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Wide-Field, Motion-Sensitive Neurons and
Optimal Matched Filters for Optic Flow

Matthias O. Franz € Holger G. Krapp

Abstract. We present a theory for the construction of an optimal matched filter for self-motion induced
optic flow fields. The matched filter extracts local flow components along a set of pre-defined directions
and weights them according to an optimization principle which minimizes the difference between estimated
and real egomotion parameters. In contrast to previous approaches, prior knowledge about distance and
translation statistics is incorporated in the form of a “world model”. Simulations indicate that the
matched filter model yields reliable self-motion estimates. A comparison of the weight distribution used
in the model with the local motion sensitivities of individual and small groups of interneurons in the
fly visual system shows a close correspondence. This suggests that these so-called tangential neurons
are tuned to optic flow fields induced by rotation or translation along a particular axis. They seem to
weight the local optic flow according to the contribution of input noise and the expected variability of the
translatory flow component. Their local preferred directions and motion sensitivities can be interpreted

as an adaptation to the processing requirements of estimating self-motion from the optic flow.

1 Introduction

While moving through the world, biological and
technical visual systems experience characteristic
patterns of optic flow. These patterns are an im-
portant source of information about the animal’s
self-motion parameters, i.e. the momentary trans-
lation and rotation vectors T and R, which may be
useful for locomotor and gaze control. Prior to the
estimation of the self-motion parameters the optic
flow has to be analysed locally by elementary vi-
sual motion processing units. This bears several
problems for the visual system:

1. Locally measured velocities depend on both
the translatory and rotatory optic flow field.
When, for instance, the rotatory component
is to be measured, the superimposed transla-
tory component may give rise to large errors
(Koenderink & van Doorn, 1987).

2. Translatory flow fields depend on the distance
distribution of the visible objects. There-
fore, the same self-motion in different environ-
ments does not necessarily result in identical
flow fields.

3. Local image motion measurements are af-
fected by the noise in the visual input
(Bouman et al., 1985) and in the synaptic sig-
nal transmission (Allen & Stevens, 1994), as

well as by the systematic errors of the elemen-
tary motion detectors due to the dependence
of their output on contrast frequency, contrast
and shape of the visual input (Reichardt et
al., 1988).

While these problems have been treated exten-
sively in the computer vision literature (review:
Heeger & Jepson, 1992), the possible implemen-
tation of a neural system for self-motion extrac-
tion in a biological system has been elusive. In
the visual system of the blowfly Calliphora vicina,
the so-called tangential neurons were long thought
to be involved in analyzing optic flow information
(review: Hausen, 1984). Recently, Krapp & Heng-
stenberg (1996) have investigated in great detail
the receptive field organization of a particular class
of tangential neurons (VS-neurons) with respect to
their role in the self-motion extraction process. In
the present study, we try to elucidate the func-
tional role of the VS-neurons by comparing their
receptive field properties to an optimal filter for
self-motion-induced flow fields.

Our approach is closely related to the concept
of matched filters (review: Wehner, 1987). A
matched filter is defined as a processing unit whose
output is proportional to the cross-correlation of
the filter input with a certain stimulus pattern
(Rosenfeld & Kak, 1982). The local motion sen-
sitivities and preferred directions of the tangen-
tial neurons show a striking similarity to certain



self-motion-induced flow fields. These are prop-
erties one would expect to find in a matched fil-
ter for self-motion estimation from the optic flow.
Therefore, a natural question to ask is whether
the matched filter concept may help to under-
stand the receptive field organization of the tan-
gential neurons. To that end one has to clarify
how such a matched filter should be constructed,
to which properties of the optic flow field it should
be matched, and whether prior knowledge can help
to extract relevant features for self-motion estima-
tion. In this study, we address these questions
by deriving an optimal matched filter from a least
square principle. Unlike previous approaches, we
explicitely incorporate prior knowledge about the
distance distribution of the environment. The
resulting filters do not only supply reliable self-
motion estimates, e.g. for potential applications
in computer vision or robotics, but also provide
new insights into the functional role of the VS-
neurons.

In the next section, we briefly review the exper-
imental findings obtained in electrophysiological
studies on the VS-neurons. This shows that the
classical matched filter concept has to be extended
to account for certain receptive field properties of
the tangential neurons. In Sec. 3, we describe
the self-motion estimation from the optic flow by
means of a matched filter. In Sec. 4, we derive an
optimal matched filter from a least square princi-
ple, and discuss the basic model assumptions. In
Sec. 5, the matched filter model is checked for its
performance in self-motion estimation in computer
simulations and compared to the experimental re-
sults (Krapp & Hengstenberg, 1996; Krapp et al.,
1998). We conclude by discussing the functional
role of the VS-neurons and relating our study to
other matched filter approaches.

2 Processing of optic flow by
wide-field neurons in the fly
visual system

In the third visual processing area (lobula plate)
of the fly, about 60 so-called tangential neurons
are known to respond directionally selective to
wide-field motion stimuli (review: Hausen, 1984;
Hausen & Egelhaaf, 1989). Tangential neurons in-
tegrate the signals of many retinotopically orga-
nized elementary movement detectors (EMDs; re-
view: Reichardt, 1987) on their large dendrites.
At every tiny patch in the visual field retinal im-
age shifts are analyzed by at least 6 EMDs whose
preferred directions differ according to the ar-
rangement of neighbouring ommatidia within the

3
\
Q
\
1%
v
o

NNy f oy s 2T
F7 7 = = > « \ \ J{ \l/ ¢ ¢ v E
45+t - o = o Y \ 3’ \1, f J £ v
[T T TN Y]
315»9 F e & Q& g % % i, \T/ \3 $ ? o -
SO v
g-15»e 6 o o o 9 ¢ ? il \I; $ $ ® o-
© [ toe |22 A A A
45 Lo ) ] v ? v ? i’ ? Vv @ W A
r . v 3 13 1 1] v \ A
75F- e - . @« 4 P 4 v ] v r Q-
-15 0 45 90 135 180
azimuth (deg.)

Figure 1: Mercator map of the response field of the
neuron VS7. The orientation of each arrow gives the
local preferred direction, and its length denotes the
relative motion sensitivity. Measurement positions are
marked by small circles, arrows in between are inter-
polated (Krapp et al., 1998).

hexagonal lattice of the fly’s compound eye (Buch-
ner, 1976; Gotz et al., 1979).

