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Learning to Recognize Objects

Guy Wallis & Heinrich H. B�ultho�

Abstract. In this report we review a large body of literature describing how experience a�ects

recognition. Both neurophysiology and psychophysics provide clear evidence for the development

of recognition over time. In particular, we show how perceptual learning in recognition tasks can

be directly linked to learning in feature tuned inferotemporal lobe neurons in the primate brain.

The environment as we experience it, is so structured that potentially very di�erent images

appearing in close temporal succession are likely to be views of the same object. We argue that

this temporal structure forms the basis of a tendency (a prior in the sense of Bayesian Statistics)

of the human visual system to associate images of objects together over short periods of time.

1 Introduction

In the process of everyday life we are con-

tinually analysing and interpreting our visual

environment. We e�ortlessly convert the 
at

retinal images supplied by our eyes, into a rich

three-dimensional world, �lled with licorice

and ladybirds, shipyards and woods. The ap-

parent speed and ease with which we do this

is deceptive. The images cast on our retinas

by objects change drastically as a function of

viewpoint, lighting, size or location. Consider,

for example, the scene depicted in �gure 1 in
which the same o�ce chair appears several

times. We seem to �nd it trivial to distin-

guish cast shadows or wall paintings from the

genuine article, and it seems self-evident that

the chair on the desk is small enough to hold

in the hand whereas the chair in the adjacent

o�ce is large enough to sit on. We happily

conclude this from various cues in the image,

despite the fact that the images formed on our

retinas by the two chairs are actually identi-

cal.

This chapter describes theories of how hu-
mans solve the recognition problem, and

particularly, how our perception of objects

changes with experience. The question of how

we recognise objects is an active area of re-

search, and part of this chapter is dedicated

to a summary of the proposals that have been

made. This is followed by a review of the evi-

dence for perceptual learning in object recog-

nition, ranging from the level of single neurons

to that of human behaviour. The chapter con-

cludes by considering how we might learn to

associate very dissimilar views of an object,

describing how temporal as well as spatial cor-

relations present in our environment can be

used to make the necessary associations.

2 Interpreting our visual world

2.1 Introduction

Before launching into the topic of object

recognition in detail, this section provides a

broader review of visual perception in general.

In particular, it covers some of the philosoph-
ical arguments which have inspired research,

as well as the experimental evidence for and

against the in
uence of perceptual learning in

the human visual system.

2.2 Philosophical beginnings

The question of how we construct an inter-

nal representation of our visual world has pro-

vided fruitful labour for philosophers, psychol-
ogists and engineers for many years. Among

the �rst recorded ruminations on the topic ap-

pear in the writings of the ancient Greeks, in-

cluding those of Pythagoras and Plato. Plato

was particularly interested in how we recog-

nise and categorise objects. He came to won-
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Figure 1: A complex scene comprising many chairs seen with di�erent sizes, viewpoints, lighting conditions etc.,
demonstrating the range of problems faced in recognising and categorising objects.

der what it was about a cat, for example,
that let it be classi�ed as a cat and yet re-

main distinct from all other cats. He proposed

an innate fund of perfect, universal forms, to

which all seen objects are likened. Plato's

ideas �nd parallels in current theories of pro-

totypes (Rosch 1973; Posner and Keele 1968;

Edelman 1995), but the proposal that such

categories are innate gifts has been replaced

by the belief that much about visual percep-

tion is learnt, and is therefore shaped by our

environment. This belief was �rst voiced in
the early 17th century in the writings of Ren�e

Descartes, and within 50 years it became the

guiding principle of a new philosophical move-

ment called empiricism.

The founding father of empiricism was John

Locke. Locke rejected all theories of innate
knowledge, and although he was prepared to

accept a certain amount of prenatal knowl-

edge, he attributed it mainly to sensory ex-

perience within the womb. Despite a core of

truth to his theories, Locke's uncompromising

stance left plenty of scope for criticism and

counter argument. Nativist philosophers such

as Porter�eld and Kant argued that percep-

tion requires a framework, an assumed space

and time, and a concept of categories to be

able to begin to represent the real world.
This argument was later championed by the

Gestalt movement, which strongly in
uenced

thinking in the �rst half of the 20th century.

Gestalt psychologists such as K�ohler and Kof-

fka took the view that human perception is
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littered with assumptions which are used to

transform the retinal image into an object.

They both believed the principles of organi-

sation which they proposed to be fundamen-

tal, like laws of physics, enforcing unavoidable

and universal constraints on perception.

K�ohler condemned the empiricist view,

stating:

Now, when the concept of organi-
sation was �rst introduced, we were
at every step hampered by empiricist
explanations. . . It has been shown, I
hope, that . . . [Gestalt laws] . . . do not
allow of explanations in terms of learn-
ing, and that therefore, organisation
must be accepted as a primary phase
of experience. At present we may go
further and claim that, on the con-
trary, any e�ects which learning has on
subsequent experience are likely to be
after-e�ects of previous organisation.
(Gestalt Psychology, K�ohler 1947)

Nowadays, many of the Gestaltist laws seem

rather vague and anecdotal, but their work

did succeed in highlighting a large number

of instances in which humans infer form and

shape on the basis of a few inbuilt assump-
tions. Perhaps their only disservice to sci-

ence was their success, which sti
ed progress

on perceptual learning throughout the early

part of the 20th century. It was not until

the 1960s and 70s that interest in the seminal

work of late 19th century empiricist writers

like Helmholtz and James, enjoyed a resur-

gence of interest. One of the tasks for cur-

rent researchers is to provide evidence for how

much of visual perception is altered by expe-

rience and how much is innate.

