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Viewpoint E�ects in Naming Silhouette and
Shaded Images of Familiar Objects

Je�rey C. Liter, Bosco S. Tjan, Heinrich H. B�ultho�, & Nicole K�ohnen

Abstract. We studied the visual features that support e�cient entry-level object recognition
by measuring naming latencies for di�erent views of artifacts and four-legged animals that
were shown as shaded images or as silhouettes. Experiment 1 revealed important di�erences in
performance for the two renderings. Although three-quarter views of animals were recognized
relatively quickly when shaded, they were not recognized quickly when presented as silhouettes.
The same was true of artifacts when they were seen from the back. Experiment 2 used ideal-
observer analyses to con�rm that these e�ects could not be accounted for by di�erences in the
intrinsic complexity of the stimuli. Together, these �ndings indicate that, for human observers,
the shape of an object's bounding contour does not serve as a direct visual coding of the object,
although it might be used as a �rst index into visual memory. These results also indicate that
shading is important for recognizing objects in certain views. It remains unclear, however, what
features are provided by shading. Shading might be used to derive a more precise part-based
description of the object, or it might be used to extract surface properties or distinctive features
and their spatial relations that are themselves elements of a view-based description of the object.

1 Introduction

Theoretical accounts of long-term visual
memory for objects rely on di�erent repre-
sentations of object shape, including object-
centered, three-dimensional (3-D) models
(Marr & Nishihara, 1978), part-based struc-
tural descriptions (Biederman, 1987), and col-
lections of viewer-centered, image-based de-
scriptions (B�ultho�, Edelman, & Tarr, 1995;
Perrett et al., 1984). Successful recognition
according to these approaches will depend on
the presence in the image of di�erent features.
For example, Marr (1982) argued that suc-
cessful recognition using 3-D models depends
on the ease with which the object's primary
axis of elongation can be derived from the
image, whereas Biederman and Gerhardstein
(1993) argued that recognition depends on the
visibility of an object's parts.

Because the presence of such features in
the image necessarily depends on the direction
in space from which an object is seen, it is not
surprising that researchers have found di�er-

ences in the ease with which di�erent views
of objects are recognized. Palmer, Rosch,
and Chase (1981) found that the time needed
to name familiar objects varied for di�er-
ent views of the objects, with subjectively
preferred views named faster than nonpre-
ferred views. These \canonical" views in-
cluded pro�le views and three-quarter views
(i.e., views seen from approximately 12-15 de-
grees of elevation from the ground plane and
30-45 degrees of rotation about the vertical
axis from the full frontal view). These views
were named quickly and accurately, whereas
views from higher elevations and views from
the back were named more slowly and with
more errors.

Similar results were obtained in experi-
ments carried out using 3-D computer graphic
models of common objects. Blanz, Tarr,
B�ultho�, and Vetter (1996) had observers se-
lect preferred views of objects by rotating the
computer models of the objects in real time
using a \Spaceball." As in Palmer et al.'s
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experiments, three-quarter and pro�le views
were preferred over other views. Subsequent
naming experiments carried out by Liter and
B�ultho� (1997) con�rmed that these preferred
views were, in fact, named faster than nonpre-
ferred views.

Which views of an object turn out to be
canonical should, of course, depend on what
visual features are important for the represen-
tation that is utilized. If the representation re-
lies on axis-based, 3-D models, then views in
which the primary axis of elongation is visible
should be recognized more easily than views in
which the axis is not visible. If the represen-
tation relies on part-based structural descrip-
tions, then views in which important parts are
occluded should be more di�cult to recognize
than views in which the important parts are
visible.

The factors that make a view of an ob-
ject canonical or noncanonical are as yet not
entirely clear. Palmer et al. (1981) found that
view canonicality correlates well with the vis-
ibility of surfaces that are rated as impor-
tant for specifying the identity of the object.
These views could also be characterized as
those likely to be seen when interacting with
the object. Thus, Palmer et al. concluded
that familiarity and function are important
in specifying view canonicality. This sort of
explanation, however, helps little to constrain
the nature of long-term visual representations.
For example, these results could occur with
an axis-based representation if the 3-D ob-
ject models had an intrinsic orientation that
matched the most familiar view of the ob-
ject. Alternatively, these results could occur
with a multiple-views representation if di�er-
ent views were weighted according to famil-
iarity.

