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Wide-Field, Motion-Sensitive Neurons andOptimal Matched Filters for Optic FlowMatthias O. Franz & Holger G. KrappAbstract. We present a theory for the construction of an optimal matched �lter for self-motion inducedoptic 
ow �elds. The matched �lter extracts local 
ow components along a set of pre-de�ned directionsand weights them according to an optimization principle which minimizes the di�erence between estimatedand real egomotion parameters. In contrast to previous approaches, prior knowledge about distance andtranslation statistics is incorporated in the form of a \world model". Simulations indicate that thematched �lter model yields reliable self-motion estimates. A comparison of the weight distribution usedin the model with the local motion sensitivities of individual and small groups of interneurons in the
y visual system shows a close correspondence. This suggests that these so-called tangential neuronsare tuned to optic 
ow �elds induced by rotation or translation along a particular axis. They seem toweight the local optic 
ow according to the contribution of input noise and the expected variability of thetranslatory 
ow component. Their local preferred directions and motion sensitivities can be interpretedas an adaptation to the processing requirements of estimating self-motion from the optic 
ow.1 IntroductionWhile moving through the world, biological andtechnical visual systems experience characteristicpatterns of optic 
ow. These patterns are an im-portant source of information about the animal'sself-motion parameters, i.e. the momentary trans-lation and rotation vectors T and R, which may beuseful for locomotor and gaze control. Prior to theestimation of the self-motion parameters the optic
ow has to be analysed locally by elementary vi-sual motion processing units. This bears severalproblems for the visual system:1. Locally measured velocities depend on boththe translatory and rotatory optic 
ow �eld.When, for instance, the rotatory componentis to be measured, the superimposed transla-tory component may give rise to large errors(Koenderink & van Doorn, 1987).2. Translatory 
ow �elds depend on the distancedistribution of the visible objects. There-fore, the same self-motion in di�erent environ-ments does not necessarily result in identical
ow �elds.3. Local image motion measurements are af-fected by the noise in the visual input(Bouman et al., 1985) and in the synaptic sig-nal transmission (Allen & Stevens, 1994), as

well as by the systematic errors of the elemen-tary motion detectors due to the dependenceof their output on contrast frequency, contrastand shape of the visual input (Reichardt etal., 1988).While these problems have been treated exten-sively in the computer vision literature (review:Heeger & Jepson, 1992), the possible implemen-tation of a neural system for self-motion extrac-tion in a biological system has been elusive. Inthe visual system of the blow
y Calliphora vicina,the so-called tangential neurons were long thoughtto be involved in analyzing optic 
ow information(review: Hausen, 1984). Recently, Krapp & Heng-stenberg (1996) have investigated in great detailthe receptive �eld organization of a particular classof tangential neurons (VS-neurons) with respect totheir role in the self-motion extraction process. Inthe present study, we try to elucidate the func-tional role of the VS-neurons by comparing theirreceptive �eld properties to an optimal �lter forself-motion-induced 
ow �elds.Our approach is closely related to the conceptof matched �lters (review: Wehner, 1987). Amatched �lter is de�ned as a processing unit whoseoutput is proportional to the cross-correlation ofthe �lter input with a certain stimulus pattern(Rosenfeld & Kak, 1982). The local motion sen-sitivities and preferred directions of the tangen-tial neurons show a striking similarity to certain1



self-motion-induced 
ow �elds. These are prop-erties one would expect to �nd in a matched �l-ter for self-motion estimation from the optic 
ow.Therefore, a natural question to ask is whetherthe matched �lter concept may help to under-stand the receptive �eld organization of the tan-gential neurons. To that end one has to clarifyhow such a matched �lter should be constructed,to which properties of the optic 
ow �eld it shouldbe matched, and whether prior knowledge can helpto extract relevant features for self-motion estima-tion. In this study, we address these questionsby deriving an optimal matched �lter from a leastsquare principle. Unlike previous approaches, weexplicitely incorporate prior knowledge about thedistance distribution of the environment. Theresulting �lters do not only supply reliable self-motion estimates, e.g. for potential applicationsin computer vision or robotics, but also providenew insights into the functional role of the VS-neurons.In the next section, we brie
y review the exper-imental �ndings obtained in electrophysiologicalstudies on the VS-neurons. This shows that theclassical matched �lter concept has to be extendedto account for certain receptive �eld properties ofthe tangential neurons. In Sec. 3, we describethe self-motion estimation from the optic 
ow bymeans of a matched �lter. In Sec. 4, we derive anoptimal matched �lter from a least square princi-ple, and discuss the basic model assumptions. InSec. 5, the matched �lter model is checked for itsperformance in self-motion estimation in computersimulations and compared to the experimental re-sults (Krapp & Hengstenberg, 1996; Krapp et al.,1998). We conclude by discussing the functionalrole of the VS-neurons and relating our study toother matched �lter approaches.2 Processing of optic 
ow bywide-�eld neurons in the 
yvisual systemIn the third visual processing area (lobula plate)of the 
y, about 60 so-called tangential neuronsare known to respond directionally selective towide-�eld motion stimuli (review: Hausen, 1984;Hausen & Egelhaaf, 1989). Tangential neurons in-tegrate the signals of many retinotopically orga-nized elementary movement detectors (EMDs; re-view: Reichardt, 1987) on their large dendrites.At every tiny patch in the visual �eld retinal im-age shifts are analyzed by at least 6 EMDs whosepreferred directions di�er according to the ar-rangement of neighbouring ommatidia within the
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-15 0 45 90 135 180Figure 1: Mercator map of the response �eld of theneuron VS7. The orientation of each arrow gives thelocal preferred direction, and its length denotes therelative motion sensitivity. Measurement positions aremarked by small circles, arrows in between are inter-polated (Krapp et al., 1998).hexagonal lattice of the 
y's compound eye (Buch-ner, 1976; G�otz et al., 1979).Two neuronal subsystems have been investi-gated more thoroughly both of which are thoughtto be involved in gaze- and 
ight stabilization: thehorizontal system (HS; Hausen, 1982a,b) and thevertical system (VS; Hengstenberg et al., 1982;Hengstenberg, 1982). The 3 HS-neurons mainlyintegrate the output of EMDs with horizontalpreferred direction. In contrast, the VS-neuronswere long thought to receive �rst of all inputfrom EMDs with vertical preferred direction corre-sponding to the strong sensitivity to vertical down-ward motion within their receptive �elds. Somehints that a few VS-neurons also receive inputfrom horizontally oriented EMDs (Hengstenberg,1981) led to detailed investigation of the recep-tive �eld organization of the HS-, VS- and someother tangential neurons. The results of these in-vestigations showed, that most of these neuronsare adapted to sense particular optic 
ow �eldsrather than being sensitive to either horizontalor vertical motion only (Krapp & Hengstenberg,1996; Krapp et al. 1998). During intracellularrecordings from individual VS-neurons, the localpreferred directions (LPDs) and motion sensitiv-ities (LMSs) have been determined using a localmotion stimulus (Krapp & Hengstenberg, 1997).As an example, the distribution of LPDs andLMSs of VS7 at 48 positions within the ipsilateralhemisphere (relative to the cell body of the inves-tigated neuron) and 4 positions within the frontalcontralateral visual �eld is shown in Fig. 1. The2