2.3 The case of S.B.

Having reviewed the nativist vs empiricist de-
bate it is time to consider some of the ev-

idence for the two philosophies. The earli-

est arguments in favour of perceptual learn-

ing stem from the work of the early empiri-

cists. Of course, being philosophers rather

than scientists in the modern sense, most of

their evidence is enshrined in intellectual ar-

gument rather than experimentation. Their

preferred approach was to present the reader

with a mental conundrum followed by an ele-

gant explanation which furthered their cause.

Nevertheless, through such mind games they

did make at least some, seemingly testable

predictions. One favourite concerned a man

born blind, who is suddenly able to see. They
speculated on how his tactile experience of the

world would transfer to his interpretation of a

visual world.

In early 1693, Molyneux was sending com-

ments on a draft of Locke's Essay on Human

Understanding, and concluded with:

. . . a jocose problem: Suppose a man
born blind. . . and taught by his touch
to distinguish between a cube and a
sphere. Suppose then. . . the blind man
made to see; query whether by his
sight. . . he could now distinguish and
tell which the globe and which the
cube.
(From a collection of letters published

by Locke 1708)

Both Locke and Molyneux thought not.

So, did anyone ever live out Molyneux's

Gedanken experiment? Several hundred years

ago a man born blind was almost certain to

remain so, and in more modern times oper-
able cases are usually dealt with soon after

birth. However, it turns out that there are a

very few cases of people recovering their sight

after years of blindness. In their Experimental

Psychology Society Monograph 1963, Gregory

and Wallace review several such cases making

reference to the discussions of the empiricist

philosophers. They then go on to describe

in detail, experiments conducted with S.B.,

a man who lost his sight at the age of ten

months and then had it restored some �fty-
two years later. Finally, after two hundred

years of waiting, it seemed that S.B. could

provide scientists with the opportunity to sup-

plant the empiricists' reasoning with facts.

The �rst remarkable thing about S.B. was

that some tactile information clearly trans-
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fered almost instantaneously to his seeing

world. In other words, things which S.B. had

felt with his hands could often be readily per-

ceived with his eyes. He could, for example,

read the time on a clock face across a room.

He could also read printed capital letters, al-

though lower case letters meant nothing to

him as he had not been taught to read them as

a blind schoolboy. Clearly, this type of trans-
ferral is at odds with the predictions of Locke

and Molyneux. Far from being an exception,

there is now good evidence that the transfer-

ral from touch to visual perception is quite

normal. This has lead theorists to propose a

much closer link between the two sense modal-

ities than the early empiricists would have ex-

pected. Despite this setback, many other of

their predictions did stand the test of time.

For example, Locke proposed that depth cues

such as shading and perspective are only use-
ful after experience of their meaning:

When we set before our eyes a round
globe. . . it is certain that the idea
thereby imprinted in our mind is of
a 
at circle variously shadowed. . . But
we having by use been accustomed
to perceive what kind of appearance
convex bodies are wont to make in
us. . . we have by these an idea of the
thing as it is in itself.
(Essay on Human Understanding,
Locke 1706)

Gregory and Wallace tested S.B. on vari-

ous illusions and found him abnormally insus-

ceptible to those shown in �gure 2, reveal-

ing an unusual insensitivity to depth cues.

Indeed S.B. described looking from an up-

stairs window and feeling that he could step to

the ground several 
oors below without harm.

This misapprehension of depth accords both

with Locke's words above as well as those
of George Berkeley. In Berkeley's Three di-

alogues between Hylas and Philonous, 1725 ,

Philonous argues:

Now, I �nd from Experience that when
an Object is removed still farther and

a b

Figure 2: Examples of optical illusions to which S.B.,
a man 52 years blind and now able to see, was ex-
posed during testing. a The staircase illusion in which
S.B. failed to infer depth from the oblique lines, hence
avoiding the usually bistable percept. b The Z�ollner
Illusion in which S.B. described seeing straight, paral-
lel lines rather than the collection of bowed black lines
described by normal observers.

farther o�. . . its visible Appearance
still grows lesser and fainter. . . [We]
perceive Distance, not immediately,
but by mediation of a Sign, which hath
no Likeness to it, or necessary Connex-
ion with it, but only suggests it from
Experience as Words do Things.

Not surprisingly, Berkley concludes a sim-

ilar conversation in his book Alciphron: Or,

The Minute Philosopher, 1732, thus:

Now, is it not plain, that if we sup-
pose a Man born blind was on a sud-
den made to see. . . [he] could not at
�rst have any Notion of Distance an-
nexed to the things he saw. . .

Gregory and Wallace's �ndings support the

idea that a great deal of S.B.'s tactile expe-

rience of essentially 2D views (of letters and

clock faces) carried over to the visual world,

but that his perception of depth and the use

of cues to 3D form were missing. This is to

some extent surprising because S.B. probably

went blind at the age of 10 months. Although

there is no record of his visual development

before this time, had it been normal, devel-
opmental studies have shown that by this age

he would have gained some ability to process

depth information, including the rigidity as-

sumption (Gibson et al. 1978), and the use of

stereo disparity (Held 1987). However, none

of this early experience seems to have been
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retained, and instead S.B.'s experience with

his tactile world appears to have formed the

basis for what he later saw. Indeed, there is

some evidence that shortly after the operation

his previous tactile experiences caused curious

misperceptions of objects. For example, he

initially saw busses as having spoked wheels

- as they had had at the turn of the century

when he last had cause to touch them as an in-
quisitive boy. He only correctly perceived the

modern solid wheels months after his opera-

tion. On the other hand, he had no di�culty

in correctly perceiving the shape of a quarter

moon, which as a blind man he had imagined

would be sliced like quarter of a cake!