To gain insight into the visual represen-
tation itself, we need a better understanding
of which visual features in
uence view canon-
icality. One way to approach this problem is
to degrade views of objects that are known to
be canonical and examine whether they are
still easily recognized. In the present study
we will investigate whether silhouette images

of objects from familiar entry-level categories
show the same pattern of canonical view ef-
fects as do shaded images. If the visual fea-
tures that make a view canonical are based
on or can be derived from the shape of an ob-
ject's bounding contour, then silhouette im-
ages should show the same pattern of canoni-
cal view e�ects as shaded images.

Our interest in studying silhouette im-
ages is based partly on the success of com-
putational recognition algorithms that utilize
only the information contained in the bound-
ing contour and on recent psychophysical re-
sults with silhouette images. Hayward (1995),
for example, studied naming and sequential
matching using both novel and familiar ob-
jects. In the matching experiments, observers
viewed a shaded image of an object in a canon-
ical view and then decided whether a subse-
quently presented image (either shaded or sil-
houette) showed the same object. The view-
point was sometimes di�erent in the two inter-
vals. Response times were fast if the second
image was shaded, but only if the same parts
of the object were visible in both intervals.
These �ndings were in agreement with those
of Biederman and Gerhardstein (1993), who
studied line drawings of objects. Because of
the apparent dependence on the visible parts,
Biederman and Gerhardstein had interpreted
their �ndings as evidence in favor of part-
based structural descriptions. Interestingly,
Hayward found the same result when the sec-
ond image was a silhouette. This �nding can
be interpreted in one of two ways; either the
information in the silhouettes was su�cient
to recover the object's parts, or the similarity
in the shapes of the bounding contours in the
two intervals was used directly to perform the
task. The later possibility would not impli-
cate the use of a part-based representation of
shape.

The possibility that the bounding con-
tour is used directly as a visual code is sug-
gested by the success of a number of arti�-
cial recognition systems. Richards and his
colleagues (Richards, Dawson, & Whitting-
ton, 1986; Richards, Koenderink, & Ho�man,
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1987) developed a scheme in which the bound-
ing contour of an object is described as an
ordered list of curvature primitives termed
codons. Codons capture qualitative proper-
ties of the curvature of the bounding contour,
which makes the representation invariant to
image scaling.

Ullman (1996) discusses a similar pro-
cedure used by Yolles to classify images of
objects|including novel exemplars of known
object classes|using only information con-
tained in the bounding contour. In this
scheme, the bounding contour is decomposed
into a collection of small elements, each of
which has a 2-D position and orientation. The
\distance" between any two such elements de-
pends on the di�erence between both their
positions and their orientations. Using this
distance measure, it is possible to �nd the
stored image that matches best any input im-
age, thus making classi�cation of even novel
images possible. Alternative direct coding
methods have also been developed that utilize
fourier descriptors to describe image contours
(e.g., Zahn & Roskies, 1972).

Regardless of the actual code used, how-
ever, if the shape of the bounding contour it-
self is used as a visual code, then silhouette
images should always be recognized as well
as shaded images, so that view canonicality
e�ects should be similar for silhouettes and
shaded images.

There are reasons, however, to doubt that
the shape of the bounding contour is itself
used as a visual code. For example, although
three-quarter views of objects are readily rec-
ognized, it is di�cult to imagine or to draw
the shape of the bounding contour of objects
in three-quarter views. Consider how di�cult
it would be to draw a car or a cow seen in
a three-quarter view. In contrast, it is much
easier to imagine or to draw the bounding con-
tour of a car or a cow seen in pro�le. This is
not to say that one cannot imagine what an
object looks like in a three-quarter view. In
fact, Blanz et al. (1996) found that observers,
when asked to imagine an object, most of-
ten imagined the object in a three-quarter

view. Thus, there may be features present
in the three-quarter view that makes it easy
to recognize and imagine, but the bounding
contour might not be one of these features.
Subjectively, the di�erence between the three-
quarter view and the pro�le view is that the
object's parts can be better inferred from the
bounding contour in the pro�le view. It might
be that the bounding contour is su�cient for
recognition only when it allows for the recov-
ery of other features, for example, the ob-
ject's primary axis of elongation or the ob-
ject's parts.