orientation of each little arrow gives the local pre-ferred direction, and its length denotes the rela-tive motion sensitivity. The global structure ofthe VS7 response �eld is reminiscent to an optic
ow �eld generated by a rotation around an axis atan azimuth of about 30� and an elevation of about�15�. There are di�erences between a mathemat-ical 
ow �eld around this axis and the response�eld in Fig. 1: (i) The LMSs in the ventral partof the response �eld are smaller than the mag-nitude of the velocity vectors at the correspond-ing positions within the 
ow �eld. (ii) The LMSsaround the axis of rotation are smaller than thecorresponding velocity vectors. All VS-neuronshave these properties in common (Krapp et al.,1998). In addition, the response �elds of some VS-neurons do not comprise the entire visual hemi-sphere, but are con�ned to certain dorsal and me-dial regions only.Another visual wide-�eld neuron in the lobulaplate, the so-called Hx-neuron, neither does belongto the VS nor to the HS. The neuron was found tohave a response �eld most similar to a translatoryoptic 
ow �eld. The focus of expansion of the Hxresonse �eld can be found at an azimuth of about135� in the equatorial plane. Although there is anasymmetric sensitivity distribution, too, the Hx-neuron responds stronger to motion in the ventralthan in the dorsal part of the visual �eld.These results suggest that, in spite of their ap-parent similarity to optic 
ow �elds, the LMSs ofthe tangential neurons cannot be understood sim-ply as 
ow �eld templates as one would expect ina classical matched �lter. The explanation of thedorsoventral asymmetry, the small LMSs near theaxis of rotation or translation, and the reversedasymmetry in the Hx-neuron requires an exten-sion of the simple template matching concept.If we assume that the task to which these re-sponse �elds are adapted is the extraction of self-motion parameters from optic 
ow, a model of theresponse �elds can be derived by constructing anoptimal matched �lter tailor suited to solve thesame problem. Thus, we may bene�t in two ways:(i) by comparing such independently developed so-lutions, we may �nd a hint of how to functionallyinterpret the experimental results obtained in the
y, and (ii) we should end up with a model ofpractical signi�cance, e.g. in robotics or computervision.

3 Matched �lters for optic 
owpatterns3.1 Extracting self-motion parametersfrom optic 
owWe model the visual system of Calliphora as a col-lection of sensors arranged on the unit sphere, withthe origin of the coordinate system centered on thehead of the animal. The viewing direction of a sin-gle elementary motion detector (with index i) isdescribed by a unit vector di along its axis. Whenthe insect translates with T while rotating withR about an axis through the origin, the resultingimage 
ow pi at di is given by (Koenderink & vanDoorn 1987)pi = � (T� (T � di)di)Di �R� di; (1)where Di is the distance between the eye and theobject seen in direction di.From local measurements pi of the 
ow �eldalone, the self-motion parameters T andR cannotbe recovered, as can be seen if one solves Eq. (1)for T and R:T = �DiV �1i (pi +R� di) (2)R = V �1i �pi � di + 1DiT� di� : (3)V �1i is the inverse of the tensor Vi = I � di 
 diwhere 
 denotes the dyadic product and I theunit tensor. If the absolute distance Di is un-known, the translation T is only determined upto a scale factor. Moreover, the translation causesan apparent rotation AR = V �1i 1DiT � di, whilethe rotation causes an apparent translation AT =�DiV �1i R� di.If the absolute distances of the visible objectsare unknown, the actual magnitude of the trans-latory 
ow �eld is unpredictable, even if the mo-mentary translation is perfectly known. As a con-sequence, there is no direct way of decomposinglocal 
ow measurements into their rotatory andtranslatory components.A �lter matched to a certain self-motion inducedoptic 
ow pattern is a�ected by all of these prob-lems: it will not only react to its speci�c 
ow pat-tern, but also to the apparent rotation or transla-tion caused by self-motion along other axes. More-over, if nothing is known about the object dis-tances, the actual contribution of the translatory
ow �eld to the overall �lter output cannot bedirectly determined. One way to solve these prob-lems is to use the output of other matched �l-ters together with plausible assumptions about the3
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+Figure 2: Matched �lter model: The optic 
ow is pro-jected onto a unit vector �eld. From the weightedprojections, a local estimate of the self-motion param-eter along the �lter axis is computed using the factor1= sin�i for rotatory and �Di= sin�i for translatory �l-ters. Finally, all weighted local estimates are summedto give the �lter output.ocurring distances to correct for the apparent ro-tation and translation. In the next section, wedescribe such a method for estimating self-motionfrom the output of matched �lters tuned to speci�coptic 
ow �elds.3.2 Estimating self-motion using matched�ltersThe system for self-motion estimation consists ofseveral matched �lters. Each �lter is tuned eitherto a rotatory or translatory 
ow �eld generated byself-motion along a particular axis, which we referto as the �lter axis. We assume that a prepro-cessing stage provides estimated local 
ow vectorsas input to the matched �lters. Each matched �l-ter consists of four stages: 1. The �rst stage is atemplate of LPDs which follow the directions ofa 
ow�eld generated by a rotation or translationalong the �lter axis. At each position in the vi-sual �eld, the input signal is obtained from theprojection of the optic 
ow vector pi onto a unitvector ui pointing along the LPD. 2. Each projec-tion is weighted with a local weight wi. 3. Fromeach projection, a local estimate of the self-motioncomponent along the axis of the LPD template iscomputed. 4. In the fourth stage, all weighted lo-cal estimates are summed up to give the �lter out-put (cf. Fig. 2). As we have pointed out in Sec. 3.1,the �lter output is not only dependent on the self-motion along the �lter axis, but also on the appar-ent rotation and translation created by self-motionalong other axes. Therefore, the outputs of theother �lters have to be used to remove the appar-ent components in the �nal self-motion estimate.This matched �lter model is an extension of thesimple template matching concept, since the localmotion sensitivities (the second and third stage)do not necessarily follow the size of the 
ow vec-

