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Perception of shape from shading on a
cloudy day

Michael S. Langer and Heinrich H. B�ultho�

Abstract. The human visual system has a remarkable ability to interpret smooth patterns

of light and shade on a surface in terms of 3-D surface geometry. Classical studies of shape{

from{shading have assumed that surface luminance depends on the local surface orientation.

This classical shading model holds, for example, on a sunny day. A common situation in

which the classical model fails to hold, however, is a di�use lighting condition such as on

a cloudy day. Here we report on the �rst set of psychophysical experiments that explicitly

address perception of shape{from{shading under di�use lighting. Our main �ndings are

that depth discrimination under di�use lighting is superior to that predicted by a classical
sunny day model, and by a model in which depth varies with perceived luminance i.e. dark

means deep . We �nd that performance is correlated with the latter model, however, under

both di�use source and point source lighting. The results imply that the visual system uses

multiple models when perceiving shape{from{shading.

1 Introduction

For centuries, artists have studied how pat-

terns of light and shade on a surface can

provide visual cues to surface shape. Shad-

ing is now considered to be a fundamental

visual cue, along with binocular disparity,

texture, and contour. While it is widely ac-
cepted that the visual system uses shading

information to perceive surface shape, it is

not yet known about how the visual sys-

tem does so and how well. Previous stud-

ies of shape-from-shading perception have

concentrated on one shading model only, in

which image intensity varies with the local

surface orientation. This model is valid, for

example, when there is a well{de�ned point

light source direction such as on a sunny day

(Fig. 1). In this paper, we address shape{
from{shading perception under an alterna-

tive lighting condition that is very common

in nature, namely di�use lighting such as on

a cloudy day (Fig. 2) and compare perfor-

mance under di�use lighting to that under

standard sunny day conditions. We begin

the paper by discussing how the appearance

of a surface di�ers under a sunny day light-

ing condition versus a di�use lighting condi-

tion.

1.1 Shading on a sunny day

The classical model of shading is that the lu-

minance of a surface element depends on the

orientation of that element with respect to

the light source direction. Surface elements

that face the source directly are brighter

than those that have an oblique orientation

with respect to the source because the lat-

ter elements are foreshortened with respect
to the source, and hence do not receive as

much light per unit area.

Formally, this classical model of shading

may be stated as follows. Let the image co-

ordinates of a point on the surface be (x; y)

and assume the surface is viewed under or-
thographic projection. Let the height func-

tion of the surface with respect to the opti-

cal axis be z(x; y). Let N(x; y) be the unit

surface normal. Let the surface have uni-

form Lambertian re
ectance. Let the light

source direction be L. Then, assuming the

point light source is visible from the surface
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at (x; y), the image intensity at (x; y) may

be modeled as

I(x; y) = N(x; y) � L : (1)

Several quali�ers to this classical model

should be stated. First, no real surface has

exactly Lambertian re
ectance, as the lumi-

nance of a point typically does depend on the

angle from which the point is viewed. Sec-

ond, even if a scene does have a well{de�ned

light source direction such as the sun, there

is still a di�use component to the illumina-
tion that must be considered. For example,

on a sunny day, one cannot ignore the il-

lumination from the blue sky. Third, sur-

face elements are illuminated not only by

light sources but also by each other via in-

terre
ections. Given these quali�ers, one

must regard the above model merely as a

\rough and ready" approximation to surface

appearance on a sunny day.

1.2 Shading on a cloudy day

The appearance of a surface under di�use

lighting such as on a cloudy day is very
di�erent from its appearance under point

source lighting. Under di�use lighting, sur-

face luminance depends primarily on the

amount of the source that is visible from

the surface. Intuitively, hills of a surface

tend to be brighter than valleys since more

of the di�use source is visible from the hills.

This e�ect is apparent, for example, in hu-

man faces. Wrinkles in the skin tend to be

yields dark lines, since the less of the di�use

source is visible from within the concave part
of the fold. Similarly, nostrils tend to also be

dark. Note that this is really a shadowing ef-

fect since the walls of a concavity limit the

amount of the di�use source that is visible

from within the concavity.