Two neuronal subsystems have been investi-
gated more thoroughly both of which are thought
to be involved in gaze- and flight stabilization: the
horizontal system (HS; Hausen, 1982a,b) and the
vertical system (VS; Hengstenberg et al., 1982;
Hengstenberg, 1982). The 3 HS-neurons mainly
integrate the output of EMDs with horizontal
preferred direction. In contrast, the VS-neurons
were long thought to receive first of all input
from EMDs with vertical preferred direction corre-
sponding to the strong sensitivity to vertical down-
ward motion within their receptive fields. Some
hints that a few VS-neurons also receive input
from horizontally oriented EMDs (Hengstenberg,
1981) led to detailed investigation of the recep-
tive field organization of the HS-, VS- and some
other tangential neurons. The results of these in-
vestigations showed, that most of these neurons
are adapted to sense particular optic flow fields
rather than being sensitive to either horizontal
or vertical motion only (Krapp & Hengstenberg,
1996; Krapp et al. 1998). During intracellular
recordings from individual VS-neurons, the local
preferred directions (LPDs) and motion sensitiv-
ities (LMSs) have been determined using a local
motion stimulus (Krapp & Hengstenberg, 1997).

As an example, the distribution of LPDs and
LMSs of VS7 at 48 positions within the ipsilateral
hemisphere (relative to the cell body of the inves-
tigated neuron) and 4 positions within the frontal
contralateral visual field is shown in Fig. 1. The



orientation of each little arrow gives the local pre-
ferred direction, and its length denotes the rela-
tive motion sensitivity. The global structure of
the VST response field is reminiscent to an optic
flow field generated by a rotation around an axis at
an azimuth of about 30° and an elevation of about
—15°. There are differences between a mathemat-
ical flow field around this axis and the response
field in Fig. 1: (i) The LMSs in the ventral part
of the response field are smaller than the mag-
nitude of the velocity vectors at the correspond-
ing positions within the flow field. (ii) The LMSs
around the axis of rotation are smaller than the
corresponding velocity vectors. All VS-neurons
have these properties in common (Krapp et al.,
1998). In addition, the response fields of some VS-
neurons do not comprise the entire visual hemi-
sphere, but are confined to certain dorsal and me-
dial regions only.

Another visual wide-field neuron in the lobula
plate, the so-called Hx-neuron, neither does belong
to the VS nor to the HS. The neuron was found to
have a response field most similar to a translatory
optic flow field. The focus of expansion of the Hx
resonse field can be found at an azimuth of about
135° in the equatorial plane. Although there is an
asymmetric sensitivity distribution, too, the Hx-
neuron responds stronger to motion in the ventral
than in the dorsal part of the visual field.

These results suggest that, in spite of their ap-
parent similarity to optic flow fields, the LMSs of
the tangential neurons cannot, be understood sim-
ply as flow field templates as one would expect in
a classical matched filter. The explanation of the
dorsoventral asymmetry, the small LMSs near the
axis of rotation or translation, and the reversed
asymmetry in the Hx-neuron requires an exten-
sion of the simple template matching concept.

If we assume that the task to which these re-
sponse fields are adapted is the extraction of self-
motion parameters from optic flow, a model of the
response fields can be derived by constructing an
optimal matched filter tailor suited to solve the
same problem. Thus, we may benefit in two ways:
(i) by comparing such independently developed so-
lutions, we may find a hint of how to functionally
interpret the experimental results obtained in the
fly, and (ii) we should end up with a model of
practical significance, e.g. in robotics or computer
vision.

3 Matched filters for optic flow
patterns

3.1 Extracting self-motion parameters
from optic flow

We model the visual system of Calliphora as a col-
lection of sensors arranged on the unit sphere, with
the origin of the coordinate system centered on the
head of the animal. The viewing direction of a sin-
gle elementary motion detector (with index i) is
described by a unit vector d; along its axis. When
the insect translates with T while rotating with
R about an axis through the origin, the resulting
image flow p; at d; is given by (Koenderink & van
Doorn 1987)

(T — (T -d;)d;)

Di - R x di7 (1)

Pi = —
where D; is the distance between the eye and the
object seen in direction d;.

From local measurements p; of the flow field
alone, the self-motion parameters T and R cannot
be recovered, as can be seen if one solves Eq. (1)
for T and R:

T = -D;V;'(pi+Rxd;) (2)

1
D;

V[l is the inverse of the tensor V; = I — d; ® d;
where ® denotes the dyadic product and I the
unit tensor. If the absolute distance D; is un-
known, the translation T is only determined up
to a scale factor. Moreover, the translation causes
an apparent rotation Agp = V[lD%_T x d;, while
the rotation causes an apparent translation A, =
-D;V; 'R x d;.

If the absolute distances of the visible objects
are unknown, the actual magnitude of the trans-
latory flow field is unpredictable, even if the mo-
mentary translation is perfectly known. As a con-
sequence, there is no direct way of decomposing
local flow measurements into their rotatory and
translatory components.

A filter matched to a certain self-motion induced
optic flow pattern is affected by all of these prob-
lems: it will not only react to its specific flow pat-
tern, but also to the apparent rotation or transla-
tion caused by self-motion along other axes. More-
over, if nothing is known about the object dis-
tances, the actual contribution of the translatory
flow field to the overall filter output cannot be
directly determined. One way to solve these prob-
lems is to use the output of other matched fil-
ters together with plausible assumptions about the
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Figure 2: Matched filter model: The optic flow is pro-
jected onto a unit vector field. From the weighted
projections, a local estimate of the self-motion param-
eter along the filter axis is computed using the factor
1/ sin ©; for rotatory and D;/ sin ©; for translatory fil-
ters. Finally, all weighted local estimates are summed
to give the filter output.

ocurring distances to correct for the apparent ro-
tation and translation. In the next section, we
describe such a method for estimating self-motion
from the output of matched filters tuned to specific
optic flow fields.