tors generated by the particular self-motion alongthe �lter axis.Suppose we are interested in the rotatory 
ow�eld around a �lter axis de�ned by the unit vectora. Then the corresponding unit vector �eld of the�lter is given by uRi = �a� disin�i (4)with � being the angle between viewing directiondi and the �lter axis a. Analogously, the unitvector �eld for a translation along the axis a isuTi = �di � a� disin�i : (5)Each projection mi = ui � pi of the actual 
owon one of these unit vectors contains informationabout the current self-motion along the �lter axis.We denote this component by the superscript k,and the component orthogonal to �lter axis by thesuperscript ?. Thus, the current rotation can bedecomposed in R = Rk +R?, the translation inT = Tk +T?.From the projection of the local 
ow vector pion uRi , the rotation component Rki = kRki k alongthe �lter axis can be computed using Eqns. (1)and (4) as Rki = mi + Ti=Di � r?isin�i : (6)Ti is the projection of the translation vector T onuRi , and r?i = uRi �R?�di denotes the projectionof the rotatory 
ow �eld caused by the orthogonalcomponent R?. r?i is zero if the current rota-tion axis exactly coincides with the �lter axis a.Similarly, one obtains the translation componentT ki = kTkk along the �lter axis fromT ki = Dimi � ri � T?i =Disin�i ; (7)with the projections of the rotatory 
ow ri =�R � di � uTi , and of the translation componentT?i orthogonal to the �lter axis.If the distances of the surrounding objects areunknown, the self-motion parameters cannot becomputed from Eqns. (6) and (7) alone. One pos-sibility to deal with this problem is to use priorknowledge about typical distances in the environ-ment, e.g., by replacing the unkown distances Diby their mean values �Di. Provided that the cur-rent distances do not deviate too much from theirmean, the summation over a su�cient number of4



local estimates will then reduce the e�ects of in-dividual distance deviations from the mean. Insome regions of the visual �eld, the distance vari-ability can be higher than in others. These regionsshould be weighted less in the sum. In addition,the projections are corrupted by various forms ofnoise and the shortcomings of the velocity detec-tion process. We therefore assign a suitable weightwRi to each local estimate Rki according to a leastsquare principle which is described in Sect. 4.1.The �nal rotation estimate is given by theweighted sum over the local estimates (6)Rkest = Xi wRi Rki (8)= Xi wRisin�imi +TCT �R?C?R: (9)Similarly, we obtain a translation estimate fromT kest = Xi wTi T ki= Xi �DiwTisin�imi +RCR �T?C?T :(10)Thus, the �lter outputs Pi wRi mi= sin�i andPi �DiwTi mi= sin�i have to be corrected by re-moving the apparent rotation which arises fromself-motion along other axes. The vectors CT =Pi wRi uRi = �Di sin�i, C?T = Pi wTi uTi = sin�i,CR = Pi �DiwTi di � uTi = sin�i and C?R =Pi wRi di � uRi = sin�i are constant and can becomputed in advance, but we still need to know thevalues of T and R?. In our system, these valuesare the outputs of other matched �lters used as a�rst approximation. Three �lters for each transla-tory and rotatory degree of freedom are su�cientto extract all self-motion parameters from optic
ow. In the real organism, additional sources forself-motion estimates could be used, such as thehaltere system which is capable of sensing angularvelocities (Nalbach, 1994; Nalbach & Hengsten-berg, 1994).The resulting self-motion estimate can be usedin turn to correct the initial estimates of the other�lters. This procedure can be repeated severaltimes until a stable solution is reached, as in theiterative algorithm of Koenderink & van Doorn(1987). However, in the kind of environmentswe investigated here, the �rst iteration was al-ready enough to obtain very reliable estimates (cf.Sec. 5.1).

4 Optimal weights for self-motionestimation4.1 Least square solutionThe local projections mi of the optic 
ow vectorsonto the LPD template are likely to contain a con-siderable error component. Among the possiblesources of error are photon noise in the visual in-put, synaptic transmission noise, and the charac-teristics of the elementary motion detectors suchas their limited aperture and the dependence oftheir output on contrast frequency and image con-trast. Although the nature of these error sourcesis quite di�erent, they all lead to deviations of themeasured 
ow component from the real one. Wetherefore model all the di�erent error sources to-gether as a common additive noise component niwith standard deviation �n and zero mean. In ad-dition, the distances of the surrounding objects arescattered around the average value �Di with stan-dard deviation �Di, which results in erroneousinterpretations of the underlying self-motion pa-rameters. In order to facilitate the mathematicalanalysis, we have to assume that the distance vari-ations at di�erent points in the visual �eld are sta-tistically independent. This would be ideally truein an environment consisting of small point-likeobjects. For the derivation of the weights, we alsoneed a probability distribution of the translationT such as the example given in Sec. 4.2.Based on these assumptions, we can ask the fol-lowing question: How should the single 
ow mea-surements mi be weighted so that the estimatedself-motion parameters are as close as possible tothe real ones? The answer, of course, shoulddepend on the relative contributions of the 
owsignal, sensor noise and erroneous distance esti-mates. Starting with a matched �lter for rota-tory 
ow �elds, we can formulate this question asa least square problem: Given a set of weightswi subject to the constraint Pi wi = 1, what isthe optimal weight distribution that minimizes themean squared error E of the estimated rotationRest = Pi wiRi with respect to the real rotationcomponent RE = * Xi wiRi �R!2+ ; (11)where the <> denote the expectation over all tri-als and the Ri the local estimates from Eq. (6).Using the approximation1Di � 1�Di � Di � �Di�D2i (12)5