Formally, we can model shading under

di�use lighting by adapting the model of

Eq. (1) to the di�use condition. We as-

sume Lambertian re
ectance and ignore in-

terre
ections, and we let the di�use source

be uniform over all directions and have unit

radiance. Formally, let �(x; y) be the solid

angle of the di�use source that is visible

from surface point (x; y). Let d
 denote

an in�nitesimal angle centered at a direction

L = (�lx;�ly; lz). Image intensity at (x; y)

may be modeled by integrating over �(x; y),

I(x; y) =
1

�

Z
�(x;y)

N(x; y) � L d
 : (2)

The key di�erence between Eqs. (1) and (2)

lies in the e�ects of shadowing. In Eq. (1),

shadowing is a binary phenomenon: a point

either lies in shadow or it does not1. In Eq.

(2), shadowing is continuous. Except for

the highest hilltops, all points lie partly in

shadow and the amount of shadowing varies

continuously from one point to another.

1.3 Shape{from{shading

psychophysics

How can we model human perception of

shape from shading? Most studies in the

past have centered around two themes. The

�rst concerns ambiguities in the relation-

ship between shading and shape, and how

the visual system resolves these ambiguities.

The second theme concerns the accuracy and
consistency with which observers judge sur-

face shape. Let us brie
y the discuss these

two themes in turn.

The main ambiguity between shape and

shading that has been addressed in the past

is that, under point source lighting, shad-

ing and shape have a depth{reversal sym-

metry: a surface illuminated from one di-

rection produces the same retinal image as
a depth{reversed surface illuminated from

a mirror symmetric direction. This depth{

reversal symmetry arises directly from Eq.

(1), and is illustrated qualitatively in Fig-

ure 1a. Formally, the ambiguity arises be-

cause for a given surface z(x; y) and a given

lighting direction L, the same image I(x; y)

is produced when a depth{reversed surface,

�z(x; y) is illuminated from a mirror sym-

metric direction, �L = (�lx;�ly; lz). This

1For a small compact source such as the sun, a
penumbra is produced where which the source is par-
tially visible.
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ambiguity has been discussed in the liter-

ature for over two hundred years (Ritten-

house, 1786; Brewster, 1826).

The visual system can resolve this ambi-

guity using several strategies. For example,

it can uses cues other than shading. In the

rendered image of Fig. 1a, there are global

shape cues that imply that the surface has

an overall convexity, rather than an overall
concavity. These include perspective cues,

as well occluding contours cues on the 
ank-

ing regions of the surface. Another strategy

to resolve the depth{reversal ambiguity is to

invoke prior knowledge about typical envi-

ronments. The visual system tends to as-

sume a light source from above, rather than

a light source from below. That is, bright

points are seen as having a surface normal

that points upwards (above the line of sight),

and dark points are seen as having a sur-
face normal that points downwards (below

the line of sight). This preference is ecologi-

cally valid since the sun is typically above

the line of sight. (See (Berbaum, Bever,

& Chung, 1983, 1984; Ramachandran, 1988;

Howard, Bergstrom, & Ohmi, 1990) for pa-

pers related to this idea). There is also ev-

idence that a source from the left is pre-

ferred over one from the right (Sun & Per-

ona, 1998), although this e�ect is smaller

than the above vs. below e�ect. Preferences
on shape have also been found. The visual

system prefers surfaces that tilt upwards as

a 
oor rather than downwards as a ceiling

(Reichel & Todd, 1990), and it prefers fa-

miliar shapes such as faces over unfamiliar

ones such as hollow masks (Gregory, 1970).

The second important theme in shape{

from{shading perception has concerned the

accuracy and consistency to which a shape is

perceived from shading. Many shape prop-
erties have been psychophysically measured

including the relative depth of point pairs,

the surface orientation (slant and tilt), and

the surface curvature. Examples of such

studies include (B�ultho� & Mallot, 1988;

Johnston & Passmore, 1994a, 1994b; Todd

& Mingolla, 1983; Mingolla & Todd, 1986;

Mamassian, Kersten, & Knill, 1996; Ma-

massian & Kersten, 1996; Norman & Todd,

1996; Koenderink, van Doorn, & Kappers,

1992; Reichel, Todd, & Yilmaz, 1995; Koen-

derink, van Doorn, & Kappers, 1996).

