ tilt angle (b) −0◦ tilt angle (c) CCF

Figure 3.2: Two subsequent images and their CCF.

For properly aligned images, the CCF should result in a maximum that

is located in the center of the image. If the compared images are not aligned,

this peak is off center. Thus the maximum’s deviation from the center can be

regarded as the shift vector. A shift back of the second image with respect

to its correlation partner should align the two projections. This process is

applied to the whole tilt series.

The correlation theorem intends the data to be periodic, which it is not

in the presented case. So end effects should be considered. Since the CCF is

in this case only a tool for a rough alignment, it was renounced to take care

of these side effects.

In Fig. 3.2 two subsequent images with their CCF are shown. If the two

images had a common origin the peak of the CCF would be located in the

center of the image marked with a black cross. The displacement of this peak

from the center represents the shift between the two images.

In summary, the rough alignment is implemented as follows:

The CCF of two subsequent images is calculated. Before computing the

CCF a stretching factor is applied to the image with the larger absolute tilt

angle. The cross-correlation is done with the aid of the fast Fourier transform

(FFT). The CCF is obtained using the inverse FFT and is put into memory

for a later evaluation of the image shift. The image shifts are calculated
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Figure 3.3: Cosine stretching: An increasing tilt angle results in a decreasing

distance between the projections onto the screen of P1 and P2.

by finding the maximum of the CCF and calculating the deviation of the

center. Since these vectors reveal the shift between two subsequent images,

the particular image shifts are summed before shifting an image back.

3.3.1 Equalization of the Geometric Properties of Pro-

jections by Cosine Stretching

The two images correlated using the CCF are projections of the same object

where the projection angle differs by ∆α (≈ 1◦ − 2◦). If ∆α � 90◦ the two

images contain a similar but not an identical motif.

In Fig. 3.3 the projections of two different tilt angles are shown. At

a higher tilt the projections of P1 and P2 come closer together due to the

geometric properties. This effect can be equalized by cosine stretching per-

pendicular to the tilt axis of the projection of the higher tilt prior to the

computation of the CCF which was investigated by [Guc82].

3.4 Detection of Fiducial Markers

The algorithm to detect the markers is described elsewhere [NP99]. The

following outlines the basic ideas of the method and describes the outputs of

the algorithm.
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pi xi yi si(pixel) ci

0 263 16 11 -283.5

0 345 16 11 -283.8

0 397 18 12 -224.6

0 419 18 5 -260.7

0 63 19 6 -257.6

0 101 19 6 -311.0

0 627 19 9 -192.9

. . . . .

. . . . .

. . . . .

Table 3.1: List of detected candidates.

In principle the detection algorithm searches the image data for dark,

almost circular spots and estimates the size and the local contrast of each

spot. The spots are searched for using a multi-scale approach. Dark spots

correspond to local minima in Laplacian convolved images if the size of the

filter kernel is chosen appropriately. To estimate the size and local contrast

of a spot a method is used based on a model of the marker and its properties

in scale-space was developed.

The outputs of the algorithm given in Tab. 3.1 is a list of candidates

Ci with the coordinates (xi, yi), the projection number pi, and two quality

measures, the marker size si (in pixel) and the local contrast ci of a marker.

Fig. 3.4 shows several examples where the detected markers are visualized

with a white cross. The number of accepted candidates can be limited by

applying size or contrast thresholds. In Fig. 3.4(a) and 3.4(b) images of two

different tilt angles with almost all detected features are shown, as every can-

didate with an estimated size above 2 pixels is marked. Fig. 3.4(c) and 3.4(d)

shows the same images with thresholds chosen that only features are marked

that are almost for sure a fiducial marker.
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(a) −46◦ tilt angle, markers with si > 2

and ci < 0.

(b) 0◦ tilt angle, markers with si > 2 and

ci < 0.

(c) −46◦ tilt angle, markers with si > 10

and ci < −450.

(d) 0◦ tilt angle, markers with si > 10

and ci < −450.

Figure 3.4: Images with detected candidates marked with a white cross with

different size or contrast thresholds applied.
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Figure 3.5: Candidates with si > 10 and ci < −450 mapped onto a single image.

A black dot indicates a candidate.

3.5 Marker Indexing

This section describes how the detected markers are indexed and traced over

several projections. Indexing means that markers of one projection are as-

signed to corresponding markers in the next projection and so on. In the

best case a marker can be found throughout the whole tilt series. The as-

signment process can be described as building up a chain of known positions

throughout the tilt series.

The probability that all markers can be found throughout the whole tilt

series is low, but it is possible to establish overlapping chains of markers over

the tilt series.

To reduce the list of candidates a global threshold is applied. This thresh-

old is chosen in a way that most false positive candidates are eliminated, as

shown in Fig. 3.4(c) and 3.4(d). The candidates are mapped onto a single

image, see Fig. 3.5.
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For a perfect single axis tilt acquisition, markers move on a line per-

pendicular to the tilt axis. Corresponding markers of different projections

approximately form a line. These lines can be recognized using the Hough-

transform described later. The detected lines are utilized to determine re-

gions of interest. Candidates located within these regions can be traced using

the information obtained by the Hough transform. Thus false negative clas-

sified candidates can be found and associated to the corresponding marker.