Over the next few months, S.B.'s concep-

tion of things around him continued to im-

prove. Gregory and Wallace noted that since

leaving the hospital, S.B. had become fasci-

nated by the varying appearance of objects:

`Quite recently he had been struck by how

objects changed their shape when he walked

round them. He would look at a lamp post,

walk around it, stand studying it from a di�er-

ent aspect, and wonder why it looked di�erent

and yet the same'.

It is clearly tempting to read a great deal

into S.B.'s words, but as Gregory and Wal-

lace point out in their paper, this tempta-

tion is dangerous, since we cannot see directly

into the mind of a blind man. A blind man's
vocabulary derives from that of the seeing,

and one should therefore exercise caution in

interpreting his descriptions of visual experi-

ence. Indeed, a recent brain imaging study by

Sadato et al. (1996) has demonstrated that

the visual cortex of blind people becomes re-

cruited for tasks such as braille reading in a

manner quite unlike that in normal subjects.

This was con�rmed by Cohen et al. (1997)

who used magnetic stimulation to disrupt pro-

cessing in particular brain areas to show that
blind people require visual cortex to interpret

braille, once again, unlike normal subjects.

Bearing this in mind, we should shy away

from extrapolating too much from S.B.'s expe-

riences. However, the case does raise some in-

triguing questions about the in
uence of expe-

rience in interpreting our visual environment,

and if the case succeeds only in whetting the

reader's appetite for a more detailed treat-

ment of the issues, then it has served a useful

purpose.

2.4 Pragmatism in perception

To conclude this opening section we brie
y re-

view some examples from the psychophysical

literature which argue both for and against

perceptual learning. The purpose is to high-

light the limitations of nativist and empiricist

philosophy, and to draw a more modern per-
spective in which the goal is to isolate what is

and what is not learnt.

For many years, researchers have been

aware of perceptual di�erences arising di-
rectly from people's experience, even in adults

(Fahle et al. 1995; Gregory 1972). One exam-

ple to have gained renewed interest recently,

concerns an illusion described by Pollock and

Chapais (1952). This illusion causes subjects

to over-estimate the length of vertical lines

relative to horizontal ones, which Baddeley

(1997) explains in terms of the level of image

correlation occurring at di�erent orientations

within natural scenes. Evidence supporting

this hypothesis comes from the reliable dif-
ference in the magnitude of the horizontal-

vertical line length illusion between country-

folk from the Norfolk Fens and towns-folk

in the City of Glasgow (Ross 1990), envi-

ronments containing very di�erent amounts

of image correlation at di�erent orientations

- see �gure 3. This work requires further

corroboration, but if correct, it provides re-

markable evidence that the characteristics of

our everyday visual environment directly af-

fect basic perceptual judgements such as line
length.

Despite the considerable evidence support-

ing perceptual learning, there are many
counter examples in the literature. For ex-

ample, an earlier study by Ross and Wood-

house (1979) on the same population of city

and country dwellers, found no in
uence of en-

vironment for sensitivity to di�erences in line

orientation. Also, in the �eld of depth percep-
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Figure 3: Images of Glasgow and the Somerset Levels. Like the Norfolk Fens, the Somerset Levels were large, 
at

oodlands which have since been drained for farming. Glasgow, in contrast, is a large industrial city littered with
tall, closely packed buildings. Daily exposure to vertical structures typical of cities may be responsible for the
reduced size of the classical horizontal line length illusion in city dwellers compared with country folk, as reported
by Ross (1990). Such results provide evidence that our visual diet a�ects fundamental perceptual judgements.
Pictures c
1997 Martin Smith and c
1998 Pete Harlow, reproduced with permission.

tion, it has been shown that we perceive depth

from cast shadows on an inbuilt assumption

that the light source is situated above and

to the left of the viewed object (Ramachan-

dran 1988). Preliminary evidence that this

assumption is innate was provided by Hersh-

berger (1970), who showed that without prior
experience of shadows, chicks perceive depth

from cast shadows on the same assumption.

Apart from innate assumptions for inter-

preting our environment, some psychologists

have also claimed that certain cues or sensory

modalities are immutable in the presence of

con
icting evidence, forming the framework
within which other cues are adapted. For ex-

ample, Harris (1963) showed that the relearn-

ing of hand eye coordination when wearing

left-right reversing spectacles is purely motor

rather than vision based. Spelke (1990) too,

maintains that some systems do not adapt.

She argues, for example, that the impression

of distance derived from apparent object mo-

tion during head movements (motion paral-

lax) is not adaptable, and that it forms an

anchor for adapting other sources of informa-
tion such as stereo vision. However, recent

work has revealed a great deal of evidence

that all cues to depth can be overridden in the

presence of strongly competing cues (Landy

et al. 1995), and that the cues interact in

a non-linear manner (Bradshaw and Rogers

1996). Indeed Wallis and B�ultho� (1998) have

shown that in the presence of additional depth

cues, stereo information recalibrates perceived

depth from motion, directly countering the ar-

gument made by Spelke.