and Pi wi = 1, we obtainE � * Xi wi Ti(Di � �Di)= �D2i + nisin�i !2+ : (13)Since ni and �Di are assumed to be statisticallyindependent, this expression simpli�es toE �Xi w2isin2�i �< T 2i > �D2i�D4i +�n2� : (14)In order to �nd the optimal weight distributionminimizing E we have to solve the Euler-Lagrangeequation@@wi 0@E � �0@Xj wj � 11A1A = 0; (15)where � is a Lagrange multiplier. This �nallyleads to a simple analytic expression for the op-timal weight distribution wRiwRi = NR sin2�i< T 2i > �D2i = �D4i +�n2 (16)with a suitable normalization factor N such thatPi wi = 1. In an analogous procedure, one ob-tains the corresponding optimal weight distribu-tion wTi for translation �lterswTi = NT sin2�i= �D2i< T 2i > �D2i = �D4i +�n2 : (17)The 
ow component generated by the self-motionalong the �lter axis follows sin2 � for rotatory �l-ters and sin2 �= �D2i for translatory �lters. This sig-nal is corrupted by the noise �n2 and the unpre-dictable variance < T 2i > �D2i = �D4i of the transla-tory 
ow component due to the distance deviationfrom the mean. As can be seen from Eqns. (16)and (17), the optimal solution assigns the weightsaccording to the local ratio of the signal to thevariance of the corrupting factors. Eqns. (16) and(17) both require prior knowledge about transla-tion and distance statistics. In the following sec-tion, we provide crude estimates for this kind of\world model".4.2 World modelDistance model. A concise statistical descrip-tion of the 
ight patterns of Calliphora and itshabitat is still not available in the literature, butwe can make some guesses of how the probabilitydistribution of the distances might look like. Ifwe assume that Calliphora usually 
ies at heights
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Figure 3: Simpli�ed \world model" of Calliphora 
y-ing at an average height h over ground: a) Anisotropicdistribution of the average distances in the visual �eld.The distance deviation is assumed to be independentof the viewing direction. b) 1000 samples generatedby the Von Mises distribution of the translation direc-tions. The arrow indicates the forward direction.around 1{2 m, it is likely that, on the average, ob-jects seen at lower elevations in the visual �eld willhave a smaller distance than objects near or abovethe horizon. We model the average distance �D ex-perienced during horizontal 
ight (cf. Eqns. (16)and (17)) by�D(�) = ( D0 : � � 0�D0p1+(�2�1) cos2 � : � < 0 ; (18)where D0 denotes a typical distance, � the eleva-tion of the viewing direction and � = h=D0 theratio of the average 
ight altitude h and D0. Thedistance deviation �D is chosen to be the samein all viewing directions. The resulting geometryof the distance model is that of a sphere which is
attened in the lower part of the visual �eld (seeFig. 3). As Calliphora keeps its head aligned hor-izontally during 
ight (Hengstenberg, 1993), thedistance model is given in egocentric coordinates.This model clearly is a gross simpli�cation of thereal world situation, but for our purpose it is suf-�cient insofar that it provides a basic dorsoventralasymmetry.Flight directions. To estimate the averagesquare projection< T 2i > of T on uRi in Eqns. (16)and (17), we assume a unimodal distribution forthe translation direction �p(��; ��) = NvM exp(�1 cos��+�2 cos ��) (19)around the forward direction, where NvM is a nor-malization factor and �� and �� indicate the az-imuth and the elevation of the translation direc-tion. This distribution is a three-dimensional ana-logue of the von Mises distribution (Batschelet,1981). �1 and �2 determine the directional con-centration of the distribution: smaller values leadto a broader directional distribution. In this study,6
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Figure 4: Relative error of self-motion estimates of 1000 samples for varying noise levels (a.) and distance deviation(b.). The solid lines denote the error of the translation estimates, dashdot lines of the rotation estimates. Noiseis given relative to the average input signal, distance deviation relative to D0.we choose �1 = 2:0 and �2 = 4:0 so that the distri-bution becomes broader in the horizontal than inthe vertical direction (see Fig. 3). Additionally, weassume that the absolute value of T is distributedindependently of its direction with a mean valueT . The < T 2i > in Eqns. (16) and (17) are thengiven by T 2 < p2i > with the expectation < p2i >of the square projection of the translation direc-tion on the unit vector ui.Parameterization of weight distribution.Using the normalized distance modelDni = �Di=D0from (18), a constant distance deviation �D overthe visual �eld, and the distribution of 
ight di-rections (19) with an average translation speed T ,the optimal weight distributions (16) and (17) canbe expressed aswRi = NR sin2�i1 + � <p2i>Dni 4 (20)wTi = NT sin2�i=Dni 21 + � <p2i>Dni 4 ; (21)with the parameter � = �D2T 2=�n2D40 and suit-able normalization factors NR and NT . The <p2i > are computed from 1000 direction samplesgenerated by the von Mises distribution. Thus,the resulting weight distribution depends only onthe parameters �, � and the position of the sensoraxis.5 Results5.1 Testing the modelWe have based our model on the assumption thatthe matched �lters are used for extracting self-motion estimates. We �rst need to verify that

our model can indeed be used for this task. Tothat end we performed computer simulations in anarti�cial environment consisting of a random dotcloud. Each point of the cloud was generated ran-domly according to the assumed distance statis-tics, i.e. the average distances followed Eq. (18)with � = 0:42, D0 = 1:2m, and �D was set to20% of D0. From the generated points, the corre-sponding 
ow vectors at the viewing directions diwere computed using Eq. (1). In each simulationrun, we generated 1000 pairs of T and R, withT chosen according to the von Mises distributionwith T = 1:5 m/s and R uniformly distributed onthe horizon with R = jjRjj = 65�/s, similar to theangular velocity of the test stimulus in Krapp &Hengstenberg (1997). The di were chosen to coverthe entire viewing sphere with an average mutualdistance of 2:2�, similar to the average interomma-tidial angle of Calliphora. The resulting 9000 
owvectors were projected onto the LPD templatesof the matched �lters and corrupted by additiveGaussian noise with a standard deviation of 30%of the average input signal.The weights and the LPD template were com-puted according to Eqns. (16) with � = �5�,� = �4� for a roll sensor, and � = 73�, � = 8� for apitch sensor. We also tested two translatory �lters(Eq. (17)), one with an axis � = 135�, � = 0� sim-ilar to the Hx-neuron, the other with � = 225�,� = 0�. The self-motion estimates were computedusing Eqns. (9), and (10) from these four �lters.The relative errors (R � Rest)=Rest and (T �Test)=Test of the resulting self-motion estimatesof the �lter arrangement for di�erent sensor noiselevels and distance deviations are shown in Fig. 4.Due to the large number of 
ow measurements,7
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ow component can be determined - theerrors in the self-motion estimates are still below4.2%. The higher accuracy of the translation esti-mates is caused by our speci�c choice of R and Twhich leads to a better signal-to-noise ratio of thetranslatory 
ow �eld. An interesting limitation isrevealed if one looks at the bias of the estimatedself-motion (Fig. 5): While the rotation estimateshave almost no bias for higher distance deviations,the translation estimates show systematic errorswith increasing distance deviation. This can beexplained by the crude approximation in Eq. (12)which is valid only near the mean value �Di. Forhigher distance deviations, the absolute values ofthe translatory 
ow vectors become asymmetri-cally distributed around the mean which in turnleads to systematic errors.Nevertheless, the simulations show that the op-timal �lters lead to very consistent self-motion es-timates even when 
ow vectors are very noisy andthe distance deviation is very high. This consis-tency would also allow for correcting the system-atic errors at high distance deviations by a con-stant factor. Clearly, the high number of 
ow mea-surements are very favourable to our approach,but our intention here is just to demonstrate itsbasic applicability. The e�ects of sparser 
ow�elds remain a subject for further study.5.2 Comparison to receptive �elds ofsingle VS-neuronsIn the following sections, we investigate the re-lation of the proposed optimal �lter model to