1.4 Shape-from-shading in computer

vision

The computational approach to shape{

from{shading has a long history. Ernst

Mach was the �rst to formulate shape{from{

shading as an abstract computational prob-

lem over a century ago (Mach, 1866). His

formulation was based on the point source
model of Eq. (1). The �rst computer vi-

sion algorithm for solving this problem ap-

peared in the late 1960's and is due to Horn

(Horn, 1975). Many algorithms have been

presented since. For example, see the collec-

tion of papers in (Horn & Brooks, 1989) as

well as (Pentland, 1990; Dupuis & Oliensis,

1994).

The di�use lighting version of shape{

from{shading has received less attention his-

torically. In computer vision, it was �rst

solved by Langer and Zucker in (Langer &
Zucker, 1994) who presented an algorithm

based on an approximation of Eq. (2) in

which image intensity depends only on an-

gle �(x; y) of the visible source. A more ac-

curate algorithm was presented by Stewart

and Langer (Stewart & Langer, 1997) that

accounted for surface orientation e�ects and

interre
ections as well.

1.5 The gap between human

perception and computer vision

Although the computational problems of

shape{from{shading as de�ned by Eqs. (1)

and (2) are now well understood, and al-

though much has been learned from psy-

chophysics about how shape is perceived
from shading, the link between computer vi-

sion and human vision has been di�cult to

make. One reason is that, in computer vi-

sion, the models of Eq. (1) and (2) are typi-

cally treated as if they are correct for a given

situation, and researchers have concentrated

on the numerical issues of computing a pre-
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cise solution, given the model. For example,

one typically assumes that the lighting con-

ditions are known or can be accurately es-

timated (Pentland, 1982). This assumption

is di�cult to justify for human vision, espe-

cially in a realistic lighting conditions which

typically fall between the two ideals of Eq.

(1) and (2).

A second di�culty in relating computer

vision to human vision is that, in human
vision, it is non-trivial to measure a per-

ceived surface. Indeed, when one considers

issues of non{uniformity of spatial vision, at-

tention, eye movements, and memory, the

term \the perceived surface" becomes some-

what nebulous. Even if one psychophysi-

cally measures local surface normals and �ts

these normals to a surface, one cannot con-

clude that the computed surface is the sur-

face perceived by the observer (see (Koen-

derink et al., 1992) for a nice discussion of
this point). Contrast this di�culty with the

situation in computer vision where an algo-

rithm computes a precise representation of

an entire surface height function and one can

evaluate the algorithm immediately by com-

paring the computed height to ground truth.

On a more positive note, we argue that

computer vision models can still o�er much

insight into perception, despite the above

di�culties. Computer vision models pro-

vide a theoretical background from which

hypothesis about human vision can be gen-

erated. In the present paper, we use insights
obtained recently in computer vision from

studies of shape{from{shading under di�use

lighting to test how well humans perceive

shape{from{shading under this condition.

1.6 Overview

Our main goal in the present paper is to
measure perceived shape from shading un-

der di�use lighting and point source lighting,

and to understand how di�erences in per-

formance in these lighting conditions are re-

lated to a particular task, i.e. computational

problem, that an observer is asked to solve.

There are three experiments. The �rst (Sec.

2) establishes that a set of shading stim-

uli give rise to shape perception, and that

observers show di�erences between lighting

conditions even for a basic task of judging

whether a single point is convex or concave.

The second (Sec. 3) tests the hypothesis

that observers perceive shape{from{shading

by relating surface height directly to lumi-

nance. Such a strategy is plausible since
height is statistically correlated with lumi-

nance under di�use lighting. The results

show that observers perform better than if

they were using this strategy. The third ex-

periment (Sec. 4) is a control on the sec-

ond, and attempts to tease apart the di�er-

ent strategies that the visual system might

be using. Finally, in Sec. 5, we compare ob-

server performance to that of various com-

puter vision models that have been proposed

for the di�use lighting condition.