The point in raising these examples is to

make it clear that neither the nativist nor em-

piricist view is exclusively correct. It is im-

portant to bear in mind that the force which

has shaped us, evolution, is both eclectic and
pragmatic. If some advantage is to be had

from hard wiring certain assumptions, whilst

leaving others to be discovered, then there is

nothing to say that evolution has not devised

such a compromise. It is also possible that

some of the basic assumptions shared with an-

imals as distant from us as chickens, are useful

left-overs from before the rapid expansion of

neocortex. As Ramachandran (1985) puts it,

we should not be surprised to �nd that evo-

lution has supplied us with a `bag of tricks'
for interpreting the world. Ultimately, what

is interesting for those investigating percep-

tual learning is how many of these tricks are

inherited assumptions and how many extrap-

olated from our environment. For that reason,

recent perceptual models have focused on the

use of Bayesian mechanics, in which assump-

tions can be formally incorporated as statisti-

cal priors (B�ultho� and Yuille 1996).

In the rest of this chapter we shall be con-
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centrating on the mechanisms underlying the

representation and recognition of objects, at-

tempting to get to the core of why, as S.B.

put it, an object can `look di�erent and yet

be the same'. In particular, we shall explain

to what extent the beliefs of the early empiri-

cists are still to be taken seriously today, by

describing evidence that our recognition and

representation of objects is largely learnt from
experience.

3 Object recognition paradigms

3.1 Introduction

This section brie
y reviews some of the more

current and popular theories of how we rep-

resent and recognise objects. By studying the

various theories we hope to demonstrate why

recognising objects is a di�cult task, despite

the relative ease with which humans seem able

to do it.

3.2 Extracting 3D information

One of the most in
uential writers in the �eld

of object recognition was David Marr. Marr

believed that recognition of an object requires

the matching of elemental parts of that object

to the parts of 3D models which we have mem-

orised (Marr 1982). The correct apprehension
of those 3D features was, for Marr, achieved

in three consecutive stages. Firstly, the pri-

mal sketch, a wholly two dimensional repre-

sentation which contains information about

lines and edges visible in the scene. Secondly,

a 2 1

2D sketch derived from these edges and

depth information, describing closed surfaces

in space. And �nally, a full, three dimensional

representation of our environment built from

the identi�ed surfaces.

The third stage, Marr argued, provided

all of the information required to recognise

objects. Recognition itself, involved tak-
ing the shapes drawn from the environment

and matching them to stored 3D models.

These models were themselves built up of con-

stituent parts, or building blocks, which de-

�ned an object's shape at various levels of ab-

straction and detail. Within such a scheme

the form of a standing human can, for exam-

ple, be said to �ll the volume of an upright

cylinder. A tree or a tower block would be

abstracted into the same group, but not a car

or a bed whose major axis is horizontal. Be-

yond this primary level, Marr proposed that

we would recognise the six major bodily divi-

sions of the head, trunk and four limbs, which

a�ord discrimination from most non-animal
object categories including trees and tower

blocks. This recursive analysis then proceeds

to the level required to solve a particular dis-

crimination task or to make a speci�c cate-

gorisation judgement.

Although strongly associated with this type

of hierarchical approach, Marr was neither

the only nor the �rst person to propose us-

ing it in categorisation and recognition. In

fact the idea underpins a whole series of theo-

ries (Guzman 1971; Marr and Nishihara 1978;

Brooks 1981; Tversky and Hemenway 1984)

which can be traced back to early attempts

to build arti�cially intelligent systems in the

1970s. Irrespective of the detailed implemen-
tation, the approaches are united in the as-

sumption that we use 3D information from our

environment to extract 3D parts, and that ob-

jects are represented as con�gurations of these

parts. One can think of it as a LEGOland

representation. The only major di�erence in

each case is the precise shape and range of

LEGO bricks used. Examples include: poly-

hedra (Waltz 1975), spheres (Badler and Ba-

jcsy 1978), cylinders (Nevatia and Binford

1977; Marr and Nishihara 1978), and `su-
perquadrics' (Pentland 1986).

3.3 Projective invariants

A quite di�erent approach to identifying ob-

jects is the use of projective invariance. Pro-

jective invariance refers to the fact that pro-

jection of a 3D shape onto a 
at surface
(like our retina) produces certain characteris-

tic patterns irrespective of the angle at which

that 3D feature is being viewed. For exam-

ple, a triangle remains a triangle from all but

the most contrived viewing directions, and so

if we detect any surface with three sides, we
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Figure 4: When we view a surface at some random orientation in space, it often results in a characteristic 2D
pattern on our retina from which we can infer its true shape. For example: triangles remain triangles and ellipses
remain ellipses irrespective of viewpoint. However, the viewer must then decide which of the many possible shapes
is responsible for the image seen. In the above examples the image I is due to the object B, but it could equally
well have been due to A or C.

can label it as a triangle - see �gure 4. We

can then use the presence of the triangle as

the basis for working out what the object is

that includes this feature. Other useful in-

variances include the fact that parallel lines

suggest parallel lines in the object, and that

ellipses are views of ellipses of equal or smaller
aspect ratio.

There are several di�erent levels of toler-

ance to projective distortion which the human

visual system might exhibit. At one extreme

there is full projective invariance (Duda and
Hart 1973; Cutting 1986; Weiss 1988), which

assumes that full 3D information can be re-

covered from the 2D image on our retina.

However, it is possible to subject objects to

projective transforms which leave them un-

recognisable - suggesting that humans can-

not achieve this. Alternatively, humans might

simply ignore the a�ect linear perspective has

on the appearance of objects, namely the nar-

rowing of straight lines with distance (Ho�-

man 1966; Lamdan et al. 1988; Koenderink

and van Doorn 1991). Unfortunately, this
type of `a�ne' approximation cannot distin-

guish simple shapes like rectangles since they

are all a�ne transforms of each other.