the measured sensitivity distributions of the VS-neurons.From our theory, there are two possible weightdistributions to which the measured data can becompared. First, we have the distribution de�nedin Eqns. (16) and (17). If these weights reproducethe data, we can conclude that the VS-neuronsweight the 
ow projections mi according to thelocal contributions of the rotatory 
ow aroundtheir preferred axis, of the input noise and of thepredictability of the translatory 
ow component.This would mean that they act as an intermediatestage in the self-motion estimation process whichextracts relevant 
ow patterns for subsequent pro-cessing. Alternatively, a di�erent weight distribu-tion is obtained if one hypothesizes that the VS-neurons extract directly rotatory velocity using a\one-shot" mechanism such as the one describedby Dahmen et al. (1997). In this case, the opti-mal weights from Eqns. (16) and (17) have to becombined with the factors 1= sin �i from Eq. (6)and Dni = sin �i from Eq. (7) into a common weightdistribution wRi = NR sin�i1 + �R<p2i>Dni 4 (22)wTi = NT sin�i=Dni1 + �R<p2i>Dni 4 ; (23)which is proportional to sin�i instead of sin2�i.In principle, two single neurons with di�erentaxes would be su�cient to sense any rotatory self-motions around horizontally aligned body axes.We therefore compare both weight models to thesensitivity measurements of Krapp et al. (1998)using their mean values and standard deviations.Some VS-neurons, however, are blind within largeareas of the visual �eld (e.g. the caudolateral andcaudoventral hemisphere in VS2 and VS3) whichwould be far from optimal if they acted as iso-lated sensors. A signi�cant correspondence be-tween measured sensitivities and the models istherefore only to be expected for VS-neurons withreceptive �elds covering a large part of the visual�eld (VS4-VS7). To test our predictions for trans-latory sensors, we compared our results also to thesensitivities of the Hx-neuron (Fig. 6 c, Krapp &Hengstenberg, 1996).The theoretical distributions (16), (17), (22)and (23) have four free parameters which haveto be �tted to the measured sensitivities: the az-imuth � and elevation � of the sensor axis, thedegree of asymetry �, and �. The �tting was doneby evaluating the �2 value for a given parameter8
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Figure 6: a: Averaged response �eld of VS4 from 5 animals. b: Theoretical response �eld obtained by �ttingEq. (18). c: Averaged response �eld of VS10 from 5 animals. This neuron is \blind" in the frontoventral area.d: Theoretical response �eld obtained by �tting Eq. (18). e: Measured response �eld of a single Hx-neuron. f:Theoretical response �eld obtained from Eq. (19) by assuming a constant standard deviation (Notation as inFig. 1).set using the standard deviation of the measure-ments. The parameter values were varied until aglobal minimum was reached. The step size of theparameters was 0.01 for �, 0.1 for �, and 1� forthe angular coordinates of the sensor axis. Fromthe 52 measurements, those at �15� elevation and180� azimuth had to be discarded since due to
its body the 
y could not see the visual stimu-lus properly. Goodness of �t was tested using a�2-distribution with 47 degrees of freedom. The-oretical weight distributions with a signi�cance pbelow 0.05 were rejected.The results with p � 0:0001 are shown in Tab. 1.Only VS4 and VS6 agreed with the weight distri-9



(16) �2 p � � � �VS4 30.9 0.97 0.41 1.0 �26� �5�VS6 59.7 0.10 0.51 2.0 �5� �4�VS8 87.5 0.0003 0.50 1.2 35� �3�VS9 90.3 0.0001 0.50 1.1 40� 0�(22) �2 p � � � �VS4 76.7 0.0004 0.40 0.9 �21� �5�VS8 85.3 0.0003 0.50 1.1 37� �8�Table 1: Results of the �tting procedure with p �0:0001 for single VS-neurons. � and � denote azimuthand elevation of the sensor axis. The upper part ofthe table shows results for the weight distribution ofEq. (16), the lower part for Eq. (22). All distributionswith p < 0:05 are rejected.bution described by Eq. (16). This is mainly dueto the fact that these neurons do not have theblind areas in their receptive �elds which are notpredicted by the theory. None of the weight distri-butions computed according to Eq. (22) produceda �t with p higher than 0.0004 to the measureddata. This suggests that { with a high probability{ the VS-neurons do not produce a direct estimateof the rotatory velocity along their preferred axes.The two signi�cant cases, VS4 (Fig. 6 a and b)and VS6, rather weight the local 
ow componentsaccording to Eq. (16). This weight distributionreproduces also the receptive �elds of other VS-neurons outside their blind areas (cf. Fig. 6 c andd), but, as we do not have a clear description oftheir extent, we cannot corroborate this claim bya statistical analysis.The qualitative features of the receptive �eldsof the rotatory neurons can be interpreted fromEq. (16): The retinal regions at lower elevationsare less weighted due to the less predictable in-
uence of the translatory 
ow �eld. Flow regionsaround the rotation axis receive less weight, too,since the rotatory 
ow signal is small relative tothe sensor noise.Since we presently have only one dataset of theHx-neuron, we could not apply the same statisticalprocedure to compare the translatory weight setsEq. (17) and Eq. (23) to the measured sensitivi-ties. As a plausibility test, we assumed a constantstandard deviation over the visual �eld and usedagain the same �tting procedure for Eq. (17) andEq. (23). Both weight distributions succeeded inreproducing the elevational dependence, but theazimuthal weight distribution is again better de-scribed by the sin2 �-dependence in Eq. (17). Theasymmetry of the receptive �eld organization is re-