3.2 Estimating self-motion using matched
filters

The system for self-motion estimation consists of
several matched filters. Each filter is tuned either
to a rotatory or translatory flow field generated by
self-motion along a particular axis, which we refer
to as the filter axis. We assume that a prepro-
cessing stage provides estimated local flow vectors
as input to the matched filters. Each matched fil-
ter consists of four stages: 1. The first stage is a
template of LPDs which follow the directions of
a flowfield generated by a rotation or translation
along the filter axis. At each position in the vi-
sual field, the input signal is obtained from the
projection of the optic flow vector p; onto a unit
vector u; pointing along the LPD. 2. Each projec-
tion is weighted with a local weight w;. 3. From
each projection, a local estimate of the self-motion
component along the axis of the LPD template is
computed. 4. In the fourth stage, all weighted lo-
cal estimates are summed up to give the filter out-
put (cf. Fig. 2). As we have pointed out in Sec. 3.1,
the filter output is not only dependent on the self-
motion along the filter axis, but also on the appar-
ent rotation and translation created by self-motion
along other axes. Therefore, the outputs of the
other filters have to be used to remove the appar-
ent, components in the final self-motion estimate.
This matched filter model is an extension of the
simple template matching concept, since the local
motion sensitivities (the second and third stage)
do not necessarily follow the size of the flow vec-

tors generated by the particular self-motion along
the filter axis.

Suppose we are interested in the rotatory flow
field around a filter axis defined by the unit vector
a. Then the corresponding unit vector field of the
filter is given by

R a X dl
u'=-———— 4
¢ sin (;)z ( )
with @ being the angle between viewing direction
d; and the filter axis a. Analogously, the unit
vector field for a translation along the axis a is

T d,;xaxdi

u;, =

sin G)z (5)

Each projection m; = u; - p; of the actual flow
on one of these unit vectors contains information
about the current self-motion along the filter axis.
We denote this component by the superscript ||,
and the component orthogonal to filter axis by the
superscript —. Thus, the current rotation can be
decomposed in R = Rl + R, the translation in
T=TI+T".

From the projection of the local flow vector p;
on uf, the rotation component Ry = ||R1‘|| along
the filter axis can be computed using Eqns. (1)
and (4) as

m; +Ti/Di -r;

I —
Ri o sin @7

(6)

T; is the projection of the translation vector T on
uf and r; = uf R~ x d; denotes the projection
of the rotatory flow field caused by the orthogonal
component R™. r; is zero if the current rota-
tion axis exactly coincides with the filter axis a.
Similarly, one obtains the translation component

TZ-H = ||T!|| along the filter axis from

m; —r; — Tif/Di
sin @1

7/ = D,

i ; (7)
with the projections of the rotatory flow r; =
~R x d; - u!, and of the translation component
T;~ orthogonal to the filter axis.

If the distances of the surrounding objects are
unknown, the self-motion parameters cannot be
computed from Eqns. (6) and (7) alone. One pos-
sibility to deal with this problem is to use prior
knowledge about typical distances in the environ-
ment, e.g., by replacing the unkown distances D;
by their mean values D;. Provided that the cur-
rent distances do not deviate too much from their

mean, the summation over a sufficient number of



local estimates will then reduce the effects of in-
dividual distance deviations from the mean. In
some regions of the visual field, the distance vari-
ability can be higher than in others. These regions
should be weighted less in the sum. In addition,
the projections are corrupted by various forms of
noise and the shortcomings of the velocity detec-
tion process. We therefore assign a suitable weight
w! to each local estimate Rll according to a least
square principle which is described in Sect. 4.1.

The final rotation estimate is given by the
weighted sum over the local estimates (6)

Rl, = Y wlR] (8)
= ¥ wl  TCr - R-Ch. (9)
B Sin@imll T i

Similarly, we obtain a translation estimate from

TeHst = Z w;TTz”
i

Dle e

i

Thus, the filter outputs >, wfm;/sin®; and
>, Diw!'m;/sin©; have to be corrected by re-
moving the apparent rotation which arises from
self-motion along other axes. The vectors Cp =
Y, whuf/D;sin0;, C; = Y, wlul/sin0O;,
Cr = Y,Diw/d; x u]/sin®; and Cp =
Y, whd; x ulft/sin®; are constant and can be
computed in advance, but we still need to know the
values of T and R™. In our system, these values
are the outputs of other matched filters used as a
first approximation. Three filters for each transla-
tory and rotatory degree of freedom are sufficient
to extract all self-motion parameters from optic
flow. In the real organism, additional sources for
self-motion estimates could be used, such as the
haltere system which is capable of sensing angular
velocities (Nalbach, 1994; Nalbach & Hengsten-
berg, 1994).

The resulting self-motion estimate can be used
in turn to correct the initial estimates of the other
filters. This procedure can be repeated several
times until a stable solution is reached, as in the
iterative algorithm of Koenderink & van Doorn
(1987). However, in the kind of environments
we investigated here, the first iteration was al-
ready enough to obtain very reliable estimates (cf.
Sec. 5.1).

4 Optimal weights for self-motion
estimation

4.1 Least square solution

The local projections m; of the optic flow vectors
onto the LPD template are likely to contain a con-
siderable error component. Among the possible
sources of error are photon noise in the visual in-
put, synaptic transmission noise, and the charac-
teristics of the elementary motion detectors such
as their limited aperture and the dependence of
their output on contrast frequency and image con-
trast. Although the nature of these error sources
is quite different, they all lead to deviations of the
measured flow component from the real one. We
therefore model all the different error sources to-
gether as a common additive noise component n;
with standard deviation An and zero mean. In ad-
dition, the distances of the surrounding objects are
scattered around the average value D; with stan-
dard deviation AD;, which results in erroneous
interpretations of the underlying self-motion pa-
rameters. In order to facilitate the mathematical
analysis, we have to assume that the distance vari-
ations at different points in the visual field are sta-
tistically independent. This would be ideally true
in an environment consisting of small point-like
objects. For the derivation of the weights, we also
need a probability distribution of the translation
T such as the example given in Sec. 4.2.

Based on these assumptions, we can ask the fol-
lowing question: How should the single flow mea-
surements m; be weighted so that the estimated
self-motion parameters are as close as possible to
the real ones? The answer, of course, should
depend on the relative contributions of the flow
signal, sensor noise and erroneous distance esti-
mates. Starting with a matched filter for rota-
tory flow fields, we can formulate this question as
a least square problem: Given a set of weights
w; subject to the constraint ), w; = 1, what is
the optimal weight distribution that minimizes the
mean squared error F of the estimated rotation
R.st = Y, w;R; with respect to the real rotation
component R

E= <<ZwiR,;R> > (11)

where the <> denote the expectation over all tri-
als and the R; the local estimates from Eq. (6).
Using the approximation

1 1 D;—-D;

I e (12)



and ), w; =1, we obtain

F o~ <<Z w; T;(D; —Sfli)®/iDi + nz) > . (13)

i

Since n; and AD; are assumed to be statistically
independent, this expression simplifies to

- I Sin2 @7 D?

