Solving Satisfiability Problems
with Genetic Algorithms

Stefan Harmeling
Stanford University
harmeli@cs.stanford.edu

March 9, 2000

Abstract

We show how to solve hard 3-SAT problems using genetic algorithms.
Furthermore, we explore other genetic operators that may be useful to
tackle 3-SAT problems, and discuss their pros and cons.

1 Introduction

Given a propositional formula like

(p1 V2 V=p3) A(—p1 Vp2 Vp3) A(—p1V —p2 Vps) A(p1V —p3Vps)

with propositional variables p1, p2, p3, p4 we ask whether there is an assignment
of truth values to these variables such that the truth value of the given formula is
true, and if so, what is the fulfilling assignment. In our example the assignment

p1 = false, ps = true, ps = true, py = true

makes the given formula true. This problem is the so-called satisfiability prob-
lem (SAT). In this paper we consider only formulas in conjunctive normal form?!,
where each clause has exactly three literals. These problems are called the 3-

SAT problems.

Why is the 3-SAT problem interesting? A number of other problems can be
reformulated into 3-SAT, for instance the travelling salesperson problem, the n-
queens problem, a variety of planning problems and many more. Furthermore

1Recall that a formula is in conjunctive normal form if it is a conjunction of clauses, each
of which is a disjunction of literals. Literals are either propositional variables or negated
propositional variables.

it is very difficult to solve: Cook showed in 1971 that the 3-SAT problem is
NP-hard (Cook 1971). Therefore, we can not expect to solve 3-SAT problems
in general. There will be always problems where our approach using genetic
algorithms will take an exponential amount of time to find a solution.

2 3-SAT as a Genetic Algorithm Problem

The input of our program is a formula in conjunctive normal form. We evolve
a population of variable assignments until we find an assignment that makes
the formula true. The assignments are encoded as strings of bits, the length
of which is the number of variables; for instance our initial example from the
previous section becomes the string of bits:

0111

Obviously, there is a one-to-one relationship between bit strings of length n and
truth assignments to n variables. Therefore the search space that we have to
search has exactly 2" elements.

What is the fitness of an individual? We count the number of clauses that are
fulfilled by the corresponding variable assignment. The individual that makes
the most clauses true is the best one.

3 Genetic Operators

As usual, the first generation consists of randomly created individuums. For
the next generation individuums are randomly picked dependent on their per-
formance, that is the ones that got a better fitness are more likely to appear
in the new generation. Then we do crossover between two individuals of the
chosen ones. We use three different types of crossover:

1. A cutting point is randomly chosen and the two individuals exchange the
parts from that point to the end. This is the usual way to do crossover,
e.g. the two individuals

0111 1010

with cutting point three become:

011j0 101|1

2. Since the numbering of the variables does not reflect any structure in the
formula, it makes sense to consider arbitrary recombinations, that is we
choose randomly a string of bits that we will call a map, and recombine

in the following way. All the bits in the two individuums where the map
has a one will stay in the same position, and the bits where the map a
zero will get exchanged. For instance the map 1001 defines two groups of
positions: the two outmost bits and the two middle bits. It changes the
two individuals

0111 1010

to
0011 1110

In this example the two bits in the middle are exchanged, that are exactly
the positions where the map has zeroes, and the outside bits stay the
same, that are exactly the position where the map has ones.

3. Usually, the power of crossover is, that substructures that are already
working well don’t get destroyed easily. What are in our case substruc-
tures? Variables that are in the same clauses can be seen as substructures.
Since variables directly correspond to positions in those maps from the
previous item, we should try to choose only maps, where it is very likely
that variables that are in the same clause end up in the same group. To
do this we define a graph where each node corresponds to a variable. We
have an edge between two variables if and only if there is a clause in which
those two variables both appear. Then we evaluate using an all-shortest-
pair-algorithm a matrix that contains the shortest distances between two
nodes, that is between two variables. This matrix gets computed once
immediately after the formula is loaded. This matrix is used to choose
maps in which two variables appear very likely in the same group if they
are close in the graph. We do this by first randomly generating a map,
that is just a string of bits as explained before. Then we choose randomly
a position in the map and evaluate the sum pros of all distances of the
variable that corresponds to that chosen position to all other variables
that are in the same group according to the current map and the sum
cons of all distances of that variable to all other variables that are not in
the same group. If cons > pros holds the chosen position in the map flips.
We repeat checking and flipping dependent on the convergence rate. For
instance if we have 100 variables, that means automatically that the map
is 100 bits long, then a convergence rate of 0.5 means, that we randomly
choose and possibly flip 50 times. Having determined a map we simply
perform the crossover as explained in the previous item.