versed with respect to the �lters for rotatory 
ow�elds, so that ventral retinal regions receive moreweight than dorsal regions (Fig. 6 e and 6 f). Thiscan be interpreted from our theory: In the ven-tral part of the visual �eld, the variability of thetranslatory 
ow is higher, but at the same time thesignal-to-noise-ratio is better because of the larger
ow vectors. In the particular type of environmentwe consider here, the better signal-to-noise-ratio ismore important, so that the ventral regions receivehigher weights.Figure 6 demonstrates that the preferred direc-tions of the neurons agree well with the predicteddirections from Eqns. (4) and (5). It should be em-phasized that the value of � is almost the same inall results which makes this feature of the internalworld model highly reproducible. The di�erencesin � arise mainly because of the ad hoc chosenvon Mises distribution which a�ects < p2i > inEqns. (16) and (17). Although we did not �t theparameters �1 and �2 to the measurements, vari-ations in these parameters did not lead to qualita-tive changes in the computed weight distributions.Since most VS-neurons have blind areas in theirreceptive �elds, it seems plausible that several VS-neurons will act together to form a combined sen-sor. Within the whole ensemble of ten di�erenttypes of VS-neurons, the individual neurons could�ll in the blind areas of their partners, so thatthe whole visual �eld could be sampled by sucha combined sensor. In the next section, we willinvestigate a possible grouping of the VS-neuronsfor two optimal �lters sensing rotations around thehorizontally oriented principal body axes.5.3 Comparison to ensembles ofVS-neuronsAs a simpli�ed model, we assume that the outputsignal sj of the VS-neuron j is the sum of theweighted projections of the local 
ow vectorssj =Xi wjipi � uji : (24)A sensor consisting of several neurons is then ob-tained by a linear combination with weights aj ofthe single output signalsS =Xj ajsj =Xi pi �Xj ajwjiuji : (25)The vector sum over j can be interpreted againas a unit vector �eld ui together with a combinedweight set wi S =Xi wipi � ui: (26)10
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Figure 7: Averaged response �eld obtained by addingthe local sensitivity vectors of neurons VS4, VS5, VS6and VS7. This arrangement responds maximally to arotatory 
ow�eld induced by a rotation about the rollaxis.
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Figure 8: Averaged response �eld obtained by sub-tracting the sum of the response �elds of neurons VS1to VS3 from the sum of the response �elds of VS8 toVS10 with maximal response to 
ow�elds generatedby rotations about the pitch axis.This raises a problem: We have in�nitely manypossible linear combinations of the single neuronswhich could be compared to the theory. Fortu-nately, there is some evidence for a certain type ofgrouping. Behavioural experiments show a closecorrelation between the compensatory head move-ments of Calliphora in response to visual roll stim-uli and the estimated summed output from VS4 toVS7 (Hengstenberg & Krapp, 1996) which makesthis particular linear combination a good candi-date for a roll sensor. Moreover, an orthogonalpitch sensor can be formed, if the sum of the neu-rons VS1 to VS3 is subtracted from the sum ofVS8 to VS10. This would be the optimal counter-part to the roll sensor of VS4 to VS7 which wouldallow this pair of sensors to sense any rotations
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Figure 9: Horizontal slice at �15� elevation throughmeasured (circles) and predicted data (solid line) forthe roll sensor.
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Figure 10: Vertical slice at 75� azimuth through mea-sured (circles) and predicted data (solid line) for theroll sensor.about horizontally aligned body axes. Therefore,we will apply the same �tting procedure to thehypothetical roll and pitch sensor.(16) �2 p � � � �roll 34.9 0.91 0.40 0.6 �5� �4�pitch 60.4 0.08 0.44 1.5 73� 8�(22) �2 p � � � �roll 338.8 0 0.50 1.5 �8� �4�pitch 66.9 0.02 0.50 1.6 73� 6�Table 2: Results of the �tting procedure for the rolland pitch sensor. � and � denote azimuth and eleva-tion of the sensor axis. The upper half of the tableshows results for the weight distribution of Eq. (16),the lower half for Eq. (22). All distributions withp < 0:05 are rejected.In order to construct the roll and pitch sensor11
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Figure 11: Weight distributions for the 
ow projections in the visual �eld: a) Measured and b) theoreticallypredicted weights of the pitch sensor. c) Measured and d) theoretically predicted weights of the roll sensor.data, we used the following method: The mea-sured sensitivities and angular orientations of 5 (3for VS5) measurements of each single VS neuronwere converted into local preference vectors. Onespeci�c sample of the hypothetical roll or pitchsensor was created by randomly choosing one ofthe 5 measurements for each neuron and addingor subtracting them as described above. In thisway we generated 100 samples of roll and pitchsensors which were averaged to obtain the meanLMSs and LPDs. The standard deviations of theLMSs were computed from the summed variancesof the single neurons. In a �nal step, the distri-butions were normalized to one. Figure 7 and 8show the resulting averaged response �elds.We applied the same �tting procedure as aboveto the linearly combined data (cf. Table 2). As inthe case of the single neurons, Eq. (22) is rejected,while the combined sensitivities are reproducedvery well by Eq. (16) (cf. Figure 11). The blind ar-eas of the individual neurons appear to be �lled inby other neurons resulting in a relatively homoge-

neous coverage of the entire visual �eld. This indi-cates that the VS-neurons can act as an ensemblewhich is tuned to certain self-motion-induced rota-tory 
ow �elds. There might be other linear com-binations tuned to di�erent self-motion parame-ters which would allow later processing stages touse only the speci�c self-motion component whichis relevant for its task.The fact that Eq. (22) does not reproducethe combined data can be taken as further ev-idence that the VS-neurons do not directly ex-tract self-motion estimates from the optic 
ow.A closer look to the measured sensitivities showsthat the main di�erence between the tested al-ternative weight distributions consists in the dif-ferent angular dependences: Eq. (16) predicts asin2�-dependence, while Eq. (22) predicts a sin�-dependence. The horizontal slice of the roll sen-sor at �15� (Fig. 9) illustrates that the measuredweights follow very closely a sin2�-curve so that asin�-curve would lead to large deviations. Most ofthe discrepancies between theory and data occur12