Ho�man and Richards (1984) investi-
gated formally whether an object's bounding
contour could be used to recover a part-based
description of the object. They argued on the
basis of geometrical principles that the loca-
tions of some of an object's part boundaries
could be inferred from the locations of dis-
continuities or extrema in the curvature of its
bounding contour. As the salience of these
features is likely to vary with the viewing di-
rection, one might still expect to �nd view
e�ects in recognition if an object's parts were
recovered in this way. It is not clear, however,
whether one would expect to �nd di�erences
in view e�ects for shaded and silhouette im-
ages. If part boundaries were also inferred in
shaded images on the basis of shading gradi-
ents internal to the object's bounding contour,
then view e�ects might be very di�erent for
shaded and silhouette images.

In the present experiments, we will exam-
ine directly whether canonical view e�ects are
the same for shaded and silhouette images of
objects. In Experiment 1, observers will name
shaded and silhouette versions of four-legged
animals and artifacts (i.e., non-animals) seen
in three di�erent views, three-quarter, pro�le,
and back views. Three-quarter and pro�le
views have led to fast naming times in pre-
vious studies, whereas naming times for views
from the back have been found to be reliably
slower. We will examine the results for arti-
facts and animals separately, because the ani-
mals, being more similarly shaped, could show
canonical view e�ects that are di�erent from
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3/4 Profile Back 3/4 Profile Back
Figure 1: Shaded and silhouette images of four of the objects studied in Experiment 1. Three-quarter, Pro�le,
and Back views of each object are shown.

those exhibited by the artifacts. In Experi-
ment 2 we will present ideal-observer analyses
of the images used in Experiment 1 to examine
whether there are inherent di�erences in the
complexity of the stimuli used in the various
conditions.

2 Experiment 1: Object Naming

2.1 Method

Observers. The observers were 12 stu-
dent volunteers from Eberhart-Karls Univer-
sity in T�ubingen, Germany. Each received
a payment of 6 DM. All were native speak-
ers of German and reported having normal or
corrected-to-normal visual acuity.

Stimuli. The stimuli were 256 pixel by
256 pixel images of 18 common objects, 9 ar-
tifacts and 9 four-legged animals. The ob-
jects were three-dimensional computer graph-
ics models acquired from Viewpoint Data

Labs.1 Each object model was imaged from
three di�erent viewpoints using custom Sili-
con Graphics Inventor software that simulated
a virtual perspective camera located 50 cm
from the object. Each object was scaled to
�t within a sphere of radius 7 cm and was
oriented so that in the \home" view it faced
the camera. For elongated objects, the pri-
mary axis of elongation was aligned with the
direction of the camera in this view. The
Three-quarter view of each object was gener-
ated by elevating the camera 15.2� and sub-
sequently rotating it 26.7� about the vertical
axis. The Pro�le view was generated by ele-
vating the camera 15.9� and rotating it 90.0�

about the vertical axis. Finally, the Back

1Some of the models are available from Viewpoint's
World Wide Web page at http://www.viewpoint.com.
All of the objects can be purchased from View-
point. Images of some of the objects can be down-
loaded from the MPI home page at http://www.mpik-
tueb.mpg.de.
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view was generated by elevating the camera
30.0� and rotating it 159.1� about the verti-
cal axis. These particular viewing angles were
chosen to match some of the viewing angles
used in a separate series of experiments (Liter
& Sch�olkopf, 1998).

Two versions of each view of each object
were generated by changing the surface ma-
terial properties of the object model prior to
rendering. Shaded versions of each view were
created by coloring the surfaces of the object
grey. Silhouette versions were created by col-
oring the surfaces black. In both cases the
specular component of the surface material
was set to zero, so that none of the images
contained distinctive highlights. The objects
were illuminated by an omnidirectional ambi-
ent light source and a directional light source
located 45� above and to the right of the cam-
era. The rendering model used Gouraud shad-
ing. Because the black-surfaced objects did
not re
ect any light, they appeared as black-
on-white silhouettes even when lit. Examples
of the Shaded and Silhouette versions of some
of the objects are shown in Figure 1.