In a first step all candidates that contribute to a found cluster are de-

tected. The second step is to fill in any gaps existing, i.e. a marker which was

detected over some projections is missing in some projections. The reason

of this might be that the marker did not fulfill the applied global quality

criterion or that it is located just out of the region of interest.

This can be made by either searching a defined area around the already

detected marker in the next/previous projection or analyzing already indexed

marker chains in a way that a prediction of the movement of one marker is

possible. Then the marker is searched for in an unfiltered (i.e. there is no

threshold or limitation in respect of the size) list of candidates within the

defined area or at the predicted position.

3.5.1 Hough Transform

As an established tool in image processing the Hough transform [BB82] can

be used to recognize lines in image space. The following approach is used. A

point (x, y) in image space is passed by infinitely many lines. It is mapped

onto a sinusoid defined by the points (γ, a) fulfilling the relation

a =

(
x

y

)
·

(
cos γ

sin γ

)
, (3.1)

which is the normal representation of a line, illustrated in Fig. 3.6 (a).

Consider a second point in image space (x, y) that also yields a sinusoidal

curve in the γa-plane (parameter space). These two curves intersect in a

γa-pair that corresponds to the line containing both points.
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(a) (b)

= angle between the x-axis and the normal of the lineγ

a = distance of the line to the origin
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Figure 3.6: (a) Normal representation of a line L, (b) Parameter space subdivided

in accumulator cells.

The parameter space is subdivided in so-called accumulator cells as illus-

trated in Fig. 3.6 (b).

γ is subdivided over the expected range as well as a. The cells are initially

set to zero. Now γ is incremented over the selected range and equation 3.1 is

solved for a. Each calculated pair is associated to its respective accumulator

cell whose value is increased by one. The greater the value of an accumulator

cell the more points contribute to that specific line. The accuracy of the

method is defined by the number of subdivisions of the γa-plane, later on a

will be parted in k accumulator cells, γ in l accumulator cells.

Fig. 3.7 presents the Hough transform of the initially chosen candidates

of Fig. 3.5. As the maximum possible distance to the origin is the diagonal

of the original image, a ranges from 0 to 1024
√

2. γ ranges from 0 to π
2
. a is

subdivided in k = 362 and γ in l = 180 accumulator cells. The bright spots

in the right part of the image define the detected lines in image space.
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Figure 3.7: Hough transform of initially chosen candidates.

3.5.2 Determination of Regions of Interest

From the information obtained by the Hough transform clusters with promis-

ing candidates are selected. Because the images are acquired with one tilt

series all the lines should have the same slope. Therefore the Hough trans-

formation should yield a number of clearly separated maxima at the same γ.

Ideally each maximum corresponds to one marker. In some cases more than

one marker can contribute to the same cluster.

In order to find this γ value the absolute maximum of the Hough trans-

form was determined, because this indicates that the most candidates are

contributing to this cluster.

The Hough transform of this angle was then analyzed. Fig. 3.8 shows a

typical histogram of a determined angle. The local maxima of this distri-

bution were searched for. The first step is to apply a certain threshold. In

this context this means that a minimum number of markers contributing to

a line is defined. If two or more maxima are separated from each other by a
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Figure 3.8: Histogram of a distinct angle in parameter space. The arrows mark

the selected parameter. Threshold = 15.

minimum that itself lies above the chosen threshold, only one of these max-

ima is chosen to ensure the detected clusters are not too close to each other.

Such a situation occurs for example for the two clusters around a = 200 in

Fig. 3.8. Dependent on the chosen threshold clusters close to each other are

not separated by a value above the threshold. So in addition it is proved

if the detected lines are separated by at least two accumulator cells. This

scenario appears for example for the two clusters around a = 50. The two

clusters are separated by only one accumulator cell, so that only one is se-

lected. In Fig. 3.8 the selected parameter is marked with an arrow. There

were 15 clusters selected. Fig. 3.9 illustrates the outcome.

This method based on determining the best γ by searching for the abso-

lute maximum does not always lead to satisfactory results. In some cases,

e.g. splitting the reference images into markers with negative tilt angles or

choosing a threshold that results in fewer reference points, the determined

maximum leads to an angle that is not a representative of the predominant

slope. This problem is shown in Fig. 3.10. The maximum determined in

the Hough transform for Fig. 3.10(a) reveals a slightly steeper slope than

that found for Fig. 3.10(b). In Fig. 3.10(b) the lines were clearly detected.
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Figure 3.9: An exemplary projection of the tilt series with the selected clusters.

In Fig. 3.10(a) the detected markers do not build clear lines. The markers

are lying close to each other which also results in recognizable lines in the

Hough transform. In other words the slope of the line containing the most

candidates is not necessarily the predominant slope.