at the highest and lowest elevations (cf. Fig. 10).As our theoretical world model is very crude, thiscould probably be corrected by using a more so-phisticated world model.6 DiscussionIn this paper, we present a theory for the con-struction of optimal matched �lters for estimatingself-motion from optic 
ow. The matched �lterconsists of four stages: First, the 
ow �eld is pro-jected onto a LPD template modelled as a unitvector �eld. Second, the single projections areweighted. Third, estimates of the self-motion pa-rameters are extracted from the local projectionsand, fourth, summed over the visual �eld. We de-rive analytical expressions for the weights from anoptimization principle which minimizes the di�er-ence between estimated and real egomotion pa-rameters. In contrast to previous approaches,prior knowledge about distance and translationstatistics (Fig. 3) is incorporated into the deriva-tion of the weights. We assume an asymmetric\world model" where the average distance in theventral visual �eld is smaller than in the dorsalpart. We tested the quality of the self-motion es-timates generated by the matched �lter model ina simulated cloud of random dots. Though theself-motion estimates showed systematic errors forhighly unpredictable distance statistics due to theapproximation used, in general, the matched �l-ter performance was found to be very reliable. Astatistical comparison of the weight distributionused in the optimal matched �lters with the mea-sured sensitivities of individual and groups of VS-neurons shows that these neurons weight the optic
ow components according to the local contribu-tions of the input noise and of the predictabilityof the translatory 
ow component.6.1 The functional role of VS-neuronsThe local sensitivities of VS4 and VS6 are notstatistically di�erent from the weight distributionin Eq. (16). The other VS-neurons have more orless pronounced blind areas in their receptive �eldswhich are not predicted by the theory. If severalVS-neurons act together, each neuron could coverthe blind parts of their respective partners. Theanalysis shows that the weights of Eq. (16) are notstatistically di�erent from two linear combinationsof VS-neurons which form together a roll and apitch sensor (cf. Fig. 11). We conclude from thisresult that VS-neurons can act as ensembles whichare tuned to rotatory 
ow �elds about horizontallyaligned axes. They weight the single 
ow projec-

tions according to the contributions of the rotatory
ow around their preferred axis, their noise con-tent and the predictability of the translatory 
owcomponent. This explains the marked asymmetryof their receptive �elds since the stronger relativedistance variability in the ventral part of the vi-sual �eld makes the translatory 
ow componentless predictable. The asymmetry of the under-lying world model is highly reproducible amongthe di�erent datasets. If one looks at the recep-tive �eld of the translatory Hx-neuron (Fig. 6),one sees the reverse e�ect: The ventral regions re-ceive higher weights. This can be explained bythe larger translatory 
ow vectors in the ventralregion which outweighs their unpredictability.A second analysis showed that the hypothe-sis that the VS-neurons incorporate all processingstages of our matched �lter can be excluded withhigh probability. The analysis rather suggests thatthe VS-neurons form only a \visual front end"to the self-motion extraction process in the sensethat they weight the optic 
ow projections accord-ing to the information they contain about speci�cself-motion parameters. In other words, the VS-neurons do not directly encode rotations, but rel-evant aspects of the rotatory 
ow �eld. There aretwo functional adaptations to the processing re-quirements for estimating self-motion from the op-tic 
ow: �rst, the distribution of the LPDs build-ing a kind of direction template and secondly, thedistribution of the LMSs which weights the local
ow projections according to the local signal-to-noise ratio of the self-motion parameter to whichthe neuron is tuned. The actual estimation of rota-tion and translation seemingly takes place at laterprocessing stages of which - up to now - little isknown.In the 
y's nervous system the self-motion pa-rameter could be represented at an intermediateprocessing stage which relays the output signals ofthe tangential neurons to the motor centers con-trolling the neck and 
ight muscles. In principle,there are at least two to three distinct `candidatelevels' where also the integration of the correctionsignals (cf. Eqns.(6) and (7)), necessary for thecomputation of the translation or rotation param-eter (Eq. (8)), may take place: 1. At the descend-ing neurons (DN; Strausfeld & Gronenberg, 1990;Gronenberg et al., 1995) which receive inputs fromthe visual system and other sensory modalities.DNs integrate the sensory signals and convey thisinformation through the cervical connective to themotor centers in the thoracic ganglion. 2. At thelevel of the motor neurons driving the muscular13



systems (Strausfeld et al., 1987; Gronenberg &Strausfeld, 1990). Here, the signals of the halteresystem (Nalbach & Hengstenberg, 1994; Nalbach,1994) could be exploited by means of a convergentwiring to compute the self-motion parameters. 3.Eventually, the muscles themselves could act asan integrating stage representing the projection ofthe momentary rotatory vector into its respectivecoordinate system. At the moment, we cannotanswer the question in which part of the nervoussystem of the 
y the estimation of the self-motionparameters takes place. A complete characteriza-tion of the functional role of the VS-neurons re-quires further investigation of how the weighted
ow projections are integrated by the neurons, andhow the output of these neurons is processed andintegrated at later stages.6.2 Model assumptions andapproximationsMost of the discrepancies between theory and datacan be attributed to the crude distance model.While more sophisticated world models might leadto a better correspondence, they do not necessar-ily provide more insights, as the asymmetry of oursimple distance model already su�ces to repro-duce the dorsoventral asymmetry of the measuredsensitivities. A more realistic world model cer-tainly would have to be modi�ed, e.g., by per-mitting a variable distance deviation over the vi-sual �eld, or by including azimuthal variations ofthe average distances. It is quite probable, forinstance, that the average frontal distances arelarger than the lateral distances, since the insect,if not landing, tends to 
y in the open space be-tween obstacles. It is most obvious that the �ltersapplied in visual environments strongly deviatingfrom the distance model are not performing opti-mally any more. In other words, the recovery ofthe self motion parameters gets erroneous. Flies,however, are capable of 
ying in di�erent environ-ments without any observable problems. This ap-parent contradiction may indicate the simple factthat for 
ying insects the distances to visible ob-jects in the ventral visual �eld are - on average -always shorter than to objects in the dorsal visual�eld, regardless of the environment. At least in
ies, the anisotropic sensitivity distribution of theVS-neurons seems to hint in that direction.We did not �t the von Mises distribution ofthe translation directions to the measured data.This primarily a�ects the parameter � which isdirectly related to the translatory 
ow component(cf. Eqns. (20) and (21)). An appropriate choice of