In order to find the optimal weight distribution
minimizing F we have to solve the Euler-Lagrange
equation

+ An2> . (14)

d
Fr | £ A Xi:wj—l =0, (15)

where A is a Lagrange multiplier. This finally
leads to a simple analytic expression for the op-
timal weight distribution wf?

R NR SiIl2 @1
w, = - —
I <T?>AD?/DY + An?

(16)

with a suitable normalization factor N such that
> ;w; = 1. In an analogous procedure, one ob-
tains the corresponding optimal weight distribu-
tion w] for translation filters

_ NT sin2 G‘)Z/DZQ
- < T?>AD?/D} + An?’

(17)

STy

w

The flow component generated by the self-motion
along the filter axis follows sin” # for rotatory fil-
ters and sin? §/D? for translatory filters. This sig-
nal is corrupted by the noise An? and the unpre-
dictable variance < T? > AD?/D? of the transla-
tory flow component due to the distance deviation
from the mean. As can be seen from Eqns. (16)
and (17), the optimal solution assigns the weights
according to the local ratio of the signal to the
variance of the corrupting factors. Eqns. (16) and
(17) both require prior knowledge about transla-
tion and distance statistics. In the following sec-
tion, we provide crude estimates for this kind of
“world model”.

4.2 World model

Distance model. A concise statistical descrip-
tion of the flight patterns of Calliphora and its
habitat is still not available in the literature, but
we can make some guesses of how the probability
distribution of the distances might look like. If
we assume that Calliphora usually flies at heights

Figure 3: Simplified “world model” of Calliphora fly-
ing at an average height h over ground: a) Anisotropic
distribution of the average distances in the visual field.
The distance deviation is assumed to be independent
of the viewing direction. b) 1000 samples generated
by the Von Mises distribution of the translation direc-
tions. The arrow indicates the forward direction.

around 1 2 m, it is likely that, on the average, ob-
jects seen at lower elevations in the visual field will
have a smaller distance than objects near or above
the horizon. We model the average distance D ex-
perienced during horizontal flight (cf. Eqns. (16)
and (17)) by

_ Dq
D(e) = BDqg
TH(

B2—1)cos?e

e>0
e<0 > (18)
where Dg denotes a typical distance, € the eleva-
tion of the viewing direction and 8 = h/Dq the
ratio of the average flight altitude h and Dy. The
distance deviation AD is chosen to be the same
in all viewing directions. The resulting geometry
of the distance model is that of a sphere which is
flattened in the lower part of the visual field (see
Fig. 3). As Calliphora keeps its head aligned hor-
izontally during flight (Hengstenberg, 1993), the
distance model is given in egocentric coordinates.
This model clearly is a gross simplification of the
real world situation, but for our purpose it is suf-
ficient insofar that it provides a basic dorsoventral
asymmetry.

Flight directions. To estimate the average
square projection < T2 > of T on uf in Eqns. (16)
and (17), we assume a unimodal distribution for

the translation direction ©
p(ae, €e) = Nynexp(k1 cosae + ko coseg) (19)

around the forward direction, where N,/ is a nor-
malization factor and ae and e€g indicate the az-
imuth and the elevation of the translation direc-
tion. This distribution is a three-dimensional ana-
logue of the von Mises distribution (Batschelet,
1981). k1 and ko determine the directional con-
centration of the distribution: smaller values lead
to a broader directional distribution. In this study,
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Figure 4: Relative error of self-motion estimates of 1000 samples for varying noise levels (a.) and distance deviation
(b.). The solid lines denote the error of the translation estimates, dashdot lines of the rotation estimates. Noise
is given relative to the average input signal, distance deviation relative to Dg.

we choose k1 = 2.0 and ko = 4.0 so that the distri-
bution becomes broader in the horizontal than in
the vertical direction (see Fig. 3). Additionally, we
assume that the absolute value of T is distributed
independently of its direction with a mean value
T. The < T} > in Eqns. (16) and (17) are then
given by T? < p? > with the expectation < p? >
of the square projection of the translation direc-
tion on the unit vector u;.

Parameterization of weight distribution.
Using the normalized distance model D = D; /Dy
from (18), a constant distance deviation AD over
the visual field, and the distribution of flight di-
rections (19) with an average translation speed T,
the optimal weight distributions (16) and (17) can
be expressed as

N sin® ©;
wf = e (20)
1+ (5
T NTSiH2G‘)i/D?2 21
W, = T s (21)
1+ (5

with the parameter ( = AD*T?/An?D} and suit-
able normalization factors Ng and Np. The <
p? > are computed from 1000 direction samples
generated by the von Mises distribution. Thus,
the resulting weight distribution depends only on
the parameters (3, ( and the position of the sensor
axis.

5 Results
5.1 Testing the model

We have based our model on the assumption that
the matched filters are used for extracting self-
motion estimates. We first need to verify that

our model can indeed be used for this task. To
that end we performed computer simulations in an
artificial environment consisting of a random dot
cloud. Each point of the cloud was generated ran-
domly according to the assumed distance statis-
tics, i.e. the average distances followed Eq. (18)
with 8 = 0.42, Dy = 1.2m, and AD was set to
20% of Dg. From the generated points, the corre-
sponding flow vectors at the viewing directions d;
were computed using Eq. (1). In each simulation
run, we generated 1000 pairs of T and R, with
T chosen according to the von Mises distribution
with 7' = 1.5 m/s and R uniformly distributed on
the horizon with R = ||R|| = 65°/s, similar to the
angular velocity of the test stimulus in Krapp &
Hengstenberg (1997). The d; were chosen to cover
the entire viewing sphere with an average mutual
distance of 2.2°, similar to the average interomma-
tidial angle of Calliphora. The resulting 9000 flow
vectors were projected onto the LPD templates
of the matched filters and corrupted by additive
Gaussian noise with a standard deviation of 30%
of the average input signal.

The weights and the LPD template were com-
puted according to Eqns. (16) with @ = —5°,
e = —4° for a roll sensor, and a = 73°, ¢ = 8° for a
pitch sensor. We also tested two translatory filters
(Eq. (17)), one with an axis a = 135°, € = 0° sim-
ilar to the Hx-neuron, the other with a = 225°,
e = 0°. The self-motion estimates were computed
using Eqns. (9), and (10) from these four filters.