A better method for determining the predominant slope is to find the

angle γ for which the corresponding histogram obtained by the Hough trans-

formation differs the most from an equipartition. Therefore the entropy of

the histogram of every angle in the Hough transform is calculated. As men-

tioned in section 3.5.1, for a distinct angle γ every candidate is represented

by an associated radius a, so that the number of points Np for each angle

is the same. Supposed the parameter space is subdivided in k accumulator

cells per angle, the probability of a point being in the kth accumulator cell

in the a-direction can therefore be calculated as

pk =
Ak(γ, a)

Np

(3.2)

where Ak(γ, a) = value of kth accumulator cell and Np = total number of

candidates that contributed to the Hough transform.
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(a) Markers from −66◦ to 0◦ tilt angle

with lines indicating the selected clusters.

(b) Markers from 0◦ to 79◦ tilt angle with

lines indicating the selected clusters.

Figure 3.10: Markers with selected clusters. The angle was found by determining

the maximum of the Hough transform.

The entropy is calculated as

S = −
NA∑
k=1

pkln(pk). (3.3)

where NA = number of accumulator cells in a-direction.

For an equipartition applies pk = 1/NA. The entropy is therefore

Se = −ln

(
1

NA

)
> 0. (3.4)

A peak results in an entropy of

Sp = −ln(1) = 0. (3.5)

The more an distribution differs from an equipartition the smaller is the

entropy.

The entropy of every angle in the Hough transform is calculated and the

minimum entropy is searched for. This is shown in Fig. 3.11. The minimal
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Figure 3.11: The entropy as a function of γ. The selected angle γ is labeled with

a red arrow, the black arrow marks γ determined with searching for

the absolute maximum.

entropy and therefore the determined angle is marked with a red arrow. The

black arrow marks the angle which would have been chosen with searching

for the absolute maximum in the Hough transform. After determining the

predominant angle it is proceeded as described above.

The result is shown in Fig. 3.12. The cluster selection was based on the

same Hough transform as in Fig. 3.10. Contrary to Fig. 3.10 the same slope

was determined for both images.

3.5.3 Marker Tracing Based on the Hough Transform

Several candidates contribute to each cluster which was previously detected

by the Hough transform. Typically there will be some false positive candi-

dates contributing to the cluster and some wrongly negative classified candi-

dates are missing. The detected clusters are now used to eliminate candidates

that are not part of a cluster and to select the candidates which belong to

them.

The first step is, for each projection, to search out candidates that con-
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(a) Markers from −66◦ to 0◦ tilt angle

with lines indicating the selected clusters.

(b) Markers from 0◦ to 79◦ tilt angle with

lines indicating the selected clusters.

Figure 3.12: Markers with selected clusters. The angle was found by determining

the minimal entropy of the Hough transform.

tribute to one cluster. This is realized by creating a reference line using the

parameter γ and a determined with the Hough transform. A set of reference

points (x, y) is created using Eq. 3.1. This reference set is compared to the

markers shown in Fig. 3.5. A candidate that is located close enough to the

cluster (i.e. 5 pixels above or below the reference points), is taken. If there is

more than one candidate in one projection contributing to the same cluster,

the one with the higher contrast is chosen. This decision might be revised

in a later step, because this candidate might not correspond to the marker

that is traced at last.

The next step is to check if markers found in subsequent projections

contributing to the same cluster are corresponding markers and if missing

markers can be found by a search in a list of all candidates.

At first, every marker of a cluster is tested whether the marker was already

detected in the next projection. If not, the unfiltered list is searched for
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a candidate which is located near the already indexed marker in the next

projection. The search area in x-direction is based on the indexed marker.

Its x-coordinate is taken and varied over a predefined range (e.g. ± 4 pixel).

The associated y-coordinate is determined with respect to the reference line.

To even out the displacement of the marker in the y-direction with respect

to the reference points, the distance from the marker to the reference line

is calculated and considered when the search area is determined. Like the

x-coordinate the y-coordinate is varied over the same range. In Fig. 3.13 the

search area is illustrated for a small range of ±2 pixel only.

displacement of the marker in y-direction

Reference line

= searched position

= detected marker

Figure 3.13: Search area. The × indicates the position of the marker already in-

dexed in the next projection. The corresponding marker is searched

for in the current projection within the area marked by red crosses.

This search is also started when the position of the indexed marker in the

next projection differs by more than 20 pixels of that of the actual marker.

In this case the already detected marker in the next projection contributes

to this cluster but it is likely not corresponding to the marker of the previous

projection.

The array is searched from 0◦ tilt up to the maximum positive tilt angle,

then down to the maximum negative tilt angle and again up to the maxi-

mum positive tilt angle. The starting point is chosen at the 0◦ tilt, since

the untilted projection provides the best imaging conditions so most of the

markers should be able to be detected in this image.

The search is refined in the next step. This search algorithm takes ad-
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vantage of the single axis projection geometry. A prediction is made where

the marker is located in the next projection and this area is searched for a

detected marker. The following equations are illustrated in Fig. 3.14.