The third, and most promising type of in-

variance to be investigated is perspective in-
variance (Grimson et al. 1992; Mundy and

Zisserman 1992; Pizlo 1994). Perspective in-

variance relies upon the types of predictable

mappings of triangles and circles etc. men-

tioned above, and authors have argued that

such invariances can form a basis for recogni-

tion. There is, however, a problem. There are

in�nitely many triangles oriented in 3D space

which map to any one triangle on our retina,

and in�nitely many ellipses which map to a

single ellipse. Therefore, some heuristic has to

be used to decide which of one of the family

of possibilities to select - see �gure 4. Possi-
ble constraints include assuming that the true

shape corresponds to the form in which the ra-

tio of an object's area to its perimeter is max-

imised (Brady and Yuille 1984), or that the

true form has bilateral symmetry (Vetter and

Poggio 1994). By applying these constraints,

variability in appearance due to viewing angle

can be eliminated in many cases.

3.4 Geon structural description

One development of the part based, Marrian

approach to recognition is the `Geon Struc-

tural Description' due to Biederman (1987).

Biederman once again suggests that objects
are represented by explicit relationships of a

small set of LEGO-like blocks, which he calls

`geons' - see �gure 5a. For example, a house

might be represented as the base of a pyramid

on top of a cube, and a US mail box as a cube

on top of a narrow cylinder. In this manner

a few (24 in Biederman's opinion) volumetric

primitives can be used to describe any object.

Despite the similarity to Marrian ideas,
geon theory also owes something to the idea of

perspective invariants. Biederman's approach

speci�cally excludes any textural or similar

depth cues, concentrating instead on the map-

ping of 2D space relations to inferences about

3D shape. Biederman cites Lowe's list of non-
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accidental 2D properties (Lowe 1984), in his

discussion of how 2D cues such as collinearity,

skew symmetry and coincident line termina-

tion can be used to infer 3D shape.

3.5 Active shape matching

Another alternative to have received consider-

ation - especially from researchers hoping to

build working recognition systems - is tem-
plate matching. The precise details of how to

implement such a system vary considerably,

but in practice all matching approaches are

one of two conceptually important types. The

�rst utilises stored models containing explicit

3D shape information. It therefore assumes

that it is possible to extract the location of

three (or more) anchor points in 3D space,

which are matched to those in the stored mod-

els. Matching the anchor points requires a 3D

rotation and scaling of the stored model un-

til the anchor points are most closely aligned.
Recognition then proceeds by measuring the

amount of overlap in the two views (for exam-

ple, Ullman 1979).

The second approach relies on representa-

tions based upon groups of 2D views. For

example, in elastic pattern matching a non-

linear image transformation is made to the

incoming image of the object being viewed.

A measure of how well the model matches

the stimulus is derived by attributing a cost
to how far points in one image have to be

moved to �nd a similar looking feature in the

other. Features which have been tried include:

Gabor like patches or `jets' (Buhmann et al.

1990), speci�c features like end-stopped lines

or junctions (Hinton et al. 1992), and edge

based facial features like ovals for eyes and a

triangle for a nose (Yuille 1991).

3.6 Recognition based on 2D image

features

Although the recognition of familiar, every-

day objects proceeds almost e�ortlessly, some

views are generally easier to recognise than

others, both in terms of reaction times and ac-

curacy. Such views are referred to as `canoni-

cal' in the recognition literature (Palmer et al.

1981).

Many researchers have since studied view

speci�city using novel objects trained in par-

ticular views - see �gure 5b. Results consis-

tently point to a decrease in recognition per-
formance as a function of the viewpoint's dis-

parity from a previously learned view (Shep-

ard and Cooper 1982; Rock and DiVita 1987;

B�ultho� and Edelman 1992; Tarr and Pinker

1989; Jolicoeur 1990). Similar drops in recog-

nition performance with viewing angle have

also been reported for unfamiliar faces (Troje

and B�ultho� 1996).

These results have lead to a new alterna-

tive for how objects are represented and recog-

nised, namely the feature based, multiple view

approach (B�ultho� and Edelman 1992). It

bears some relation to earlier 2D matching

theories and similarly bene�ts from the result

of Ullman and Basri (1991) that any 2D pro-

jection of a 3D object can be written as a lin-

ear combination of 2D views. However, the

multiple views model di�ers from that of the

classical 2D models in two important respects.
Firstly, the views are not deformed to match

each incoming image, and secondly, each view

is represented as a collection of small picture

elements, each tolerant to small view changes

- i.e. not as single templates. In the feature

based scheme, individual neurons are selec-

tive to features which occur frequently in the

environment. These features may be selec-

tive for identi�able things such as noses, or

eyes, but most will be responsive to more ab-

stract combinations of edges and surface tex-
tures. An ensemble of many hundreds of cells

would then be required to act in unison to

uniquely identify any one object. The emer-

gent properties of robustness to small varia-

tions in the input image (due to view, size or

location changes) as well as cell damage, have

long been realised by the neural network com-

munity (Hinton et al. 1986).