The relative errors (R — Rest)/Rest and (T —
Test)/Test of the resulting self-motion estimates
of the filter arrangement for different sensor noise
levels and distance deviations are shown in Fig. 4.
Due to the large number of flow measurements,
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the statistical errors caused by noise and erroneous
distance estimates cancel out to a high degree.
Even at a 100% noise level - i.e. only the sign
of the flow component can be determined - the
errors in the self-motion estimates are still below
4.2%. The higher accuracy of the translation esti-
mates is caused by our specific choice of R and T
which leads to a better signal-to-noise ratio of the
translatory flow field. An interesting limitation is
revealed if one looks at the bias of the estimated
self-motion (Fig. 5): While the rotation estimates
have almost no bias for higher distance deviations,
the translation estimates show systematic errors
with increasing distance deviation. This can be
explained by the crude approximation in Eq. (12)
which is valid only near the mean value D;. For
higher distance deviations, the absolute values of
the translatory flow vectors become asymmetri-
cally distributed around the mean which in turn
leads to systematic errors.

Nevertheless, the simulations show that the op-
timal filters lead to very consistent self-motion es-
timates even when flow vectors are very noisy and
the distance deviation is very high. This consis-
tency would also allow for correcting the system-
atic errors at high distance deviations by a con-
stant factor. Clearly, the high number of flow mea-
surements are very favourable to our approach,
but our intention here is just to demonstrate its
basic applicability. The effects of sparser flow
fields remain a subject for further study.

5.2 Comparison to receptive fields of
single VS-neurons

In the following sections, we investigate the re-
lation of the proposed optimal filter model to

the measured sensitivity distributions of the VS-
neurons.

From our theory, there are two possible weight
distributions to which the measured data can be
compared. First, we have the distribution defined
in Equs. (16) and (17). If these weights reproduce
the data, we can conclude that the VS-neurons
weight the flow projections m; according to the
local contributions of the rotatory flow around
their preferred axis, of the input noise and of the
predictability of the translatory flow component.
This would mean that they act as an intermediate
stage in the self-motion estimation process which
extracts relevant flow patterns for subsequent pro-
cessing. Alternatively, a different weight distribu-
tion is obtained if one hypothesizes that the VS-
neurons extract directly rotatory velocity using a
“one-shot” mechanism such as the one described
by Dahmen et al. (1997). In this case, the opti-
mal weights from Eqns. (16) and (17) have to be
combined with the factors 1/sinf; from Eq. (6)
and D7 /sin6; from Eq. (7) into a common weight
distribution

“,ZR = M (22)

<p?>
L+ Crpme

Ny sin ©;/DP
wf = Nrein®:/Di (23)
]-+CI-? Dl)piA

which is proportional to sin ©; instead of sin? 0.

In principle, two single neurons with different
axes would be sufficient to sense any rotatory self-
motions around horizontally aligned body axes.
We therefore compare both weight models to the
sensitivity measurements of Krapp et al. (1998)
using their mean values and standard deviations.
Some VS-neurons, however, are blind within large
areas of the visual field (e.g. the caudolateral and
caudoventral hemisphere in VS2 and VS3) which
would be far from optimal if they acted as iso-
lated sensors. A significant correspondence be-
tween measured sensitivities and the models is
therefore only to be expected for VS-neurons with
receptive fields covering a large part of the visual
field (VS4-VS7). To test our predictions for trans-
latory sensors, we compared our results also to the
sensitivities of the Hx-neuron (Fig. 6 c, Krapp &
Hengstenberg, 1996).

The theoretical distributions (16), (17), (22)
and (23) have four free parameters which have
to be fitted to the measured sensitivities: the az-
imuth a and elevation e of the sensor axis, the
degree of asymetry 3, and (. The fitting was done
by evaluating the y? value for a given parameter
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Figure 6: a. Averaged response field of VS4 from 5 animals. b. Theoretical response field obtained by fitting
Eq. (18). c. Averaged response field of VS10 from 5 animals. This neuron is “blind” in the frontoventral area.
d. Theoretical response field obtained by fitting Eq. (18). e. Measured response field of a single Hx-neuron. f.
Theoretical response field obtained from Eq. (19) by assuming a constant standard deviation (Notation as in

Fig. 1).

set using the standard deviation of the measure-
ments. The parameter values were varied until a
global minimum was reached. The step size of the
parameters was 0.01 for g3, 0.1 for ¢, and 1° for
the angular coordinates of the sensor axis. From
the 52 measurements, those at —15° elevation and
180° azimuth had to be discarded since due to

its body the fly could not see the visual stimu-
lus properly. Goodness of fit was tested using a
x2-distribution with 47 degrees of freedom. The-
oretical weight distributions with a significance p
below 0.05 were rejected.

The results with p > 0.0001 are shown in Tab. 1.
Only VS4 and VS6 agreed with the weight distri-
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VS4[[30.9] 097 04110 —26° | —5°
VS6 || 59.7 | 0.10 | 0.51 | 2.0 | —5° | —4°
VS8 |[ 87.5 | 0.0003 | 0.50 | 1.2 | 35° | —3°
VS9 || 90.3 | 0.0001 | 0.50 | 1.1 | 40° | 0°
22) | x° P B 1 C] a €
VS4 || 76.7 | 0.0004 | 0.40 | 0.9 | —21° | —5°
VS8 |[ 85.3 | 0.0003 | 0.50 | 1.1 | 37° | —8°

Table 1: Results of the fitting procedure with p >
0.0001 for single VS-neurons. a and e denote azimuth
and elevation of the sensor axis. The upper part of
the table shows results for the weight distribution of
Eq. (16), the lower part for Eq. (22). All distributions
with p < 0.05 are rejected.

bution described by Eq. (16). This is mainly due
to the fact that these neurons do not have the
blind areas in their receptive fields which are not
predicted by the theory. None of the weight distri-
butions computed according to Eq. (22) produced
a fit with p higher than 0.0004 to the measured
data. This suggests that — with a high probability
— the VS-neurons do not produce a direct estimate
of the rotatory velocity along their preferred axes.
The two significant cases, VS4 (Fig. 6 a and b)
and VS6, rather weight the local flow components
according to Eq. (16). This weight distribution
reproduces also the receptive fields of other VS-
neurons outside their blind areas (cf. Fig. 6 ¢ and
d), but, as we do not have a clear description of
their extent, we cannot corroborate this claim by
a statistical analysis.

The qualitative features of the receptive fields
of the rotatory neurons can be interpreted from
Eq. (16): The retinal regions at lower elevations
are less weighted due to the less predictable in-
fluence of the translatory flow field. Flow regions
around the rotation axis receive less weight, too,
since the rotatory flow signal is small relative to
the sensor noise.