M
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m
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m

Cluster 1

Cluster 2

1

1
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2
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m = movement of a marker
M = Marker

Figure 3.14: Prediction. M1, M
′
1, M

′′
1 denote the position of a marker in three

subsequent projections. As the markers move on circles, there is a

relation between the movement of M1 and M2.

The distance between two markers from one projection with the tilt angle

α3 and the same marker in the projection with the tilt angle α4 can be

calculated as

m1 = r1 cos α3 − r1 cos α4. (3.6)

where r1 = the distance of the marker to the rotation axis, see Fig. 3.3.

Analogous to this, the movement of a second marker (which was found

in projections of the same tilt angles) is calculated as

m3 = r2 cos α3 − r2 cos α4. (3.7)

Eq. 3.6 and Eq. 3.7 are solved for cos α3 − cos α4 which leads to a relation

between the two rotation radii:

m1

m3

=
r1

r2

. (3.8)

The same relations are valid for m2 and m4.

Supposing that the marker M
′′
1 has not been found yet, a prediction where

this marker is located is possible with the following equation:

m2 =
m1 ·m4

m3

. (3.9)
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A prediction is only possible if two markers of subsequent projections of

one cluster have already been found and if a set of already indexed markers

in a second cluster is available. For ease of computation the prediction is

reduced to a prediction of the movement in x-direction. The search area

is ascertained as described above with the difference that the predicted x-

position is taken into consideration when the x-coordinate is specified. The

associated y-position is again determined with respect to the reference line. If

the prediction fails because there is no cluster with three detected markers in

subsequent projections or m3 is equal to zero, the prediction routine returns

the distance m1.

Candidates that do not correspond to a traced marker but contribute to

a cluster are then removed. During this step also short sets of corresponding

markers are removed. Short means chains of between 3 to 6 corresponding

markers.

The next step is to remove candidates which do not have a corresponding

detected marker in the previous and the next projection.

In summary, tracing and indexing markers involve the following steps.

First, out of the candidates that are the basis for the Hough transform (shown

in Fig. 3.5), the ones close to a selected cluster are associated with this cluster.

Then these markers are tracked by a simple search of a predefined area around

them in the next projection. In the next step the tracking is improved by a

prediction of the movement of the tracked markers. The tracking steps are

followed by a removal of short chains of markers or of markers that do not

correspond to the markers of the actual cluster. As the two tracking steps

result in a gain of information, the tracking is repeated as long as additional

markers were found.

In Fig. 3.15 the outcome of the indexing process is illustrated. The

indexed markers are mapped onto a single image. The characteristic lines of

a single axis tilting are recognizable.
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Figure 3.15: Markers which are associated to the determined clusters.



Chapter 4

Results

4.1 Simulations

The simulations served to evaluate the functionality of the CCF as a rough

alignment tool.

Unshifted data. As expected the cross-correlation resulted in centered

peaks. A deviation could not be detected.

Shifted data. The cross-correlation resulted in peaks deviating from the

center of the image. The shift vectors were protocolled and the images were

shifted back with respect to their correlation partner. A visual inspection of

the aligned data set gives the impression that the data set moves like a perfect

single-axis tilt, shifts are not visible. This was confirmed by examining the

shift data.

4.2 Selection of Later Traced Markers

Several parameters can be changed to limit either the number of selected

clusters or their distance apart. First, the accuracy of the Hough transform

35
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can be changed by choosing the number of accumulator cells. As previously

described the clusters were determined by identifying local maxima and ex-

cluding clusters that are lying next to each other in the Hough diagram. The

parameter a is subdivided in k = 362 cells which reveals a resolution of ≈ 4

pixels. γ is subdivided in l = 180 cells, which is a resolution of 0.5◦. Clusters

lying next to each other are excluded by the selection algorithm, with the

result that clusters are separated by at least 8 pixels. The selected clusters

are illustrated in Fig. 3.9.

As the selected clusters are separated by at least 8 pixels, a search area

around a selected cluster of 5 pixels is justified. In Fig. 4.1 a plot of selected

markers of 3 different clusters is shown. As described in Sec. 2.3, the x-

position of a marker is expected to vary according to cos α. Thus it can be

clearly seen in Fig. 4.1, that the majority of points are generated by two

different markers labeled with M1 and M2.

In Cluster 4, two markers were already indexed throughout several pro-

jections. Some of the markers that were associated to this cluster can be

clearly recognized as false positive indexed candidates. They are visualized

by a surrounding circle.

A similar situation was found in cluster 8. Again mainly two markers

contribute to this cluster. As mentioned on page 30, if in one projection two

possible candidates were found, the one with the higher contrast is chosen.

The two markers contributing to this cluster were both detected from projec-

tion # 40 till projection # 80 and both were clearly enough detected to fulfill

the first global quality criteria. This plot underlines that the local contrast

is not an adequate decision criteria hence both markers were selected almost

equitable from projection # 42 till projection # 56.