We will show results for the three different crossover methods in the next sec-
tion. Another feature of our genetic operators is that the best individual of a
generation will survive the crossover process for sure, unless explicitely all in-
dividuals are used for crossover. This has been proven very useful during our
experiments.

How do we avoid to get stuck in local maxima? As usual we implemented
mutation as a genetic operator. Additionally we add at each generation a small

number of completely new individuums. Hereby, we try to keep our population
fresh. We call this feature out-of-the-blue. The number of new individuums is
called out-of-the-blue-rate.

4 Experiments and Results

Randomly generated 3-SAT problems are not necessarily hard to solve. As
Selman et al. have shown hard problems are those where the variables to clauses
ratios is about 4.3 (Selman 1996). Our formulas have 20 variables and 86 clauses.
To get hard problems we used the algorithm mentioned in their paper called
random K-SAT. It randomly generated 86 clauses of length 3. Each clause is
produced by randomly chosing three variables from the set of 20 variables and
negating it dependent on a fair coin flip. Then we used the Davis-Putnam
procedure (Selman 1996) to sort out the unsatisfiable problems. We ended up
with 71 satisfiable problem that we used for all our experiments.

The first question we had is: can we solve any of those hard problems using
genetic algorithms? After trying various different parameter settings we solved
59 of those 71 problems using the following parameters:

e Each population has 200 individuums.

e We run maximally 10000 generations.

e We use standard crossover with crossover rate 0.9.

e The mutation rate is 0.0001.

We produce in each generation one completely new individuum (out of
the blue — as described in the previous section).

The details can also be seen in the following tableau:

To get in the following comparable results we set the crossover rate constant
to 0.9 and the mutation rate constant to 0.0001 and the maximum number of
generation constant to 10000.

For each of the following series we let vary exactly one parameter. For each
value of the changing parameter we computed for each of the 71 problems the
number of generations needed to solve it. The median of those numbers gives us
a valid measure how quick we converged. The average of those numbers would
have been less informative because the very large outlayers (their number of
generations is 10000) resulting from problems that are not solved after 10000
generations would distort the whole picture. The following tables show the value
of the just described median in relation to one changing parameter at a time:

Objective: To solve hard 3-SAT problems.

Representation Scheme | Structure: fixed length string; gene; = truth value of i-th variable
K =2

L = number of variables

Mapping: 0 = false, 1 = true

Fitness cases: Only one.

Fitness: The number of clauses fulfilled so far.

Parameters: M = 200

Termination criteria: all clauses fulfilled or more than 10000 generations
Result designation: solved or not solved.

Figure 1: Tableau for solving 3-SAT problems

e How many individuals do we need per generation?

50 100 150 200 250 300 | individuals per generation
348 176 128 81 49 58 | median

The table suggests that we should have at least 250 individuals per gen-
eration. We used in the subsequent experiments only 200 to decrease the
computation time.

o How useful is the out-of-the-blue feature?

0 1 2 3 4 5 10 | out-of-the-blue-rate
46 48 39 43 47 65 50 | median

After looking at this table we better ask: Is out-of-the-blue a useful feature
at all? Unfortunately, there is not a big difference in the values between
not using this feature (out-of-the-blue-rate = 0) and using it (out-of-the-
blue-rate < 0). Also for positive out-of-the-blue-rate there is no outstand-
ing setting identifiable. Though the sample size is small, we conclude that
the out-of-the-blue feature does not increase the speed of convergence.

e How do the different crossover strategies compare?

1 2 3 | crossover-type
81 48 48 | median

We see that choosing a more flexible crossover policy is superior over just
cutting the bit strings into two pieces. As mentioned before for the 3-
SAT problem the individuums have no structures, that is reflected by
the arrangement of the bits in the corresponding string. A more flexible
crossover scheme like the second one does not destroy more patterns than
a simple cut. On the contrary, it provides a more powerful way to search

the space of possible solutions. What about the third strategy? What
could explain that it didn’t do any better than the second? For the hard
problems generated by random K-SAT the graph, that was defined in the
section in which we explain the different strategies, has a special form.
We evaluated the distance matrix for a number of different problems. A
typical one of those is the following;:

R R R PP PR RPRPR PR RRNDREFNDRERRNDNDO
F R NFFRNRFRFRRNDNRERFARNDNDRRFRON
RF NRFRFNNRFREFNDNNNNRFRERFRNNRERFRNDNDRORN
— R R P RPN RRRFRNNDNNDNRRRFRORRF
— E R RFNNNRREFRFNNNRRRRFRRFRORFNDDND -
NN == =N FEDNRFEDNDNRFRORRFEDNDDND DN
— HE R R R R RNNR R RRRORFRRF R
—o e = N = O N =N =N
R R R NFRF R RRFNDNNNRNORRFNRFDNDNDRF.
— RN NN RO N RN
NN RR NN RN ORFRFRRFRFNDNRF -/
R NN R PR R R PR RORFRFRNRFERFRRFRNRFRNDRF &
— RN R P R R RRPORNFEFNRENDRRFRFNDRE -
R NN R PR ORFRRRFRRFRRRFRRNDRFRNDNDLDND -
N R R PR R ORFRFFRRNRERRFRRNRFRRFRR &
N R R R ORRFRPRFFRNNRFRFNRFRRFRDNRFRDNDRFR -
— R R OFRRRFRFFRINRFNDRERFRRRRFRNDDND -
R RO R PP RINFRRNRRRFRRRRFRRR &
R OFR PR FNRFNNDNRERFRRFRRFRNRERFRNDDND -

We see that all nodes are very close to each other. Every node can be
reached in less than two steps. That makes it almost impossible to divide
the variables into two groups such that the variables in the first group are
closer to their groupmates than to the members of the other group. Doing
the procedure described above in the section where the third crossover
strategy is explained is just a very expensive way to get a more or less
random map. Basically, it is doing the same as strategy 2. That is also
reflected by the results of our experiments. It would be interesting to
see, whether this strategy has advantages when we apply our algorithm
to simpler problems.

Does crossover method 3 gets better when we try different convergence
rates?

0.1 02 03 04 0.5 0.6 | convergence-rate
50 58 42 43 52 44 | median

O = NN DN = N e

No, we can’t identify any improvement. This confirms that our explana-
tion on the previous item is along the right tracks.

How does our genetic algorithm compare to other algorithms that are known to
be good for solving hard 3-SAT problems? Unfortunately, when we used Davis-
Putnam to sort out problems that are not satisfiable, we saw right away that
our approach is much much slower than the Davis-Putnam procedure (Selman
1996) or GSAT (Selman 1992), which has a comparable performance.

5 Used software and hardware

To enable us to implement all those various variations of genetic operators we
implemented our own genetic algorithm toolbox in C. Furthermore, we im-
plemented random K-SAT and the Davis-Putnam procedure (Selman 1996) to
produce hard satisfiable 3-SAT problems. Also we implemented GSAT (Selman
1992) to have another randomized algorithm for comparison. The programs
were running on the Sun-Workstations in the UNIX-cluster of Stanford Univer-
sity.

6 Conclusion

We showed that 3-SAT problems can be solved using genetic algorithms. But
since the search space appears to be more or less unstructured, our approach
has a hard time competing with established methods. Furthermore, we explored
possible improvements of genetic operators. Here we have seen that a more
flexible crossover is beneficial for the 3-SAT problem. Other ideas were shown
to be irrelevant when solving hard 3-SAT problems.

7 Future Work

In the future it would be interesting to see how our algorithm scales. We would
try to solve 3-SAT problems that have many more variables than the problems
used here. This would necessarily involve running many more generations and
also bigger generations. Maybe for bigger problems our algorithm can compete
with the established methods.

8 Acknowledgements

Finally I would like to thank Todd Han for many valuable discussions and
comments and also Professor Koza for helpful discussions when I was searching
for an interesting and at the same time feasible project.

References

[Selman 1996] Selman, B., Levesque, H.J., Mitchell, D. 1996. Generating hard
satisfiability problems. Artificial Intelligence 81. Pages 17-29.

[Cook 1971] Cook, S. A. 1971. The complexity of theorom-proving procedures.
Proceedings 3rd Annual ACM Symposium on the Theory of Computing.
New York. Pages 151-158.

[Selman 1992] Selman, B., Levesque, H.J., Mitchell, D. 1992. A New Method for
Solving Hard Satisfiability Problems. Proceedings 10th National Conference
on Artificial Intelligence. Pages 440-446.

[Goldberg 1989] Goldberg, David E. 1989. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Reading, MA. Addison-Wesley.

[Koza 1992] Koza, John R. 1992. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. Cambridge, MA. The MIT
Press.

