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Support Vector LearningBernhard Sch�olkopfDissertation zum Dr. rer. nat. | Zusammenfassung der wesentlichen ErgebnisseInhalt der Arbeit ist das Lernen von Mustererkennung als statistisches Problem. EineLernmaschine extrahiert aus einer Menge von Trainingsmustern Strukturen, die ihrdie Klassi�kation neuer Beispiele erlauben. Die Arbeit behandelt folgende Fragen:� Welche \Merkmale" sollte man aus den einzelnen Trainingsmustern extrahieren?|Zum Studium dieser Frage wurde eine neue Form von nichtlinearer Hauptkom-ponentenanalyse (\Kernel PCA") entwickelt. Durch die Benutzung von Integral-operatorkernen kann in Merkmalsr�aumen sehr hoher Dimensionalit�at (z.B. im1010-dimensionalen Raum aller Produkte von 5 Pixeln in 16� 16-dimensionalenBildern) eine lineare Hauptkomponentenanalyse durchgef�uhrt werden. Im Ur-sprungsraum betrachtet, f�uhrt dies zu nichtlinearen Merkmalsextraktoren. DerAlgorithmus besteht in der L�osung eines Eigenwertproblemes, in dem die Wahlverschiedener Kerne die Verwendung einer gro�en Klasse verschiedener Nichtli-nearit�aten gestattet.� Welche der Trainingsmuster enthalten am meisten Information �uber die zu kon-struierende Entscheidungsfunktion? |Diese Frage, wie auch die folgende, wurdeanhand des vor wenigen Jahren von Vapnik vorgeschlagenen \Support-Vektor-Algorithmus" innerhalb des von Vapnik und Chervonenkis entwickelten statis-tischen Paradigmas des Lernens aus Beispielen untersucht. Durch die Wahlverschiedener Integraloperatorkerne erm�oglicht dieser Algorithmus die Konstruk-tion einer Klasse von Entscheidungsregeln, die als Spezialf�alle Neuronale Netze,Polynomiale Klassi�katoren und Radialbasisfunktionennetze enth�alt. F�ur Bildervon 3-D-Objektmodellen und handgeschriebenen Zi�ern konnte gezeigt werden,dass die verschiedenen Entscheidungsregeln in ihrer Klassi�kationsgenauigkeitden besten bisher bekannten Verfahren ebenb�urtig sind, und dass ihre Konstruk-tion lediglich eine kleine, von der speziellen der Kerne weitgehend unabh�angigeTeilmenge (in den betrachteten Beispielen 1% { 10%) der Trainingsmenge ver-wendet.� Wie kann man am besten \A-Priori"-Information verwenden, die zus�atzlich zuden Trainingsmustenr vorhanden ist? (beispielsweise Information �uber die In-varianz einer Klasse von Bildern unter Translationen) | die Arbeit schl�agtdrei Verfahren vor, die alle zu deutlichen Verbesserungen der Klassi�kation-sgenauigkeit f�uhren. Zwei der Verfahren bestehen in der Konstruktion vonspeziellen, dem Problem angepassten Integraloperatorkernen. Das dritte Ver-fahren verwendet Invarianztransformationen, um aus der oben genannten Teil-menge (der \Support-Vektor-Menge") aller Trainingsmuster zus�atzliche k�unst-liche Trainingsbeispiele zu generieren. genehmigt: Prof. J�ahnichen





ForewordThe Support Vector Machine has recently been introduced as a new technique for solv-ing various function estimation problems, including the pattern recognition problem.To develop such a technique, it was necessary to �rst extract factors responsible forfuture generalization, to obtain bounds on generalization that depend on these factors,and lastly to develop a technique that constructively minimizes these bounds.The subject of this book are methods based on combining advanced branches ofstatistics and functional analysis, developing these theories into practical algorithmsthat perform better than existing heuristic approaches. The book provides a compre-hensive analysis of what can be done using Support Vector Machines, achieving recordresults in real-life pattern recognition problems. In addition, it proposes a new formof nonlinear Principal Component Analysis using Support Vector kernel techniques,which I consider as the most natural and elegant way for generalization of classicalPrincipal Component Analysis.In many ways the Support Vector machine became so popular thanks to worksof Bernhard Sch�olkopf. The work, submitted for the title of Doktor der Naturwis-senschaften, appears as excellent. It is a substantial contribution to Machine Learningtechnology.Vladimir N. Vapnik, Member of Technical Sta�, AT&T Labs ResearchProfessor, Royal Holloway and Bedford College, London



VorwortInteressant an der Arbeit von Herrn Sch�olkopf sind nicht nur die fachlichen Aspekte,sondern auch die unterschiedlichen und sehr intensiven Kontakte zu internationalenForschungseinrichtungen. Sie zeigen, da� der Autor sowohl in der Lage ist, seineErgebnisse im wissenschaftlichen Spitzenfeld zu pr�asentieren und zu plazieren, als auchaus Arbeiten der \Community" heraus seine Ergebnisse zu entwickeln. Aus dieser Sichtl�a�t sich auch die fachliche Qualit�at der Arbeit ersehen.Herr Sch�olkopf untersucht zwei Grundprobleme der Klassi�kation gro�er Daten-mengen. Zum einen ist dies die Extraktion weniger aber relevanter starker Merkmalezur Reduktion der Informationsut, und zum anderen die Beschreibung von Daten-beispielen, die charakteristisch f�ur ein gegebenes Klassi�kationsproblem sind. BeideProbleme werden von Herrn Sch�olkopf sowohl theoretisch als auch in Experimentenausgiebig und ersch�opfend untersucht. Sowohl die in der Arbeit entwickelte, sehrelegante Methode der nichtlinearen Merkmalsextraktion (kernel PCA), als auch dievorgeschlagenen Weiterentwicklungen der Support-Vektor-Maschine benutzen schwa-che Merkmale und setzen sich damit konzeptuell von der oben beschriebenen Philoso-phie der starken Merkmale ab. Somit spiegelt sich in der Arbeit gewisserma�en einParadigmenwechsel in der Klassi�kation und Merkmalsextraktion wider.Herr Sch�olkopf war w�ahrend seiner Dissertation ein gern gesehener Gast der GMDFIRST Berlin, und es war eine Freude, seine Arbeit zu lesen und zu betreuen. Ins-besondere freue ich mich, da� Herr Sch�olkopf seine Forschung in seiner neuen Positionbei GMD FIRST weiterf�uhren wird.Stefan J�ahnichen, Direktor, GMD FIRSTProfessor, Technische Universit�at Berlin



Contents
Summary 111 Introduction and Preliminaries 151.1 Learning Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . 151.2 Statistical Learning Theory . . . . . . . . . . . . . . . . . . . . . . . . 211.3 Feature Space Mathematics . . . . . . . . . . . . . . . . . . . . . . . . 242 Support Vector Machines 332.1 The Support Vector Algorithm . . . . . . . . . . . . . . . . . . . . . . 332.2 Object Recognition Results . . . . . . . . . . . . . . . . . . . . . . . . 462.3 Digit Recognition Using Di�erent Kernels . . . . . . . . . . . . . . . . 562.4 Universality of the Support Vector Set . . . . . . . . . . . . . . . . . . 572.5 Comparison to Classical RBF Networks . . . . . . . . . . . . . . . . . . 612.6 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692.7 Why Do SV Machines Work Well? . . . . . . . . . . . . . . . . . . . . 763 Kernel Principal Component Analysis 793.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793.2 Principal Component Analysis in Feature Spaces . . . . . . . . . . . . . 803.3 Kernel Principal Component Analysis . . . . . . . . . . . . . . . . . . . 833.4 Feature Extraction Experiments . . . . . . . . . . . . . . . . . . . . . . 893.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964 Prior Knowledge in Support Vector Machines 994.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994.2 Incorporating Transformation Invariances . . . . . . . . . . . . . . . . . 1004.3 Image Locality and Local Feature Extractors . . . . . . . . . . . . . . . 1094.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205 Conclusion 125A Object Databases 127B Object Recognition Results 1377



C Handwritten Character Databases 149D Technical Addenda 153D.1 Feature Space and Kernels . . . . . . . . . . . . . . . . . . . . . . . . . 153D.2 Kernel Principal Component Analysis . . . . . . . . . . . . . . . . . . . 158D.3 On the Tangent Covariance Matrix . . . . . . . . . . . . . . . . . . . . 161Bibliography 165



AcknowledgementsFirst of all, I would like to express my gratitude to Prof. H. B�ultho�, Prof. S. J�ahnichen,and Prof. V. Vapnik for supervising the present dissertation, and to Prof. K. Ober-mayer for chairing the committee in the \Wissenschaftliche Aussprache". I am gratefulto Vladimir Vapnik for introducing me to the world of statistical learning theory dur-ing numerous extended discussions in his o�ce at AT&T Bell Laboratories. I havedeep respect for the completeness and depth of the body of theoretical work that heand his co-workers have created over the last 30 years. To Heinrich B�ultho�, I amgrateful for introducing me to the world of biological information processing, duringmy work on the Diplom and the doctoral dissertation. He created a unique researchatmosphere in his group at the Max-Planck-Institut f�ur biologische Kybernetik, andprovided excellent facilities without which the present work would not have been pos-sible. I would like to thank Stefan J�ahnichen for his advice, and for hosting me at theGMD Berlin during several research visits. A signi�cant amount of the reported workwas inuenced and carried out during these stays, where I closely collaborated withA. Smola and K.-R. M�uller.Thanks for �nancial support in the form of grants go to the Studienstiftung desdeutschen Volkes and the Max-Planck-Gesellschaft. In addition, it was the Studien-stiftung that made it possible in the �rst place that I got to know Vladimir Vapnik atAT&T in 1994, and that helped in getting A. Smola join the team in 1995.A number of people contributed to this dissertation in one way or another. Let mestart with V. Blanz, C. Burges, M. Franz, D. Herrmann, K.-R. M�uller, and A. Smola,who helped at the very end, in proofreading the manuscript, leading to many improve-ments of the exposition.The work for this thesis was done at several places, and each of the groups that Iwas working in deserves substantial credit. More than half of the time was spent at theMax-Planck-Institut f�ur biologische Kybernetik, and I would like to thank all membersof the group for providing a stimulating interdisciplinary research atmosphere, and forbearing with me when I maltreated their computers at night with my simulations.Special thanks go to the people in the Object Recognition group for a number of livelydiscussions, and to the small group of theoreticians at the MPI, who helped me invarious ways over the years.Almost one year of the time of my thesis work was spend in the adaptive systemsgroup at AT&T and Bell Laboratories. I learnt a lot about machine learning as appliedto real-world problems from all members of this excellent group. In particular, I would9



like to express my thanks to C. Burges, L. Bottou, C. Cortes, and I. Guyon for helpingme understand Support Vectors, and to L. Jackel, Y. LeCun, and C. Nohl for makingmy stays possible in the �rst place. In addition to their scienti�c advice, E. Cosatto,P. Ha�ner, E. S�ackinger, P. Simard and C. Watkins have helped me through theirfriendship. Finally, I want to express my gratitude for the possibility to use codeand databases developed and assembled by these people and their co-workers. Asubstantial part of this thesis would not have been possible without this.During my time in the USA, I also had the opportunity to spend a month atthe Center for Biological and Computational Learning (Massachusetts Institute ofTechnology), hosted by T. Poggio. I would like to thank him, as well as G. Geiger,F. Girosi, P. Niyogi, P. Sinha, and K. Sung, for hospitality and fruitful discussions.At the GMD, I had the possibility to interact with the local connectionists group,which (in addition to those mentioned already) included J. Kohlmorgen, N. Murata,and G. R�atsch. The present work pro�ted a great deal from my stays in Berlin.When starting to do research on one's own, one cannot help but noticing that themore specialized the �eld of work is, the more international and widespread seems to bethe group of people interested in it. Out of the scientists working on machine learningand perception, I want to thank J. Buhmann, S. Canu, A. Gammerman, J. Held,D. Kersten, J. Lemm, D. Leopold, P. Mamassian, G. Roth, S. Solla, F. Wichmann,and A. Yuille for stimulating discussions and advice.Without �rst studying science, it is hard to become a scientist. Studying sciencepredominantly means arguing about scienti�c problems. During my education, I wasin the favourable position to have enough people for scienti�c discussions. With manyof these friends and teachers, there is still contact and exchange of ideas. I wouldlike to thank all of them, and in particular G. Alli, C. Becker, V. Blanz, D. Cor�eld,H. Fischer, M. Franz, D. Henke, D. Herrmann, D. Janzing, U. Kappler, D. K�opf,F. Lutz, A. Rieckers, M. Schramm, and G. Sewell.Finally, without my parents, I would not even have studied anything in the �rstplace. Many thanks to them.



SummaryLearning how to recognize patterns from examples gives rise to challenging theoreticalproblems: given a set of observations,� which of the observations should be used to construct the decision boundary?� which features should be extracted from each observation?� how can additional information about the decision function be incorporated inthe learning process?The present work is devoted to the above issues, studying Support Vectors in high-dimensional feature spaces, and Kernel PCA feature extraction.The material is organized as follows. We start with an introduction to the problemof pattern recognition, to concepts of statistical learing theory, and to feature spacesnonlinearly related to input space (Chapter 1). The paradigm for learning from ex-amples which is studied in this thesis, the Support Vector algorithm, is described inChapter 2, including empirical results obtained on realistic pattern recognition prob-lems. The latter in particular includes the �nding that the set of Support Vectorsextracted, i.e. those examples crucial for solving a given task, is largely independentof the type of Support Vector machine used. One speci�c topic in the developmentof Support Vector learning, the incorporation of prior knowledge, is studied in somedetail in Chapter 4: we describe three methods for improving classi�er accuracies bymaking use of transformation invariances and the local structure of images. Inter-twined between these two chapters, we propose a novel method for nonlinear featureextraction (Chapter 3), which works in the same types of features spaces as SupportVector machines, and which forms the basis of some developments of Chapter 4. Fi-nally, Chapter 5 gives a conclusion. As such, it partly reiterates what has just beensaid, and the reader who still remembers the present summary when arriving at Chap-ter 5 may �nd it amusing to contemplate whether the conclusion coincides with whathad been evoked in their mind by the summary that they have just �nished reading.
11
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\To see a thing one has to comprehend it. An armchair presupposes thehuman body, its joints and limbs; a pair of scissors, the act of cutting.What can be said of a lamp or a car? The savage cannot comprehendthe missionary's Bible; the passenger does not see the same rigging as thesailors. If we really saw the world, maybe we would understand it."J. L. Borges, There are more things. In: The Book of Sand, 1979, Penguin,London.





Chapter 1Introduction and PreliminariesThe present work studies visual recognition problems from the point of view of learningtheory. This �rst chapter sets the scene for the main part of the thesis. It gives a briefintroduction of the problem of Learning Pattern Recognition from examples. The twomain contributions of this thesis are motivated in the conceptual part of the chapter.Section 1.1 discusses prior knowledge that might be available in addition to theset of training examples, and introduces the problem of extracting useful featuresfrom individual examples. The technical part of the chapter, Sec. 1.2, gives a concisedescription of some mathematical concepts of Statistical Learning Theory (Vapnik,1995b). This theory describes learning from examples as a problem of limited samplesize statistics and provides the basis for the Support Vector algorithm. Finally,Sec. 1.3 introduces mathematical concepts of feature spaces, which will be of centralimportance to all following chapters.1.1 Learning Pattern RecognitionLet us think of a pattern as an abstraction, de�ned by a collection of possible instancessuch as sample images. When trying to learn how to recognize a pattern, we face theproblem that we will often be unable to see all instances during learning, yet we want tobe able to recognize as many as possible. The extensive notion of a pattern that we justintroduced already suggests a speci�c approach to the problem of pattern recognition:a statistician tries to collect a large number of instances, and use inductive methodsto learn how to recognize them.For an alternative point of view, consider a pattern as something observable whichis generated by an underlying physical entity, as for instance the 2-D views of a 3-Dobject. To recognize a pattern of this nature, a physicist would try to understand thelaws governing the entity, and the mechanisms by which the pattern is brought about.In this process, it may turn out that di�erent observables, or functions thereof,contain di�erent amounts of information for understanding the underlying entity, i.e.it may be the case that from the initial raw observations, we have to extract usefulfeatures ourselves.The current work is located in the intersection of the aspects sketched in the15



16 CHAPTER 1. INTRODUCTION AND PRELIMINARIESabove three paragraphs. It studies an inductive learning algorithm which has beendeveloped in the framework of statistical learning theory, and it tries to enhance it byincorporating prior knowledge about a recognition task at hand. Finally, it studiesthe extraction of features for the purpose of recognition.Even though pattern recognition is not limited to the visual domain, we shall focuson visual recognition. Much of what is said in this thesis, however, would equallyapply to the recognition of acoustic patterns, say.In the remainder of this section, we introduce the terminology which is used indiscussing di�erent aspects of visual recognition problems: these are, in turn, thedata, the tasks, and the methods for recognition.Data. Di�erent types of pattern recognition problems make di�erent types of as-sumptions about the underlying causes generating the patterns. Nevertheless, it ispossible to discuss them in a common framework which we try to describe presently.It draws from machine learning terminology; as such, it will di�er from psychologicalusage of the relevant terms in some respects.1Observers visually perceive views. Sets of views constitute classes. Sometimes,classes have a structure that goes beyond being mere collections of views. For instance,the class of all views of rainbows has the property that if a speci�c view belongs toit, then so do all views which are generated by translating it, parallel to the horizon.Objects are speci�c classes, with a rich class structure, containing for instance all viewtransformations corresponding to rigid 3-D transformations of a speci�c underlyingphysical entity. Some of these transformations are shared by all objects, for instancetranslations; others, like deformations, are object-speci�c.More radically, and fundamentally view-based, we could give up the notion of pri-ority of the underlying physical entities, and think of an object only as a collectionof views, with a speci�c class structure. On a practical level, this is the approachpursued in the current work. The distinction between objects and other classes thenbecomes a distinction between di�erent types of transformation invariances. For in-stance, a rainbow would not be an object, as we cannot possibly see it from above, noteven with a spacecraft. The class of handwritten digits '6' would not be an object forsimilar reasons; in fact, an image plane rotation by 180� would even take us into theclass '9'. As an aside, we note that mathematics and physics have already undergonea paradigm shift away from the notion of objects as \things in the world", towardsstudying their transformation properties. In mathematics, this is exempli�ed in FelixKlein's Erlanger Programm (Klein, 1872) which shifts geometry away from points andlines towards transformation groups; in physics, an example is the modern de�nitionof elementary particles as transformation group representations (e.g. Primas, 1983).Kac and Ulam (1968) refer to this as\[...] the immensely powerful and fruitful idea that much can be learned1The ideas put forward in the following were inuenced by discussions with people in the MPI'sobject recognition group, in particular with V. Blanz.