Since we presently have only one dataset of the
Hx-neuron, we could not apply the same statistical
procedure to compare the translatory weight sets
Eq. (17) and Eq. (23) to the measured sensitivi-
ties. As a plausibility test, we assumed a constant
standard deviation over the visual field and used
again the same fitting procedure for Eq. (17) and
Eq. (23). Both weight distributions succeeded in
reproducing the elevational dependence, but the
azimuthal weight distribution is again better de-
scribed by the sin® #-dependence in Eq. (17). The
asymmetry of the receptive field organization is re-
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versed with respect to the filters for rotatory flow
fields, so that ventral retinal regions receive more
weight than dorsal regions (Fig. 6 e and 6 f). This
can be interpreted from our theory: In the ven-
tral part of the visual field, the variability of the
translatory flow is higher, but at the same time the
signal-to-noise-ratio is better because of the larger
flow vectors. In the particular type of environment
we consider here, the better signal-to-noise-ratio is
more important, so that the ventral regions receive
higher weights.

Figure 6 demonstrates that the preferred direc-
tions of the neurons agree well with the predicted
directions from Eqns. (4) and (5). It should be em-
phasized that the value of 3 is almost the same in
all results which makes this feature of the internal
world model highly reproducible. The differences
in ( arise mainly because of the ad hoc chosen
von Mises distribution which affects < p} > in
Eqns. (16) and (17). Although we did not fit the
parameters k1 and k9 to the measurements, vari-
ations in these parameters did not lead to qualita-
tive changes in the computed weight distributions.

Since most VS-neurons have blind areas in their
receptive fields, it seems plausible that several VS-
neurons will act together to form a combined sen-
sor. Within the whole ensemble of ten different
types of VS-neurons, the individual neurons could
fill in the blind areas of their partners, so that
the whole visual field could be sampled by such
a combined sensor. In the next section, we will
investigate a possible grouping of the VS-neurons
for two optimal filters sensing rotations around the
horizontally oriented principal body axes.

5.3 Comparison to ensembles of
VS-neurons

As a simplified model, we assume that the output
signal s; of the VS-neuron j is the sum of the
weighted projections of the local flow vectors

- I 1

S5 = E :wipi ;.
i

A sensor consisting of several neurons is then ob-

tained by a linear combination with weights a; of
the single output signals

_ _ jood
S = E ajsj = E pi- E ajw;u;.
j i j

The vector sum over j can be interpreted again
as a unit vector field u; together with a combined

weight set w;
S=> wp;-u;
i

(24)

(25)

(26)
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Figure 8: Averaged response field obtained by sub-
tracting the sum of the response fields of neurons VS1
to VS3 from the sum of the response fields of VS8 to
VS10 with maximal response to flowfields generated
by rotations about the pitch axis.

This raises a problem: We have infinitely many
possible linear combinations of the single neurons
which could be compared to the theory. Fortu-
nately, there is some evidence for a certain type of
grouping. Behavioural experiments show a close
correlation between the compensatory head move-
ments of Calliphora in response to visual roll stim-
uli and the estimated summed output from VS4 to
VS7 (Hengstenberg & Krapp, 1996) which makes
this particular linear combination a good candi-
date for a roll sensor. Moreover, an orthogonal
pitch sensor can be formed, if the sum of the neu-
rons VS1 to VS3 is subtracted from the sum of
VS8 to VS10. This would be the optimal counter-
part to the roll sensor of VS4 to VS7 which would
allow this pair of sensors to sense any rotations
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Figure 9: Horizontal slice at —15° elevation through
measured (circles) and predicted data (solid line) for
the roll sensor.
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Figure 10: Vertical slice at 75° azimuth through mea-
sured (circles) and predicted data (solid line) for the
roll sensor.

about horizontally aligned body axes. Therefore,
we will apply the same fitting procedure to the
hypothetical roll and pitch sensor.

16 [ x> [ p [ B [ [ o ] € |
roll || 34.9 | 0.91 ] 0.40 | 0.6 | —5° | —4°
pitch || 60.4 | 0.08 | 0.44 | 1.5 | 73° | &°
(22) X p | B C] @ €
roll | 3388 | 0 | 050 | 1.5 | —8° | —4°
pitch || 66.9 | 0.02 | 0.50 | 1.6 | 73° | 6°

Table 2: Results of the fitting procedure for the roll
and pitch sensor. « and e denote azimuth and eleva-
tion of the sensor axis. The upper half of the table
shows results for the weight distribution of Eq. (16),
the lower half for Eq. (22). All distributions with
p < 0.05 are rejected.

In order to construct the roll and pitch sensor
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data, we used the following method: The mea-
sured sensitivities and angular orientations of 5 (3
for VS5) measurements of each single VS neuron
were converted into local preference vectors. One
specific sample of the hypothetical roll or pitch
sensor was created by randomly choosing one of
the 5 measurements for each neuron and adding
or subtracting them as described above. In this
way we generated 100 samples of roll and pitch
sensors which were averaged to obtain the mean
LMSs and LPDs. The standard deviations of the
LMSs were computed from the summed variances
of the single neurons. In a final step, the distri-
butions were normalized to one. Figure 7 and 8
show the resulting averaged response fields.

We applied the same fitting procedure as above
to the linearly combined data (cf. Table 2). As in
the case of the single neurons, Eq. (22) is rejected,
while the combined sensitivities are reproduced
very well by Eq. (16) (cf. Figure 11). The blind ar-
eas of the individual neurons appear to be filled in
by other neurons resulting in a relatively homoge-
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neous coverage of the entire visual field. This indi-
cates that the VS-neurons can act as an ensemble
which is tuned to certain self-motion-induced rota-
tory flow fields. There might be other linear com-
binations tuned to different self-motion parame-
ters which would allow later processing stages to
use only the specific self-motion component which
is relevant for its task.

The fact that Eq. (22) does not reproduce
the combined data can be taken as further ev-
idence that the VS-neurons do not directly ex-
tract self-motion estimates from the optic flow.
A closer look to the measured sensitivities shows
that the main difference between the tested al-
ternative weight distributions consists in the dif-
ferent angular dependences: Eq. (16) predicts a
sin? ©-dependence, while Eq. (22) predicts a sin ©-
dependence. The horizontal slice of the roll sen-
sor at —15° (Fig. 9) illustrates that the measured
weights follow very closely a sin? @-curve so that a
sin ©-curve would lead to large deviations. Most of
the discrepancies between theory and data occur



at the highest and lowest elevations (cf. Fig. 10).
As our theoretical world model is very crude, this
could probably be corrected by using a more so-
phisticated world model.