As well as its distinction from other 2D

representation schemes, the approach repre-

sents a signi�cant departure from object based

models, since it neither requires the extrac-

tion of depth information, nor the exhaustive

9
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Figure 5: a Examples of geons, volumetric shape primitives for categorising and recognising natural shapes,
adapted from Biederman (1987). In his paper, Biederman describes how a set of 36 geons can exhaustively
describe all everyday objects. b Examples of three data sets used by B�ultho�, Edelman, Tarr and colleagues,
to investigate within category view generalisation in novel objects. From left to right: Aerials, Paper clips and
Amoebas

matching of 3D models. It is also consistent

with a great deal of neurophysiological evi-

dence, as we shall describe in the next sec-

tion. For those readers interested in a more

detailed discussion of the pros and cons of this

and the other representation schemes we can

recommend several papers which deal directly

with this issue (Wallis and B�ultho� 1999; Pi-
zlo 1994; Tarr and B�ultho� 1995; Biederman

and Gerhardstein 1993).

4 Learning from examples

4.1 Introduction

Having described various proposals of how ob-

jects are represented and recognised, the ques-

tion arises as to how such representations are

learned, and in what sense such learning af-

fects what is perceived. In this section we

describe how object representations are estab-

lished both at the cellular and cognitive level,

and how recognition performance alters with

experience.

4.2 Neurophysiology

From lesion studies and cellular recording
it has been proposed that a series of corti-

cal regions starting in V1 and running ven-

trally through the occipital into the temporal

lobe (V1-V2-V4-Intraparietal areas), solves

the problem of what we are looking at. In

contrast, a second stream leading dorsally and

into the parietal lobe (V1-V2-V3-Intraparietal

areas), has been implicated in the role of

deciding where that object is (Farah 1990;

Ungerleider and Mishkin 1982; Goodale and

Milner 1992; Young 1992) - see �gure 6.

Cells in the latter part of the ventral stream,
in the inferior temporal areas (IT), are of par-

ticular relevance to object recognition because

of their tolerance to changes in the precise ap-

pearance of their preferred stimuli. Transfor-

mations which may be tolerated by IT cells

include changes in an object's position, view-

ing angle or size, as well as overall image con-

trast or spatial frequency content (Rolls 1992;

Desimone 1991; Tanaka et al. 1991) - indeed

all of the types of transformation invariance

required for view-invariant object recognition.
These neurons are also of interest in that they

provide a source of evidence of learning in the

recognition system. Evidence for experience

dependent learning in IT has now been re-

ported by many researchers (Rolls et al. 1989;

Miyashita 1993; Logothetis and Pauls 1995;

Kobatake et al. 1998).

The link from view based recognition
to representations in IT was strengthened

through recording work by Logothetis and

colleagues (Logothetis and Pauls 1995; Logo-

thetis et al. 1995), in which monkeys were

trained to recognise particular aspects of the

paper clip stimuli originally used by B�ultho�
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Figure 6: Lateral view and coronal section of the primate cortex showing some of the signi�cant visual processing
areas. The expanded coronal section portrays some of the important subdivisions of the temporal lobe. Adapted
from Rolls (1992); Perrett et al. (1992).

and Edelman (1992) - see �gure 5b. Af-

ter training, many neurons were shown to

have learned representations of particular pa-

per clips, including some selective to speci�c

views.

As well as longer-term changes to cell se-

lectivity, there is also good evidence of al-

most instantaneous learning in IT cells. Tovee

et al. (1996), for example, presented images of

strongly lit, two-tone (black and white) faces,

referred to as Mooney faces in the literature -

see �gure 7a. Some IT neurons which did not

respond to any of the Mooney faces did so if

once exposed to the standard grey-level ver-
sion of the face - see �gure 7b. This accords

with �ndings in humans, who often struggle

to interpret Mooney face images the �rst time,

but then have no di�culty in seeing the face a

second time, even weeks later (Ramachandran

1994).

4.3 Psychophysics

There is considerable psychophysical evidence

that our perception of objects is a�ected by

experience. Even a few days or hours of train-

ing can a�ect the speed and accuracy with
which objects are recognised. B�ultho� and

Edelman (1992), for example, were able to

show that if subjects learn to recognise two

views of a novel object, recognition perfor-

mance is better for new orientations located

between the two training views (INTER) than

outside them (EXTRA), itself better than for

orientations away from the axis linking the

trained views (ORTHO) - see �gure 8. A �rst

step to explaining these results, within a fea-

ture based representation scheme, is to un-
derstand why recognition performance drops

with distance from a learnt view. We can start

by �rst imagining what happens when leaning

a single view. When a view of a novel object is

presented, many feature selective neurons re-

spond, and the associated pattern of responses

11
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Figure 7: Example of a Mooney face, similar to those used by Tovee et al. (1996). a If subjects or face selective
neurons are exposed to the two-tone image, they often fail to see a face. b Upon seeing the veridical image, both
neurons and subjects can now identify the face and will continue to do so in the future, providing evidence for
rapid and lasting learning.

they produce comes to represent the presence

of that object. Now, identi�cation of a novel

view of the object will clearly be easiest for

views nearest to the one trained, since these
views are most likely to contain one or more

of the features supporting the representation

of the learnt view.

Using a similar line of argument, if two

views of the object have been learnt, and both

are identi�ed as being the same object, then

the presence of any of the features seen in ei-

ther learnt view will tend to evoke recognition

of that same object. This second step is im-

portant because the INTER and EXTRA re-

sults follow as a natural consequence. Clearly,
any view falling within the range of the two

trained views is more likely to have features

in common with either or both of the trained

views, than a view of the object from outside

that range. Hence INTER views are more

likely to be easily recognised than EXTRA

views.