1.1. LEARNING PATTERN RECOGNITION 17about the structure of certain objects by merely studying their behaviourunder the action of certain groups."Later in the thesis, the reader will encounter methods for improving visual recognitionsystems by taking into account transformation properties of handwritten charactersand 3-D objects (Sec. 4.2).Prior Knowledge. The statistical approach of learning from examples in its pure formneglects the additional knowledge of class structure described above. However, thelatter, referred to as Prior Knowledge, can be of great practical relevance in recognitionproblems.Suppose we were given temporal sequences of detailed observations (including spec-tra) of double star systems, and we would like to predict whether, eventually, one ofthe stars will collapse into a black hole. Given a small set of observations of di�erentdouble star systems, including target values indicating the eventual outcome (sup-posing these were available), a purely statistical approach of learning from exampleswould probably have di�culties extracting the desired dependency. A physicist, onthe other hand, would infer the star masses from the spectra's periodicity and Dopplershifts, and use the theory of general relativity to predict the eventual fate of the stars.Of course, one could argue that the physicist's model of the situation is based ona huge body of prior examples of situations and phenomena which are related to theabove in one way or another. This, however, is exactly how the term prior knowledgeshould be understood in the present context. It does not refer to a Kantian a priori,as prior to all experience, but to what is prior to a given problem of learning fromexamples.What do we do, however, if we do not have a dynamical model of what is happeningbehind the scenes? In this case, which for instance applies whenever the underlyingdynamics is too complicated, the strengths of the purely statistical approach becomeapparent. Let us consider the case of handwritten character recognition. When ahuman writer decides to write the letter 'A', the actual outcome is the result of a seriesof complicated processes, which in their entirety cannot be modelled comprehensively.The intensity of the lines depends on chemical properties of ink and paper, their shapeon the friction between pencil and the paper, on the dynamics of the writer's joints,and on motor programmes initiated in the brain, these in turn are based on what thewriter has learnt at school | the chain could be continued ad in�nitum. Accordingly,nobody tries to recognize characters by completely modelling their generation.However, the lack of a complete dynamical model does not mean that there isno prior knowledge in handwritten digit recognition. For instance, we know thathandwritten digits do not change their class membership if they are translated on apage, or if their line thickness is slightly changed. This type of knowledge can be usedto augment the purely statistical approach (Sec. 4.2). More abstract prior knowledgein many visual recognition tasks includes the fact that the correlations between nearbyimage locations are often more reliable features for recognition than those with largerdistances (Sec. 4.3).



18 CHAPTER 1. INTRODUCTION AND PRELIMINARIESFeatures. Before we proceed to the tasks that can be performed, depending on theavailable data, we need to introduce a concept widely used in both statistics and inthe analysis of human perception. In its general form, a feature detector or featureextractor is a function which assigns a (typically scalar) value to each raw observation.Often, a number of di�erent such functions are applied to the observations in a featureextraction process, leading to a preprocessed vector representation of the data. Thegoal of extracting features is to improve subsequent stages of processing, be it byimproving accuracies in a recognition task, or by reducing storage requirements orprocessing time.The feature functions serving this purpose can either be speci�ed in advance, forinstance in a way such that they incorporate prior knowledge about a problem at hand,or computed from the set of observations. Both approaches, as well as combinationsthereof, shall be addressed in this thesis (Chapter 3, Sec. 4.2.2, Sec. 4.3).The actual term feature is used with di�erent meanings. In vision research andpsychophysics, it is mainly used for the optimal stimulus of a corresponding featuredetector. However, note that given a nonlinear feature detector, it may be practicallyimpossible to determine this optimal stimulus. In statistics, on the other hand, theterm feature mostly refers to the feature values, i.e. the outputs of feature detectors, orto the feature detector itself. Possibly, this ambiguity arose from the fact that, in somecases, the di�erent meanings coincide: in the case where the feature detector consistsof a dot product with a weight vector, as in linear neural network model receptive�elds, the optimal stimulus is aligned with the weight vector, and thus the two can beidenti�ed.Tasks. Suppose we are only given solitary views, and neither nontrivial classes norobjects (which were structured collections of views). Then out of the tasks of dis-crimination, classi�cation, and identi�cation, only discrimination can be carried outon these views. This does, however, not prevent the term discrimination from beingused also in the context of classes and objects. Discrimination, the mere detection ofa di�erence, can be preceded by feature extraction processes; in these cases, resultswill depend on the extraction process used.Classi�cation consists of attributing views to classes, and thus requires the existenceof classes. These can be speci�ed abstractly | by describing features, or Gibsoniana�ordances (\something to sit on"), e.g. | or provided (approximately) by a sampleof training views. This de�nition of classes by training sets is widespread in machinelearning; it will also be the paradigm that we are going to use in this thesis. One talksabout yes-no and old-new classi�cation tasks (one speci�ed class) or naming tasks(several classes). Pattern recognition problems like Handwritten Digit Recognitionare examples of classi�cation.Similarly, identi�cation consists in determining to which object a presented viewbelongs. As objects are special types of classes, we again have the possibility for theabove tasks. Identi�cation makes sense only for objects: for instance, it is meaninglessto ask whether the rainbow we see today is a view of the same (object as a) rainbow



1.1. LEARNING PATTERN RECOGNITION 19we saw last year.In this thesis, we study classi�cation and identi�cation. Often, both of these tasksare referred to as recognition, the term which we shall mostly employ. Indeed, whenclasses are given by training sets, the question whether there is an underlying objectproducing the observed views becomes secondary. It is then only of relevance insofaras it determines the type of prior knowledge available.
Human Object Recognition. The position that object recognition is not about re-covering physical 3-D entities, but about learning their views, and potentially also theirtransformation properties, can be supported by biological and psychological evidence.B�ultho� and Edelman (1992) have shown that when recognizing unfamiliar objects,observers exhibit viewpoint e�ects which suggest that they do not recover the 3-Dshape of objects, but rather build a representation based on the actual training views(cf. also Logothetis, Pauls, and Poggio, 1995). They thought of this representationas an interpolation mechanism (cf. Poggio and Girosi, 1990), but one could of courseconceive of more sophisticated mechanisms for combining information contained inthe training views. In the above terminology, one might argue that due to their un-familiarity, the wire frame objects of B�ultho� and Edelman (1992) make it very hardto use the transformations which form the structure of the underlying class of views.Ullman (1996) has put forward a multiple-view variant of his theory of \recognitionby alignment", where objects are recognized by aligning them with stored view tem-plates. The alignment process can make use of certain transformations speci�c to theobject in question. The results of Troje and B�ultho� (1996) have shown that thesetransformations in some cases directly operate on 2-D views, and that they are muchsimpler than transformations using an underlying 3-D model: in experiments probingface recognition under varying poses, observers performed better on views which wereobtained by simply applying a mirror reversal transformation to a previously seenview, rather than by rotating the head in depth to generate the true view of the otherside. Rao and Ballard (1997) recently proposed a model in which the \what" and the\where" pathway (Mishkin, Ungerleider, and Macko, 1983) in the visual system areconceived of as estimating object identity and transformations, respectively. Using acollection of patches taken from natural images, they construct a generative model forthe data which learns, transforms and linearly combines simple basis functions. Theirmodel, however, does not directly make use of the valuable information contained inthe temporal stream of visual data: comparing subsequent images, e.g. by optic owtechniques, would give a more direct means of constructing processing elements en-coding transformations. Indeed, in the dorsal stream (the \where" pathway), neuronshave been found coding for various types of large-�eld transformations (Du�y andWurtz, 1991). Of somewhat related interest are the large-�eld neurons in the y's vi-sual system, coding for speci�c ow �elds which are generated by the y's movementin the environment (Krapp and Hengstenberg, 1996).



20 CHAPTER 1. INTRODUCTION AND PRELIMINARIESRepresentations and Processes. The above illustrates that the question of how,given a recognition problem, the actual processing can be performed, is intimatelyrelated to underlying representations (of classes or objects), computed by some featureextraction process. A representation should satisfy certain constraints in terms ofstorage cost, computational cost and accuracy.General classes without structure are not compressible (except for a separate com-pression of the individual images). Classes with some internal structure can be com-pressed, hence a smaller representation is possible, which in turn makes generalizationto novel views possible (cf. Kolmogorov, 1965; Rissanen, 1978). This is the underlyingcomputational reason for the constructive nature of perception.If we can generate a class (e.g. an object) from some prototype views using aspeci�ed set of transformations, we can represent it as the set of prototypes plustransformations. The more prototypes we store, the less complex are the transfor-mations that we need to remember. In this sense, there is a continuum of di�erentview-based approaches. In principle, further compression is conceivable if we allowfor the construction of a suitable underlying representation. E.g., Ullman's approachof storing a 3-D model plus the set of 3-D transformations (Ullman, 1989) is cheapin terms of storage: storing these transformations is almost for free, and storing one3-D model is reasonably cheap. Constructing this representation, however, may becomputationally quite expensive. Reading out and matching 2-D views, on the otherhand, is computationally rather cheap if done in parallel neural architecture. The typeof representation to be used should thus depend on the task, e.g. on speed constraints.Indeed, proponents of view-based object recognition theories are mainly concernedwith fast recognition tasks (B�ultho� and Edelman, 1992). Moreover, the storage coststrongly depends on the task and the type of feature extraction applied to the rawdata.In some cases, we can extract features from views which allow reasonably highrecognition accuracies while enabling us to work with much simpler sets of transfor-mations. For instance, if there exists a diagnostic object feature which is visible fromall viewpoints, we only need to store the feature (e.g. the colour), the extraction pro-cess (which can be thought of as a speci�c image transformation which needs to bestored), and the fact that it may occur anywhere in the view (i.e. the set of all imageplane translations).Clearly, the set of features which are extracted from views inuences all furtherprocessing. Applied to our setting, constructing a feature representation consists oftwo parts: the features have to be extracted from a possibly large set of views, andthe transformations which connect features belonging to views of the same class haveto be computed. This may require a trade-o�: for some feature representations, theextraction process is di�cult (e.g. using correspondence methods, Beymer and Poggio,1996; Vetter and Troje, 1997), whereas the computations of transformations might besimple. A similar trade-o� exists in utilizing such a representation: for a recognitiontask done by matching, e.g., we would have to extract features from test views, andtransform them to match stored ones. Put in machine learning language, features



1.2. STATISTICAL LEARNING THEORY 21should be used which allow solving a given task within speci�ed limits on trainingtime, testing speed, error rate, and memory requirements.Implementations. So far, not much has been said about actual implementations ofrecognition systems. The present work focuses on algorithmic questions rather thanon questions of implementation, both with respect to the computational side and withrespect to the biological side of the recognition problem. The former normally neednot be justi�ed: in statistics, scienti�c studies of mere algorithms, without discussionof implementation details, are abundant. In biology, which is the main focus of interestin the group where much of the present work was carried out, the type of abstractionpresented here is much less common. Indeed, the relevance of this thesis to biologicalpattern recognition is on the level of statistical properties of problems and algorithms| not more, and not less. In our hope that this type of theoretical work should be ofinterest to people studying the brain, we concur with Barlow (1995):\If arti�cial neural nets, designed to imitate cognitive functions of thebrain, are truly performing tasks that are best formulated in statisticalterms, then is this not likely also to be true of cognitive function in gen-eral? The idea that the brain is an accomplished statistical decision-makingorgan agrees well with notions to be sketched in the last section of this[Barlow's, the author] article."To study object recognition from a statistical point of view, we shall in the followingsection briey review some of the basic concepts and results of statistical learningtheory.1.2 Statistical Learning TheoryOut of the considerable body of theory that has been developed in statistical learningtheory by Vapnik and others (e.g. Vapnik and Chervonenkis, 1968, 1974; Vapnik, 1979,1995a,b), we briey review a few concepts and results which are necessary in order tobe able to appreciate the Support Vector learning algorithm, which will be used in asubstantial part of the thesis.2For the case of two-class pattern recognition, the task of learning from examplescan be formulated in the following way: we are given a set of functionsff� : � 2 �g; f� : RN ! f�1g (1.1)and a set of examples, i.e. pairs of patterns xi and labels yi,(x1; y1); : : : ; (x`; y`) 2 RN � f�1g; (1.2)2A high-level summary is given in (Sch�olkopf, 1996).



22 CHAPTER 1. INTRODUCTION AND PRELIMINARIESeach one of them generated from an unknown probability distribution P (x; y) con-taining the underlying dependency. (Here and below, bold face characters denotevectors.) We want to learn a function f�� which provides the smallest possible valuefor the average error committed on independent examples randomly drawn from thesame distribution P , called the riskR(�) = Z 12 jf�(x)� yj dP (x; y): (1.3)The problem is that R(�) is unknown, since P (x; y) is unknown. Therefore an induc-tion principle for risk minimization is necessary.The straightforward approach to minimize the empirical riskRemp(�) = 1̀ X̀i=1 12 jf�(xi)� yij (1.4)turns out not to guarantee a small actual risk, if the number ` of training examplesis limited. In other words: a small error on the training set does not necessarilyimply a high generalization ability (i.e. a small error on an independent test set).This phenomenon is often referred to as over�tting (e.g. Bishop, 1995). To make themost out of a limited amount of data, novel statistical techniques have been developedduring the last 30 years. The Structural Risk Minimization principle (Vapnik, 1979)is based on the fact that for the above learning problem, for any � 2 � and ` > h,with a probability of at least 1� �, the boundR(�) � Remp(�) + � h̀ ; log(�)` ! (1.5)holds, where the con�dence term � is de�ned as� h̀ ; log(�)` ! = vuuth �log 2h̀ + 1�� log(�=4)` : (1.6)The parameter h is called the VC(Vapnik-Chervonenkis)-dimension of a set of func-tions. It describes the capacity of a set of functions. For binary classi�cation, h is themaximal number of points which can be separated into two classes in all possible 2hways by using functions of the learning machine; i.e. for each possible separation thereexists a function which takes the value 1 on one class and �1 on the other class.A learning machine can be thought of as a set of functions (that the machine hasat its disposal), an induction principle, and an algorithmic procedure for implementingthe induction principle on the given set of functions. Often, the term learning machineis used to refer to its set of functions | in this sense, we talk about the capacity orVC-dimension of learning machines.



1.2. STATISTICAL LEARNING THEORY 23The bound (1.5), which forms part of the theoretical basis for Support Vectorlearning, deserves some further explanatory remarks.Suppose we wanted to learn a \dependency" where P (x; y) = P (x)�P (y), i.e. wherethe pattern x contains no information about the label y, with uniform P (y). Given atraining sample of �xed size, we can then surely come up with a learning machine whichachieves zero training error. However, in order to reproduce the random labellings,this machine will necessarily require a VC-dimension which is large compared to thesample size. Thus, the con�dence term (1.6), increasing monotonically with h=`, willbe large, and the bound (1.5) will not support possible hopes that due to the smalltraining error, we should expect a small test error. This makes it understandable how(1.5) can hold independent of assumptions about the underlying distribution P (x; y):it always holds, but it does not always make a nontrivial prediction | a bound on anerror rate becomes void if it is larger than the maximum error rate. In order to getnontrivial predictions from (1.5), the function space must be restricted such that theVC-dimension is small enough (in relation to the available amount of data).3According to (1.5), given a �xed number ` of training examples, one can controlthe risk by controlling two quantities: Remp(�) and h(ff� : � 2 �0g), �0 denotingsome subset of the index set �. The empirical risk depends on the function chosenby the learning machine (i.e. on �), and it can be controlled by picking the right �.The VC-dimension h depends on the set of functions ff� : � 2 �0g which the learningmachine can implement. To control h, one introduces a structure of nested subsetsSn := ff� : � 2 �ng of ff� : � 2 �g,S1 � S2 � : : : � Sn � : : : ; (1.8)whose VC-dimensions, as a result, satisfyh1 � h2 � : : : � hn � : : : (1.9)For a given set of observations (x1; y1); :::; (x`; y`) the Structural Risk Minimizationprinciple chooses the function f�ǹ in the subset ff� : � 2 �ng for which the guaranteed3The bound (1.5), formulated in terms of the VC-dimension, is only the last element of a series oftighter bounds which are formulated in terms of other concepts. This is due to the inequalitiesH�(`) � H�ann(`) � G�(`) � h�log 2h̀ + 1� ; (` > h): (1.7)The VC-dimension h is probably the most-used and best-known concept in this row. However, theother ones lead to tighter bounds, and also play important roles in the conceptual part of statisticallearning theory: the VC-entropy H� and the Annealed VC-entropy H�ann are used to formulateconditions for the consistency of the empirical risk minimization principle, and for a fast rate ofconvergence, respectively. The Growth function G� provides both of the above, independently ofthe underlying probability measure P , i.e. independently of the data. The VC-dimension h, �nally,provides a constructive upper bound on the Growth function, which can be used to design learningmachines (for details, see Vapnik, 1995b).



24 CHAPTER 1. INTRODUCTION AND PRELIMINARIES
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FIGURE 1.1: Graphical depiction of (1.5), for �xed `. A learning machine with largercomplexity, i.e. a larger set of functions Sn, allows for a smaller training error; a lesscomplex learning machine, with a smaller Si, has smaller VC-dimension and thus providesa smaller con�dence term � (cf. (1.6)). Structural Risk Minimization picks a trade-o� inbetween these two cases by choosing the function of the learning machine f�n such thatthe risk bound (1.5) is minimal.risk bound (the right hand side of (1.5)) is minimal (cf. Fig. 1.1). The procedure ofselecting the right subset for a given amount of observations is referred to as capacitycontrol.We conclude this section by noting that analyses in other branches of learningtheory have led to similar insights in the trade-o� between reducing the training er-ror and limiting model complexity, for instance as described by regularization theory(Tikhonov and Arsenin, 1977), Minimum Description Length (Rissanen, 1978; Kol-mogorov, 1965), or the Bias-Variance Dilemma (Geman, Bienenstock, and Doursat,1992). Haykin (1994); Ripley (1996) give overviews in the context of Neural Networks.1.3 Feature Space MathematicsThe present section summarizes some mathematical preliminaries which are essentialfor both Support Vector machines (Chapter 2) and nonlinear Kernel Principal Com-



1.3. FEATURE SPACE MATHEMATICS 25ponent Analysis (Chapter 3).1.3.1 Product FeaturesSuppose we are given patterns x 2 RN where most information is contained in thed-th order products (monomials) of entries xj of x,xj1 � : : : � xjd; (1.10)where j1; : : : ; jd 2 f1; : : : ; Ng. In that case, we might prefer to extract these productfeatures �rst, and work in the feature space F of all products of d entries. In visualrecognition problems, e.g., this would amount to extracting features which are productsof individual pixels.For instance, in R2, we can collect all monomial feature extractors of degree 2 inthe nonlinear map � : R2 ! F = R3 (1.11)(x1; x2) 7! (x21; x22; x1x2): (1.12)This approach works �ne for small toy examples, but it fails for realistically sizedproblems: for N -dimensional input patterns, there existNF = (N + d� 1)!d!(N � 1)! (1.13)di�erent monomials (1.10), comprising a feature space F of dimensionality NF . Al-ready 16� 16 pixel input images and a monomial degree d = 5 yield a dimensionalityof 1010.In certain cases described below, there exists, however, a way of computing dotproducts in these high-dimensional feature spaces without explicitely mapping intothem: by means of nonlinear kernels in input space RN . Thus, if the subsequentprocessing can be carried out using dot products exclusively, we are able to deal withthe high dimensionality.The following section describes how dot products in polynomial feature spaces canbe computed e�ciently, followed by a section which discusses more general featurespaces.1.3.2 Polynomial Feature Spaces Induced by KernelsIn order to compute dot products of the form (�(x) � �(y)), we employ kernel repre-sentations of the form k(x;y) = (�(x) � �(y)); (1.14)which allow us to compute the value of the dot product in F without having to carryout the map �. This method was used by Boser, Guyon, and Vapnik (1992) to extend