Apparatus. The experiment was con-
ducted using a Power Macintosh 9500/132
running PsyScope version 1.1 experimental
design software (Cohen, MacWhinney, Flatt,
& Provost, 1993). Subjects' naming responses
were triggered by a Yoga EM-240 electret con-
denser microphone and registered to the com-
puter via a CMU button box. A cassette tape
recorder (Sony CFS-B11) was used to record
the observers' verbal responses.

Procedure. The observers participated
individually in 20-min sessions. Each observer
read printed instructions explaining that the
task was to name pictures of objects and ani-
mals that would appear on the computer mon-
itor as quickly and as accurately as possi-
ble using the �rst name that came to mind.
Each trial began with the presentation of a
small ready prompt. The observer initiated
the trial by pressing a button on the button
box. The picture appeared 750 ms after the
button press and remained visible until the
microphone registered a response. The ready

prompt for the next trial appeared after an
additional 500 ms delay. Before beginning the
experimental trials, the observers completed
20 practice trials. The practice objects were
all di�erent from the experimental objects.

Design. There were four independent
variables in this experiment, a) Object Type
(Artifact or Animal), b) Viewpoint (Three-
quarter, Pro�le, or Back), c) Type of Ren-
dering (Shaded or Silhouette), and d) Block
(1-6). Each observer named all 18 objects
in each block. Within each block, three ob-
jects were seen shaded in three-quarter views,
three were seen as silhouettes in three-quarter
views, and so on. The six sets of three objects
were maintained across observers and blocks,
which made it possible to counterbalance the
assignment of objects to the various condi-
tions across blocks. Each set of three objects
contained both artifacts and animals. For any
given observer the viewpoint and type of ren-
dering for each set of three objects was di�er-
ent in every block. Across observers, each set
of three objects was seen twice in each block in
each of the six viewpoint and rendering con-
ditions.

2.2 Results

Analyses of response times were carried out
only on correct responses. The experimenter
scored each naming response as correct or
incorrect by listening to the tape recording
that accompanied each observer's experimen-
tal session. Questionable responses were re-
ferred to one or more judges. Trials in which
the observer named the object correctly at a
level other than the entry level were scored
as correct. By listening to the tape record-
ings, it was also possible to identify trials in
which the observer made false starts and tri-
als in which there were equipment failures.
These trials were scored as errors. In all, 56
of the total 1296 trials (4.3%) were scored as
errors. The distribution of errors across Ob-
ject Type, Viewpoint, and Type of Rendering
will be presented below. After removing er-
ror trials, each observer's mean response time
was computed. Response times that di�ered
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Figure 2: Mean naming response times in block 1 of Experiment 1 for the shaded (open bars) and silhouette (dark
bars) versions of each view. Error bars are within-subjects standard errors (see Loftus & Masson, 1994).

from an observer's mean by more than two
standard deviations were then removed. This
amounted to 66 of the 1240 correct responses
(5.3%).

Because of the potential in
uence of rep-
etition priming e�ects (both visual and non-
visual) in later blocks of the experiment, the
naming response times for each block were an-
alyzed separately. As each object was seen
for the �rst time in block 1, performance in
this block allows us to examine whether view-
point and type of rendering in
uence the ini-
tial recognition of each object and whether
these e�ects are di�erent for artifacts and an-
imals.

The mean block 1 naming times for the
various experimental conditions are shown
in Figure 2. Naming times were relatively
fast for all three views of the shaded arti-
facts. In contrast, there were di�erences in
naming times across views when the artifacts
were seen as silhouettes. Silhouette artifacts
were named as quickly as shaded artifacts in
three-quarter and pro�le views, but they were
named more slowly in back views. The pat-
tern of results for animals was somewhat dif-
ferent. Unlike the artifacts, response times
for shaded animals did vary with viewpoint.
Three-quarter and pro�le views were named
relatively quickly, whereas back views were
named more slowly. The pattern of results

was again di�erent for silhouettes. Animals
seen as silhouettes were named quickly only
in pro�le views.

These results indicate that performance
is not always equivalent for shaded and silhou-
ette images of objects. Artifacts were named
more slowly when they were seen as silhou-
ettes in back views, and animals were named
more slowly when they were seen as silhou-
ettes in three-quarter views.