2 Experiment 1: qualitative shape

The �rst experiment compares qualitative

shape perception under point source and dif-
fuse source conditions. Observers were asked

to judge whether isolated marked points on

a surface are \on a hill" or \in a valley." The

main purpose of the experiment was to es-

tablish any basic di�erences between point

source and di�use conditions.

In pilot studies, we used shaded images

of smooth terrain surfaces that were fronto{

parallel with respect to the line of sight. We

found that naive observers typically failed

to perceive shape{from{shading for such sur-

faces, either under under point source or dif-

fuse lighting. For this reason, we decided to

use rendered surfaces that have a more com-
plex shape. Two examples of the surfaces

we used are shown in Figs. 1b and 2b. The

reader may verify that these images yield a

vivid impression of shape.

We believe that the vivid impression of

shape for these surfaces relative to the ter-

rain surfaces is that the former contain

several other cues besides shading, and

these cues provide a scene context in which

the shading information can be interpreted.
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These cues included two disk frames seen in

perspective, as well as occluding contours

on the surface near the 
anking region of

stimulus. Occluding contours in particu-

lar are believed to provide a strong cue to

shape (Howard, 1983; Todd & Reichel, 1989;

Ikeuchi & Horn, 1981; Koenderink, 1984;

Todd & Mingolla, 1983; Mamassian & Ker-

sten, 1996). To limit the use of the occluding
contours information, we tested perceived

shape only near the central region of each

stimulus. In this region, the surface was es-

sentially a fronto{parallel terrain and no oc-

cluding contours were present. We also used

relatively short presentation times. A more

detailed discussion of the method now fol-

lows.

2.1 Method

2.1.1 Stimuli

Surface shapes were de�ned by modulat-

ing the radius of a cylinder with low pass �l-

tered white noise. The cylinder was de�ned

by a 1024 � 1024 polygonal mesh and the

cuto� frequency was 60 cycles. Each cylin-

der was then sliced into eight disks of size

1024 � 128. Each of these disks was ren-

dered from four di�erent viewing directions,

separated by 90 degree increments.

The disk surfaces were rendered using the
RADIANCE software package (Larson &

Shakespeare, 1998). Surface material was

Lambertian with re
ectance of 30 per cent

and interre
ections were computed to two

bounces. Five lighting conditions were used:

a uniform di�use condition, and four dif-

ferent point source conditions (above{left,

above{right, below{left, below{right). In

the di�use condition, the source was a uni-

form sphere surrounding the object. In each

point source conditions, the source was 15
degrees from the line of sight. This angle

was small enough that no cast shadows ap-

peared in the central test region. A weak

di�use source component was added in each

point source condition to simulate the ambi-

ent illumination.

For the di�use lighting images, the render-

ings contained a small amount of pixel noise

which was due to the stochastic sampling of

the source. For the rendering parameters

we used, the noise was rather small. It was

roughly 1 per cent (root mean square error)

of the maximum intensity. This error was in-

dependent of the intensity of a pixel. Hence

for darker pixels the relative error was larger.
2 Noise of roughly the same order of mag-
nitude was introduced by the interre
ection

term.

Images were presented on a CRT moni-

tor which was calibrated so that screen lu-

minance was linearly related to rendered sur-

face luminance. Intensities in each image

were normalized so that all images had the
same maximum intensity. Observers wore

an eye patch over the non-dominant eye and

viewed the stimuli in a dimmed room at a

distance of 2 m. Each surface subtended a

viewing angle of 10 � 4 degrees.

Probe points were chosen from the central

2� 2 degree square. Probe points were cho-

sen only if they had positive Gaussian cur-
vature, that is, saddle points were not used.

2.1.2 Observers

Twenty observers participated (age 18{

30). All had normal or corrected{to{normal

vision.