6 Discussion

In this paper, we present a theory for the con-
struction of optimal matched filters for estimating
self-motion from optic flow. The matched filter
consists of four stages: First, the flow field is pro-
jected onto a LPD template modelled as a unit
vector field. Second, the single projections are
weighted. Third, estimates of the self-motion pa-
rameters are extracted from the local projections
and, fourth, summed over the visual field. We de-
rive analytical expressions for the weights from an
optimization principle which minimizes the differ-
ence between estimated and real egomotion pa-
rameters. In contrast to previous approaches,
prior knowledge about distance and translation
statistics (Fig. 3) is incorporated into the deriva-
tion of the weights. We assume an asymmetric
“world model” where the average distance in the
ventral visual field is smaller than in the dorsal
part. We tested the quality of the self-motion es-
timates generated by the matched filter model in
a simulated cloud of random dots. Though the
self-motion estimates showed systematic errors for
highly unpredictable distance statistics due to the
approximation used, in general, the matched fil-
ter performance was found to be very reliable. A
statistical comparison of the weight distribution
used in the optimal matched filters with the mea-
sured sensitivities of individual and groups of VS-
neurons shows that these neurons weight the optic
flow components according to the local contribu-
tions of the input noise and of the predictability
of the translatory flow component.

6.1 The functional role of VS-neurons

The local sensitivities of VS4 and VS6 are not
statistically different from the weight distribution
in Eq. (16). The other VS-neurons have more or
less pronounced blind areas in their receptive fields
which are not predicted by the theory. If several
VS-neurons act together, each neuron could cover
the blind parts of their respective partners. The
analysis shows that the weights of Eq. (16) are not
statistically different from two linear combinations
of VS-neurons which form together a roll and a
pitch sensor (cf. Fig. 11). We conclude from this
result that VS-neurons can act as ensembles which
are tuned to rotatory flow fields about horizontally
aligned axes. They weight the single flow projec-
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tions according to the contributions of the rotatory
flow around their preferred axis, their noise con-
tent and the predictability of the translatory flow
component. This explains the marked asymmetry
of their receptive fields since the stronger relative
distance variability in the ventral part of the vi-
sual field makes the translatory flow component
less predictable. The asymmetry of the under-
lying world model is highly reproducible among
the different datasets. If one looks at the recep-
tive field of the translatory Hx-neuron (Fig. 6),
one sees the reverse effect: The ventral regions re-
ceive higher weights. This can be explained by
the larger translatory flow vectors in the ventral
region which outweighs their unpredictability.

A second analysis showed that the hypothe-
sis that the VS-neurons incorporate all processing
stages of our matched filter can be excluded with
high probability. The analysis rather suggests that
the VS-neurons form only a “visual front end”
to the self-motion extraction process in the sense
that they weight the optic flow projections accord-
ing to the information they contain about specific
self-motion parameters. In other words, the VS-
neurons do not directly encode rotations, but rel-
evant aspects of the rotatory flow field. There are
two functional adaptations to the processing re-
quirements for estimating self-motion from the op-
tic flow: first, the distribution of the LPDs build-
ing a kind of direction template and secondly, the
distribution of the LMSs which weights the local
flow projections according to the local signal-to-
noise ratio of the self-motion parameter to which
the neuron is tuned. The actual estimation of rota-
tion and translation seemingly takes place at later
processing stages of which - up to now - little is
known.

In the fly’s nervous system the self-motion pa-
rameter could be represented at an intermediate
processing stage which relays the output signals of
the tangential neurons to the motor centers con-
trolling the neck and flight muscles. In principle,
there are at least two to three distinct ‘candidate
levels” where also the integration of the correction
signals (cf. Eqns.(6) and (7)), necessary for the
computation of the translation or rotation param-
eter (Eq. (8)), may take place: 1. At the descend-
ing neurons (DN; Strausfeld & Gronenberg, 1990;
Gronenberg et al., 1995) which receive inputs from
the visual system and other sensory modalities.
DN integrate the sensory signals and convey this
information through the cervical connective to the
motor centers in the thoracic ganglion. 2. At the
level of the motor neurons driving the muscular



systems (Strausfeld et al., 1987; Gronenberg &
Strausfeld, 1990). Here, the signals of the haltere
system (Nalbach & Hengstenberg, 1994; Nalbach,
1994) could be exploited by means of a convergent
wiring to compute the self-motion parameters. 3.
Eventually, the muscles themselves could act as
an integrating stage representing the projection of
the momentary rotatory vector into its respective
coordinate system. At the moment, we cannot
answer the question in which part of the nervous
system of the fly the estimation of the self-motion
parameters takes place. A complete characteriza-
tion of the functional role of the VS-neurons re-
quires further investigation of how the weighted
flow projections are integrated by the neurons, and
how the output of these neurons is processed and
integrated at later stages.

6.2 Model assumptions and
approximations

Most, of the discrepancies between theory and data
can be attributed to the crude distance model.
While more sophisticated world models might lead
to a better correspondence, they do not necessar-
ily provide more insights, as the asymmetry of our
simple distance model already suffices to repro-
duce the dorsoventral asymmetry of the measured
sensitivities. A more realistic world model cer-
tainly would have to be modified, e.g., by per-
mitting a variable distance deviation over the vi-
sual field, or by including azimuthal variations of
the average distances. It is quite probable, for
instance, that the average frontal distances are
larger than the lateral distances, since the insect,
if not landing, tends to fly in the open space be-
tween obstacles. It is most obvious that the filters
applied in visual environments strongly deviating
from the distance model are not performing opti-
mally any more. In other words, the recovery of
the self motion parameters gets erroneous. Flies,
however, are capable of flying in different environ-
ments without any observable problems. This ap-
parent contradiction may indicate the simple fact
that for flying insects the distances to visible ob-
jects in the ventral visual field are - on average -
always shorter than to objects in the dorsal visual
field, regardless of the environment. At least in
flies, the anisotropic sensitivity distribution of the
VS-neurons seems to hint in that direction.