26 CHAPTER 1. INTRODUCTION AND PRELIMINARIESthe Generalized Portrait hyperplane classi�er of Vapnik and Chervonenkis (1974) tononlinear Support Vector machines (Sec. 2.1). Aizerman, Braverman, and Rozonoer(1964) call F the linearization space, and use it in the context of the potential functionclassi�cation method to express the dot product between elements of F in terms ofelements of the input space. They also consider the possibility of choosing k a priori,without being directly concerned with the corresponding mapping � into F . A speci�cchoice of k might then correspond to a dot product between patterns mapped with asuitable �.What does k look like for the case of polynomial features? We start by giving anexample (Vapnik, 1995b) for N = d = 2. For the mapC2 : (x1; x2) 7! (x21; x22; x1x2; x2x1); (1.15)dot products in F take the form(C2(x) � C2(y)) = x21y21 + x22y22 + 2x1x2y1y2 = (x � y)2; (1.16)i.e. the desired kernel k is simply the square of the dot product in input space. Boser,Guyon, and Vapnik (1992) note that the same works for arbitrary N; d 2 N: as astraightforward generalization of a result proved in the context of polynomial approx-imation (Poggio, 1975, Lemma 2.1), we have:Proposition 1.3.1 De�ne Cd to map x 2 RN to the vector Cd(x) whose entries areall possible d-th degree ordered products of the entries of x. Then the correspondingkernel computing the dot product of vectors mapped by Cd isk(x;y) = (Cd(x) � Cd(y)) = (x � y)d: (1.17)
Proof. We directly compute(Cd(x) � Cd(y)) = NXj1;:::;jd=1 xj1 � : : : � xjd � yj1 � : : : � yjd (1.18)= 0@ NXj=1xj � yj1Ad = (x � y)d: (1.19)ut Instead of ordered products, we can use unordered ones to obtain a map �d whichyields the same value of the dot product. To this end, we have to compensate forthe multiple occurence of certain monomials in Cd by scaling the respective monomial



1.3. FEATURE SPACE MATHEMATICS 27entries of �d with the square roots of their numbers of occurence. Then, by thisde�nition of �d, and (1.17),(�d(x) ��d(y)) = (Cd(x) � Cd(y)) = (x � y)d: (1.20)For instance, if n of the ji in (1.10) are equal, and the remaining ones are di�erent,then the coe�cient in the corresponding component of �d is q(d� n+ 1)! (for thegeneral case, cf. Smola, Sch�olkopf, and M�uller, 1997). For �2, this simply means that(Vapnik, 1995b) �2(x) = (x21; x22;p2 x1x2): (1.21)If x represents an image with the entries being pixel values, we can use the kernel(x � y)d to work in the space spanned by products of any d pixels | provided that weare able to do our work solely in terms of dot products, without any explicit usage of amapped pattern �d(x). Using kernels of the form (1.17), we take into account higher-order statistics without the combinatorial explosion (cf. (1.13)) of time and memorycomplexity which goes along already with moderately high N and d.To conclude this section, note that it is possible to modify (1.17) such that it mapsinto the space of all monomials up to degree d, de�ning (Vapnik, 1995b)k(x;y) = (x � y+ 1)d: (1.22)
1.3.3 Feature Spaces Induced by Mercer KernelsThe question which function k does correspond to a dot product in some space F hasbeen discussed by Boser, Guyon, and Vapnik (1992); Vapnik (1995b). To construct amap � induced by a kernel k, i.e. a map � such that k computes the dot product inthe space that � maps to, they use Mercer's theorem of functional analysis (Courantand Hilbert, 1953):Proposition 1.3.2 If k is a continuous symmetric kernel of a positive4 integral op-erator K, i.e. (Kf)(y) = ZC k(x;y)f(x) dx (1.23)with ZC�C k(x;y)f(x)f(y) dx dy � 0 (1.24)for all f 2 L2(C) (C being a compact subset of RN), it can be expanded in a uniformly4When referring to operators, the term positive is always meant in the sense stated here. If wetalk about positive de�nite operators, we will express this explicitely.



28 CHAPTER 1. INTRODUCTION AND PRELIMINARIESconvergent series (on C � C) in terms of Eigenfunctions  j and positive Eigenvalues�j, k(x;y) = NFXj=1�j j(x) j(y); (1.25)where NF � 1.Note that originally proven for the case where C = [a; b], this Proposition also holdstrue for general compact spaces (Dunford and Schwartz, 1963).For the converse of Proposition 1.3.2, cf. Appendix D.1.From (1.25), it is straightforward to construct a map �, mapping into a potentiallyin�nite-dimensional l2 space, which does the job. For instance, we may use� : x 7! (q�1 1(x);q�2 2(x); : : :): (1.26)We thus have the following result (Boser, Guyon, and Vapnik, 1992):5Proposition 1.3.3 If k is a continuous kernel of a positive integral operator (condi-tions as in Proposition 1.3.2), one can construct a mapping � into a space where kacts as a dot product, (�(x) � �(y)) = k(x;y): (1.27)Besides (1.17), Boser, Guyon, and Vapnik (1992) and Vapnik (1995b) suggest theusage of Gaussian radial basis function kernels (Aizerman, Braverman, and Rozonoer,1964) k(x;y) = exp �kx� yk22 �2 ! (1.28)and sigmoid kernels k(x;y) = tanh(�(x � y) + �): (1.29)Note that all these kernels have the convenient property of unitary invariance, i.e.k(x;y) = k(Ux; Uy) if U> = U�1 (if we consider complex numbers, then U� insteadof U> has to be used). The radial basis function kernel additionally is translationinvariant.5In order to identify k with a dot product in another space, it would be su�cient to have pointwiseconvergence of (1.25). Uniform convergence lets us make an assertion which goes further: given anaccuracy level � > 0, there exists an n 2 N such that even if the range of � is in�nite-dimensional, kcan be approximated within accuracy � as a dot product in Rn, between images of�n : x 7! (p�1 1(x); : : : ;p�n n(x)):



1.3. FEATURE SPACE MATHEMATICS 291.3.4 The Connection to Reproducing Kernel Hilbert SpacesThe feature space that � maps into is a reproducing kernel Hilbert space (RKHS).To see this, we follow Wahba (1973) and recall that a RKHS is a Hilbert space offunctions f on some set C such that all evaluation functionals f 7! f(y) (y 2 C) arecontinuous. In that case, by the Riesz representation theorem (e.g. Reed and Simon,1980), for each y 2 C there exists a unique function of x, call it k(x;y), such thatf(y) = hf; k(:;y)i (1.30)(here, k(:;y) is the function on C obtained by �xing the second argument of k toy, and h:; :i is the dot product of the RKHS). In view of this property, k is called areproducing kernel.Note that by (1.30), hf; k(:;y)i = 0 for all y implies that f is identically zero.Hence the set of functions fk(:;y) : y 2 Cg spans the whole RKHS. The dot producton the RKHS thus only needs to be de�ned on fk(:;y) : y 2 Cg and can then beextended to the whole RKHS by linearity and continuity. From (1.30), it follows thatin particular hk(:;x); k(:;y)i = k(y;x) (1.31)for all x;y 2 C (this implies that k is symmetric). Note that this means that anyreproducing kernel k corresponds to a dot product in another space.To establish a connection to the dot product in a feature space F , we next assumethat k is a Mercer kernel (cf. Proposition 1.3.2). First note that it is possible toconstruct a dot product such that k becomes a reproducing kernel for a Hilbert spaceof functions f(x) = 1Xi=1 aik(x;xi) = 1Xi=1 ai NFXj=1�j j(x) j(xi): (1.32)Using only linearity, which holds for any dot product h:; :i, we havehf; k(:;y)i = 1Xi=1 ai NFXj;n=1�j j(xi)h j;  ni�n n(y): (1.33)Since k is a symmetric kernel, the  i (i = 1; : : : ; NF ) can be chosen to be orthogonalwith respect to the dot product in L2(C). Hence it is straightforward to construct adot product h:; :i such that h j;  ni = �jn=�j (1.34)(using the Kronecker symbol �jn), in which case (1.33) reduces to the reproducingkernel property (1.30) (using (1.32)).



30 CHAPTER 1. INTRODUCTION AND PRELIMINARIESTo write h:; :i as a dot product of coordinate vectors, we thus only need to expressthe functions of the RKHS in the basis (p�n n)n=1;:::;NF , which is orthonormal withrespect to h:; :i, i.e. f(x) = NFXn=1�nq�n n(x): (1.35)To obtain the coordinates �n, we compute, using (1.34),�n = hf;q�n ni = h 1Xi=1 ai NFXj=1�j j(xi) j;q�n ni = q�n 1Xi=1 ai n(xi): (1.36)Comparing (1.35) and (1.26), we see that F has the structure of a RKHS in the sensethat for f and g given by (1.35) andg(x) = NFXj=1�jq�j j(x); (1.37)we have (� � �) = hf; gi: (1.38)Note, moreover, that due to (1.35), we have f(x) = (� � �(x)) in F . Comparing to(1.30), this shows that �(x) is nothing but the coordinate representation of the kernelas a function of one argument (cf. also (1.27)).To conclude the brief detour into RKHS theory, note that in (1.30), k does nothave to be linear in its arguments; however, its action as an evaluation functional inHilbert space is linear | this is the underlying reason why Mercer kernels computebilinear dot products in Hilbert spaces: the dot product is obtained by combining twoevaluations of a possibly nonlinear function in a suitable Hilbert space.1.3.5 Kernel Values as Pairwise SimilaritiesIn practice, we are given a �nite amount of data x1; : : : ;x`. The following simpleobservation shows that even if we do not want to (or are unable to) analyse a givenkernel k analytically, we can still compute a map � such that k corresponds to a dotproduct in the linear span of the �(xi):Proposition 1.3.4 Suppose the data x1; : : : ;x` and the kernel k are such that thematrix Kij = k(xi;xj) (1.39)is positive. Then it is possible to construct a map � into a feature space F such thatk(xi;xj) = (�(xi) � �(xj)): (1.40)



1.3. FEATURE SPACE MATHEMATICS 31Conversely, for a map � into some feature space F , the matrix Kij = (�(xi) � �(xj))is positive.Proof. Being positive, K can be diagonalized asK = SDS> (1.41)with an orthogonal matrix S and a diagonal matrix D with nonnegative entries. Thenk(xi;xj) = (SDS>)ij (1.42)= X̀k=1SikDkk �S>�kj (1.43)= X̀k=1SikDkkSjk (1.44)= (si �Dsj); (1.45)where we have de�ned the si as the rows of S (note that the columns of S would beK's Eigenvectors). Therefore, K is the dot product matrix (or Gram matrix) of thevectors pDkk � si.6 Hence the map �, de�ned on the xi by� : xi 7! qDkk � si; (1.46)does the job (cf. (1.40)).Note that if the xi are linearly dependent, it will typically not be the case that �can be extended to a linear map.For the converse, assume an arbitrary � 2 R`, and computeX̀i;j=1�i�jKij = 0@X̀i=1 �i�(xi) � X̀j=1�j�(xj)1A � 0: (1.47)utIn particular, this result implies that given data x1; : : : ;x`, and a kernel k which givesrise to a positive matrix K, it is always possible to construct a feature space F ofdimensionality � ` that we are implicitely working in when using kernels.If we perform an algorithm which requires k to correspond to a dot product in someother space (as for instance the Support Vector algorithm to be described below), itcould happen that even though k does not satisfy Mercer's conditions in general,it still gives rise to a positive matrix K for the given training data. In that case,6The fact that every positive matrix is the Gram matrix of some set of vectors is well-known inlinear algebra (see e.g. Bhatia, 1997, Exercise I.5.10).



32 CHAPTER 1. INTRODUCTION AND PRELIMINARIESProposition 1.3.4 tells us that nothing will go wrong during training when we workwith these data. Moreover, if a kernel leads to a matrix K with some small negativeEigenvalues, we can add a small multiple of some positive de�nite kernel to obtain apositive matrix.7Note, �nally, that Proposition 1.3.4 does not require the x1; : : : ;x` to be elementsof a vector space. They could be any set of objects which, for some function k (whichcould be thought of as a similarity measure for the objects), gives rise to a positivematrix (k(xi;xj))ij. Methods based on pairwise distances or similarities have recentlyattracted attention (Hofmann and Buhmann, 1997). They have the advantage of beingapplicable also in cases where it is hard to come up with a sensible vector representationof the data (e.g. in text clustering).

7For instance, for the hyperbolic tangent kernel (1.29), Mercer's conditions have not been veri�ed.It does not satisfy them in general: in a series of experiments with 2-D toy data, we noticed that thedot product matrix in K had some negative Eigenvalues, for most choices of � that we investigated(except for large negative values). Nevertheless, this kernel has successfully been used in SupportVector learning (cf. Sec. 2.3). To understand the latter, note that by shifting the kernel (i.e. choosingdi�erent values of �), one can approximate the shape of the polynomial kernel (which is known tobe positive), as a function of (x � y) (within a certain range), up to a vertical o�set. This o�set isirrelevant in SV learning: due to (2.15), adding a constant to all elements of the dot product matrixdoes not change the solution.



Chapter 2Support Vector MachinesThis chapter discusses theoretical and empirical issues related to the Support Vector(SV) algorithm. This algorithm, reviewed in Sec. 2.1, is based on the results oflearning theory outlined in Sec. 1.2. Via the use of kernel functions (Sec. 1.3), it givesrise to a number of di�erent types of pattern classi�ers (Vapnik and Chervonenkis,1974; Boser, Guyon, and Vapnik, 1992; Cortes and Vapnik, 1995; Vapnik, 1995b).The original contribution of the present chapter is largely empirical. Using ob-ject and digit recognition tasks, we show that the algorithm allows us to constructhigh-accuracy polynomial classi�ers, radial basis function classi�ers, and perceptrons(Sections 2.2 and 2.3), relying on almost identical subsets of the training set, theirSupport Vector sets (Sec. 2.4). These Support Vector Sets are shown to containall the information necessary to solve a given classi�cation task. To understand therelationship between SV methods and classical techniques, we then describe a studycomparing SV machines with Gaussian kernels to classical radial basis function net-works, with results favouring the SV approach. Following this, Sec. 2.6 shows thatone can utilize the error bounds of learning theory to select values for free parametersin the SV algorithm, as for instance the degree of the polynomial kernel which willperform best on a test set (Sch�olkopf, Burges, and Vapnik, 1995; Blanz, Sch�olkopf,B�ultho�, Burges, Vapnik, and Vetter, 1996; Sch�olkopf, Sung, Burges, Girosi, Niyogi,Poggio, and Vapnik, 1996c). Finally, at the end of the chapter, we summarize variousways of understanding and interpreting the high generalization performance of SVmachines (Sec. 2.7).2.1 The Support Vector AlgorithmAs a basis for the material in the following section, we �rst need to describe the SValgorithm in some detail. The original treatments are due to Vapnik and Chervonenkis(1974), Boser, Guyon, and Vapnik (1992), Guyon, Boser, and Vapnik (1993), Cortesand Vapnik (1995), and Vapnik (1995b).We describe the SV algorithm in four steps. In Sec. 2.1.1, a structure of decisionfunctions is described which is su�ciently simple to admit the formulation of a boundon their VC-dimension. Based on this result, the optimal margin algorithm minimizes33
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FIGURE 2.1: A separating hyperplane, written in terms of a weight vectorw and a thresholdb. Note that by multiplying both w and b with the same nonzero constant, we obtain thesame hyperplane, represented in terms of di�erent parameters. Fig. 2.2 shows how toeliminate this scaling freedom.the VC-dimension for this class of decision functions (Sec. 2.1.2). This algorithm isthen generalized in two steps in order to obtain SV machines: nonseparable classi�ca-tion problems are dealt with in Sec. 2.1.3, and nonlinear decision functions, retainingthe VC-dimension bound, are described in Sec. 2.1.4.To be able to utilize the results of Sec. 1.3, we shall formulate the algorithm interms of dot products in some space F . Initially, we think of F as the input space.In Sec. 2.1.4, we will substitute kernels for dot products, in which case F becomes afeature space nonlinearly related to input space.2.1.1 A Structure on the Set of HyperplanesEach particular choice of a structure (1.8) gives rise to a learning algorithm, consistingof performing Structural Risk Minimization in the given structure of sets of functions.The SV algorithm is based on a structure on the set of separating hyperplanes.To describe it, �rst note that given a dot product space F and a set of patternvectors z1; : : : ; zr 2 F; any hyperplane can be written asfz 2 F : (w � z) + b = 0g: (2.1)In this formulation, we still have the freedom to multiply w and b with the samenonzero constant (Fig. 2.1). However, the hyperplane corresponds to a canonical pair
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FIGURE 2.2: By requiring the scaling of w and b to be such that the point(s) closest to thehyperplane satisfy j(w �zi)+ bj = 1, we obtain a canonical form (w; b) of a hyperplane (cf.Fig. 2.1). Note that in this case, the margin, measured perpendicularly to the hyperplane,equals 2=kwk, which can be seen by considering two opposite points which precisely satisfyj(w � zi) + bj = 1.(w; b) 2 F �R if we additionally requiremini=1;:::;r j(w � zi) + bj = 1; (2.2)i.e. that the scaling of w and b be such that the point closest to the hyperplane hasa distance of 1=kwk (Fig. 2.2).1 Thus, the margin between the two classes, measuredperpendicular to the hyperplane, is at least 2=kwk. The possibility of introducing astructure on the set of hyperplanes is based on the following result (Vapnik, 1995b):Proposition 2.1.1 Let R be the radius of the smallest ball BR(a) = fz 2 F : kz �ak < Rg (a 2 F ) containing the points z1; : : : ; zr, and letfw;b = sgn ((w � z) + b) (2.3)be canonical hyperplane decision functions de�ned on these points. Then the set ffw;b :kwk � Ag has a VC-dimension h satisfyingh < R2A2 + 1: (2.4)1The condition (2.2) still allows two such pairs: given a canonical hyperplane (w; b), another onesatisfying (2.2) is given by (�w;�b). However, we do not mind this remaining ambiguity: �rst, thefollowing Proposition only makes use of kwk, which coincides in both cases, and second, these twohyperplanes correspond to di�erent decision functions sgn((w � z) + b).