2.1.3 Procedure

Each trial consisted of a grey silhouette

that was presented for 0.2 s, followed by a

probe for 0.8 s during which time the ob-

server made an eye movement to the probe.

A stimulus image was then presented with

the probe superimposed on the image. The

probe was 6 pixels square prior to the eye

movement, and 4 pixels square when it was

superimposed on the image (as in Fig. 1b).

The observers' task was to judge whether

the probe was \on a hill" or \in a valley"

(see Fig. 1b). The observer had a maximum

of 1.2 s to respond by pressing on a left or

2We estimated the noise in the rendering by us-
ing a set of spherical concavities of di�erent shapes
and by comparing the rendered images to an analytic
expression of the ground truth (Stewart & Langer,
1997).
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right response key. No feedback was given.

Responses longer than 1.2 s were discarded

and the same trial condition was repeated at

the end of the same block.

Lighting conditions were balanced over all

trials. Half of the observers ran a mixed con-

dition in which the lighting varied randomly

from trial to trial, and half ran a blocked

condition in which the lighting condition was

constant within each block and varied be-
tween blocks. (No e�ect was found for mixed

vs. blocked conditions, and the data were

subsequently pooled. We present only the

pooled data.)

Each observer ran 320 trials. These were

divided into 10 blocks of 32 trials each. Prior

to the experiment, each observer ran a prac-

tice session of a single block. No feedback

was given.

2.2 Results

Percent correct scores are shown in Fig. 3a.

In the point source conditions, percent cor-

rect was higher when the source was above

the line of sight than when it was below the

line of sight (F (1; 18) = 86; p < :0001). This
replicates the classical �nding that the visual

system prefers light from above i.e. bright

points are perceived as having an upward

orientation and darker points are perceived

as having a downward orientation. Percent

correct was higher when the source was from

the left than from the right (Sun & Per-

ona, 1998), but this e�ect was not signi�cant

(F (1; 18) = 2:2; p = :15).

In the di�use condition, percent correct

was well above chance (t(19) = 11:6; p <

:0001) and was as high as under the best
point source tested.

2.3 Discussion

If the visual system used a point-light-
source-from-above model to perceive shape{

from{shading, then performance in the dif-

fuse lighting condition would have been at

chance. Under di�use condition, an equal

amount of light arrives at a given surface

from above the line of sight as from below,

and so a point{source{from{above model

must yield the same level of performance as a

point{source{from{below model. But these

two yield opposite responses (hill vs. val-

ley) on each trial because of a depth rever-

sal symmetry under point source lighting. It

follows that each model would yield chance

performance under a di�use lighting condi-

tion. Since observers were well above chance

under the di�use condition, an alternative
model must be considered.

One alternative model that could account

for the performance in the di�use condition

is suggested by a heuristic used in artis-

tic rendering, in which depth is conveyed

by darkness (Nicolaides, 1941). This phe-

nomenon that dark means deep has been

known for centuries. For example, Leonardo

da Vinci wrote that \among bodies equal

in size and distance, that which shines the

more brightly seems to the eye nearer"

(E. MacCurdy, 1938). Such a dark{means{
deep model has been formally shown to bias

shape perception in studies of line draw-

ings (Dosher, Sperling, & Wurst, 1986) and

in point source shading (Christou & Koen-

derink, 1997; B�ultho� & Mallot, 1988). It

has been hypothesized that this model is

used as a default assumption for shape{

from{shading under di�use lighting as well

(Langer & Zucker, 1994; Tyler, 1998), al-

though this hypothesis has not been formally

tested. Our second experiment was therefore
intended to hypothesis that the visual sys-

tem uses a dark{means{deep model to infer

shape{from{shading under di�use lighting.