The ORTHO e�ect stems from the type

of training used. The training views used

were not stationary but rather rocked back
and forth through a few degrees. This had

the e�ect that only cells tolerant to changes

in the object's appearance along the training

meridian (see �gure 8) were strongly activated

during learning, and hence only they strongly

support recognition of the object. Views of

the object lying along the training meridian

(i.e. INTER and EXTRA views) are much

more likely to contain the features for which

these cells are selective than views lying on an
orthogonal meridian (ORTHO views). Hence,

INTER and EXTRA views are more readily

recognised.

In a further study, Edelman and B�ultho�

(1992) investigated the e�ects of extensive

training, to see if it can override view speci-

�city. After training large numbers of views

they were able to change the shape of the

recognition curves. Not only did reaction

times decrease and accuracy increase, but
view speci�c e�ects, such as canonicality,

gradually disappeared. This issue has been

raised again recently in several articles inves-

tigating how continued exposure to an object

class may a�ect the manner in which the ob-

jects within the class are represented. In a

pair of articles, Schyns (Schyns et al. 1998;

Schyns 1998) argues that su�cient exposure

to a particular stimulus type causes the rep-

resentation of these stimuli to alter and be

enhanced. This in turn relates to the �ndings
of researchers mentioned earlier, who were

studying learning in IT neurons. Their work

showed that extensive experience of a class of

images or objects, causes a rise in the amount

of cells selective for those stimuli (Miyashita

1988; Logothetis and Pauls 1995; Kobatake

12
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Figure 8: If two views of a novel object are learned, recognition is better for new viewing angles located between
the two training views (INTER) than outside them (EXTRA), itself better than for orientations away from the
axis linking the trained views (ORTHO).

et al. 1998). By devoting more neural hard-
ware to the representation of the features

present in an object class, one would presum-

ably be better able to discriminate subtleties

in their form, of relevance to the types of vi-

sual expertise raised by Schyns. In another

recent article, Gauthier and Tarr (1998) have

also made this point, showing that experience

of an originally novel object class heightens

the subjects' awareness of small changes to

objects within the same class.

Gauthier and Tarr go on to argue that our

highly sophisticated ability to recognise faces

is simply due to a natural concentration of

neural resources, resulting from our lengthy

exposure to the particular object class we call
faces. Some researchers would argue that this

is wrong, and that face recognition is spe-

cial. One of the main motivations for this

has been the neurological disorder prosopag-

nosia. Prosopagnosia is characterised by a

normal ability to recognise common objects,

contrasted with extreme di�culty in recog-

nising people's faces (De Renzi 1997). The

fact that the locus of the brain damage in

patients pointed to a part of the temporal

lobe homologous to that of cells selective for
faces in monkeys (Rolls 1992; Desimone 1991),

made a strong case for the suggestion that

prosopagnosia was caused by damage to these

cells (Farah 1990). Psychological studies have

revealed a dissociation between face and ob-

ject recognition in the past (Tanaka and Farah

1993; Fiser et al. 1996), but the latest picture
from the neurophysiological evidence is not as

clean as some theorists had �rst hoped. Direct

attempts to �nd the illusive area responsible

for face recognition in monkeys has been con-

troversial and till now unfruitful (Perrett et al.

1992; Cowey 1992). This in turns lends more

weight to Tarr and Gauthier's proposal that

prosopagnosia may reveal a general de�cit in

the area dedicated to �ne level discriminations

of highly trained objects, rather than to a spe-

cialist face area per se.

Apart from questions of recognition speed

and accuracy there is also the question of fa-

miliarity. Familiarity is by de�nition, expe-

rienced based, but one interesting prediction
to come out of the feature based approach

to recognition is that a face made up of pre-

viously experienced features, although itself

novel to the observer, should appear familiar.

This hypothesis has been tested by Solso and

McCarthy (1981). In their experiment, sub-

jects were presented with photo-�t pictures of

people and then tested on a familiarity task.

The test set of faces contained either famil-

iar faces, wholly novel faces, or novel faces

containing combinations of features present in
the familiar ones. The most intriguing result

was that subjects chose the composite faces

as more familiar, not only than the unfamiliar

faces but than the familiar faces as well. This

result not only provides further support for

the distributed feature based approach, but
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also demonstrates that perceived familiarity

need not correlate with true familiarity.

4.4 Temporal continuity as a cue to

invariance learning

A broadly tuned feature based system of the

type being advocated in this chapter, would

be su�cient to perform recognition over small

transformations (Poggio and Edelman 1990).

However, associating images over larger shape

transformations either requires separate pre-

normalisation for size and translation of the

image, or separate feature detectors which
would then be fed into a �nal decision unit.

As it turns out, the use of pre-normalisation

is contrary to the evidence we have from the

responses of real neurons implicated in ob-

ject recognition. Invariance seems to be es-

tablished over a series of processing stages,
starting from neurons with restricted recep-

tive �elds and culminating in the types of cell

responses found in inferior temporal (IT) cor-

tex mentioned earlier. With this in mind it

remains to be explained how one might learn

to associate very di�erent views of an object.

One possible solution to this problem is that

in the real world, we tend to see discrete se-

quences of images of an object, often under-

going transformations. This regularity in time

may act as an important cue for predicting the

identity of an object as it undergoes transfor-

mations, due to a change of position relative

to the object. This change in viewing posi-

tion may be simply due to our approaching

the object, watching it move, rotating it in our

hand and so on. If the time domain is truly
in
uential in setting up representations of ob-

jects then there should presumably be some

evidence for this in the learning of inferotem-

poral neurons. In e�ect one should expect to

see quite di�erent views of an object being

associated to the same neuron in preference

to other very similar images, simply on the

basis of the sequence in which they are pre-

sented. This last section discusses evidence

that temporal relations in the appearance of

object views do indeed a�ect learning.