36 CHAPTER 2. SUPPORT VECTOR MACHINESNote. Dropping the condition kwk � A leads to a set of functions whose VC-dimensionequals NF + 1, where NF is the dimensionality of F. Due to kwk � A, we can getVC-dimensions which are much smaller than NF , enabling us to work in very highdimensional spaces | remember that the risk bound (1.5) does not explicitely dependupon NF , but on the VC-dimension.To make Proposition 2.1.1 intuitively plausible, note that due to the inverse pro-portionality of margin and kwk, (2.4) essentially states that by requiring a large lowerbound on the margin (i.e. a small A), we obtain a small VC-dimension. Conversely, byallowing for separations with small margin, we can potentially separate a much largerclass of problems (i.e. a larger class of possible labellings of the training data, cf. thede�nition of the VC-dimension, following (1.6)).Recalling that (1.5) tells us to keep both the training error and the VC-dimensionsmall in order to achieve high generalization ability, we conclude that hyperplane deci-sion functions should be constructed such that they maximize the margin, and at thesame time separate the training data with as few exceptions as possible. Sections 2.1.2and 2.1.3 will deal with these two issues, respectively.2.1.2 Optimal Margin HyperplanesSuppose we are given a set of examples (z1; y1); : : : ; (z`; y`); zi 2 F; yi 2 f�1g, andwe want to �nd a decision function fw;b = sgn ((w � z) + b) with the propertyfw;b(zi) = yi; i = 1; : : : ; `: (2.5)If this function exists (the nonseparable case shall be dealt with in the next section),canonicality (2.2) impliesyi � ((zi �w) + b) � 1; i = 1; : : : ; `: (2.6)As an aside, note that out of the two canonical forms of the same hyperplane (w; b),(�w;�b), only one will satisfy equations (2.5) and (2.6). The existence of class labelsthus allows to distinguish two orientations of a hyperplane.Following Proposition 2.1.1, a separating hyperplane which generalizes well canthus be found by minimizing �(w) = 12kwk2 (2.7)subject to (2.6). To solve this convex optimization problem, one introduces a La-grangian L(w; b;�) = 12kwk2 � X̀i=1 �i (yi((zi �w) + b)� 1) (2.8)with multipliers �i � 0. The Lagrangian L has to be maximized with respect to �i



2.1. THE SUPPORT VECTOR ALGORITHM 37and minimized with respect to w and b. The condition that at the saddle point, thederivatives of L with respect to the primal variables must vanish,@@bL(w; b;�) = 0; @@wL(w; b;�) = 0; (2.9)leads to X̀i=1 �iyi = 0 (2.10)and w = X̀i=1 �iyizi: (2.11)The solution vector thus has an expansion in terms of training examples. Note that al-though the solution w is unique (due to the strict convexity of (2.7), and the convexityof (2.6)), the coe�cients �i need not be.According to the Kuhn-Tucker theorem of optimization theory (e.g. Bertsekas,1995), at the saddle point only those Lagrange multipliers �i can be nonzero whichcorrespond to constraints (2.6) which are precisely met, i.e.�i � [yi((zi �w) + b)� 1] = 0; i = 1; : : : ; `: (2.12)The patterns zi for which �i > 0 are called Support Vectors.2According to (2.12), they lie exactly at the margin.3 All remaining examples of thetraining set are irrelevant: their constraint (2.6) is satis�ed automatically, and theydo not appear in the expansion (2.11).4This leads directly to an upper bound on the generalization ability of optimal mar-gin hyperplanes: suppose we use the leave-one-out method to estimate the expectedtest error (e.g. Vapnik, 1979). If we leave out a pattern zi� and construct the solutionfrom the remaining patterns, there are several possibilities (cf. (2.6)):2This terminology is related to corresponding terms in the theory of convex sets, relevant to convexoptimization (e.g. Luenberger, 1973; Bertsekas, 1995). Given any boundary point of a convex set C,there always exists a hyperplane separating the point from the interior of the set. This is called asupporting hyperplane.SVs do lie on the boundary of the convex hulls of the two classes, thus they possess supportinghyperplanes. The SV optimal hyperplane is the hyperplane which lies in the middle of the two parallelsupporting hyperplanes (of the two classes) with maximum distance.Vice versa, from the optimal hyperplane one can obtain supporting hyperplanes for all SVs of bothclasses by shifting it by 1=kwk in both directions.3Note that this implies that the solution (w; b), where b is computed using the fact that yi((w �zi) + b) = 1 for SVs, is in canonical form with respect to the training data. (This makes use of thereasonable assumption that the training set contains both positive and negative examples.)4In a statistical mechanics framework, Anlauf and Biehl (1989) have put forward a similar argu-ment for the optimal stability perceptron, also computed by contrained optimization.



38 CHAPTER 2. SUPPORT VECTOR MACHINES1. yi� � ((zi� �w) + b) > 1, i.e. the pattern is classi�ed correctly and does not lie onthe margin. These are patterns that would not have become Support Vectorsanyway.2. yi� � ((zi� �w) + b) = 1, i.e. zi� exactly meets the constraint (2.6). In that case,the solution w does not change, even though the coe�cients �i in the dualformulation of the optimization problem might change: namely, if zi� mighthave become a Support Vector (i.e. �i� > 0) if it had been kept in the trainingset. In that case, the fact that the solution is the same no matter whether zi�is in the training set or not means that zi� can be written as PSVs �iyizi with�i � 0. Note that this is not equivalent to saying that zi� can be written assome linear combination of the remaining Support Vectors: since the sign of thecoe�cients in the linear combination is determined by the class of the respectivepattern, not any linear combination will do. Strictly speaking, zi� must lie inthe cone spanned by the yizi, where zi are all Support Vectors.53. 1 > yi� � ((zi� �w) + b) > 0, i.e. zi� lies within the margin, but still on the correctside of the decision boundary. In that case, the solution looks di�erent from theone obtained if zi� was in the training set (for, in that case, zi� would satisfy(2.6) after training), but classi�cation is nevertheless correct.4. 0 > yi� � ((zi� �w) + b). In that case, zi� will be classi�ed incorrectly.Note that the cases 3 and 4 necessarily correspond to examples which would havebecome SVs if kept in the training set; case 2 potentially includes such cases. However,only case 4 leads to an error in the leave-one-out procedure. Consequently, we havethe following result on the generalization error of optimal margin classi�ers (Vapnikand Chervonenkis, 1974):6Proposition 2.1.2 The expectation of the number of Support Vectors obtained duringtraining on a training set of size `, divided by `�1, is an upper bound on the expectedprobability of test error.A sharper bound can be formulated by making a further distinction in case 2, betweenSVs that must occur in the solution, and those that can be expressed in terms of theother SVs (Vapnik and Chervonenkis, 1974).Substituting the conditions for the extremum, (2.10) and (2.11), into the La-grangian (2.8), one derives the dual form of the optimization problem: maximizeW (�) = X̀i=1 �i � 12 X̀i;j=1�i�jyiyj(zi � zj) (2.13)5Possible non-uniquenesses of the solution's expansion in terms of SVs are related to zero Eigenval-ues of Kij = yiyjk(xi;xj), cf. Proposition 1.3.4. Note, however, the above caveat on the distinctionbetween linear combinations and linear combinations with coe�cients of �xed sign.6It also holds for the generalized versions of optimal margin classi�ers explained in the followingsections.



2.1. THE SUPPORT VECTOR ALGORITHM 39subject to the constraints �i � 0; i = 1; : : : ; `; (2.14)X̀i=1 �iyi = 0: (2.15)On substitution of the expansion (2.11) into the decision function (2.3), we obtain anexpression which can be evaluated in terms of dot products between the pattern to beclassi�ed and the Support Vectors,f(z) = sgn X̀i=1 �iyi(z � zi) + b! : (2.16)It is interesting to note that the solution has a simple physical interpretation(Burges and Sch�olkopf, 1997). If we assume that each Support Vector zj exerts aperpendicular force of size �j and sign yj on a solid plane sheet lying along the hyper-plane w �z+ b = 0, then the solution satis�es the requirements of mechanical stability.The constraint (2.15) translates into the forces on the sheet summing to zero; and(2.11) implies that the torques zi � �iyiw=kwk also sum to zero. This mechanicalanalogy illustrates the physical meaning of the term Support Vector.2.1.3 Soft Margin HyperplanesIn practice, a separating hyperplane often does not exist. To allow for the possibilityof examples violating (2.6), Cortes and Vapnik (1995) introduce slack variables�i � 0; i = 1; : : : ; `; (2.17)and use relaxed separation constraints (cf. (2.6))yi((zi �w) + b) � 1� �i; i = 1; : : : ; `: (2.18)The SV approach to minimizing the guaranteed risk bound (1.5) consists of the fol-lowing: minimize �(w; �) = 12kwk2 +  X̀i=1 �i (2.19)subject to the constraints (2.17) and (2.18) (cf. (2.7)). Due to (2.4), minimizing the�rst term is related to minimizing the VC-dimension of the considered class of learningmachines, thereby minimizing the second term of the bound (1.5) (it also amounts tomaximizing the separation margin, cf. the remark following (2.2), and Fig. 2.2). ThetermPì=1 �i, on the other hand, is an upper bound on the number of misclassi�cationson the training set (cf. (2.18)) | this controls the empirical risk term in (1.5). For a



40 CHAPTER 2. SUPPORT VECTOR MACHINESsuitable positive constant , this approach therefore constitutes a practical implemen-tation of Structural Risk Minimization on the given set of functions.7 Note, however,that Pì=1 �i is signi�cantly larger than the number of errors if many of the �i attainlarge values, i.e. if the classes to be separated strongly overlap, for instance due tonoise. In these cases, there is no guarantee that the hyperplane will generalize well.As in the separable case (2.11), the solution can be shown to have an expansionw = X̀i=1 �iyizi; (2.20)where nonzero coe�cients �i can only occur if the corresponding example (zi; yi) pre-cisely meets the constraint (2.18). The coe�cients �i are found by solving the followingquadratic programming problem: maximizeW (�) = X̀i=1 �i � 12 X̀i;j=1�i�jyiyj(zi � zj) (2.21)subject to the constraints 0 � �i � ; i = 1; : : : ; `; (2.22)X̀i=1 �iyi = 0: (2.23)2.1.4 Nonlinear Support Vector MachinesAlthough we have already introduced the concept of Support Vectors, one crucialingredient of SV machines in their full generality is still missing: to allow for muchmore general decision surfaces, one can �rst nonlinearly transform a set of input vectorsx1; : : : ;x` into a high-dimensional feature space by a map � : xi 7! zi and then do alinear separation there.Note that in all of the above, we made no assumptions on the dimensionality ofF . We only required F to be equipped with a dot product. The patterns zi that wetalked about in the previous sections thus need not coincide with the input patterns.They can equally well be the results of mapping the original input patterns xi into ahigh-dimensional feature space.Maximizing the target function (2.21) and evaluating the decision function (2.16)then requires the computation of dot products (�(x) � �(xi)) in a high-dimensionalspace. Under Mercer's conditions, given in Proposition 1.3.2, these expensive calcula-tions can be reduced signi�cantly by using a suitable function k such that(�(x) ��(xi)) = k(x;xi); (2.24)7It slightly deviates from the Structural Risk Minimization (SRM) Principle in that (a) it doesnot use the bound (1.5), but a related quantity (2.19) which can be minimized e�ciently, and (b) theSRM Principle strictly speaking requires the structure of sets of functions to be �xed a priori. Formore details, cf. Vapnik (1995b); Shawe-Taylor, Bartlett, Williamson, and Anthony (1996).
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FIGURE 2.3: By mapping the input data (top left) nonlinearly (via �) into a higher-dimensional feature space F (here: R3), and constructing a separating hyperplane there(bottom left), an SV machine (top right) corresponds to a nonlinear decision surface ininput space (here: R2, bottom right).leading to decision functions of the formf(x) = sgn X̀i=1 yi�i � k(x;xi) + b! : (2.25)Consequently, everything that has been said about the linear case also appliesto nonlinear cases obtained by using a suitable kernel k instead of the Euclideandot product (Fig. 2.3). By using di�erent kernel functions, the SV algorithm canconstruct a variety of learning machines (Fig. 2.4), some of which coincide with classicalarchitectures:
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FIGURE 2.4: Architecture of SV machines. The kernel function k is chosen a priori; itdetermines the type of classi�er (e.g. polynomial classi�er, radial basis function classi�er,or neural network). All other parameters (number of hidden units, weights, threshold b)are found during training by solving a quadratic programming problem. The �rst layerweights xi are a subset of the training set (the Support Vectors); the second layer weights�i = yi�i are computed from the Lagrange multipliers (cf. (2.25)).Polynomial classi�ers of degree d:k(x;xi) = (x � xi)d (2.26)
Radial basis function classi�ers:k(x;xi) = exp ��kx� xik2=c� (2.27)
Neural networks: k(x;xi) = tanh(� � (x � xi) + �) (2.28)To �nd the decision function (2.25), we maximize (cf. (2.21))W (�) = X̀i=1 �i � 12 X̀i;j=1�i�jyiyjk(xi;xj) (2.29)



2.1. THE SUPPORT VECTOR ALGORITHM 43subject to the constraints (2.22) and (2.23). Since k is required to satisfy Mercer'sconditions, it corresponds to a dot product in another space (2.24), thus Kij :=(yiyjk(xi;xj))ij is a positive matrix, providing us with a problem that can be solvede�ciently. To see this, note that (cf. Proposition 1.3.4)X̀i;j=1�i�jyiyjk(xi;xj) = 0@X̀i=1 �iyi�(xi) � X̀j=1�jyj�(xj)1A � 0 (2.30)for all � 2 R`.To compute the threshold b, one takes into account that due to (2.18), for SupportVectors xj for which �j = 0, we haveX̀i=1 yi�i � k(xj;xi) + b = yj: (2.31)Thus, the threshold can for instance be obtained by averagingb = yj � X̀i=1 yi�i � k(xj;xi) (2.32)over all Support Vectors xj (i.e. 0 < �j) with �j < .Figure 2.5 shows how a simple binary toy problem is solved by a Support Vectormachine with a radial basis function kernel (2.27).2.1.5 SV Regression EstimationThis thesis is primarily concerned with pattern recognition. Nevertheless, we brieymention the case of SV regression (Vapnik, 1995b; Smola, 1996; Vapnik, Golowich,and Smola, 1997). To estimate a linear regression (Fig. 2.6)f(z) = (w � z) + b (2.33)with precision ", one minimizes�(w; �; ��) = 12kwk2 +  X̀i=1(�i + ��i ) (2.34)subject to ((w � zi) + b)� yi � "+ �i (2.35)yi � ((w � zi) + b) � "+ ��i (2.36)�i; ��i � 0 (2.37)
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FIGURE 2.5: Example of a Support Vector classi�er found by using a radial basis functionkernel k(x;y) = exp(�kx � yk2). Both coordinate axes range from -1 to +1. Circlesand disks are two classes of training examples; the middle line is the decision surface; theouter lines precisely meet the constraint (2.6). Note that the Support Vectors found bythe algorithm (marked by extra circles) are not centers of clusters, but examples which arecritical for the given classi�cation task (cf. Sec. 2.5). Grey values code the modulus ofthe argument Pì=1 yi�i � k(x;xi) + b of the decision function (2.25). (From Sch�olkopf,Burges, and Vapnik (1996a).)for all i = 1; : : : ; `.Generalization to nonlinear regression estimation is carried out using kernel func-tions, in complete analogy to the case of pattern recognition. A suitable choice ofthe kernel function then allows the construction of multi-dimensional splines (Vapnik,Golowich, and Smola, 1997).Di�erent types of loss functions can be utilized to cope with di�erent types of noisein the data (M�uller, Smola, R�atsch, Sch�olkopf, Kohlmorgen, and Vapnik, 1997; Smolaand Sch�olkopf, 1997b).2.1.6 Multi-Class Classi�cationTo get k-class classi�ers, we construct a set of binary classi�ers f 1; : : : ; fk, each trainedto separate one class from the rest, and combine them by doing the multi-class clas-si�cation according to the maximal output before applying the sgn function, i.e. by
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FIGURE 2.6: In SV regression, a desired accuracy " is speci�ed a priori. It is then attemptedto �t a tube with radius " to the data. The trade-o� between model complexity and pointslying outside of the tube (with positive slack variables �) is determined by minimizing(2.34).taking argmaxj=1;:::;kgj(x); where gj(x) = X̀i=1 yi�ji � k(x;xi) + bj (2.38)(note that f j(x) = sgn(gj(x)), cf. (2.25)). The values gj(x) can also be used forreject decisions (e.g. Bottou et al., 1994), for instance by considering the di�erencebetween the maximum and the second highest value as a measure of con�dence in theclassi�cation.In the following sections, we shall report experimental results obtained with the SValgorithm. We used the Support Vector algorithm with standard quadratic program-ming techniques8 to construct polynomial, radial basis function and neural networkclassi�ers. This was done by choosing the kernels (2.26), (2.27), (2.28) in the decisionfunction (2.25) and in the function (2.29) to be maximized under the constraints (2.22)and (2.23). We shall start with object recognition experiments (Sec. 2.2), and thenmove to handwritten digit recognition (Sec. 2.3).8An existing implementation at AT&T Bell Labs was used, largely programmed by L. Bottou,C. Burges, and C. Cortes.
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FIGURE 2.7: Examples from the entry level (top) and animal (bottom) databases. Left:rendered views of two 3-D models; right: 16� 16 downsampled images, and four 16� 16downsampled edge detection patterns.2.2 Object Recognition Results2.2.1 Entry-Level and Animal RecognitionFor purposes of psychophysical and computational studies, the object recognitiongroup at the Max-Planck-Institut f�ur biologische Kybernetik has compiled three data-bases of rendered 3D CAD models. The entry level database (see Appendix A forsnapshots and further description) comprises views of 25 3-D object models, whichin psychophysical experiments were found to belong to di�erent entry level categories(Liter et al., 1997). Objects tend to get identi�ed by humans �rst at a particular levelof abstraction which is neither the most general nor the most speci�c, e.g. an objectmight be identi�ed �rst as an apple, rather than as a piece of fruit or as a cox orange.For a discussion of this concept, referred to as entry (or basic) level, see (Jolicoeur,Gluck, and Kosslyn, 1984; Rosch, Mervis, Gray, Johnson, and Boyes-Braem, 1976).In subordinate level recognition, on the other hand, �ner distinctions between objectssharing the same entry level become relevant, as for instance those between di�erenttypes of birds contained in the second database, the animal database (Appendix A).It should be noted, however, that the animal database does not pose a purely subor-dinate level recognition task, since many of its animals are also distinct on the entrylevel. The third MPI database, containing 25 chairs, however, can be considered asubordinate level database. We will use this one in Sec. 2.2.2.In order to recognize the objects from all orientations of the upper viewing hemi-sphere, a fairly complex decision surface in high-dimensional space must be learnt.The objects were realistically rendered and then downsampled. Compared to manyreal-world databases, the database should be considered as containing relatively lit-tle noise; in particular, they do not contain wrongly labeled patterns. Under these



2.2. OBJECT RECOGNITION RESULTS 47circumstances, we reasoned that it should be possible to separate the data with zerotraining error even with moderate classi�er complexity, and we decided to determinethe value of the constant  (cf. (2.19)) by the following heuristic: out of all values 10n,with integer n, we chose the smallest one which made the problem separable. On theentry level databases, this led to  = 1000, on the animal databases, to  = 100. Ofboth databases, we used 12 variants, obtained by� choosing one of three database sizes: 25, 89, (regularly spaced) or 100 (random,uniformly distributed) views per object;� choosing either grey-scale images or binarized silhouette images (both in down-sampled versions); and� using just 16�16 resolution images, obtained from the original images by down-sampling, or additionally four more 16 � 16 patterns, containing downsampledversions of edge detection results obtained from the original images. Note thatin the latter case, the resulting 1280-dimensional vectors contain informationwhich is not contained in the 16 � 16 images, since the edge detection, involv-ing a (nonlinear) modulus operation, is done before downsampling (cf. Blanz,Sch�olkopf, B�ultho�, Burges, Vapnik, and Vetter, 1996).For more details on the databases, see (Liter et al., 1997), and Appendix A. Exampleimages of the original models, and of the downsampled images and edge detectionpatterns for the entry level and the animal databases are given Fig. 2.7.We trained polynomial SV machines on these 25-class recognition tasks, and ob-tained accuracies which in some cases exceeded 99% (see Table 2.1). A few aspects ofthe results deserve being pointed out:Performance. The highest recognition rates were obtained using polynomial SV clas-si�ers of degrees around 20; however, we found no pronounced minimum. Generally,all of the higher degrees a�orded high accuracies. The regularly spaced 89-view-per-object set led to higher accuracies than the random 100-view-per-object set. Thissuggests that regular spacing of the views on the viewing sphere corresponds to auseful spacing of the knots (or centers) of the approximating functions in RN . Edgedetection information signi�cantly cuts errors rates, in many cases by a factor of twoor more. Generally, accuracies were higher for grey-scale images than they were for sil-houettes. The di�erences, however, were not large: high accuracies were also obtainedfor silhouettes. To understand this, we have to note that the thresholding operationused to produce silhouettes was applied to the original high-resolution images, andnot to the downsampled versions. After downsampling, this yields grey-scale imageswhose grey values do not code grey values in the original image, however, they do stillcode useful information on the high-resolution object silhouettes.