3 Experiment 2: depth

discrimination

One reason why we might not expect a dark{

means{deep model to be used under di�use

lighting is that, strictly speaking, this model
is incorrect. Although surface height and

image intensity are correlated under di�use

lighting, the correlation is not perfect. Un-

der di�use lighting, a valley may contain a

local intensity maximum at its deepest point

(Fig. 2a). This local maximum may have

several causes. The surface normal may turn
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toward the vertical, and hence towards the

visible part of the source yielding a classi-

cal N �L shading e�ect. Alternatively, there

may be a local maximum in the visible angle

of the source. (A third possibility, which can

occur for non{Lambertian surfaces hence not

for the surfaces we use, is that there may

be a specular re
ection of the di�use source

from the valley.) If the visual system were
to use a dark{means{deep model to perceive

shape{from{shading under di�use lighting,

then such a local intensity maximum in a

valley should yield an illusory local hill. Our

second experiment tested for this illusion.

The second experiment used the same

stimuli as the �rst. In each trial of the sec-

ond experiment, a pair of points on the sur-

face was marked, and the task now was to

judge which of the two points was higher,

that is, closer to the observer along the line

of sight (Koenderink et al., 1996). The idea

of the experiment is to create a con
ict situ-
ation in which the two points have di�erent

intensities and di�erent heights. This yields

the two conditions shown in Fig. 3b : either

the intensity and height di�erences are of the

same sign (correlated) or they are of oppo-

site sign (anti{correlated). If the visual

system were to rely on dark{means{deep as

a cue to shape, then there should be system-

atic di�erences in performances under these

two conditions. Details of the method are as

follows.

3.1 Method

3.1.1 Stimuli

For each surface, pairs of points were cho-

sen such that depth varied monotonically

between the two points (Todd & Reichel,

1989). Moreover, both the image intensities

and the heights of the two points di�ered
by a given amount. Let I1, I2 and z1; z2 be

the intensities and heights of two points, re-

spectively. Each probe pair was required to

have an image contrast j I1�I2
I1+I2

j that was 0.6
to 0.8 times the standard deviation of image

contrast over the central test square of the

image, and similarly, each pair was required

to have a height di�erence jz1� z2j that was
0.6 to 0.8 the standard deviation of height

di�erences of the central test square.

Correlated and anti{correlated conditions

were balanced within each lighting condi-

tion. In this way, a dark{means{deep model

predicted chance performance within a given

lighting condition.

3.1.2 Procedure

Apart from the di�erence in the task, the

procedure was the same as the �rst experi-

ment. The only other di�erence is that there

were 384 trials partitioned into 12 blocks of

32 trials each, and only two point source
conditions were used, namely above{left and

below{right.

3.1.3 Observers

Seventeen observers participated. Each
was naive to the purpose of the experiment

and none participated in any other experi-

ment.

3.2 Results

The results are shown in Fig. 3b. In the

point source conditions, percent correct was

higher when the source was to the upper{

left than to the lower{right (F (1; 15) =

88:7; p < :0001), replicating the classical

�nding that the visual system prefers light
from above rather than below. In particu-

lar, when the source was below the line of

sight, observers were below chance, imply-

ing that they were systematically fooled by

the depth{reversal ambiguity.

In the di�use condition, percent correct

was higher in the correlated condition than

in the anti{correlated condition. Moreover,

overall percent correct in the di�use condi-

tion was 63 percent which is signi�cantly

above chance (paired t-test, t(16) = 8:1; p <

:0001).

3.3 Discussion

How can we account for the performance in

the di�use condition? One possibility is that

observers were not able to resolve the shad-

ing as well in the anti{correlated condition
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as in the correlated condition. This may

have led to a greater amount of guessing

in the anti{correlated condition, and hence

to performance that more near to chance.

The shading in the anti{correlated condition

may indeed have been more di�cult to re-

solve, for the following reason. The anti{

correlated trials tended to occur within val-

leys, while the correlated trials tended to
occur on hills (see Fig. 2). Hence points

in the anti{correlated trials were darker on

average than points in the correlated trials.

We tried to control for this systematic lu-

minance di�erence between conditions, by

using contrast rather than luminance when

choosing probe pairs (see Sec. 3.1.1). How-

ever, for complex shaded images, the Michel-

son contrast measure that we we used may

not have exactly captured perceived contrast

(Peli, 1990). Hence the e�ect we found in the
di�use condition could, at is stands, be ex-

plained just in terms of contrast detect abil-

ity. A further experiment will test this issue.