We did not fit the von Mises distribution of
the translation directions to the measured data.
This primarily affects the parameter { which is
directly related to the translatory flow component
(cf. Eqns. (20) and (21)). An appropriate choice of
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the translation statistics might lead to more con-
sistent values of ( among the different datasets,
but this would require a concise statistical descrip-
tion of Calliphora’s flight trajectories which is cur-
rently not available in the literature.

To compare the weight distributions obtained
from the matched filter model with the hypothet-
ical roll and pitch sensors, we linearly summed up
the weighted inputs of some VS-neurons. Neu-
ronal elements usually do not sum up their inputs
ad infinitum but saturate at a level given by a
maximum spike rate or a maximum depolarisation
of the membrane. This has been shown for the tan-
gential neurons, for instance (Hengstenberg, 1982;
Haag et al., 1992).

The linear approximation of the distance depen-
dence in Eq. (12) is only valid for smaller distance
deviations. While this does not result in signifi-
cant discrepancies between theory and measured
sensitivities, the approximation leads to system-
atic errors of some filters in simulated random dot
clouds with high distance variability. As the self-
motion estimates are also consistent at high dis-
tance deviations, these systematic errors could be
compensated by a constant factor, or by higher
order correction terms in Eq. (12).

Our matched filter model assumes that the di-
rection and velocity of local image shifts are eval-
uated. The output of EMDs is clearly not rep-
resenting the true velocity of the image shift. In
contrast, the output of correlation type EMDs de-
pends on the contrast frequency of the input pat-
tern; i.e. the ratio of the angular displacement
over the spatial frequency of the pattern. In addi-
tion, the response depends on the contrast of the
visual input pattern (Reichardt, 1987). The simu-
lation results for 100% noise (cf. section 4.1) indi-
cate that the matched filter model can tolerate a
considerable degree of corruption in the input, but
it needs to be tested in further study whether they
are sufficiently robust for correlation type EMD
input. Another problem which is always inherent
to local direction and velocity measurements, the
aperture problem, has to be taken into account,
too. The aperture problem can be overcome - at
least partially - by spatially integrating over many
local measurements covering an extended part of
the visual field.

So far, we have not studied the dynamical be-
haviour of our model. In the real world, the visual
input and the EMD output may change rapidly
during locomotion which might lead to an unsta-
ble filter output. Although our simulations sug-
gest that the filter output does not vary strongly



between different trials, this still needs to be veri-
fied for more realistic visual input.

6.3 Relation to other matched filter
approaches

Dahmen et al. (1997) derived a matched filter
as a special case of the iterative algorithm by
Koenderink & van Doorn (1987). Similar to our
approach, this algorithm is derived from a least
square principle. Instead of minimizing the dif-
ference between actual and estimated self-motion
parameters, Koenderink & van Doorn minimize
the difference of the measured flow field to a flow
field derived from the self-motion estimates. In
contrast to our approach, they assume no prior
knowledge about distance statistics. Thus, in ad-
dition to the self-motion parameters, also distance
estimates have to be extracted from the optic flow.
Therefore, their algorithm (and also those dis-
cussed below) allows only to estimate translation
direction, not its absolute value.

Assuming a spherical environment, Dahmen et
al. (1997) showed that the first iteration of the al-
gorithm of Koenderink & van Doorn (1987) can be
implemented by a matched filter similar to ours.
Dahmen et al. (1997) tested their filter using sim-
ulated noisy flow as input. They report excellent
performance in spherical environments, in many
cases close to that of the iterative algorithm. The
weights of their matched filter can also be derived
from Eqns. (16) and (17) by assuming constant av-
erage distance, distance deviation and noise over
the visual field. This suggests that our least square
principle can be understood as an extension of
the approach of Koenderink & van Doorn (1987)
to cases, where prior knowledge about distance
statistics is available.

Perrone (1992) presented a matched filter
model of self-motion estimation in the primate vi-
sual cortex. In his approach, the motion field was
sampled at each image position by several sensors
tuned to different velocity vectors. The matched
filters use only those velocity signals as input
which are consistent with a given set of self-motion
parameters. The self-motion estimate is derived
from the most active filter using a winner-takes-all
strategy. Every combination of self-motion param-
eters needs its own matched filter. Although this
approach requires a huge number of filters for the
general case, it has the advantage that no correc-
tion terms for apparent rotations and translation
are needed. The number of filters can be some-
what reduced by constructing only filters for the
most probable parameter sets, e.g. by consider-
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ing only fixating eye movements (Perrone & Stone,
1994). In contrast, our approach requires only six
filters, one for each translatory and rotatory de-
gree of freedom, to determine all self-motion pa-
rameters. Any additional matched filter provides
redundant information which probably could be
used to improve the robustness and accuracy of
the self-motion estimates. This appears to be also
a strategy employed by the fly visual system with
its 60 tangential neurons, but the possible advan-
tages of such a redundant sampling have to be
clarified in further study.

Fermiiller & Aloimonos (1995) use the fact that
every set of self-motion parameters induces certain
patterns in the flow directions. These patterns are
used as filters which are matched to the measured
flow components along pre-defined curves in the
image. Similar to Perrone (1992), every combi-
nation of self-motion parameters requires its own
motion template. Since Fermiiller & Aloimonos
(1995) discard part of the available information in
the flow, they have to provide an extensive deci-
sion procedure to arrive at a consistent self-motion
estimate. They use only the sign of selected flow
components as input, since the limited aperture
of local motion detectors allows only for detecting
the projection of the optic flow on the local image
gradient (aperture problem, cf. Horn & Schunk,
1981). This problem comes into play when the in-
put consists of grey value image sequences instead
of random dot patterns as in our simulations. As
we have not tested our matched filter model on
real image sequences, it is currently unclear how
they would perform in real world situations. Nev-
ertheless, the results in Fig. 4 for 100% noise in the
EMD input show that our filters work also when
only the sign of the optic flow projection can be
determined.

6.4 Conclusion

We derived a matched filter model from a theoret-
ical optimality criterion. As we have shown, these
optimal filters provide some hints on the func-
tional role of certain tangential neurons in the fly
visual system. Their performance in simulations
makes them also potentially useful for technical
applications in robots or computer vision systems,
since they require only small computational re-
sources. Before this can be realized, some open
questions remain to be investigated, e.g., how a
set of matched filters should be coupled to arrive
at stable self-motion estimates, or how much a re-
dundant sampling with several filters can improve
the reliability of self-motion estimates. The an-



swers to these questions can be fruitful not just for
biological research, but also for technical applica-
tions which could be considered the real world test
of the theory we presented here.
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