Cluster 14 is dominated by one marker. Though a second marker was

selected from projection # 110 till projection # 130 the assumption that

the selected markers were chosen because of their higher local contrast is

justified. This decision is revised by the tracing routines.
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Figure 4.1: x-position of selected markers of three different clusters as a function

of the projection number. The zero tilt projection is labeled with a

red line.
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4.3 Tracing of Markers

Tracing includes the following steps:

1. Follow the marker by searching a predefined area in either the previous

or the next projection.

2. Follow the marker by predicting its position in either the previous or

the next projection.

3. Remove marker chains which are too short.

The first two steps are repeated until no additional markers can be found.

The success of the first step is closely related to the radius r of the marker

with respect to the tilt axis. The distance that the marker moves from one

projection to another is scaled with r, see Eq. 3.6. The search area chosen

is relatively small to avoid false positive markers being indexed or markers

lying close to each other being wrongly associated. Some markers move in

wider steps from one projection to another than what is searched by this

part of the algorithm. In this case no further improvements are expected by

this step. But it is to be expected that several candidates move within this

range so that this step includes a gain of information that is used in the later

applied prediction step. In Fig. 4.2 the improvement for the selected markers

shown in Fig. 4.1 is illustrated.

For cluster 4 a significant progress of the indexing process is visible. Not

only existent gaps were closed, also the indexed chain was obviously length-

ened. The tracing algorithm is ended by tracing the marker from the maximal

negative tilt angle up to the maximal positive tilt angle. This results in a

later (i.e. higher projection #) switch from M1 to M2.

The situation in cluster 8 is similar. The area which was split equally

between the two detected markers is now associated to one marker.

The marker of cluster 14 was after this step already indexed from pro-

jection # 15 till projection # 117. That means that the tracing resulted in

around 20 candidates that were associated to this cluster and existent gaps

were filled.
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Figure 4.2: Plot of the markers after the first tracing step. The zero tilt projec-

tion is labeled with a red line.
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Figure 4.3: Plot of the markers after the second tracing step. The zero tilt pro-

jection is labeled with a red line.
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A prediction is only possible if several conditions are fulfilled. First, the

marker which the prediction is made for has to be already located and indexed

for two subsequent projections followed by a gap. Second, there has to be

another marker that is already indexed for the same sequence of projections.

The probability that these two conditions can be fulfilled is increased

by the simple search algorithm because for some markers the search area

is chosen wide enough that a gain of information was already attained. In

Fig. 4.3 the result of this search is illustrated.

The search supposed by the prediction of the x-coordinate of the marker

in the next/previous projection resulted in a further improvement of the

indexing process. A further tracing of the markers was possible and chains

throughout a large range of the tilt series were established. Existing gaps

were filled.

Out of the exemplary shown clusters, both cluster 8 and 14 benefit from

the prediction routine. The false positive indexed marker in cluster 14 (pro-

jection # 118) was replaced by the candidate associated to this cluster.

4.3.1 Reasons for the Failure of the Prediction

Apart from the previously mentioned problems that several conditions have

to be fulfilled to make a prediction possible, the value of the prediction

is still subject to restrictions. E.g. the prediction is not a proper tool for

a plausibility control of indexed markers. The prediction is based on the

assumption that the markers are located in a plane that also contains the

tilt axis, as it is shown in Fig. 3.3. If the tilt axis is located significantly

above the plane containing the markers, or if the markers do not lie in one

plane, which can be the case due to the preparation, the projection of the

markes do not move in phase. More precisely, a reliable prediction is only

possible if the marker that serves as a reference is located in the same layer

as the marker which the prediction is made for. This means markers in the

same layer should move in phase.

In Fig 4.4 the movement of several markers is plotted. The markers of
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Figure 4.4: The movement of exemplary clusters throughout the tilt series in

x-direction.

cluster 12 and 14 are located in the same layer since they move in phase.

The same is valid for cluster 7 and 11. The marker of cluster 13 is located

in another layer. The exemplary markers shown are from 3 different layers.

A consequence of these phase shifts for the prediction algorithm is that only

an unprecise prediction is possible, because no verification is implemented if

the reference marker is located in the same layer.

4.3.2 Indexing Quality

To evaluate the indexing quality, every cluster was examined to see if the

indexed chain ends due to the marker not being detected anymore or due

to it not being found by the indexing algorithm. In addition, the number of

repetitions necessary of the tracing steps mentioned on page 33 is determined.

Finally, it was checked if markers were wrongly indexed.

A detailed description of every cluster can be found in appendix B.

Mostly the marker chains ended because of a failure of the indexing algo-
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rithm. Presumably, the indexing algorithm fails because the marker in the

next/previous projections was located just out of the searched area and the

prediction failed either because no marker was indexed in order to serve as a

reference or the prediction was based on a marker in another layer and thus

misled the subsequent search.

Although most markers were indexed with one repetition, some clusters

benefited from the repetition. This is illustrated for cluster 10 in Fig. 4.5. In

this case the tracing was not finished until the third repetition.

In Fig. 4.6 an example for wrongly indexed candidates is given. The last

indexed markers of this chain do not satisfy the expected run of the curve.

These markers were also distinguished by their estimated size. This feature

might serve as an elimination criteria.