An alternative account of the above{

chance performance in the di�use condition

is that observers were indeed able to resolve

the contrast di�erence in the anti{correlated

condition, but that they nonetheless cor-

rectly perceived the brighter point to be

deeper. If this is the case, it would be re-
markable, and it would raise the question of

what perceptual model could best describe

this behavior.

A third possibility is that observers may

have used a dark{means{deep model on

some trials, but may have guessed on other

trials. Such a strategy would explain why

performance was better in the correlated

condition than in the anti{correlated con-
dition. However, it would not explain why

performance was above{chance overall, since

both guessing and dark{means{deep strat-

egy would each yield chance performance

overall. Thus, a dark{means{deep model

may play a role, but it is not su�cient to

account for the above chance performance.

4 Experiment 3: brightness

discrimination

To try to disentangle the three factors just

discussed, we carried out a third experiment.

This experiment was identical to the second

experiment, except that now the task was to

discriminate the brightness of pairs of points,

rather than the depth. That is, the task

was to judge which of the two surface points
was brighter, rather than which was higher.

The main idea is that if observers had used

a dark{means{deep model in the depth dis-

crimination task, then the behavior in that

depth task should be the same as in a bright-

ness discrimination task.

4.1 Method

Eleven new observers participated. Each ran

the mixed condition in which the lighting

condition varied randomly from trial to trial.

The experiment was otherwise identical to

Experiment 2, except that the task was to

judge which point was brighter rather than

which was higher.

4.2 Results

The results are shown Figure 3b. We �rst

consider the di�use lighting condition. If ob-

servers had used a dark{means{deep strat-

egy in the depth task (Experiment 2), then

the behavior in the depth task should have

been the same as that in the brightness task

(Experiment 3). This was not the case,
however. Responses in the depth task were

signi�cantly di�erent than responses in the

brightness task (F (1; 26) = 16:8; p < :001).

In particular, in the anti{correlated condi-

tion, observers were 77 percent correct in

the brightness task but only 53 percent \cor-

rect" in depth task. (The quotation marks

on \correct" emphasize the null hypothe-

sis that observers were using a dark{means{

deep strategy.) This di�erence is a signif-

icant (F (1; 26) = 27; p < :0001) and im-
plies that observers did not rely entirely on a

dark{means{deep strategy in the depth task.

A dark{means{deep strategy did appear

to play a role, however. A post hoc trial{
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by{trial comparison of the responses in the

anti{correlated condition of the depth and

brightness tasks revealed a signi�cant cor-

relation (r = :544; p < 0:0001). That is,

although observers were roughly at chance

in the anti{correlated condition of the depth

task, they were not merely guessing. Rather,

certain trials tended to yield either a cor-

rect response or an incorrect response, and
this tendency was consistent with a dark{

means{deep strategy. The trial{to{trial cor-

relation was slightly larger when the corre-

lation was computed over the correlated and

anti{correlated trials.

We also found a signi�cant trial-to-trial

correlation for the sunny day conditions,

both for the point source above{left (r =

:21; p = :017) and for the point source

below{right (r = :28; p = :011). Again, this

correlation does not fully account for the ob-

servers' behavior under the sunny day condi-

tions, as they were well above chance when

the light source was from above and well be-

low chance when the light source was from

below. The result does suggest, however,
that a dark{means{deep model does play a

role (albeit a secondary one) under the point

source conditions (Christou & Koenderink,

1997), just as it did under the di�use condi-

tion above.

Finally, we note that in the brightness

task and under di�use lighting, performance

was higher in the correlated condition than

in the anti{correlated condition (F (1; 10) =

19; p < :001). Whether this di�erence was

due to the complexity of brightness per-

ception in complex images (Peli, 1990) or

whether it was due to di�erences in the ren-

dering noise between conditions, we can-

not say. Either way, the e�ect is small
in comparison to the di�erence in perfor-

mance between the brightness and depth

tasks. Hence, the e�ect does not account

for the main �nding, which is that observers

performed better under the di�use condition

than if they had used a dark{means{deep

strategy.