48 CHAPTER 2. SUPPORT VECTOR MACHINESTABLE 2.1: Object recognition test error rates on di�erent databases of 25 objects, usingpolynomial SV classi�ers of varying degrees. The training sets containing 25 and 89 viewsper object were regularly spaced; those with 100 views were distributed uniformly. Testingwas done on an independent test set of 100 random views per object. All views were takenfrom the upper viewing hemisphere. For further discussion, see Sec. 2.2.1.degree: 1 3 6 9 12 15 20 25entry level:25 grey scale 26.0 17.7 15.4 13.9 13.1 13.0 13.0 14.689 grey scale 14.5 3.4 2.4 2.0 1.8 1.8 1.8 2.1100 grey scale 17.1 5.6 4.2 3.5 3.2 2.8 2.4 2.825 silhouettes 27.1 19.6 17.9 16.7 16.2 15.6 15.4 16.389 silhouettes 17.2 4.3 3.3 2.7 2.5 2.2 2.2 2.8100 silhouettes 18.2 6.9 5.4 4.8 4.2 4.0 4.0 4.7entry level with edge detection:25 grey scale 9.0 8.0 6.7 5.8 5.5 5.3 4.9 5.689 grey scale 1.9 1.2 0.8 0.7 0.6 0.5 0.4 0.4100 grey scale 3.5 2.3 1.8 1.5 1.3 1.1 1.1 1.025 silhouettes 9.4 8.2 7.6 7.0 6.6 6.5 6.1 6.089 silhouettes 2.4 1.7 1.2 0.8 0.6 0.5 0.5 0.4100 silhouettes 3.8 3.0 2.6 2.5 2.5 2.4 2.3 2.2animals:25 grey scale 31.6 20.4 15.9 14.8 13.8 13.4 13.0 13.889 grey scale 21.8 5.6 3.2 2.5 2.0 1.7 1.7 2.0100 grey scale 24.5 8.8 5.8 5.2 5.0 4.7 4.8 4.425 silhouettes 34.4 22.4 18.2 17.0 16.4 15.6 15.8 16.489 silhouettes 27.0 7.4 3.8 2.8 2.5 2.5 2.2 2.8100 silhouettes 29.1 11.0 7.4 6.3 5.8 5.4 5.2 5.7animals with edge detection:25 grey scale 11.8 9.0 7.9 7.2 6.9 6.8 6.4 6.489 grey scale 3.2 1.5 1.1 1.0 0.9 0.9 0.8 0.8100 grey scale 4.7 3.3 2.7 2.2 2.2 2.0 2.0 2.025 silhouettes 12.1 9.9 8.8 8.0 7.6 7.5 7.0 7.189 silhouettes 3.7 2.0 1.3 1.2 1.1 1.2 1.1 1.1100 silhouettes 5.4 4.0 3.2 3.1 3.0 2.9 2.7 2.6



2.2. OBJECT RECOGNITION RESULTS 49TABLE 2.2: Numbers of SVs for the object recognition systems of Table 2.1, on di�erentdatabases of 25 objects, using polynomial SV classi�ers of varying degrees. The trainingsets containing 25 and 89 views per object were regularly spaced; the ones with 100 viewswere distributed uniformly. The numbers of SVs are averages over all 25 binary classi�ersseparating one object from the rest; they should be seen in relation to the size of thetraining set, which for the above numbers of views per objects was 625, 2225, and 2500,respectively. The given numbers of SVs thus amount to roughly 10% of the database sizes.For the silhouette databases, the numbers (not shown here) are very similar, only slightlybigger. degree: 1 3 6 9 12 15 20 25entry level:25 grey scale 86 74 71 70 72 74 79 9289 grey scale 219 148 132 128 128 133 144 165100 grey scale 206 139 121 117 119 122 135 158entry level with edge detection:25 grey scale 73 74 77 79 84 87 91 9989 grey scale 126 119 125 130 137 145 151 161100 grey scale 123 115 120 125 129 133 143 153animals:25 grey scale 108 96 89 90 91 95 100 11289 grey scale 231 196 180 177 178 183 193 208100 grey scale 235 196 176 169 169 174 185 199animals with edge detection:25 grey scale 101 92 93 99 103 107 117 12889 grey scale 183 170 172 180 188 198 212 227100 grey scale 187 171 172 177 182 191 201 215Support Vectors. The numbers of SVs (Table 2.2) of the individual recognizers foreach object make up about 5%� 15% of the whole databases. The fraction decreaseswith increasing database size.For polynomial machines of degree 1 (i.e. separating hyperplanes in input space),the problem is not separable. In that case, all training errors show up as SVs (cf.(2.18)), causing a fairly large number of SVs. For degrees higher than 1, the numberof SVs slightly increases with increasing polynomial degree. However, the increase israther moderate, compared with the increase of the dimensionality of the feature spacethat we are implicitely working on (cf. Sec. 1.3). Interestingly, the number of SVs does
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n=3385FIGURE 2.8: Angular distribution of the viewing angles of those training views whichbecame SVs, for a polynomial SV machine of degree 20 on the animal (left) and entrylevel (right) databases (100 grey level views per object, without edge detection). Theplotted distributions for azimuth (top) and elevation (bottom) have been normalized bythe corresponding distributions in the training set (see Fig. A.1). It can be seen thatSVs tend to occur more often for top, front and back views. In this and the followingplots, views which become SVs for more than one of the 25 binary recognizers are countedaccording to their frequency of occurence. Consequently, there is no contradiction in theoverall number of SVs n exceeding the database size (2500).not change much if we add edge detection information, even though this increases theinput dimensionality by a factor of 5.As each of the training examples is associated with two viewing angles (�; �) (cf.Appendix A), we can look at the angular distribution of SVs and errors. It is shownin �gures 2.8 { 2.10, and, in more detail, in �gures B.2 { B.9 in the appendix (there,we also give an example of a full SV set of one of the binary recognizers, in Fig. B.1).The density of SVs is increased at high polar angles, i.e. for viewing the objects fromthe top. Also, SVs tend to be found more often for frontal and back views than forviews closer to the side. Top, frontal and back views typically are harder to classifythan views from more generic points of view (Blanz, 1995). We can thus interpret our



2.2. OBJECT RECOGNITION RESULTS 51�nding as an indication that the density of SVs is related to the local complexity ofthe classi�cation surface, i.e. the local di�culty of the classi�cation task. Indeed, thesame qualitative behaviour is found for the distribution of recognition errors (�gures2.9 and 2.10).There are several factors contributing to the di�culty in classifying top, frontaland back views. First note that since most objects in our databases are bilaterallysymmetric, top, frontal and back views contain a large amount of redundancy. Incontrast, side views of symmetric objects contain a maximal amount of information.Moreover, many objects in the databases have their main axis of elongation roughlyaligned with the direction of the zero view (� = 0; � = 0). Consequently, frontal andback views su�er the drawback of showing a projection of a comparably small area.As an aside, note that although the SVs live in a high-dimensional space, theparticular setup of the presented object recognition experiments made it possible todiscuss the relationship between the di�culty of the task, the distribution of SVs, andthe distribution of errors. This is due to the low-dimensional parametrization of theexamples, arising from the procedure of generating the examples by taking snapshotsat well-de�ned viewing positions.The hope that Support Vectors are a useful means of analysing recognition taskswill receive further support in Sec. 2.4, where we shall present results which showthat di�erent types of SV machines, obtained using di�erent kernel functions, lead tolargely the same Support Vectors if trained on the same task.Comparison with Neural Networks. To evaluate the performance of SV classi�erson this task, benchmark comparisons with other classi�ers need to be carried out.We conducted a set of experiments using perceptrons with one hidden layer, endowedwith 400 hidden neurons, and hyperbolic tangent activation functions in hidden andoutput neurons. The networks were trained by back-propagation of mean squared error(Rumelhart, Hinton, and Williams, 1986; LeCun, 1985). We used on-line (stochastic)gradient descent, i.e. the weights were updated after each pattern; training was stoppedwhen the training error dropped below 0:1%, or after 600 learning epochs, whicheveroccured earlier. Neither this procedure nor the network design was carefully optimizedfor the task at hand, thus the results reported in the following should be seen as baselinecomparisons solely intended to facilitate assessing the reported SV results.99By observing the dependency of the test error on the number of learning epochs, we were able tosee that the networks were not overtrained. In addition, experiments with smaller numbers of hiddenunits gave worse performance (larger networks were not used, for reasons of excessive training times),hence the network capacities did not seem too large.A full-edged comparison between SV machines and perceptrons would take into account the fol-lowing issues in order to obtain optimized network designs: instead of one fully connected hiddenlayer, more sophisticated architectures use several layers with shared weights, extracting featuresof increasing complexity and invariance, while still limiting the number of free parameters. Otherregularization techniques useful for improving generalization include weight decay and pruning. Sim-ilarly, early stopping can be used to deal with issues of overtraining. The training procedure can beoptimized by using di�erent error functions and output functions (e.g. softmax). Finally, for small
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FIGURE 2.11: Left: rendered view of a 3-D model from the chair database; right: 16� 16downsampled image, and four 16� 16 downsampled edge detection patterns.For the following two reasons, we chose the small training set, with 25 views perobject. First, the error rates reported above for the large sets were already very low,and di�erences in performance are thus more likely to be signi�cant for the smallertraining sets. Second, training times of the neural networks were very long (in thecases reported in the following, they were longer than for SV machines by more thanan order of magnitude).On the 25 view-per-object training sets, we obtained error rates of 17.3% and21.4% on the entry level and animal databases, respectively. Adding edge detectioninformation, the error rates dropped to 6.8%, and 11.2%, respectively. Comparingwith the results in (2.1), we note that SV machines in almost all cases performedbetter. Further performance comparisons between SV machines and other classi�ersare reported in the following section.2.2.2 Chair Recognition BenchmarkIn a set of experiments using the MPI chair database (Fig. 2.11, Appendix A), di�er-ent view{based recognition algorithms were compared (Blanz et al., 1996). The SVanalysis for this case is less detailed than the one given in Sec. 2.2.1, however, wedecided also to report these experiments, since they include further benchmark resultsobtained with other classi�ers. The �rst one used oriented �lters to extract featureswhich are robust with respect to small rigid transformations of the underlying 3-Dobjects, followed by a decision stage based on comparisons with stored templates (fordetails, see Blanz, 1995; Vetter, 1994; Blanz et al., 1996). The second one, run as abaseline benchmark, was a perceptron with one hidden layer, trained by error back-propagation to minimize the mean squared error (for further details, see Sec. 2.2.1).The third system was a polynomial Support Vector machine (cf. (2.26)) with degreed = 15 and  = 100.10 In addition, we report results of Kressel (1996), who uti-lized a fully quadratic polynomial classi�er (Sch�urmann, 1996) trained on the �rst 50databases with little redundancy it is sometimes advantageous to use batch updates with conjugategradient descent, or using higher order derivatives of the error function. For details, see LeCun,Boser, Denker, Henderson, Howard, Hubbard, and Jackel (1989); Bishop (1995); Amari, Murata,M�uller, Finke, and Yang (1997).10The latter was chosen as in Sec. 2.2.1. Note that these values di�er from those used in (Blanzet al., 1996), which in some cases leads to di�erent results.



2.2. OBJECT RECOGNITION RESULTS 55TABLE 2.3: Recognition test error (in %) for the MPI chair database (Appendix A) on25 � 100 random test views from the upper viewing hemisphere, for di�erent trainingsets (viewing angles either regularly spaced, or uniformly distributed, on the upper viewinghemisphere; views were either just 16�16 images, or images plus edge detection data), anddi�erent classi�ers: SV: Support Vector machine; MLP: fully connected perceptron withone hidden layer of 400 neurons; OF: oriented �lter invariant feature extraction, see text;PC: quadratic polynomial classi�er trained on the �rst 50 principal components (Kressel,1996). Where marked with '{', results are not available.training set classi�erinput distribution views per obj. SV MLP OF PCimages+e.d. regul. spaced 25 5.0 8.8 5.4 {images+e.d. regul. spaced 89 1.0 1.3 4.7 1.7images+e.d. random 100 1.4 2.6 { {images+e.d. random 400 0.3 { { 0.8images regul. spaced 25 13.2 25.4 26.0 {images regul. spaced 89 2.0 7.2 21.0 {images random 100 4.5 7.5 { {images random 400 0.6 { { {principal components of the images.In all experiments, the Support Vector machine exhibits the highest generalizationability (Table 2.3). Considering that the images of a single object can change drasti-cally with viewpoint (cf. Appendix A), it seems that the Support Vector machine isbest in constructing a decision surface su�ciently complex to separate the 25 classes ofchairs. This, in turn, can be related to the fact that SV machines use kernel functionsto construct hyperplanes in very high-dimensional feature spaces without over�tting.Note, moreover, that this was achieved with an SV machine which does not utilizeprior information about the problem at hand. The oriented �lter approach, in con-strast, does use prior information about the process by which the images arose fromunderlying 3-D objects. This knowledge was used to handcraft the robust featuresused for recognition. The SV machine has to extract all information from the giventraining data, making it understandable that its advantage over the oriented �ltersystem gets smaller for smaller training set sizes (Table 2.3). In Chapter 4, we try todeal with this shortcoming by proposing methods to incorporate prior knowledge intoSV machines.2.2.3 DiscussionRealistically rendered computer graphics images of objects provide a useful basis forevaluating object recognition algorithms. This setup enabled us to study shape re-



56 CHAPTER 2. SUPPORT VECTOR MACHINEScognition under controlled conditions. Real-world recognition systems, however, faceadditional problems. For instance, segmentation of objects in cluttered scenes is aproblem not addressed in the above experiments. Partly, these additional problemscan be outweighed by additional sources of information. Objects with di�erent albedoand color would facilitate segmentation and recognition signi�cantly.The impact of noise, characteristic of many real-life problems, should not be toobig, at least in the case where we trained our systems on the image data only: in thatcase, all the processing is done in the low spatial frequency domain.On all three databases, high recognition accuracies were reported. The highestaccuracies were obtained using the regularly spaced 89 view per object training sets,and the edge detection data.As the number of classes was 25 in all cases, we can compare the performanceof the SV systems across tasks. It correlates with the intuitive di�culty of the tasks:accuracies are highest for the entry level database, were the objects have the largest dif-ferences, followed by the animal database, and by the subordinate level chair database.2.3 Digit Recognition Using Di�erent KernelsHandwritten digit recognition has long served as a test bed for evaluating and bench-marking classi�ers (e.g. LeCun et al., 1989; Bottou et al., 1994; LeCun et al., 1995).Thus, it is imperative to evaluate the SV method on some widely used digit recogni-tion task. In the present chapter, we use the US Postal Service (USPS) database forthis purpose (Appendix C). We put particular emphasis on comparing di�erent typesof SV classi�ers obtained by choosing di�erent kernels. We report results for poly-nomial kernels (2.26), radial basis function kernels (2.27), and sigmoid kernels (2.28);all of them were obtained with  = 10 (our default choice, used wherever not statedotherwise | cf. (2.19)).Results for the three di�erent kernels are summarized in Table 2.4. In all threecases, error rates around 4% can be achieved. They should be compared with valuesachieved on the same database with a �ve-layer neural net (LeNet1, LeCun, Boser,Denker, Henderson, Howard, Hubbard, and Jackel, 1989), 5.0%, a neural net with onehidden layer, 5.9%, and the human performance, 2.5% (Bromley and S�ackinger, 1991).Results of classical RBF machines, along with further reference results, are quoted inSec. 2.5.3.The results show that the Support Vector algorithm allows the construction ofvarious learning machines, all of which are performing well. The similar performancefor the three di�erent functions k suggests that among these cases, the choice of theset of decision functions is less important than capacity control in the chosen type ofstructure. This phenomenon is well-known for the Parzen density estimator in RN ,p(x) = 1̀ X̀i=1 1!N k �x� xi! � : (2.39)There, it is of great importance to choose an appropriate value of the bandwidth



2.4. UNIVERSALITY OF THE SUPPORT VECTOR SET 57TABLE 2.4: Performance on the USPS set, for three di�erent types of classi�ers, con-structed with the Support Vector algorithm by choosing di�erent functions k in (2.25) and(2.29). Given are raw errors (i.e. no rejections allowed) on the test set. The normalizationfactor c = 1:04 in the sigmoid case is chosen such that c � tanh(2) = 1. For each ofthe ten-class-classi�ers, we also show the average number of Support Vectors of the tentwo-class-classi�ers. The normalization factors of 256 are tailored to the dimensionality ofthe data, which is 16� 16.polynomial: k(x;y) = ((x � y)=256)dd 1 2 3 4 5 6 7raw error/% 8.9 4.7 4.0 4.2 4.5 4.5 4.7av. # of SVs 282 237 274 321 374 422 491RBF: k(x;y) = exp (�kx� yk2=(256 c))c 4.0 2.0 1.2 0.8 0.5 0.2 0.1raw error/% 5.3 5.0 4.9 4.3 4.4 4.4 4.5av. # of SVs 266 240 233 235 251 366 722sigmoid: k(x;y) = 1:04 tanh(2(x � y)=256 + �)�� 0.8 0.9 1.0 1.1 1.2 1.3 1.4raw error/% 6.3 4.8 4.1 4.3 4.3 4.4 4.8av. # of SVs 206 242 254 267 278 289 296parameter ! for a given amount of data (e.g. H�ardle, 1990; Bishop, 1995). Similarparallels can be drawn to the solution of ill-posed problems (for a complete discussion,see Vapnik, 1995b).2.4 Universality of the Support Vector Set11In the present section, we report empirical evidence that the SV set provides a novelpossibility for extracting a small subset of a database which contains all the informationnecessary to solve a given classi�cation task: using the Support Vector algorithm totrain three di�erent types of handwritten digit classi�ers, we observed that these typesof classi�ers construct their decision surface from strongly overlapping yet small subsetsof the database.Overlap of SV Sets. To study the Support Vector sets for three di�erent types ofSV classi�ers, we used the optimal parameters on the USPS set according to Table 2.4.11Copyright notice: the material in this section is based on the article \Extracting support datafor a given task" by B. Sch�olkopf, C. Burges and V. Vapnik, which appeared in: Proceedings, FirstInternational Conference on Knowledge Discovery & Data Mining, pp. 252 { 257, 1995. AIII Press.