Performance in block 2 was surprisingly
similar to that in block 1. One might have
expected that because of visual and nonvisual
priming e�ects the di�erences in naming times
across viewing conditions would have been
substantially diminished or even eliminated in
block 2. In contrast, it appears that the ab-
solute e�ects produced by the various view-
ing conditions had a greater e�ect on naming
times in block 2 than did any priming e�ects.
If we consider how naming times changed from
block 1 to block 2 for particular objects, it
is clear that the di�erences in naming times
re
ect di�erences in the viewing conditions
rather than general priming e�ects. For ex-
ample, silhouette artifacts seen in pro�le in
block 1 were named 34.6 ms faster in block 2
when they were seen in three-quarter views.
Given the same changes in viewing conditions,
silhouette versions of animals were named
244.4 ms slower in block 2. These di�erences
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re
ect the �nding in block 1 that both pro-
�le and three-quarter views of artifacts were
easily recognized, whereas only pro�le views
of animals were easily recognized. Such con-
trasts were also found for other transfer condi-
tions. For example, shaded artifacts seen from
the back in block 1 were named 8.8 ms faster
in block 2 when they were seen in pro�le,
whereas shaded animals were named 142.6 ms
faster given the same changes in viewing con-
ditions. Again, these di�erences re
ect the
di�erences in absolute naming times observed
for the various conditions in block 1.

The error rates in this experiment were
quite low, but they generally conformed to the
pattern followed by the response times in the
early blocks of the experiment. The number
of errors (summed over all observers and all
six blocks of trials) for three-quarter, pro�le,
and back views, respectively, were 2, 1, and 1
for shaded artifacts, 9, 2, and 11 for silhouette
artifacts, 1, 2, and 9 for shaded animals, and
4, 4, and 10 for silhouette animals.

2.3 Discussion

The results for shaded objects replicate those
found in previous naming studies carried out
with these objects (Liter & Sch�olkopf, 1998),
and they are in general agreement with other
studies of canonical view e�ects (Blanz et al.,
1996; Palmer et al., 1981). Three-quarter
and pro�le views were recognized relatively
quickly, whereas views from the back were
sometimes recognized more slowly. The re-
sults for the silhouette images, however, did
not in all cases follow those for the shaded im-
ages. In particular, three-quarter views of an-
imals were not recognized quickly when they
were shown as silhouettes, although they were
recognized relatively quickly when shaded.
This was also true for the back views of
the artifacts. These views were recognized
as quickly as three-quarter and pro�le views
when they were shaded, but they were not
recognized quickly in silhouette.

These results provide evidence against

the hypothesis that the bounding contour is
used directly as a visual code. Rather, they

suggest that the bounding contour supports
e�cient recognition only when it is possible
to recover other features from the bounding
contour that are themselves elements of the
actual long-term visual representation. What
these features might be cannot be determined
from the present experiment. Nevertheless, a
few observations might shed some light on this
question. The views for which recognition was
e�cient with silhouette images were generally
those views that clearly showed the parts of
the object or certain of the object's distinc-
tive features. For example, in the pro�le view
of each animal it was generally possible to re-
cover from the bounding contour the aspect
ratio of the animal's body and the lengths of
its legs relative to the overall size of its body.
Furthermore, it was often the case that certain
distinctive features were visible in the pro�le
view that were less visible in other views. For
example, the horn of the rhino was clearly vis-
ible in the pro�le view as was the curly tail of
the pig and the hump on the camel's back.

At �rst sight, these results might seem
to be at odds with those of Hayward (1995),
who found that performance with silhouette
images was almost always as good as it was
with shaded images. The discrepancy could
stem from di�erences between the tasks used
by Hayward and the task used in the present
experiment. All of Hayward's tasks involved
some sort of stimulus repetition. In Hay-
ward's matching experiments, observers saw a
shaded view of an object in a canonical view
and then decided whether a subsequently pre-
sented view, which was either shaded or sil-
houette, showed the same object. Similarly,
in Hayward's naming experiments, observers
named a sequence of objects seen in shaded
canonical views and then named them again
in a second sequence in either shaded or sil-
houette views. To perform well in these ex-
periments, it might only have been necessary
to make contact with the representation that
was established the �rst time an object was
seen. It might be much easier to use the in-
formation contained in a silhouette for this
purpose compared to how it must be used to
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support recognition of an object never before
encountered.