5 General Discussion

We have shown that a dark{means{deep

model is not su�cient to explain the per-

formance under di�use lighting in the depth

discrimination task. We have also shown

that observers had greater di�culty in the

anti{correlated condition than in the corre-

lated condition in that task. Was this di�-

culty merely due to a bias to perceive dark
points as deep? Or was the anti{correlated

condition inherently more di�cult than the

correlated condition ? To try to address

these questions, we compared performance

of the observers in the di�use condition to

that of various computational models.

5.1 Computational Models

We �rst considered the performance of
two computer vision algorithms (Langer &

Zucker, 1994; Stewart & Langer, 1997) at

the depth discrimination task. In each trial,

we ran each algorithm on a 2 degree square

neighborhood in the image. The probe pair

was in the center of this neighborhood. The

depth discrimination judgment was based di-

rectly on the shape computed by each algo-

rithm.

The percent correct scores are shown

in Table 1 for the correlated and anti{

correlated conditions, along with trial-by-
trial correlations. Three points are worth

noting. First, the SL algorithm (Stewart &

Langer, 1997) has a less than perfect score in

the anti{correlated condition, even though

this algorithm is given the correct shading

model used to render the images. This sug-

gests that human performance may be partly

limited by the inherent di�culty of the

task, especially in the anti{correlated con-

dition. Second, the LZ algorithm (Langer &

Zucker, 1994) was below chance in the anti{
correlated condition. This implies that the

surface normal e�ects are important for ac-

curately judging shape under di�use light-

ing, especially for judging the shape of val-

leys which contain local intensity maxima.

Third, although the trend in the perfor-

mance is similar between the computational
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corr anti r

LZ 100 27 .13

SL 100 77 { .03

blur 80 47 .07

Table 1: Percent correct scores and trial{to{trial cor-
relation.

models and the human observers (namely

better performance in the correlated con-

dition than in the anti{correlated condi-

tion and above{chance performance overall),

there was no trial{to{trial correlation be-

tween the human observers and the algo-

rithms (third column in Table 1). Thus,

we cannot explain observers' performance in

this task in terms of the SL and LZ algo-

rithms.

A third computational model to con-

sider is that observers somehow \ignored"

the local intensity maxima in valleys. As

we mentioned earlier, probe pairs in the

anti{correlated trials tended to be darker

than those in the correlated trials, and ob-

servers may have opted for a dark{means{

deep strategy in the former case. One way

to implement such a strategy would be to
blur the image slightly, prior to applying

a dark{means{deep model. Such blurring

would remove the small local intensity max-

ima within valleys. We found that by us-

ing a Gaussian blurring kernel with stan-

dard deviation equal to the distance between

probes, such a strategy could achieve a per-

cent score that is nearly identical to that of

the human observers (see Table 1). How-

ever, no trial{by{trial correlation was found

between this strategy and the observers' per-
formance. Thus, we regard it as unlikely ob-

servers were using such a strategy.

5.2 Lighting models

A key question raised by these experiments

is whether observers were using a di�er-

ent strategy in the di�use lighting condition

than in the point source conditions. Follow-

ing the experiments, we debriefed observers

about the purposes of the experiment. Many

observers spontaneously claimed that they

had been unaware of the lighting conditions

changing between trials, and expressed sur-

prise at this manipulation. Some observers

reported that certain images had lower con-

trast than others { the di�use source im-

ages do have lower contrast than the point

source images { but they were unable to re-
port any other di�erences. Many observers

also reported that the response times were

so short that they were only able to attend

to a local neighborhood of each probe point.

If they had more time, they argued, they

would have noticed how some images had a

sharp shadow (the point source condition)

and other did not (the di�use lighting con-

dition). It remains possible that the lighting

condition was identi�ed subconsciously, and

that observers indeed used a di�erent strat-
egy from one lighting condition to the next.

This issue will need to be addressed in future

experiments.
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