4.4 Overlapping of Detected Marker Chains

Since the markers are typically not detected throughout the whole tilt series

an overlap of at least one projection is necessary in order to switch the

reference point for the alignment to a common origin. Therefore the ends of

the chains were investigated whether there is an additional marker to switch

to and whether in clusters with two or more detected markers the changeover

is supported by another marker chain.

The following statements are illustrated in Fig. 4.7.

There are three clusters where more than one marker was indexed. In

all three cases the changeover comes along with an overlap of at least three

projections.

Cluster 0, 1, and 3 which all are only indexed for a high tilt also overlap

for at least one projection with indexed chains, that they can be taken into

consideration for a later alignment.

Recapitulating it is to say, that the overlap of the indexed markers is at

least one projection.
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(a) Indexed Markers afterthe first flow path.
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(b) Indexed markers after second flowpath.
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(c) Indexed markers after third flowpath.

Figure 4.5: Progress of the indexing process with recursive application of the

tracing algorithms, exemplary shown for cluster 11. The left plots

show the progress after the simple search algorithm, whereas the right

plots show the progress after the search supposed by the prediction.
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Figure 4.6: An indexed marker with some false positive indexed candidates at

the end of the chain.
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Figure 4.7: The indexed markers throughout the tilt series.



Chapter 5

Discussion

A method was developed that indexes detected fiducial markers in order to

use this information for a later alignment. A goal was to develop an algo-

rithm that needs only a minimum of interaction.

The Hough Transform is a reliable and flexible tool to select the markers to

track. The selection is not restricted to markers visible in a reference view

as e.g. in the approach of Ress et al. A user interaction is not necessary

in contrast to Fungh et al., where the markers to track are chosen by hand.

The algorithm provides to independently track markers that are only visible

at the end or the beginning of a tilt series, so that markers entering and leav-

ing the field of view are though traceable. However, the algorithm contains

several parameters which are data dependent thresholds and the number of

the Hough Transform’s accumulator cells. The last prementioned parameter

influences not only the accuracy of the Hough Transform but also the size of

the search area.

Additionally, the Hough Transform provides the marker’s moving direction.

This is dependent on the tilt axis and the obtained information is used for

the tracking algorithm. So the knowledge of the tilt axis is not a requirement

for a successful tracing, as in Fung et al.

The algorithm yielded a satisfying indexing quality. Since the tracking was

supposed by a prediction, the search area could be kept small. This resulted
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in almost non falsely indexed marker. The analyzed outcome of the indexing

algorithm showed no indexed false positive detected markers. Regardless,

the indexing quality was limited, as mostly the end of a chain was caused

by a failure of the indexing algorithm and not because the feature was not

detected anymore. Out of the 14 selected clusters, three markers were in-

dexed from their first to their last occurrence. In six clusters the indexing

algorithm failed at a high positive tilt angle. Three cluster were unindexed

at a high negative tilt angle though the feature was detected in the previous

projection. For the remaining three clusters the indexing failed at both chain

ends. A reason for this is that mostly the detected feature in the next pro-

jection is located outside the searched area and the prediction failed because

of the prementioned reasons. In addition, at high tilts the coordinates of the

detected feature were not well-centered which results in a slightly different

starting point for the tracing algorithm and thus its failure.

Anyhow, the algorithm succeeded in labeling markers with the cluster they

contribute to, the obtained information can be used for the alignment as

e.g. published in [Law92]. Alignment algorithms need a minimum number of

reference points per projection, which is provided by the presented algorithm

over a large range of the tilt series.

Although the algorithm does not only track markers of a reference view, only

a few markers remained indexed until high tilts. Thence some improvements

are suggested in the following.

Since the correct prediction is only possible if the reference marker is located

in the same layer, a verification should be implemented. This improves the

indexing quality as well as this could be a tool to exclude chains of false

positive detected markers.

The results showed it is possible that more than one marker is contributing

to a cluster. Hence this interferes the tracking of both markers, a separate

index for each marker should be established.

To improve the indexing quality of the high tilts, a second selection of clusters

could be established. This means, that another reference image for the cal-
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culation of the Hough Transform can be created, which is based on detected

markers of high tilts. This proceeding would allow to match the applied

threshold to the image features found at high tilts and therefore detect clus-

ters only represented in high tilts.

Since the algorithm could be tested so far with only one data set, performance

test with several different data sets should be carried out. A statistical eval-

uation of more data set could lead to a further automation of the algorithm,

as it should be possible to determine thresholds automaticaly.



Chapter 6

Summary
This diploma thesis represents a method to automatically index fiducial

markers. The obtained information will be used for a later alignment of

the tilt series.

TEM-images acquired during a tilt series do not necessarily refer to a

common origin due to the acquiring process. In order to eliminate major

deviations, the data was cross-correlated. Then, the fiducial markers were

detected using a feature recognition algorithm. The list of the detected fea-

tures was filtered that the most false positive candidates could be eliminated.