The absence of a substantial priming ef-
fect between blocks 1 and 2 in the present ex-
periment is somewhat inconsistent with this
explanation. It should be noted, however,
that by the sixth block of the experiment,
most of the e�ects of viewpoint and type of
rendering had vanished. Thus, there proba-
bly were subtle priming e�ects from block to
block, but they were masked in early blocks
by the larger e�ects that resulted from di�er-
ences in the viewing conditions.

One might also attempt to explain the
failure to observe priming in block 2 by argu-
ing that priming depends on the quality of the
view that is seen in block 1. A shaded, three-
quarter view might provide a strong visual
representation, capable of supporting prim-
ing, whereas a silhouette view of the back of
an object might not provide a strong enough
representation. Each observer in the present
experiment saw only three objects in a shaded
three-quarter view in block 1. Thus, if prim-
ing depends on the goodness of the view seen,
then there would have been little chance of
priming in block 2. After several blocks, how-
ever, the visual representation of each object
might have improved enough to support prim-
ing and minimize the e�ects of the various
viewing conditions. Although such an argu-
ment has not been made in the priming lit-
erature, it might be useful to consider. For
example, Hayward (1995) did observe prim-
ing in his naming experiments, but in all cases
observers viewed shaded objects in canonical
views in block 1.

3 Experiment 2: View Complexity

Measurements

To interpret the results of Experiment 1 as
re
ecting processing limitations of the human
visual system, it is �rst necessary to establish
that the di�erences observed in Experiment 1
cannot be accounted for by di�erences in the
complexity of the stimuli used in the various
conditions. It is possible, for example, that
the silhouette images were intrinsically less

distinctive than the shaded images. Likewise,
images of the backs of the objects might have
been less distinctive than the three-quarter or
pro�le views.

Tjan and Legge (in press) developed an
objective procedure based on ideal observers
to measure the complexity of di�erent ob-
ject recognition tasks. The procedure deter-
mines the number of 2-D images of each object
(termed the view complexity or VX) in a spec-
i�ed set of objects that must be stored so that
any object in the set can be identi�ed from
any 3-D viewpoint. An important property of
the procedure is that it does not assume the
use of any particular form of visual represen-
tation (i.e., 3-D models or structural descrip-
tions). The 2-D images of the objects them-
selves serve as the representation. Because
of this, it is possible to attribute di�erences
in view complexity for di�erent sets of stim-
uli to intrinsic di�erences in the stimuli rather
than to the success or failure of some unknown
process that attempts to derive a representa-
tion from the stimuli. For example, Tjan and
Legge (in press) found that recognition tasks
involving geons (such as those used by Bie-
derman & Gerhardstein, 1993) are less com-
plex than those involving bent wire objects
(such as those used by B�ultho� & Edelman,
1992; Edelman & B�ultho�, 1992). This sug-
gests that di�erences in viewpoint dependence
observed for these two classes of objects might
not re
ect any particular processing strategy
of the human visual system but rather the
intrinsic di�erences in the complexity of the
stimuli.

The view complexity of a set of objects
is assessed in a numerical simulation by grad-
ually increasing the number of views of each
object that must be identi�ed and measuring
for each number of views the threshold signal-
to-noise ratio (SNR) that yields 90% correct
identi�cation. The views that must be identi-
�ed are termed \task" views, as they are the
only views that must be recognized. SNR is
manipulated by adding Gaussian noise to each
pixel of the display. Tjan and Legge (in press)
showed that the threshold SNR increases lin-
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early with the log of the number of views and
then reaches a plateau. The number of views
per object at which the threshold SNR reaches
a plateau, as determined by a bi-linear �t, is
de�ned to be the view complexity of the ob-
ject set.

The increase in threshold below the view-
complexity boundary indicates that the task
becomes more di�cult as more views of the
objects must be identi�ed. This means that
the additional views are su�ciently distinct
from the views already stored that they pro-
vide further information about the identities
of the di�erent objects. Beyond the view-
complexity boundary, additional views do not
provide more information, so that the objects
can be thought of as being completely repre-
sented at the view-complexity boundary.

The view complexity analyses performed
on the stimuli studied in Experiment 1 were
similar to the analysis described in Tjan and
Legge (in press), but they were modi�ed to
allow an assessment of the view complexity of
speci�ed regions of the viewing sphere. On
the basis of the results of Experiment 1, we
were particularly interested in whether view
complexity was greater for views in the neigh-
borhood of \back" views than it was for views
in the neighborhood of \three-quarter" views.
Likewise, we were interested in comparing the
complexity of shaded and silhouette images.