58 CHAPTER 2. SUPPORT VECTOR MACHINESTABLE 2.5: First row: total number of di�erent Support Vectors of three di�erent ten-class-classi�ers (i.e. number of elements of the union of the ten two-class-classi�er SupportVector sets) obtained by choosing di�erent functions k in (2.25) and (2.29); second row:average number of Support Vectors per two-class-classi�er (USPS database size: 7291).Polynomial RBF Sigmoidtotal # of SVs 1677 1498 1611average # of SVs 274 235 254TABLE 2.6: Percentage of the Support Vector set of [column] contained in the supportset of [row]; for ten-class classi�ers (top) and binary recognizers for digit class 7 (bottom)(USPS set). Polynomial RBF SigmoidPolynomial 100 93 94RBF 83 100 87Sigmoid 90 93 100Polynomial RBF SigmoidPolynomial 100 84 93RBF 89 100 92Sigmoid 93 86 100TABLE 2.7: Comparison of all three Support Vector sets at a time (USPS set). For eachof the (ten-class) classi�ers, \% intersection" gives the fraction of its Support Vector setshared with both the other two classi�ers. Out of a total of 1834 di�erent Support Vectors,1355 are shared by all three classi�ers; an additional 242 is common to two of the classi�ers.Poly RBF tanh intersection shared by 2 unionno. of SVs 1677 1498 1611 1355 242 1834% intersection 81 90 84 100 { {Table 2.5 shows that all three classi�ers use around 250 Support Vectors per two-class-classi�er (less than 4% of the training set). The total number of di�erent SupportVectors of the ten-class-classi�ers is around 1600. The reason why it is less than 2500(ten times the above 250) is the following: a particular vector that has been used as apositive SV (i.e. yi = +1 in (2.25)) for digit 7 might at the same time be a negativeSV (yi = �1) for digit 1, say.Tables 2.6 and 2.7 show that the Support Vector sets of the di�erent classi�ers have



2.4. UNIVERSALITY OF THE SUPPORT VECTOR SET 59TABLE 2.8: SV set overlap experiments on the MNIST set (Fig. C.2), using the binaryrecognizer for digit 0. Top three tables: performances (on the 60000 element test set) andnumbers of SVs for three di�erent kernels and various parameter choices. The numbersof SVs, which should be compared to the database size, 60000, were used to select theparameters for the SV set comparison: to get a balanced comparison of the di�erentSV sets, we decided to select parameter values such that the respective SV sets haveapproximately equal size (polynomial degree d = 4, radial basis function width c = 0:6,and sigmoid threshold � = �1:5). Bottom: SV set comparison. For each of the binaryclassi�ers, \% intersection" gives the fraction of its Support Vector set shared with both theother two classi�ers. The scaling factor 784 in the kernels stems from the dimensionalityof the data; it ensures that the values of the kernels lie in similar ranges for di�erentpolynomial degrees. polynomial: k(x;y) = ((x � y)=784)dd 2 3 4 5 6 7# of test errors 163 147 135 131 127 127# of SVs 994 1083 1187 1292 1401 1537RBF: k(x;y) = exp (�kx� yk2=(784 c))c 1 0.75 0.6 0.5 0.4 0.3# of test errors 147 145 145 141 137 134# of SVs 1061 1118 1179 1264 1308 1460sigmoid: k(x;y) = 1:04 tanh(2(x � y)=784 + �)�� 1.3 1.4 1.5 1.6 1.7 1.8# of test errors 139 138 138 141 145 144# of SVs 1137 1162 1194 1211 1223 1217Polyn RBF tanh intersection shared by 2 unionno. of SVs 1187 1179 1194 1054 124 1328% intersection 89 89 88 100 { {about 90% overlap. This surprising result, �rst published in (Sch�olkopf, Burges, andVapnik, 1995), has meanwhile been reproduced on the MNIST character recognition set(Table 2.8), with SV sets which amounted to just 2% of the whole database. Togetherwith K. Sung at MIT, we have reproduced this result also on a face detection task(binary classi�cation, faces vs. non-faces).As mentioned previously, the Support Vector expansion (2.11) need not be unique.Depending on the way the quadratic programming problem is solved, one can poten-tially get di�erent expansions and therefore di�erent Support Vector sets. It is possibleto conceive of problems where all patterns do lie on the decision boundary, yet only



60 CHAPTER 2. SUPPORT VECTOR MACHINESTABLE 2.9: Percentage of the Support Vector set of [column] contained in the support setof [row]; for the binary recognizers for digit class 7 (bottom) (USPS set). The training setsfor the classi�ers in [row] and [column] were permuted with respect to each other (controlexperiment for Table 2.6); still, the overlap between the SV sets persists.Polynomial RBF SigmoidPolynomial 92 82 90RBF 88 92 84Sigmoid 91 84 93a few of them are necessary at a time for expressing the decision function. In such acase, the actual SV set extracted could strongly depend on the ordering of the trainingset, especially if the quadratic programming algorithm processes the data in chunks.In our experiments, we did use the same ordering of the training set in all three cases.To exclude the possibility that it is this ordering that causes the reported overlaps, weran a control experiment where two classi�ers with the same kernel were trained twice,on the original training set, and on a permuted version of it, respectively. We foundthat the two cases produced highly overlapping (to around 90%) SV sets, which meansthat the training set ordering does hardly have an e�ect on the SV sets extracted |it only changes around 10% of the SV sets. In addition, repeating the experiments ofTable 2.6 on permuted training sets gave results consistent with this �nding: Table 2.9shows that the overlap between SV sets of di�erent classi�ers is hardly changed whenone of the training sets is permuted. We may also add that the overlap is not due toSVs corresponding to errors on the training set (cf. (2.18), with �i > 1): the consideredclassi�ers had very few training errors.Using a leave-one-out procedure similar to Proposition 2.1.2, Vapnik and Watkinshave subsequently put forward a theoretical argument for shared SVs. We state itin the following form: If the SV set of three SV classi�ers had no overlap, we couldobtain a fourth classi�er which has zero test error.To see why this is the case, note that if a pattern is left out of the training set,it will always be classi�ed correctly by voting between the three SV classi�ers trainedon the remaining examples: otherwise, it would have been been an SV of at least twoof them, if kept in the training set. The expectation of the number of patterns whichare SVs of at least two of the three classi�ers, divided by the training set size, thusforms an upper bound on the expected test error of the voting system.Training on SV Sets. As described in Sec. 2.1.2, the Support Vector set containsall the information a given classi�er needs for constructing the decision function. Dueto the overlap in the Support Vector sets of di�erent classi�ers, one can even trainclassi�ers on Support Vector sets of another classi�er. Table 2.10 shows that this leadsto results comparable to those after training on the whole database. In Sec. 4.2.1, we



2.5. COMPARISON TO CLASSICAL RBF NETWORKS 61TABLE 2.10: Training classi�ers on the Support Vector sets of other classi�ers leadsto performances on the test set which are as good as the results for training on the fulldatabase (shown are numbers of errors on the 2007-element test set, for two-class classi�ersseparating digit 7 from the rest). Additionally, the results for training on a random subsetof the database of size 200 are displayed.trained on: poly-SVs rbf-SVs tanh-SVs full db rnd. subs.kernel size: 178 189 177 7291 200Poly 13 13 12 13 23RBF 17 13 17 15 27tanh 15 13 13 15 25will use this �nding as a motivation for a method to make SV machines transformationinvariant.Discussion. Learning can be viewed as inferring regularities from a set of trainingexamples. Much research has been devoted to the study of various learning algorithmswhich allow the extraction of these underlying regularities. No matter how di�erent theoutward appearance of these algorithms is, they all must rely on intrinsic regularitiesof the data. If the learning has been successful, these intrinsic regularities are capturedin the values of some parameters of a learning machine; for a polynomial classi�er,these parameters are the coe�cients of a polynomial, for a neural net they are weightsand biases, and for a radial basis function classi�er they are weights and centers. Thisvariety of di�erent representations of the intrinsic regularities, however, conceals thefact that they all stem from a common root.The Support Vector algorithm enables us to view these algorithms in a uni�edtheoretical framework. The presented empirical results show that di�erent types ofSV classi�ers construct their decision functions from highly overlapping subsets of thetraining set, and thus extract a very similar structure from the observations, whichcan in this sense be viewed as a characteristic of the data: the set of Support Vectors.This �nding may lead to methods for compressing databases signi�cantly by disposingof the data which is not important for the solution of a given task (cf. also Guyon,Mati�c, and Vapnik, 1996).In the next section, we will take a closer look at one of the types of learningmachines implementable by the SV algorithm.2.5 Comparison to Classical RBF NetworksBy using Gaussian kernels (2.27), the SV algorithm can construct learning machineswith a Radial Basis Function (RBF) architecture. In contrast to classical approachesfor training RBF networks, the SV algorithm automatically determines centers, weights



62 CHAPTER 2. SUPPORT VECTOR MACHINESand threshold that minimize an upper bound on the expected test error. The presentsection is devoted to an experimental comparison of these machines with a classicalapproach, where the centers are determined by k-means clustering and the weights arecomputed using error backpropagation. We consider three machines, namely a classicalRBF machine, an SV machine with Gaussian kernel, and a hybrid system with the cen-ters determined by the SV method and the weights trained by error backpropagation.Our results show that on the US postal service database of handwritten digits, the SVmachine achieves the highest recognition accuracy, followed by the hybrid system.Copyright notice: the material in this section is based on the article \Comparingsupport vector machines with Gaussian kernels to radial basis function classi�ers" byB. Sch�olkopf, K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio and V. Vapnik, whichappeared in IEEE Transactions on Signal Processing; 45(11): 2758 { 2765, November1997. IEEE.2.5.1 Di�erent Ways of Training RBF Classi�ersConsider Fig. 2.12. Suppose we want to construct a radial basis function classi�erf(x) = sgn X̀i=1wi exp �kx� xik2ci !+ b! (2.40)(b and ci being constants, the latter positive) separating balls from circles, i.e. takingdi�erent values on balls and circles. How do we choose the centers xi? Two extremecases are conceivable:The �rst approach consists of choosing the centers for the two classes separately,irrespective of the classi�cation task to be solved. The classical technique of �nding thecenters by some clustering technique (before tackling the classi�cation problem) is suchan approach. The weights wi are then usually found by either error backpropagation(Rumelhart, Hinton, and Williams, 1986) or the pseudo-inverse method (Poggio andGirosi, 1990).An alternative approach (Fig. 2.13) consists of choosing as centers points which arecritical for the classi�cation task at hand. The Support Vector algorithm implementsthe latter idea. By simply choosing a suitable kernel function (2.27), it allows theconstruction of radial basis function classi�ers. The algorithm automatically computesthe number and location of the above centers, the weights wi, and the threshold b.By the kernel function, the patterns are mapped nonlinearly into a high-dimensionalspace. There, an optimal separating hyperplane is constructed, expressed in terms ofthose examples which are closest to the decision boundary. These are the SupportVectors which correspond to the centers in input space.The goal of the present section is to compare real-world results obtained withk-means clustering and classical RBF training to those obtained when the centers,weights and threshold are automatically chosen by the Support Vector algorithm. Tothis end, we decided to undertake a performance study by combining expertise on the
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FIGURE 2.12: A simple 2-dimensional classi�cation problem: �nd a decision functionseparating balls from circles. The box, as in all following pictures, depicts the region[�1; 1]2.Support Vector algorithm (AT&T Bell Laboratories) and on the classical radial basisfunction networks (Massachusetts Institute of Technology).Three di�erent RBF systems took part in the performance comparison:� SV system. A standard SV machine with Gaussian kernel function was con-structed (cf. (2.27)).� Classical RBF system. The MIT side of the performance comparison con-structed networks of the formg(x) = sgn KXi=1wiGi(x) + b!= sgn KXi=1wi 1(2�)N=2�Ni exp �kx� cik22�2i !+ b! ;with the number of centers k identical to the one automatically found by the SValgorithm. The centers ci were computed by k-means clustering (e.g. Duda andHart, 1973), and the weights wi are trained by on-line mean squared error backpropagation.The training procedure constructs ten binary recognizers for the digit classes,with RBF hidden units and logistic outputs, trained to produce the target values
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✕
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FIGURE 2.13: RBF centers automatically computed by the Support Vector algorithm(indicated by extra circles), using ci = 1 for all i (cf. (2.27), (2.40)). The number of SVcenters accidentally coincides with the number of identi�able clusters (indicated by crossesfound by k-means clustering with k = 2 and k = 3 for balls and circles, respectively) butthe naive correspondence between clusters and centers is lost; indeed, 3 of the SV centersare circles, and only 2 of them are balls. Note that the SV centers are chosen with respectto the classi�cation task to be solved.1 and 0 for positive and negative examples, respectively. The networks weretrained without weight decay, however, a bootstrap procedure was used to limittheir complexity. The �nal RBF network for each class contains every Gaussiankernel from its target class, but only several kernels from the other 9 classes,selected such that no false positive mistakes are made. For further details, see(Sung, 1996; Moody and Darken, 1989).� Hybrid system. To assess the relative inuence of the automatic SV centerchoice and the SV weight optimization, respectively, another RBF system wasbuilt, constructed with centers that are simply the Support Vectors arising fromthe SV optimization, and with the weights trained separately using mean squarederror back propagation.Computational Complexity. By construction, the resulting classi�ers after trainingwill have the same architecture and comparable sizes. Thus the three machines arecomparable in classi�cation speed and memory requirements.Di�erences were, however, noticeable in training. Regarding training time, the SV
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FIGURE 2.14: Two-class classi�cation problem solved by the Support Vector algorithm(ci = 1 for all i; cf. Eq. 2.40).machine was faster than the RBF system by about an order of magnitude.12 Theoptimization, however, requires to work with potentially large matrices. In the im-plementation that we used, the training data is processed in chunks, and matrix sizeswere of the order 500� 500. For problems with very large numbers of SVs, a modi�edtraining algorithm has recently been proposed by Osuna, Freund, and Girosi (1997).Error Functions. Due to the constraints (2.18) and the target function (2.19), theSV algorithm puts emphasis on correctly separating the training data. In this respect,it is di�erent from the classical RBF approach of training in the least-squares metric,which is more concerned with the general problem of estimating posterior probabilitiesthan with directly solving a classi�cation task at hand. There exist, however, studiesinvestigating the question how to select RBF centers or exemplars to minimize thenumber of misclassi�cations, see for instance (Chang and Lippmann, 1993; Duda andHart, 1973; Reilly, Cooper, and Elbaum, 1982; Barron, 1984). A classical RBF systemcould also be made more discriminant by using moving centers (e.g. Poggio and Girosi,1990), or a di�erent cost function, as the classi�cation �gure of merit (Hampshire andWaibel, 1990). In fact, it can be shown that Gaussian RBF regularization networksare equivalent to SV machines if the regularization operator and the cost function arechosen appropriately (Smola and Sch�olkopf, 1997b).12For noisy regression problems, on the other hand, Support Vector machines can be slower (M�ulleret al., 1997).
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FIGURE 2.15: A simple two-class classi�cation problem as solved by the SV algorithm(ci = 1 for all i; cf. Eq. 2.40). Note that the RBF centers (indicated by extra circles)are closest to the decision boundary. Interestingly, the decision boundary is a straight line,even though a nonlinear Gaussian RBF kernel was used. This is due to the fact that onlytwo SVs are required to solve the problem. The translational and unitary invariance of theRBF kernel then renders the situation completely symmetric.It is important to stress that the SV machine does not minimize the empirical risk(misclassi�cation error on the training set) alone. Instead it minimizes the sum of anupper bound on the empirical risk and a penalty term that depends on the complexityof the classi�er used.2.5.2 Toy Examples: What are the Support Vectors?Support Vectors are elements of the data set that are \important" in separating thetwo classes from each other. In general, the SVs with zero slack variables (2.17) lie onthe boundary of the decision surface, as they precisely satisfy the inequality (2.18) inthe high-dimensional space. Figures 2.15 and 2.14 illustrate that for the used Gaussiankernel, this is also the case in input space. This raises an interesting question from thepoint of view of interpreting the structure of trained RBF networks. The traditionalview of RBF networks has been one where the centers were regarded as \templates"or stereotypical patterns. It is this point of view that leads to the clustering heuristicfor training RBF networks. In contrast, the SV machine posits an alternate point ofview, with the centers being those examples which are critical for a given classi�cationtask.



2.5. COMPARISON TO CLASSICAL RBF NETWORKS 67TABLE 2.11: Numbers of centers (Support Vectors) automatically extracted by the Sup-port Vector machine. The �rst row gives the total number for each binary classi�er,including both positive and negative examples; in the second row, we only counted thepositive SVs. The latter number was used in the initialization of the k-means algorithm,cf. Sec. 2.5.digit class 0 1 2 3 4 5 6 7 8 9# of SVs 274 104 377 361 334 388 236 235 342 263# of pos. SVs 172 77 217 179 211 231 147 133 194 166TABLE 2.12: Two-class-classi�cation: numbers of test errors (out of 2007 test patterns)for the three systems described in Sec. 2.5.digit class 0 1 2 3 4 5 6 7 8 9classical RBF 20 16 43 38 46 31 15 18 37 26RBF with SV centers 9 12 27 24 32 24 19 16 26 16full SV machine 16 8 25 19 29 23 14 12 25 162.5.3 Handwritten Digit RecognitionWe used the USPS database of handwritten digits (Appendix C). The SV machineresults reported in the following were obtained with our default choice  = 10 (cf.(2.19), Sec. 2.3), and c = 0:3 �N (cf. (2.27)), where N = 256 is the dimensionality ofinput space.13Two-class classi�cation. Table 2.11 shows the numbers of Support Vectors, i.e.RBF centers, extracted by the SV algorithm. Table 2.12 gives the results of binaryclassi�ers separating single digits from the rest, for the systems described in Sec. 2.5.Ten-class classi�cation. For each test pattern, the arbitration procedure in all threesystems simply returns the digit class whose recognizer gives the strongest response(cf. (2.38)). Table 2.13 shows the 10-class digit recognition error rates for our originalsystem and the two RBF-based systems.The fully automatic SV machine exhibits the highest test accuracy of the threesystems.14 Using the SV algorithm to choose the centers for the RBF network is alsobetter than the baseline procedure of choosing the centers by a clustering heuristic asdescribed above. It can be seen that in contrast to the k-means cluster centers, thecenters chosen by the SV algorithm allow zero training error rates.The considered recognition task is known to be rather hard | the human error rate13The SV machine is rather insensitive to di�erent choices of c. For all values in 0:1; 0:2; : : : ; 1:0,the performance is about the same (in the area of 4% { 4.5%).14An analysis of the errors showed that about 85% of the errors committed by the SV machinewere also made by the other systems. This makes the di�erences in error rates very reliable.