A line recognition method, the Hough transform, was used to determine re-

gions of interest. The selected fiducial markers were tracked by either a

simple search algorithm and an algorithm that utilizes the properties of sin-

gle axis tilting to calculate the position of a marker in the next projection in

order to associate it to an index. The indexed markers can now be used for

an alignment.

The outcome of the algorithm was investigated whether the algorithm is

prone to false positive indexing, and with respect to its later application. A

good indexing quality was reached until hardly false positive indexed markers

were investigated and the marker were indexed over a wide range of the tilt

series. A limiting factor is, that only a few markers remained indexed up

to tilt angles above 60◦. So a starting point for further improvements is to

optimize the prediction algorithm and to adopt the selection of regions of

interest to the image properties in high tilts.
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Appendix A

Mathematical fundamentals

A.1 The Fast Fourier Transform

The Fourier transform is a powerful tool to simplify the computation of

the CCF. As the word transform implies the Fourier transform is a way to

represent a data set in a different way. The data can be described either

in the spatial domain as a function of x, or in the frequency domain as a

function of frequency f . It is possible to go back and forth between these

two domains by means of the Fourier transform equations [PTVF88]:

H(f) =

∫ ∞

−∞
h(x)e2πifxdx

(A.1)

h(x) =

∫ ∞

−∞
H(f)e−2πifxdx.

The fast Fourier transform is a numerical method to efficiently calculate these

integrals for an equidistantly sampled function h.
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A.2 The Cross-Correlation Function

The CCF of two images represented by discrete arrays i1 and i2 is defined as

φlm =
∑

j

∑
k

i1(j, k)i2(j + l, k + m) (A.2)

where i1(j, k) and i2(j, k) are gray values of the respective images at point

r = (xj, yk) of a regular sampling grid [FM92].

If the two images contain a common motive in the same orientation but

at different positions r1 and r2 the CCF shows a peak in a position described

by the shift vector ∆r = r1 − r2.

In practice, the computation of the CCF does not follow Eq. A.2. It is

speeded up by the use of the convolution theorem:

φlm = F−1 {F {i1}F∗ {i2}} . (A.3)

F and F−1 denote the discrete forward and reverse Fourier transformation,

and ∗ denotes the use of the complex conjugate of the expression.



Appendix B

Marker tracing

After the automatic detection, every cluster was examined manually to see

whether the chains end because of failures of the algorithm or because the

feature disapears. Therefore the full list of candidates was searched, the coor-

dinates the candidate should be located was estimated by a visual inspection

of the data set.

In the following, the properties of each cluster are summarized.

Cluster 0. One marker contributes to this cluster. The indexing is con-

cluded after the first flow path of the tracing steps. The marker is indexed

from its entering of the field of view. It was detected in the subsequent

projection behind the last indexed marker, but this candidate could not be

associated with this cluster.

Cluster 1. One marker contributes to this cluster. The indexing is con-

cluded after the first flow path of the tracing steps. The marker is indexed

from its entering of the field of view. It was detected in the subsequent

projection behind the last indexed marker, but this candidate could not be

associated with this cluster.

Cluster 2. One marker contributes to this cluster. The indexing is con-

cluded after the first flow path of the tracing steps. The marker is indexed

from its entering of the field of view. It was detected in the subsequent
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projection behind the last indexed marker, but this candidate could not be

associated with this cluster.

Cluster 3. One marker contributes to this cluster. The indexing is con-

cluded after the first flow path of the tracing steps. The marker is indexed

from the projection of its first detection on. It was detected in the subsequent

projection behind the last indexed marker, but this candidate could not be

associated with this cluster.

Cluster 4. Two markers contribute to this cluster. The indexing is con-

cluded after the first flow path of the tracing steps. The marker was already

detected before the first indexed position. A shorter chain of this marker

was indexed but removed as the association to the finally indexed chain was

not possible. From projection # 74 on the second marker was indexed. The

indexing was interrupted in projection # 105. Though the marker was de-

tected it was not indexed. It was indexed again later on (i.e. at a higher

tilt), though the marker was detected before it was indexed. This last chain

ended up at a high tilt, where the marker could not be detected anymore.

Cluster 5. One marker contributes to this cluster. The indexing is con-

cluded after the second flow path of the tracing steps. The marker was

already detected before the first indexed position. It was detected in the

subsequent projection behind the last indexed marker, but this candidate

could not be associated with this cluster.

Cluster 6. Two markers contribute to this cluster. The indexing is con-

cluded after the second flow path of the tracing steps. The marker was

indexed from the first projection it was detected in. The marker was de-

tected in the subsequent projection behind the last indexed marker, but this

marker could not be associated with this cluster.

Cluster 7. One marker contributes to this cluster. The indexing is con-

cluded after the first flow path of the tracing steps. It was already detected

before the first indexed position. It was detected in the subsequent projection

behind the last indexed marker, but this candidate could not be associated
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with this cluster.

Cluster 8. Two markers contribute to this cluster. The indexing is con-

cluded after the first flow path of the tracing steps. The marker was already

detected before the first indexed position. From projection # 77 on the sec-

ond marker was indexed. The chain ended up at a high tilt, where the marker

could not be detected anymore.

