Do we really need vestibular or proprioceptive cues for homing?

Bernhard E. Riecke, Hendrik-Jan van Veen and Heinrich H. Bülthoff

Max-Planck-Institute for Biological Cybernetics •Tübingen •Germany

MOTIVATION

Do we really need proprioceptive or vestibular cues for homing by path homing by patheration?
integrat

The literature often suggests that navigation without landmarks (path integration) requires proprioceptive and particularly vestibular cues. Optic flow is often thought to be insufficient, especially for tasks involving observer rotations. To test this notion, we conducted a set of purely visual spatial orientation experiments in a virtual environment providing optic flow information only.
Experiment "BLOBS" and "RANDOM TRIANGLES" were triangle completion experiments: After following two prescribed segments of a triangle, subjects had to return directly to the unmarked starting point. Experiment "TURN\&GO" investigated how well subjects can execute simple rotations and translations, which form the basis of more complex navigation tasks. We also conducted two standard mental spatial abilities tests to investigate whether mental spatial ability might be a determining factor for navigation performance.

GENERAL PROCEDURE

We conducted spatial orientation experiments in virtual environments providing no landmarks

Subjects were seated in the center of a large half-cylindrical 180 projection screen and used the mouse buttons to steer smoothly through the simulated scene (see Fig. 1). Experiments were performed in a simulated 3D field of blobs providing a convincing feeling of self-motion (vection) but no landmarks, thus restricting navigation strategies to path integration based on optic flow.
In all experiments, we found a linear correlation between executed and correct values for turns and distances (see Fig's $2,3 \& 4$ for examples). The slope of this linear fit ("compression rate") and the signed error are plotted in figures 6-9 to allow for comparisons among the different experiments.

EXPERIMENTS
Exp. "BLOBS": Is optic flow information sufficient for homing via triangle completion?

We found a tendency toward mean responses for homing distances but only small systematic errors for turning angles

Each of the 20 subjects performed six repetitions for ten different isosceles triangles (5 angles x 2 turning directions, see Fig. 5)

Results:

The results are summarized in figures 5-9. Averaged over all subjects, the signed errors for turns and distances were negligible. However, homing distances were biased towards mean responses, indicated by the
distance compression of 0.58 (see Fig.s $4 \& 8$). Angular compression did not differ signicantly from its correct value of 1 .

Conclusion:

Apart from a regression towards mean homing distances, path integration by optic flow proved
sufficient for homing by triangle completion with isosceles triangles.

Exp. "RANDOM TRIANGLES": How does homing

 performance change when each triangle geometry is novelHoming performance was not worse for randomized triangle geometry

Ten subject who had previously participated in Exp. "BLOBS" completed 60 homing trials each. The lengths of the first and second segments covered a
range of 20 to 73 m and were independently randomized. The enclosed angle was randomized between 20 and 160 degrees.

Results:

Compared to the isosceles triangles in Exp. "BLOBS", the bias towards mean homing distances (distance
compression) was significantly smaller. Moreover, the compression) was significantly smaller. Moreover, the
between-subject variability of compression rates was significantly reduced (see Fig's 7 \& 9). Signed errors remained negligible (see Fig's $6 \& 8$). However, within-subject variability was rather pronounced.

Conclusion:

Compared to the simpler isosceles geometry in Exp. "BLOBS", we did not observe the performance learning nor the simplicity of isosceles triangles was a determining factor for homing accuracy

COMPARISON WITH THE LITERATURE AND CONCLUSION

Optic flow information was sufficient for homing and led to better performance than proprioceptive and vestibular cues from vestibular cues
blind walking

Exp. "TURN\&GO": Can untrained subjects perform elementary rotations and translations?

Optic flow information
was sufficient for untrained subjects to accurately perform turns and reproduce distances

Subjects had to execute turns and reproduce distances using randomized velocities.

Results:

A typical result from one subject is displayed in igures $2 \& 3$. Of particular note is the small
 especially for rotations.

Conclusion:
Optic flow information alone proved to be sufficient for untrained subjects to perform turns and reproduce distances with negligible velocity.

Figures 2 \& 3 : Typical distance reproduction and turn execution
response efrom one subbect. The left and right graph show the executed distance respectively turning angle, plotitad versus their
corresponding correct values. The blue enlarement in the right plot

Exp. 4: Does mental spatial ability correlate with homing performance?

Mental spatial ability scores correlated positively with homing performance

Procedures
We conducted two standard mental spatial abilities tests (Schlauchfiguren \& Würfel
Erkennen Test, ISA.6, see pictures to the left) to Erkennen Test, ISA.6, see pictures to the left) to
investigate whether mental spatial ability might be a determining factor for navigation performance.

Results:

A correlation analysis revealed a positive correlation between mental spatial ability scores and homing performance in Exp. "BLOBS" and especially in Exp. "RANDOM TRIANGLES performance in both spatial ability tests.

Conclusion:
This suggests that mental spatial ability might be a determining factor for homing performance path integration. translations and homing.
Mental spatial ability test scores correlated positively with homing performance for the more complex triangle completion tasks (Exp. "RANDOM TRIANGLES"), suggesting that mental spatial abilities might be a determining factor for navigation performance.
Compared to similar experiments using virtual environments and a flat projection screen (Péruch et al., Perc. 1997) or blind locomotion (Loomis et al., JEP 1993), we did not find the typically observed distance undershoot and strong regression towards mean turn responses.

Figure 10 shows a comparison of Exp. "BLOBS" with previous triangle completion experiments by Péruch et al. (Perc. 1997, visual triangle completion in front of a flat projection screen) and by Loomis et al. (JEP 1993, blind walking triangle completion). The results are quantified in figures 6-9.
Distance error and angular compression were substantially more pronounced in
the studies by Péruch and Loomis (see Fig.s 7 \& 8).
The comparison with data from Loomis et al. suggests that path integration by optic flow, presented via a half-cylindrical projection screen, leads to better homing performance than non-visual homing with proprioceptive and vestibular cues from blind walking. The origin of the performance differences might, however, also be caused by differences in the experimental procedures and awaits
further experiments. ration by optic flow