68 CHAPTER 2. SUPPORT VECTOR MACHINESTABLE 2.13: 10-class digit recognition error rates for three RBF classi�ers constructedwith di�erent algorithms. The �rst system is a classical one, choosing its centers by k-means clustering. In the second system, the Support Vectors were used as centers, and inthe third one, the entire network was trained using the Support Vector algorithm.Classi�cation Error RateUSPS DB classical RBF RBF with SV centers full SV machineTraining 1.7% 0.0% 0.0%Test 6.7% 4.9% 4.2%is 2.5% (Bromley and S�ackinger, 1991), almost matched by a memory-based Tangent-distance classi�er (2.6%, Simard, LeCun, and Denker, 1993). Other results on thisdatabase include a Euclidean distance nearest neighbour classi�er (5.9%, Simard,LeCun, and Denker, 1993), a perceptron with one hidden layer, 5.9%, and a convolu-tional neural network (5.0%, LeCun et al., 1989). By incorporating translational androtational invariance using the Virtual SV technique (see below, Sec. 4.2.1), we wereable to improve the performance of the considered Gaussian kernel SV machine (samevalues of  and c) from 4.2% to 3.2% error.2.5.4 Summary and DiscussionThe Support Vector algorithm provides a principled way of choosing the number andthe locations of RBF centers. Our experiments on a real-world pattern recognitionproblem have shown that in contrast to a corresponding number of centers chosen byk-means, the centers chosen by the Support Vector algorithm allowed a training errorof zero, even if the weights were trained by classical RBF methods. The interpreta-tion of this �nding is that the Support Vector centers are speci�cally chosen for theclassi�cation task at hand, whereas k-means does not care about picking those centerswhich will make a problem separable.In addition, the SV centers yielded lower test error rates than k-means. It isinteresting to note that using SV centers, while sticking to the classical procedure fortraining the weights, improved training and test error rates by approximately the sameamount (2%). In view of the guaranteed risk bound (1.5), this can be understood inthe following way: the improvement in test error (risk) was solely due to the lowervalue of the training error (empirical risk); the con�dence term (the second term on theright hand side of (1.5)), depending on the VC-dimension and thus on the norm of theweight vector, did not change, as we stuck to the classical weight training procedure.However, when we also trained the weights with the Support Vector algorithm, weminimized the norm of the weight vector (see (2.19), (2.4)) in feature space, and thusthe con�dence term, while still keeping the training error zero. Thus, consistent with(1.5), the Support Vector machine achieved the highest test accuracy of the three



2.6. MODEL SELECTION 69systems.152.6 Model Selection2.6.1 Choosing Polynomial Degrees16In the case where the available amount of training data is limited, it is important tohave a means for achieving the best possible generalization by controlling character-istics of the learning machine, without having to put aside parts of the training setfor validation purposes. One of the strengths of SV machines consists in the auto-matic capacity tuning, which was related to the fact that the minimization of (2.19)is connected to structural risk minimization, based on the bound (1.5). This capacitytuning takes place within a set of functions speci�ed a priori by the choice of a kernelfunction. In the following, we go one step further and use the bound (1.5) also topredict the kernel degree which yields the best generalization for polynomial classi�ers(Sch�olkopf, Burges, and Vapnik, 1995).Since for SV machines we have an upper bound on the VC-dimension (Propo-sition 2.1.1), we can use (1.5) to get an upper bound on the expected error on anindependent test set in terms of the training error and the value of kwk (or, equiva-lently, the margin 2=kwk). This bound can then be used to try to choose parameters ofthe learning machines such that the test error gets minimal, without actually lookingat the test set.We consider polynomial classi�ers with the kernel (2.26), varying their degree d,and make the assumption that the bound (2.4) gives a reliable indication of the actualVC-dimension, i.e. that the VC-dimension can be estimated byh � c1hest: = R2kwk2 (2.41)with some c1 < 1 which is independent of the polynomial degree.For the USPS digit recognition problem, training errors are very small. In thatcase, the right hand side of the bound (1.5) is dominated by the con�dence term, whichis minimized when the VC-dimension is minimized. For the latter, we use (2.41), with15Two remarks on the interpretation of our �ndings are in order. The �rst result, comparing theerror rates of the classical and the hybrid system, does not necessarily rule out the possibility ofreducing the training error also for k-means centers by using di�erent cost functions or codings of theoutput units. It should be considered as a statement comparing two sets of centers, using the sameweight training algorithm to build RBF networks from them. Along similar lines, the second result,indicating the superior performance of the full SV RBF system, refers to the systems as describedin this study. It does not rule out the possibility of improving classical RBF systems by suitablemethods of complexity control. Indeed, the results for the SV RBF system do show that using thesame architecture, but di�erent weight training procedures, can signi�cantly improve results.16Copyright notice: the material in this section is based on the article \Extracting support datafor a given task" by B. Sch�olkopf, C. Burges and V. Vapnik, which appeared in: Proceedings, FirstInternational Conference on Knowledge Discovery & Data Mining, pp. 252 { 257, 1995. AIII Press.
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FIGURE 2.16: Average VC-dimension (solid) and total number of test errors of the tentwo-class-classi�ers (dotted) for polynomial degrees 2 through 7 (for degree 1, Remp iscomparably big, so the VC-dimension alone is not su�cient for predicting R, cf. (1.5)).The baseline on the error scale, 174, corresponds to the total number of test errors ofthe ten best binary classi�ers out of the degrees 2 through 7. The graph shows that theVC-dimension allows us to predict that degree 4 yields the best overall performance of thetwo-class-classi�ers on the test set. This is not necessarily the case for the performances ofthe ten-class classi�ers, which are built from the two-class-classi�er outputs before applyingthe sgn functions (cf. Sec. 2.1.6).kwk determined by the Support Vector algorithm (note that kwk is computed infeature space, using the kernel). Thus, in order to compute hest:, we need to computeR, the radius of the smallest sphere enclosing the training data in feature space.This can be reduced to a quadratic programming problem similar to the one used inconstructing the optimal hyperplane:17We formulate the problem as follows:Minimize R2 subject to kzi � z�k2 � R2; (2.42)where z� is the (to be determined) center of the sphere. We use the LagrangianR2 �Xi �i(R2 � (zi � z�)2); (2.43)and compute the derivatives by z� and R to getz� =Xi �izi (2.44)and the Wolfe dual problem: maximizeXi �i � (zi � zi)�Xi;j �i�j � (zi � zj) (2.45)17The following derivation is due to Chris Burges.



2.6. MODEL SELECTION 71subject to Xi �i = 1; �i � 0; (2.46)where the �i are Lagrange multipliers. As in the Support Vector algorithm, thisproblem has the property that the zi appear only in dot products, so as before onecan compute the dot products in feature space, replacing (zi � zj) by k(xi;xj) (wherethe xi live in input space, and the zi in feature space).In this way, we compute the radius of the minimal enclosing sphere for all the USPStraining data for polynomial classi�ers of degrees 1 through 7. For the same degrees,we then train a binary polynomial classi�er for each digit. Using the obtained valuesfor hest:, we can predict, for each digit, which degree polynomial will give the bestgeneralization performance. Clearly, this procedure is contingent upon the validity ofthe assumption that c1 is approximately the same for all degrees. We can then comparethis prediction with the actual polynomial degree which gives the best performanceon the test set. The results are shown in Table 2.14; cf. also Fig. 2.16.TABLE 2.14: Performance of the classi�ers with degree predicted by the VC-bound. Eachrow describes one two-class-classi�er separating one digit (stated in the �rst column) fromthe rest. The remaining columns contain: deg: the degree of the best polynomial aspredicted by the described procedure, param.: the dimensionality of the high dimensionalspace, which is also the VC-dimension for the set of all separating hyperplanes in thatspace, hest:: the VC-dimension estimate for the actual classi�ers, which is much smallerthan the number of free parameters of linear classi�ers in that space, 1 { 7: the numbers oferrors on the test set for polynomial classi�ers of degrees 1 through 7. The table shows thatthe decribed procedure chooses polynomial degrees which are optimal or close to optimal.chosen classi�er errors on the test set for degrees 1 { 7digit deg param. hest: 1 2 3 4 5 6 70 3 2:8 � 106 547 36 14 11 11 11 12 171 7 1:5 � 1013 95 17 15 14 11 10 9 102 3 2:8 � 106 832 53 32 28 26 28 27 323 3 2:8 � 106 1130 57 25 22 22 22 22 234 4 1:8 � 108 977 50 32 32 30 30 29 335 3 2:8 � 106 1117 37 20 22 24 24 26 286 4 1:8 � 108 615 23 12 12 15 17 17 197 5 9:5 � 109 526 25 15 12 10 11 13 148 4 1:8 � 108 1466 71 33 28 24 28 32 349 5 9:5 � 109 1210 51 18 15 11 11 12 15



72 CHAPTER 2. SUPPORT VECTOR MACHINESThe above method for predicting the optimal classi�er functions gives good results.In four cases, the theory predicted the correct degree; in the other cases, the predicteddegree gave performance close to the best possible one.2.6.2 The Choice of the Regularization Parameter In addition to kernel parameters as the polynomial degree, there is another parameterwhose value needs to be set for SV training: the regularization constant , determiningthe trade-o� between minimizing training error and controlling complexity (cf. (2.19)).The optimal value of  should depend both on characteristics of the problem at handand on the sample size. Although our experience suggests that for problems with littlenoise, the results are reasonably insensitive with respect to changes of , it would stillbe desirable to have a principled method for choosing . The remainder of this sectionis an attempt at developing such a method.As in the last section, the starting point is the risk bound (1.5). The idea isto adjust  such that minimization of the SV objective function (2.19) amounts tominimizing (1.5). As the solution w depends on the value of  chosen (in (2.19)), wecannot use (1.5) and (2.4) to determine the value of  a priori. Instead, we will resortto an iterative strategy.Following (2.4), we write h = c1R2kwk2 (2.47)with some c1 < 1. Substituting this into the bound (1.5), (1.6), we obtainvuutc1R2kwk2 �log 2`c1R2kwk2 + 1�� log(�=4)` +Remp(�) (2.48)as an upper bound on the risk that we want to minimize.Remembering that Pi �i is an upper bound on the number of training errors, weadditionally write Xi �i = c2`Remp(w); (2.49)with some c2 � 1, where ` is the number of training examples. Minimizing the objectivefunction (2.19) then amounts to minimizing12c2`kwk2 +Remp(w): (2.50)Identifying w with the function index � in (2.48), we now have a formulation wherethe second terms of (2.50) and (2.48) are identical. The �rst terms cannot coincidein general: unlike the �rst term of (2.48), kwk2=(2c2`) is proportional to kwk2.However, a necessary condition to ensure that the minimum of the function that we



2.6. MODEL SELECTION 73are minimizing, (2.50), is close to that of the one that we would like to minimize, (2.48),is that the gradients of the �rst terms with respect to w coincide at the minimum.Hence, we have to choose  such that1c2`w = c1R2(log 2`c1R2kwk2 � 1)q`(c1R2kwk2 log 2`c1R2kwk2 � log(�=4))w: (2.51)For w 6= 0, we thus obtain = q`(c1R2kwk2 log 2`c1R2kwk2 � log(�=4))c1c2`R2(log 2`c1R2kwk2 � 1) : (2.52)Eq. (2.52) establishes a relationship between  and w at the point of the solution. Ifwe start with a non-optimal value of , however, we will obtain a non-optimal w andthus (2.52) will not tell us exactly how to adjust . For instance, suppose we startwith a  which is too big. Then too much weight will be put on minimizing empiricalrisk (cf. (2.19)), and the margin will become too small, i.e. w will become too big. Wewill resort to the following method: we use (2.52) to determine a new value 0, anditerate the procedure.The value of kwk2 is obtained by solving the SV quadratic programming prob-lem (in feature space, we have kwk2 = Pij yiyj�i�jk(xi;xj)); R2 is computed as inSec. 2.6.1, and c2 is obtained fromPi �i and the training error using (2.49). The valuesof c1 and � must be chosen by the user. The constant c1 characterizes the tightness ofthe VC-dimension bound (cf. (2.47)), and 1 � � is a lower bound on the probabilitywith which the risk bound (2.48) holds. As long as � is not too close to 0, it doeshardly a�ect our procedure. The value of c1 is more di�cult to choose correctly, how-ever, reasonable results can already be obtained with the default choice c1 = 1, as weshall see below.Statements on the convergence of this procedure are hard to obtain: to computethe mapping from  to 0, we have to train an SV machine and then evaluate (2.52),thus one cannot compute its derivative in closed form. In an empirical study to bedecribed presently, the procedure exhibited well-behaved convergence behaviour. Inthe experiment, we used the small MNIST database (Appendix C). We found thatthe iteration converged no matter whether we started with a very large  or with atiny . In the following, we report results obtained when starting with a huge value of, which e�ectively leads to the construction of an optimal margin classi�er (i.e. withzero training error | cf. Sec. 2.1.2: for  =1, (2.22) reduces to (2.14)).Table 2.15 shows partly encouraging results. For all 10 binary digit recognizers,the iteration converges very fast (about two steps were required to reach a value veryclose to the �nal one). In seven cases, the number of test errors decreased, in onlytwo case did it increase. By combining the resulting binary classi�ers, we obtained a10-class classi�er with an error rate (on the 10000 element small MNIST test set) of3:9%, slightly better than the error rate obtained both with the starting value used in



74 CHAPTER 2. SUPPORT VECTOR MACHINESthe iteration,  = 1010, and with our default choice  = 10: in these cases, we obtained4:0% error (cf. below, in Table 4.6).Clearly, further experiments are necessary to validate or improve this method. Inparticular, it would be interesting to study a noisy classi�cation problem, where thechoice of  should potentially have a greater impact on the quality of the solution.We conclude this section with a note on the relationship of the model selectionmethods described in sections 2.6.1 and 2.6.2. Both of the proposed methods arebased on the bound (1.5). In principle, we could also apply the method of 2.6.1 forchoosing . In that case, we would try out a series of values of , and pick the onewhich minimizes (1.5). The advantage of the present method, however, is that it doesnot require scanning a whole range of values. Instead,  is chosen such that, with thehelp of a few iterations, the SV optimization automatically minimizes (1.5) over ,in addition to the built-in minimization over the weights of the SV machine (cf. theremarks at the beginning of Sec. 2.6.1).18TABLE 2.15: Iterative choice of the regularization constant  (cf. Sec. 2.6.2) for all tendigit recognizers on the small MNIST database. Each table shows SV machine parametersand results for the starting point ( = 1010), and for �ve subsequent iteration steps. In allcases, we used c1 = 1, � = 0:2 (corresponding to a risk bound holding with probability ofat least 0.8), and a polynomial classi�er of degree 5. The constant c2 is unde�ned beforethe �rst run of the algorithm. After each run, it is computed using (2.49); if Remp is 0, weset c2 = 1. For  = 1010, we are e�ectively computing an optimal separating hyperplane,with zero training errors. The iteration converges very fast; moreover, in seven of the tencases, it reduced the number of test errors (in two cases, the opposite happened). c2 train. errors test errors # of SVs kwk1010 - 0 38 177 36.1560.723763 1 3 32 187 29.460digit 0 0.052130 10.0 3 32 194 29.2880.050580 10.3 3 31 194 29.3120.047947 10.8 3 30 192 29.4160.051618 10.1 3 31 188 29.316 c2 train. errors test errors # of SVs kwk1010 - 0 33 141 48.9981.248717 1 3 30 153 34.286digit 1 0.047532 14.0 3 31 160 34.0630.045677 14.4 3 30 161 33.9880.042151 15.5 3 29 157 34.0540.046176 14.2 3 31 154 34.03818We performed another set of experiments to �nd out whether the leave-one-out generalizationbound (Proposition 2.1.2) could be used for selecting . On the small MNIST database, the resultswere negative, leading to values of  which were too large (in the range of 105 to 1010).



2.6. MODEL SELECTION 75 c2 train. errors test errors # of SVs kwk1010 - 0 104 340 58.8161.853855 1 4 88 355 49.055digit 2 0.100126 12.5 4 87 354 48.8100.094182 13.2 4 87 352 48.7570.092732 13.3 4 87 352 48.8330.095662 13.0 4 88 351 48.906 c2 train. errors test errors # of SVs kwk1010 - 0 96 377 70.4553.047037 1 5 93 392 57.387digit 3 0.139778 12.5 5 93 397 56.8600.122975 13.9 5 94 387 57.1430.142765 12.1 5 96 385 56.8680.123462 13.9 5 93 383 57.272 c2 train. errors test errors # of SVs kwk1010 - 0 74 282 66.7862.586497 1 5 79 312 52.781digit 4 0.134502 10.8 6 77 313 52.4090.150066 9.6 6 77 312 52.3740.152267 9.4 6 77 313 52.3240.147880 9.7 6 77 311 52.338 c2 train. errors test errors # of SVs kwk1010 - 0 87 339 65.0512.400509 1 4 101 358 53.578digit 5 0.116545 12.9 5 99 353 53.1820.126663 11.7 5 99 362 53.2630.129597 11.5 5 98 358 53.2500.126985 11.7 5 101 363 53.272 c2 train. errors test errors # of SVs kwk1010 - 0 80 231 46.8571.144632 1 2 80 260 37.923digit 6 0.037990 20.6 2 80 264 37.6230.037135 20.8 2 78 256 37.7730.039888 19.5 2 78 253 37.8340.041169 19.0 2 79 258 37.771 c2 train. errors test errors # of SVs kwk1010 - 0 122 253 69.7162.945887 1 9 109 272 48.730digit 7 0.187035 6.6 10 109 271 48.2630.196960 6.2 10 108 278 48.1040.189135 6.4 10 108 270 48.2410.197877 6.1 10 108 272 48.258



76 CHAPTER 2. SUPPORT VECTOR MACHINES c2 train. errors test errors # of SVs kwk1010 - 0 127 440 77.1674.246777 1 3 126 473 63.982digit 8 0.102221 22.4 5 126 463 63.5900.156304 14.4 5 122 464 63.7030.165320 13.7 5 126 457 63.6050.166110 13.6 5 127 462 63.492 c2 train. errors test errors # of SVs kwk1010 - 0 146 412 94.99721.34817 1 2 146 446 74.464digit 9 0.103062 35.8 11 140 437 71.8220.417387 7.8 10 137 434 71.8930.383747 8.5 11 141 435 71.8570.439163 7.4 11 139 440 71.9002.7 Why Do SV Machines Work Well?The presented experimental results show that Support Vector machines obtain highaccuracies which are competitive with state-of-the-art techniques. This was true forseveral visual recognition tasks. Care should be exercised, however, when generalizingthis statement to other types of pattern recognition tasks. There, empirical studieshave yet to be carried out, in particular since the tasks that we considered were allcharacterized by relatively low overlap of the di�erent classes (for instance, in theUSPS task, the human error rate is around 2.5%). In any case, the results obtainedhere are encouraging, in particular when taking into account that the SV algorithmwas developed only recently. Below, we summarize di�erent aspects providing insightin why SV machines generalize well:Capacity Control. The kernel method allows to reduce a large class of learning ma-chines to separating hyperplanes in some space. For those, an upper bound on theVC-dimension can be given (Proposition 2.1.1). As argued in Sec. 2.1.3, minimizingthe SV objective function (2.19) corresponds to trying to separate the data with aclassi�er of low VC-dimension, thereby approximately performing structural risk min-imization. The problem of constructing the decision function requires minimizing apositive quadratic form subject to box constraints and can thus be solved e�ciently.As we saw, low VC-dimension is related to a large separation margin. Thus, analy-ses of the generalization performance in terms of separation margins and fat shatteringdimension also bear relevance to SV machines (e.g. Schapire, Freund, Bartlett, andLee, 1997; Shawe-Taylor, Bartlett, Williamson, and Anthony, 1996; Bartlett, 1997).Compression. The leave-one-out bound (Proposition 2.1.2) relates SV generalizationability to the fact that the decision function is expressed in terms of a (possibly small)



2.7. WHY DO SV MACHINES WORK WELL? 77subset of the data. This can be viewed in the context of Algorithmic Complexity andMinimum Description Length (Vapnik, 1995b, Chapter 5, footnote 6).Regularization. In (Smola and Sch�olkopf, 1997b), a regularization framework is pro-posed which contains the SV algorithm as a special case. For kernel-based functionexpansions, it is shown that given a regularization operator P (Tikhonov and Arsenin,1977) mapping the functions of the learning machine into some dot product space D,the problem of minimizing the regularized riskRreg[f ] = Remp[f ] + �kPfk2; (2.53)(with a regularization parameter � � 0) can be written as a constrained optimizationproblem. For particular choices of the cost function, it further reduces to a SV typequadratic programming problem. The latter thus is not speci�c to SV machines, butis common to a much wider class of approaches. What gets lost in this case, however,is the fact that the solution can usually be expressed in terms of a small numberof SVs. This speci�c feature of SV machines is due to the fact that the type ofregularization and the class of functions which are considered as admissible solutionsare intimately related (cf. Poggio and Girosi, 1990; Girosi, Jones, and Poggio, 1993;Smola and Sch�olkopf, 1997a; Smola, Sch�olkopf, and M�uller, 1997): the SV algorithmis equivalent to minimizing the regularized risk on the set of functionsf(x) =Xi �ik(xi;x) + b; (2.54)provided that k and P are interrelated byk(xi;xj) = ((Pk)(xi; :) � (Pk)(xj; :)) : (2.55)(Here, (Pk)(xi; :) denotes the result of applying P to the function obtained by �xingk's �rst argument to xi.) To this end, k is chosen as Green's function of P �P . For in-stance, an RBF kernel thus corresponds to regularization with a functional containinga speci�c di�erential operator (Yuille and Grzywacz, 1988).
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Chapter 3Kernel Principal Component AnalysisIn the last chapter, we tried to show that the idea of implicitely mapping the datainto a high-dimensional feature space has been a very fruitful one in the context ofSV machines. Indeed, it is mainly this feature which distinguishes them from theGeneralized Portrait algorithm which has been known for more than 20 years (Vapnikand Chervonenkis, 1974), and which makes them applicable to complex real-worldproblems which are not linearly separable. Thus, it was natural to ask the questionwhether the same idea could prove fruitful in other domains of learning.The present chapter proposes a new method for performing a nonlinear form ofPrincipal Component Analysis. By the use of Mercer kernels, one can e�ciently com-pute principal components in high-dimensional feature spaces, related to input spaceby some nonlinear map. We give the derivation of the method and present experimen-tal results on polynomial feature extraction for pattern recognition (Sch�olkopf, Smola,and M�uller, 1996b, 1997b).Copyright notice: the material in this chapter is based on the article \Nonlinearcomponent analysis as a kernel Eigenvalue problem" by B. Sch�olkopf, A. Smola andK.-R. M�uller, which will appear in: Neural Computation, 1997. MIT Press.3.1 IntroductionPrincipal Component Analysis (PCA) is a powerful technique for extracting struc-ture from possibly high-dimensional data sets. It is readily performed by solving anEigenvalue problem, or by using iterative algorithms which estimate principal compo-nents. For reviews of the existing literature, see Jolli�e (1986) and Diamantaras &Kung (1996); some of the classical papers are due to Pearson (1901); Hotelling (1933);Karhunen (1946). PCA is an orthogonal transformation of the coordinate system inwhich we describe our data. The new coordinate values by which we represent the dataare called principal components. It is often the case that a small number of principalcomponents is su�cient to account for most of the structure in the data. These aresometimes called factors or latent variables of the data.The present work studies PCA in the case where we are not interested in prin-cipal components in input space, but rather in principal components of variables, or79