3.1 Method

Ideal observer analyses were performed to as-
sess view complexity for eight of the stimu-
lus conditions studied in Experiment 1. Pro-
�le views were not examined, because human
performance was similar in all conditions for
these stimuli. The task viewpoints, which
were the same for all analyses, were selected
by uniformly and randomly sampling 24576
viewpoints from the upper half of the viewing
sphere. The number of task views was 8, 16,
32, 64, 128, 256, 512, 1024, 2048, 4096, 8192,
16384, or 24576. The �rst 8 viewpoints in the
list of 24576 task views comprised the 8 view-
per-object condition. The �rst 16 viewpoints
comprised the 16 view-per-object condition,

and so on. For each number-of-views condi-
tion, one image of each object was rendered
from each task viewpoint.

Tjan and Legge (in press) demonstrated
that it is not necessary to test recognition at
all of the task viewpoints to achieve a stable
measure of view complexity. Rather, it suf-
�ces to conduct the view complexity analysis
several times with independent samples of the
task viewpoints. The results of these analyses
can then be averaged. In the analyses per-
formed here, one test viewpoint was selected
from the set of task viewpoints, and this view-
point was used to render an image of each of
the nine objects. These nine images served
as test images throughout the analysis. This
procedure was repeated eight times, each time
with a new test viewpoint (and thus 9 new test
images).

An important di�erence between Experi-
ment 1 and the ideal observer developed by
Tjan and Legge (in press) is that the ob-
servers in Experiment 1 were tested on only
certain views of the objects, whereas Tjan and
Legge's ideal observer was tested on arbitrary
views. Although the \observers" in both cases
did not know in advance which views would
be tested, restricting the test views in Experi-
ment 1 might have led to di�erences in perfor-
mance because the stimuli were more or less
distinctive in the di�erent views. To better
equate the human and ideal observer tasks, we
modi�ed the ideal observer procedure used by
Tjan and Legge. Rather than select the test
viewpoint randomly from the set of task view-
points, we selected the test viewpoint with the
constraint that it fell within a cone of radius
15 deg centered at either the three-quarter
viewpoint or the back viewpoint (depending
on the analysis).

Because it was unlikely that any of the
�rst 8 task viewpoints fell within the speci�ed
cone, it was necessary to continue sampling
from the ordered list of task viewpoints un-
til a viewpoint was found that did fall within
the cone. This viewpoint was then added to
the task view sets that did not already con-
tain that viewpoint. For example, if no task
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Figure 3: View complexity expressed in log number of views per object for the shaded (open bars) and silhouette
(dark bars) versions of three-quarter and back views. Between-subjects standard error bars were computed
separately for each condition by running the simulation with 8 independent samples of test views.

viewpoint lying within the speci�ed cone was
found in the �rst 16 task viewpoints, but one
was found in the �rst 32 task viewpoints, that
viewpoint was added to the 8 view-per-object
and 16 view-per-object sets. The bene�t of
using this procedure to select test viewpoints
within speci�ed regions of the viewing sphere
was that it did not make the overall distribu-
tion of task views less uniform over the view-
ing sphere.

3.2 Results and Discussion

The results of the view complexity analyses
are shown in Figure 3. Contrary to what one
might have expected on the basis of the Ex-
periment 1 results, in all cases view complex-
ity was found to be greater for the shaded im-
ages than for the silhouette images. Although
this result might seem unintuitive, it is easily
explained by the fact that the view complexity
algorithm attempts to represent all of the in-
formation that is present in the images. There
are simply more details, and thus there is
more to represent, in the shaded images. The
�nding that human subjects' performance is
opposite to that expected from view complex-
ity indicates that performance di�erences are
not due to intrinsic di�erences in the distinc-
tiveness of the stimuli in di�erent conditions.
Rather, di�erences in performance re
ect ac-
tual di�erences in the ability of the human

visual system to construct adequate represen-
tations from the stimuli.

With the possible exception of the silhou-
ette versions of the artifacts, the view com-
plexity analyses failed to show reliable dif-
ferences between the three-quarter and back
views. The back views of these objects are
as distinctive as the three-quarter views. The
di�erence in recognition performance between
these conditions in Experiment 1 indicates
that the human visual system is better able
to derive a useful representation from three-
quarter views.