The temporal association hypothesis has

been discussed in the past, and has been

successfully used in various neural network

models of recognition (Edelman and Wein-

shall 1991; F�oldi�ak 1991; Wallis and Rolls

1997). In particular, Wallis and Baddeley

(1997) demonstrated how the temporal statis-

tics of the real world can be optimally used to

establish transform invariant representations

of objects. The hypothesis has also found di-
rect experimental support from neurophysi-

ological recordings (Stryker 1991; Miyashita

1993). Miyashita (1988), for example, was

able to show that repeating a temporal se-

quence of randomly selected fractal images

establishes cells in IT which respond to one

stimulus in the series very strongly, but also to

those patterns appearing in close succession.

He was also able to show that the e�cacy of a

stimulus dropped purely as a function of tem-

poral and not spatial disparity between stim-
uli.

Until recently, there was little or no psy-

chophysical evidence to support the theoreti-

cal and neurophysiological �ndings. However,

Sinha and Poggio (1996) recently described

the use of sequences to establish the percep-
tion of the form of ambiguous wire-frame ob-

jects, and Wallis (1998) addressed the ques-

tion directly, by considering the e�ect of tem-

poral sequences for natural objects such as

faces.

In a series of papers, Wallis (Wallis 1998;

Wallis and B�ultho� 1997) hypothesised that

by exposing observers to sequences of di�er-

ent faces, he could confuse the identity of faces

which were seen together in a sequence. This

should then become apparent by the increased

number of discrimination errors for those faces

which were seen in sequences, in comparison

with those faces which were not. Figure 9 puts

this hypothesis in a more graphical light by

displaying two possible sequences each con-
taining two di�erent people's faces. The tem-

poral association hypothesis predicts a higher

confusion rate for pairs of faces associated in

this way, than for pairs of faces coming from

two di�erent sequences. During the experi-

ment, subjects were exposed to 36 such pair-

14



α αβ

αβαβ    α

αβ

-90° -45° +45° +90°0°

αβ

β β

 

 b

a  

    

Figure 9: Example of a pair of faces used in the experiments of Wallis and B�ultho� (1997). Each association
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Subjects saw both sequences a and b during training.
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Figure 10: Results from an experiment by Wallis and B�ultho� (1997) in which subjects were asked to discriminate
faces previously seen in morphed sequences. a Discrimination performance across training blocks, measured as
percent correct in the mismatch trials. Figures show results for within group (WG) and between group (BG)
comparisons. b The same results broken down across the two training days. (P < 0:1) =*, (P < 0:01) =**,
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ings of heads and then tested on their ability

to discriminate them. The results of their ex-

periment are displayed in �gure 10. The sym-

bol `WG' indicates that the tested faces were

from within a group i.e. appeared in a training

sequence together. The symbol `BG' indicates
that the faces tested were once again familiar,

but came from separate groups, and had thus

not been seen in the same training sequence.

The results clearly demonstrate that discrimi-

nation performance was indeed worse for faces

associated in sequences. The di�erence be-

tween the WG and BG condition is also seen

to increase with each session of training.

In another recent article, Stone (1998) too

looked at the in
uence of temporal order on

the representation of objects. Rather than

wire-frame or familiar, facial objects, he used
amoeba-like shapes, similar to those of Edel-

man and B�ultho� (1992). During a learning

phase, subjects had to discriminate four ob-

jects from numerous distractors. In this �rst

phase, all stimuli rotated in one particular di-

rection. During testing, he allowed certain of
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the trained objects to be rotated in the op-

posite direction which caused a drop in dis-

crimination performance, and an increase in

reaction times. It is worth noting that al-

though similar to the results described above,

Stone's results propose something new, since

they suggest that temporal information forms

part of the representation of the object.

The ability of a time-based association

mechanism to correctly associate arbitrary

views of objects, without an explicit external

training signal, means that it could overcome

many of the weaknesses of using supervised

training schemes or associating views simply

on the basis of physical appearance. For this

reason, the three experiments described above

may well represent a signi�cant new step in es-

tablishing the 2D multiple view approach to

object recognition.

5 Conclusion

In this chapter we have reviewed a large body

of literature describing how experience a�ects
recognition. Both neurophysiology and psy-

chophysics provide clear evidence for the de-

velopment of recognition over time - such as

the adaptation to Mooney faces, or the fall in

canonical view e�ects with prolonged expo-

sure to many views of the object. In particu-

lar, we have explained how perceptual learn-

ing in recognition tasks can be directly linked

to learning in feature tuned inferotemporal

lobe neurons in the primate brain.

We have also described that the environ-

ment as we experience it, is so structured

that potentially very di�erent images appear-

ing in close temporal succession are likely to

be views of the same object. We then argued

that this temporal structure forms the basis of

a tendency (a prior in the sense of Bayesian

Statistics) of the human visual system to as-

sociate images of objects together over short

periods of time.

The results described in this chapter

strongly support the empiricist view that ob-

ject recognition and categorisation is largely

an ongoing process, a�ected by experience of

our environment. S.B.'s insusceptibility to

visual illusions and his failed perception of

depth, all point to the fact that much of our

ability to interpret the form of objects and

scenes is learnt. By using novel stimuli it has

been possible for researchers to study more

precisely how object representation and recog-

nition develops with everyday visual experi-

ence. Taken as a whole the results serve to

underpin the main tenet of this book, namely
that perception is mediated via a dynamic

learning system, the modi�cation of which

continues throughout our lives.
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