Cluster 9. One marker contributes to this cluster. The indexing is con-

cluded after the first flow path of the tracing steps. The marker was already

detected before the first indexed position. The chain ended up at a high tilt,

where the marker could not be detected anymore.

Cluster 10. Three markers contribute to this cluster. The indexing is con-

cluded after the third flow path of the tracing steps. The first marker is

indexed from the projection of its first detection on. From projection # 13

on the second marker was traced. This marker was indexed until it was not

detected anymore. From that projection on the third marker was traced.

This last chain ended up at a high tilt, where the marker could not be de-

tected anymore.

Cluster 11. One marker contributes to this cluster. The indexing is con-

cluded after the third flow path of the tracing steps. The marker was already

detected before the first indexed position. It was detected in the subsequent

projection behind the last indexed marker, but this candidate could not be

associated with this cluster.

Cluster 12. One marker contributes to this cluster. The indexing is con-

cluded after the first flow path of the tracing steps. The marker was indexed

from the first projection on. The chain ended up at a high tilt, where the

marker could not be detected anymore.

Cluster 13. One marker contributes to this cluster. The indexing is con-

cluded after the first flow path of the tracing steps. The marker was indexed

from the first projection it was detected in. The chain ended up at a high

tilt, where the marker could not be detected anymore.
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(a) Selected markers.
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(b) Markers after first tracing step.
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(c) Markers after second tracing step.

20

40

60

80

100

120

140

160

180

200

220

240

105 110 115 120 125 130

x-
co

or
di

na
te

 o
f 

m
ar

ke
r

projection #

(d) Finally indexed markers.

Figure B.1: Cluster 0.

Cluster 14. One marker contributes to this cluster. The indexing is con-

cluded after the first flow path of the tracing steps. The marker was indexed

from the first projection it was detected in. It was detected in the subsequent

projection behind the last indexed marker, but this candidate could not be

associated with this cluster.

In the following the distinct steps of the indexing process are visualized for

each cluster.
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(a) Selected markers.
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(b) Markers after first tracing step.
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(c) Markers after second tracing step.

0

50

100

150

200

250

300

90 95 100 105 110 115 120 125 130

x-
co

or
di

na
te

 o
f 

m
ar

ke
r

projection #

(d) Finally indexed markers.

Figure B.2: Cluster 1.
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(a) Selected markers.
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(b) Markers after first tracing step.
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(c) Markers after second tracing step.
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(d) Finally indexed markers.

Figure B.3: Cluster 2.
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(a) Selected markers.
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(b) Markers after first tracing step.
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(c) Markers after second tracing step.
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(d) Finally indexed markers.

Figure B.4: Cluster 3.
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(a) Selected markers.
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(b) Markers after first tracing step.
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(c) Markers after second tracing step.
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(d) Finally indexed markers.

Figure B.5: Cluster 4.
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(a) Selected markers.
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(b) Markers after first tracing step.
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(c) Markers after second tracing

step.
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(d) Markers after third tracing step.
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(e) Markers after forth tracing step.

0

100

200

300

400

500

600

700

800

900

1000

20 40 60 80 100 120 140 160

x-
co

or
di

na
te

 o
f 

m
ar

ke
r

projection #

(f) Markers after fifth tracing step.
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(g) Finally indexed markers.

Figure B.6: Cluster 5.
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(a) Selected markers.
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(b) Markers after first tracing step.
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(c) Markers after second tracing

step.
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(d) Markers after third tracing step.
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(e) Markers after forth tracing step.
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(f) Markers after fifth tracing step.
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(g) Finally indexed markers.

Figure B.7: Cluster 6.
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(b) Markers after first tracing step.
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(c) Markers after second tracing step.
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(d) Finally indexed markers.

Figure B.8: Cluster 7.
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(b) Markers after first tracing step.
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(c) Markers after second tracing

step.
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(d) Markers after third tracing step.
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(e) Markers after forth tracing step.
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(f) Markers after fifth tracing step.
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(g) Finally indexed markers.

Figure B.9: Cluster 8.
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(a) Selected markers.

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140 160

x-
co

or
di

na
te

 o
f 

m
ar

ke
r

projection #

(b) Markers after first tracing step.
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(c) Markers after second tracing step.
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(d) Finally indexed markers.

Figure B.10: Cluster 9.
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(c) Markers after second tracing

step.
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(d) Markers after third tracing step.
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(e) Finally indexed markers.

Figure B.11: Cluster 10.
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(d) Markers after third tracing step.
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(e) Markers after forth tracing step.
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(f) Markers after fifth tracing step.
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(g) Finally indexed markers.

Figure B.12: Cluster 11.
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(c) Markers after second tracing step.
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(d) Finally indexed markers.

Figure B.13: Cluster 12.
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(c) Markers after second tracing step.
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(d) Finally indexed markers.

Figure B.14: Cluster 13.
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(c) Markers after second tracing step.
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(d) Finally indexed markers.

Figure B.15: Cluster 14.
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