The view complexity analyses also indi-
cated that the animals were more complex
than the artifacts. Although this was not
apparent in Experiment 1, we have found
in other experiments with these objects that
the animals do take longer to name on aver-
age than do the artifacts (Liter & Sch�olkopf,
1998). Why this was not observed in Experi-
ment 1 is unclear.

4 General Discussion

The purpose of this study was to examine
whether the equivalence observed in previ-
ous experiments for shaded and silhouette im-
ages of objects would also be observed in ob-
ject naming. Hayward (1995) found that sil-
houettes served as well as shaded images in
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object comparison and priming tasks. Ex-
periment 1 presented here, however, demon-
strated that silhouette images do not serve
as well as shaded images in object naming in
some important cases. One implication of this
�nding is that the shape of an object's bound-
ing contour does not serve as a direct visual
code for the object, at least not exclusively.
Rather, it appears that the visual system re-
lies on some other representation that can be
derived easily from the bounding contour in
some views but not in others.

In some of the views in which the bound-
ing contour does not su�ce for e�cient recog-
nition, shading provides additional informa-
tion that does allow for e�cient recognition.
Although it cannot be determined from Ex-
periment 1 precisely which of the features pro-
vided by shading are being used to enhance
recognition, there are many interesting possi-
bilities. For example, shading indicates that
the object depicted is not 
at. Furthermore,
as discussed by Newell and Findlay (in press),
shading can also provide information about
the orientation of the object, which could be
useful in assigning an internal, object-based
reference frame to the object.

Shading also provides some information
about surface structure, such as the relative
depths of surface patches, and it provides
information about distinctive features and
their relative positions. For example, shad-
ing might enhance recognition of the animals
in three-quarter views because it makes the
animals' facial features and the spatial rela-
tionships among the features apparent. Such
features might themselves be elements of the
long-term visual representation, as would be
the case in models of long-term visual memory
that posit storage of rich, view-based descrip-
tions of objects (B�ultho� et al., 1995).

Shading might also be used to assist in
the derivation of a part-based representation
of the object. In certain views such as the
pro�le view, it might be relatively easy to de-
rive a part-based description from the bound-
ing contour alone. As pointed out by Ho�-
man and Richards (1984), it is often possible

to correctly infer the locations of part bound-
aries by locating discontinuities or extrema in
the curvature of the bounding contour. In
other views, it might not be possible to de-
rive a part description from the bounding con-
tour that is su�cient to identify the object. In
these views, shading gradients or discontinu-
ities might be used to provide a more accurate
or complete part-based description. Shading
could indicate that a relatively short protru-
sion on an object's boundary is actually a
much longer part that extends into the inte-
rior of the bounding contour. Shading could
also make other parts visible that do not pro-
trude at all from the boundary of the object.
In Figure 1, for example, the rear windshield
of the car is not visible in the silhouette im-
age of the back view of the car. It is, however,
quite obvious in the shaded image.

An alternative hypothesis concerning the
role of the bounding contour in recognition is
that it serves as a �rst index into visual mem-
ory, limiting the space of alternatives items
that must be considered before recognition
can take place. In some cases, this �rst in-
dex might be su�cient to perform the re-
quired task. For example, if observers in Ex-
periment 1 were only required to determine
whether the objects presented were artifacts
or animals, the bounding contour alone likely
would have been su�cient in all views. For
pro�le views of animals, the �rst index pro-
vided by the bounding contour might also
be su�cient to identify the particular ani-
mal that is depicted. To identify particu-
lar animals in three-quarter and back views,
however, additional processing is required be-
yond the �rst index. The hypothesis that
processing is hierarchical and task-dependent
was discussed by Rock and DiVita (1987),
and some researchers have recently developed
these ideas further, suggesting that recogni-
tion proceeds from global to local aspects of
shape (e.g., Sanocki, 1993).

In summary, we have found that shad-
ing can provide important information for e�-
cient object recognition. A question for future
research will be to determine more precisely
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which of the many features provided by shad-
ing are actually used to enhance recognition.
Shading could be used to derive a better rep-
resentation of the object's parts, or it might
be used to extract localized features that are
themselves elements of the long term visual
representation.
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