the translation statistics might lead to more con-sistent values of � among the di�erent datasets,but this would require a concise statistical descrip-tion of Calliphora's 
ight trajectories which is cur-rently not available in the literature.To compare the weight distributions obtainedfrom the matched �lter model with the hypothet-ical roll and pitch sensors, we linearly summed upthe weighted inputs of some VS-neurons. Neu-ronal elements usually do not sum up their inputsad in�nitum but saturate at a level given by amaximum spike rate or a maximum depolarisationof the membrane. This has been shown for the tan-gential neurons, for instance (Hengstenberg, 1982;Haag et al., 1992).The linear approximation of the distance depen-dence in Eq. (12) is only valid for smaller distancedeviations. While this does not result in signi�-cant discrepancies between theory and measuredsensitivities, the approximation leads to system-atic errors of some �lters in simulated random dotclouds with high distance variability. As the self-motion estimates are also consistent at high dis-tance deviations, these systematic errors could becompensated by a constant factor, or by higherorder correction terms in Eq. (12).Our matched �lter model assumes that the di-rection and velocity of local image shifts are eval-uated. The output of EMDs is clearly not rep-resenting the true velocity of the image shift. Incontrast, the output of correlation type EMDs de-pends on the contrast frequency of the input pat-tern; i.e. the ratio of the angular displacementover the spatial frequency of the pattern. In addi-tion, the response depends on the contrast of thevisual input pattern (Reichardt, 1987). The simu-lation results for 100% noise (cf. section 4.1) indi-cate that the matched �lter model can tolerate aconsiderable degree of corruption in the input, butit needs to be tested in further study whether theyare su�ciently robust for correlation type EMDinput. Another problem which is always inherentto local direction and velocity measurements, theaperture problem, has to be taken into account,too. The aperture problem can be overcome - atleast partially - by spatially integrating over manylocal measurements covering an extended part ofthe visual �eld.So far, we have not studied the dynamical be-haviour of our model. In the real world, the visualinput and the EMD output may change rapidlyduring locomotion which might lead to an unsta-ble �lter output. Although our simulations sug-gest that the �lter output does not vary strongly14



between di�erent trials, this still needs to be veri-�ed for more realistic visual input.6.3 Relation to other matched �lterapproachesDahmen et al. (1997) derived a matched �lteras a special case of the iterative algorithm byKoenderink & van Doorn (1987). Similar to ourapproach, this algorithm is derived from a leastsquare principle. Instead of minimizing the dif-ference between actual and estimated self-motionparameters, Koenderink & van Doorn minimizethe di�erence of the measured 
ow �eld to a 
ow�eld derived from the self-motion estimates. Incontrast to our approach, they assume no priorknowledge about distance statistics. Thus, in ad-dition to the self-motion parameters, also distanceestimates have to be extracted from the optic 
ow.Therefore, their algorithm (and also those dis-cussed below) allows only to estimate translationdirection, not its absolute value.Assuming a spherical environment, Dahmen etal. (1997) showed that the �rst iteration of the al-gorithm of Koenderink & van Doorn (1987) can beimplemented by a matched �lter similar to ours.Dahmen et al. (1997) tested their �lter using sim-ulated noisy 
ow as input. They report excellentperformance in spherical environments, in manycases close to that of the iterative algorithm. Theweights of their matched �lter can also be derivedfrom Eqns. (16) and (17) by assuming constant av-erage distance, distance deviation and noise overthe visual �eld. This suggests that our least squareprinciple can be understood as an extension ofthe approach of Koenderink & van Doorn (1987)to cases, where prior knowledge about distancestatistics is available.Perrone (1992) presented a matched �ltermodel of self-motion estimation in the primate vi-sual cortex. In his approach, the motion �eld wassampled at each image position by several sensorstuned to di�erent velocity vectors. The matched�lters use only those velocity signals as inputwhich are consistent with a given set of self-motionparameters. The self-motion estimate is derivedfrom the most active �lter using a winner-takes-allstrategy. Every combination of self-motion param-eters needs its own matched �lter. Although thisapproach requires a huge number of �lters for thegeneral case, it has the advantage that no correc-tion terms for apparent rotations and translationare needed. The number of �lters can be some-what reduced by constructing only �lters for themost probable parameter sets, e.g. by consider-

ing only �xating eye movements (Perrone & Stone,1994). In contrast, our approach requires only six�lters, one for each translatory and rotatory de-gree of freedom, to determine all self-motion pa-rameters. Any additional matched �lter providesredundant information which probably could beused to improve the robustness and accuracy ofthe self-motion estimates. This appears to be alsoa strategy employed by the 
y visual system withits 60 tangential neurons, but the possible advan-tages of such a redundant sampling have to beclari�ed in further study.Ferm�uller & Aloimonos (1995) use the fact thatevery set of self-motion parameters induces certainpatterns in the 
ow directions. These patterns areused as �lters which are matched to the measured
ow components along pre-de�ned curves in theimage. Similar to Perrone (1992), every combi-nation of self-motion parameters requires its ownmotion template. Since Ferm�uller & Aloimonos(1995) discard part of the available information inthe 
ow, they have to provide an extensive deci-sion procedure to arrive at a consistent self-motionestimate. They use only the sign of selected 
owcomponents as input, since the limited apertureof local motion detectors allows only for detectingthe projection of the optic 
ow on the local imagegradient (aperture problem, cf. Horn & Schunk,1981). This problem comes into play when the in-put consists of grey value image sequences insteadof random dot patterns as in our simulations. Aswe have not tested our matched �lter model onreal image sequences, it is currently unclear howthey would perform in real world situations. Nev-ertheless, the results in Fig. 4 for 100% noise in theEMD input show that our �lters work also whenonly the sign of the optic 
ow projection can bedetermined.6.4 ConclusionWe derived a matched �lter model from a theoret-ical optimality criterion. As we have shown, theseoptimal �lters provide some hints on the func-tional role of certain tangential neurons in the 
yvisual system. Their performance in simulationsmakes them also potentially useful for technicalapplications in robots or computer vision systems,since they require only small computational re-sources. Before this can be realized, some openquestions remain to be investigated, e.g., how aset of matched �lters should be coupled to arriveat stable self-motion estimates, or how much a re-dundant sampling with several �lters can improvethe reliability of self-motion estimates. The an-15
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