80 CHAPTER 3. KERNEL PRINCIPAL COMPONENT ANALYSISfeatures, which are nonlinearly related to the input variables. Among these are for in-stance variables obtained by taking arbitrary higher-order correlations between inputvariables. In the case of image analysis, this amounts to �nding principal componentsin the space of products of input pixels.To this end, we are computing dot products in feature space by means of kernelfunctions in input space (cf. Sec. 1.3). Given any algorithm which can be expressedsolely in terms of dot products, i.e. without explicit usage of the variables themselves,this kernel method enables us to construct di�erent nonlinear versions of it. Eventhough this general fact was known (Burges, private communication), the machinelearning community has made little use of it, the exception being Vapnik's SupportVector machines (Chapter 2). In this chapter, we give an example of applying thismethod in the domain of unsupervised learning, to obtain a nonlinear form of PCA.In the next section, we will �rst review the standard PCA algorithm. In order tobe able to generalize it to the nonlinear case, we formulate it in a way which usesexclusively dot products. Using kernel representations of dot products (Sec. 1.3),Sec. 3.3 presents a kernel-based algorithm for nonlinear PCA and explains some of thedi�erences to previous generalizations of PCA. First experimental results on kernel-based feature extraction for pattern recognition are given in Sec. 3.4. We concludewith a discussion (Sec. 3.5). Some technical material which is not essential for themain thread of the argument has been relegated to Appendix D.2.3.2 Principal Component Analysis in Feature SpacesGiven a set of centered observations xk 2 RN , k = 1; : : : ;M , PMk=1 xk = 0, PCAdiagonalizes the covariance matrix1C = 1M MXj=1xjx>j : (3.1)To do this, one has to solve the Eigenvalue equation�v = Cv (3.2)for Eigenvalues � � 0 and Eigenvectors v 2 RNnf0g. As�v = Cv = 1M MXj=1(xj � v)xj; (3.3)all solutions v with � 6= 0 must lie in the span of x1 : : :xM , hence (3.2) in that case isequivalent to �(xk � v) = (xk � Cv) for all k = 1; : : : ;M: (3.4)1More precisely, the covariance matrix is de�ned as the expectation of xx>; for convenience, weshall use the same term to refer to the estimate (3.1) of the covariance matrix from a �nite sample.



3.2. PRINCIPAL COMPONENT ANALYSIS IN FEATURE SPACES 81In the remainder of this section, we describe the same computation in another dotproduct space F , which is related to the input space by a possibly nonlinear map� : RN ! F; x 7! X: (3.5)Note that the feature space F could have an arbitrarily large, possibly in�nite, dimen-sionality. Here and in the following, upper case characters are used for elements of F ,while lower case characters denote elements of RN .Again, we assume that we are dealing with centered data, PMk=1 �(xk) = 0 | weshall return to this point later. In F , the covariance matrix takes the form�C = 1M MXj=1�(xj)�(xj)>: (3.6)Note that if F is in�nite-dimensional, we think of �(xj)�(xj)> as a linear operator onF , mapping X 7! �(xj)(�(xj) �X): (3.7)We now have to �nd Eigenvalues � � 0 and Eigenvectors V 2 Fnf0g satisfying�V = �CV: (3.8)Again, all solutions V with � 6= 0 lie in the span of �(x1); : : : ;�(xM). For us, this hastwo useful consequences: �rst, we may instead consider the set of equations�(�(xk) �V) = (�(xk) � �CV) for all k = 1; : : : ;M; (3.9)and second, there exist coe�cients �i (i = 1; : : : ;M) such thatV = MXi=1 �i�(xi): (3.10)Combining (3.9) and (3.10), we get� MXi=1 �i(�(xk) � �(xi)) = 1M MXi=1 �i0@�(xk) � MXj=1�(xj)(�(xj) ��(xi))1Afor all k = 1; : : : ;M: (3.11)De�ning an M �M matrix K byKij := (�(xi) � �(xj)); (3.12)this reads M�K� = K2�; (3.13)



82 CHAPTER 3. KERNEL PRINCIPAL COMPONENT ANALYSISwhere � denotes the column vector with entries �1; : : : ; �M . To �nd solutions of (3.13),we solve the Eigenvalue problem M�� = K� (3.14)for nonzero Eigenvalues. In Appendix D.2.1, we show that this gives us all solutionsof (3.13) which are of interest for us.Let �1 � �2 � : : : � �M denote the Eigenvalues of K (i.e. the solutions M�of (3.14)), and �1; : : : ;�M the corresponding complete set of Eigenvectors, with �pbeing the �rst nonzero Eigenvalue (assuming that � is not identically 0). We normalize�p; : : : ;�M by requiring that the corresponding vectors in F be normalized, i.e.(Vk �Vk) = 1 for all k = p; : : : ;M: (3.15)By virtue of (3.10) and (3.14), this translates into a normalization condition for�p; : : : ;�M : 1 = MXi;j=1�ki �kj (�(xi) ��(xj)) = MXi;j=1�ki �kjKij= (�k �K�k) = �k(�k ��k) (3.16)For the purpose of principal component extraction, we need to compute projectionsonto the Eigenvectors Vk in F (k = p; : : : ;M). Let x be a test point, with an image�(x) in F , then (Vk � �(x)) = MXi=1 �ki (�(xi) � �(x)) (3.17)may be called its nonlinear principal components corresponding to �.In summary, the following steps were necessary to compute the principal compo-nents: �rst, compute the matrix K, second, compute its Eigenvectors and normalizethem in F ; third, compute projections of a test point onto the Eigenvectors.2For the sake of simplicity, we have above made the assumption that the observationsare centered. This is easy to achieve in input space, but more di�cult in F , as wecannot explicitely compute the mean of the mapped observations in F . There is,however, a way to do it, and this leads to slightly modi�ed equations for kernel-basedPCA (see Appendix D.2.2).To conclude this section, note that � can be an arbitrary nonlinear map into thepossibly high-dimensional space F , e.g. the space of all d-th order monomials in theentries of an input vector. In that case, we need to compute dot products of inputvectors mapped by �, with a possibly prohibitive computational cost. The solutionto this problem, however, is to use kernel functions (1.14) | we exclusively need2Note that in our derivation we could have used the known result (e.g. Kirby & Sirovich, 1990)that PCA can be carried out on the dot product matrix (xi � xj)ij instead of (3.1), however, for thesake of clarity and extendability (in Appendix D.2.2, we shall consider the question how to centerthe data in F ), we gave a detailed derivation.
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FIGURE 3.1: The basic idea of kernel PCA. In some high-dimensional feature space F(bottom right), we are performing linear PCA, just as a PCA in input space (top). SinceF is nonlinearly related to input space (via �), the contour lines of constant projectionsonto the principal Eigenvector (drawn as an arrow) become nonlinear in input space. Notethat we cannot draw a pre-image of the Eigenvector in input space, as it may not evenexist. Crucial to kernel PCA is the fact that there is no need to perform the map into F :all necessary computations are carried out by the use of a kernel function k in input space(here: R2).to compute dot products between mapped patterns (in (3.12) and (3.17)); we neverneed the mapped patterns explicitely. Therefore, we can use the kernels described inSec. 1.3. The particular kernel used then implicitely determines the space F of allpossible features. The proposed algorithm, on the other hand, is a mechanism forselecting features in F .3.3 Kernel Principal Component AnalysisThe Algorithm. To perform kernel-based PCA (Fig. 3.1), from now on referred toas kernel PCA, the following steps have to be carried out: �rst, we compute thematrix Kij = (k(xi;xj))ij. Next, we solve (3.14) by diagonalizing K, and normalizethe Eigenvector expansion coe�cients �n by requiring �n(�n � �n) = 1. To extractthe principal components (corresponding to the kernel k) of a test point x, we then
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Σ (V.Φ(x)) = Σ αi k (xi,x)

input vector x

sample x1, x2, x3,...

comparison: k(xi,x)

feature value

weights (Eigenvector coefficients)α1 α2  α3  α4

k k k k

FIGURE 3.2: Feature extractor constructed by kernel PCA (cf. (3.18)). In the �rst layer,the input vector is compared to the sample via a kernel function, chosen a priori (e.g.polynomial, Gaussian, or sigmoid). The outputs are then linearly combined using weightswhich are found by solving an Eigenvector problem. As shown in the text, the depictednetwork's function can be thought of as the projection onto an Eigenvector of a covariancematrix in a high-dimensional feature space. As a function on input space, it is nonlinear.compute projections onto the Eigenvectors by (cf. Eq. (3.17), Fig. 3.2),(Vn ��(x)) = MXi=1 �ni k(xi;x): (3.18)If we use a kernel satisfying Mercer's conditions (Proposition 1.3.2), we know thatthis procedure exactly corresponds to standard PCA in some high-dimensional featurespace, except that we do not need to perform expensive computations in that space.Properties of Kernel-PCA. For Mercer kernels, we know that we are in fact doinga standard PCA in F . Consequently, all mathematical and statistical properties ofPCA (see for instance Jolli�e, 1986; Diamantaras & Kung, 1996) carry over to kernel-based PCA, with the modi�cations that they become statements about a set of points�(xi); i = 1; : : : ;M , in F rather than in RN . In F , we can thus assert that PCA isthe orthogonal basis transformation with the following properties (assuming that theEigenvectors are sorted in ascending order of the Eigenvalue size):� the �rst q (q 2 f1; : : : ;Mg) principal components, i.e. projections on Eigenvec-tors, carry more variance than any other q orthogonal directions� the mean-squared approximation error in representing the observations by the�rst q principal components is minimal33To see this, in the simple case where the data z1; : : : ; z` are centered, we consider an orthogonal



3.3. KERNEL PRINCIPAL COMPONENT ANALYSIS 85� the principal components are uncorrelated� the �rst q principal components have maximal mutual information with respectto the inputs (this holds under Gaussianity assumptions, and thus depends onthe particular kernel chosen and on the data)To translate these properties of PCA in F into statements about the data in inputspace, they need to be investigated for speci�c choices of a kernels. We conclude thissection by noting one general property of kernel PCA in input space: for kernels whichdepend only on dot products or distances in input space (as all the examples that wehave given so far do), kernel PCA has the property of unitary invariance. This followsdirectly from the fact that both the Eigenvalue problem and the feature extractiononly depend on kernel values. This ensures that the features extracted do not dependon which orthonormal coordinate system we use for representing our input data.Computational Complexity. As mentioned in Sec. 1.3, a �fth order polynomial ker-nel on a 256-dimensional input space yields a 1010-dimensional feature space. For tworeasons, kernel PCA can deal with this huge dimensionality. First, as pointed out inSect. 3.2 we do not need to look for Eigenvectors in the full space F , but just in thesubspace spanned by the images of our observations xk in F . Second, we do not needto compute dot products explicitely between vectors in F (which can be impossiblein practice, even if the vectors live in a lower-dimensional subspace), as we are usingkernel functions. Kernel PCA thus is computationally comparable to a linear PCAon ` observations with an ` � ` dot product matrix. If k is easy to compute, as forpolynomial kernels, e.g., the computational complexity is hardly changed by the factthat we need to evaluate kernel functions rather than just dot products. Furthermore,in the case where we need to use a large number ` of observations, we may want towork with an algorithm for computing only the largest Eigenvalues, as for instance thepower method with deation (for a discussion, see Diamantaras & Kung, 1996). Inaddition, we can consider using an estimate of the matrix K, computed from a subsetof M < ` examples, while still extracting principal components from all ` examples(this approach was chosen in some of our experiments described below).The situation can be di�erent for principal component extraction. There, we haveto evaluate the kernel functionM times for each extracted principal component (3.18),basis transformation W , and use the notation Pq for the projector on the �rst q canonical basisvectors fe1; : : : ; eqg. Then the mean squared reconstruction error using q vectors is1̀Xi kzi �W>PqWzik2 = 1̀Xi kWzi � PqWzik2 = 1̀Xi Xj>q(Wzi � ej)2= 1̀Xi Xj>q(zi �W>ej)2 = 1̀Xi Xj>q(W>ej � zi)(zi �W>ej) =Xj>q(W>ej � CW>ej):It can easily be seen that the values of this quadratic form (which gives the variances in the directionsW>ej) are minimal if theW>ej are chosen as its (orthogonal) Eigenvectors with smallest Eigenvalues.



86 CHAPTER 3. KERNEL PRINCIPAL COMPONENT ANALYSISrather than just evaluating one dot product as for a linear PCA. Of course, if the di-mensionality of F is 1010, this is still vastly faster than linear principal componentextraction in F . Still, in some cases, e.g. if we were to extract principal componentsas a preprocessing step for classi�cation, we might want to speed up things. This canbe carried out by the reduced set technique of Burges (1996) (cf. Appendix D.1.1),proposed in the context of Support Vector machines. In the present setting, we ap-proximate each Eigenvector V = X̀i=1 �i�(xi) (3.19)(Eq. (3.10)) by another vector ~V = mXj=1 �j�(zj); (3.20)where m < ` is chosen a priori according to the desired speed-up, and zj 2 RN ; j =1; : : : ; m. This is done by minimizing the squared di�erence� = kV� ~Vk2: (3.21)This can be carried out without explicitely dealing with the possibly high-dimensionalspace F . Since � = kVk+ mXi;j=1�i�jk(zi; zj)� 2X̀i=1 mXj=1�i�jk(xi; zj); (3.22)the gradient of � with respect to the �j and the zj is readily expressed in terms of thekernel function, thus � can be minimized by standard gradient methods. For the taskof handwritten character recognition, this technique led to a speed-up by a factor of50 at almost no loss in accuracy (Burges & Sch�olkopf, 1996; cf. Sec. 4.4.1).Finally, we add that although kernel principal component extraction is computa-tionally more expensive than its linear counterpart, this additional investment canpay back afterwards. In experiments on classi�cation based on the extracted princi-pal components, we found when we trained on nonlinear features, it was su�cient touse a linear Support Vector machine to construct the decision boundary. Linear Sup-port Vector machines, however, are much faster in classi�cation speed than nonlinearones. This is due to the fact that for k(x;y) = (x � y), the Support Vector deci-sion function (2.25) can be expressed with a single weight vector w = Pì=1 yi�ixi asf(x) = sgn((x�w)+b): Thus the �nal stage of classi�cation can be done extremely fast;the speed of the principal component extraction phase, on the other hand, and thusthe accuracy-speed trade-o� of the whole classi�er, can be controlled by the numberof components which we extract, or by the number m (cf. Eq. (3.20)).



3.3. KERNEL PRINCIPAL COMPONENT ANALYSIS 87Interpretability and Variable Selection. In PCA, it is sometimes desirable to beable to select speci�c axes which span the subspace into which one projects in doingprincipal component extraction. This way, it may for instance be possible to choosevariables which are more accessible to interpretation. In the nonlinear case, there isan additional problem: some elements of F do not have pre-images in input space.To make this plausible, note that the linear span of the training examples mappedinto feature space can have dimensionality up to M (the number of examples). Ifthis exceeds the dimensionality of input space, it is rather unlikely that each vectorof the form (3.10) has a pre-image (cf. Appendix D.1.2). To get interpretability, wethus need to �nd directions in input space (i.e. input variables) whose images under� span the PCA subspace in F . This can be done with an approach akin to the onedescribed above: we could parametrize our set of desired input variables and run theminimization of (3.22) only over those parameters. The parameters can be e.g. groupparameters which determine the amount of translation, say, starting from a set ofimages.Dimensionality Reduction, Feature Extraction, and Reconstruction. Unlike linearPCA, the proposed method allows the extraction of a number of principal componentswhich can exceed the input dimensionality. Suppose that the number of observationsM exceeds the input dimensionality N . Linear PCA, even when it is based on theM � M dot product matrix, can �nd at most N nonzero Eigenvalues | they areidentical to the nonzero Eigenvalues of the N � N covariance matrix. In contrast,kernel PCA can �nd up to M nonzero Eigenvalues | a fact that illustrates that itis impossible to perform kernel PCA directly on an N � N covariance matrix. Evenmore features could be extracted by using several kernels.Being just a basis transformation, standard PCA allows the reconstruction of theoriginal patterns xi; i = 1; : : : ; `; from a complete set of extracted principal components(xi �vj); j = 1; : : : ; `, by expansion in the Eigenvector basis. Even from an incompleteset of components, good reconstruction is often possible. In kernel PCA, this is moredi�cult: we can reconstruct the image of a pattern in F from its nonlinear components;however, if we only have an approximate reconstruction, there is no guarantee thatwe can �nd an exact pre-image of the reconstruction in input space. In that case, wewould have to resort to an approximation method (cf. (3.22)). Alternatively, we coulduse a suitable regression method for estimating the reconstruction mapping from thekernel-based principal components to the inputs.Comparison to Other Methods for Nonlinear PCA. Starting from some of theproperties characterizing PCA (see above), it is possible to develop a number of possi-ble generalizations of linear PCA to the nonlinear case. Alternatively, one may choosean iterative algorithm which adaptively estimates principal components, and makesome of its parts nonlinear to extract nonlinear features. Rather than giving a fullreview of this �eld here, we briey describe just three approaches, and refer the readerto Diamantaras & Kung (1996) for more details.



88 CHAPTER 3. KERNEL PRINCIPAL COMPONENT ANALYSISHebbian Networks. Initiated by the pioneering work of Oja (1982), a number ofunsupervised neural-network type algorithms computing principal components havebeen proposed (e.g. Sanger, 1989). Compared to the standard approach of diago-nalizing the covariance matrix, they have advantages for instance in cases where thedata are nonstationary. Nonlinear variants of these algorithms are obtained by addingnonlinear activation functions. The algorithms then extract features that the authorshave referred to as nonlinear principal components. These approaches, however, donot have the geometrical interpretation of kernel PCA as a standard PCA in a featurespace nonlinearly related to input space, and it is thus more di�cult to understandwhat exactly they are extracting. For a discussion of some approaches, see (Karhunenand Joutsensalo, 1995).Autoassociative Multi-Layer Perceptrons. Consider a linear perceptron with onehidden layer, which is smaller than the input. If we train it to reproduce the inputvalues as outputs (i.e. use it in autoassociative mode), then the hidden unit activationsform a lower-dimensional representation of the data, closely related to PCA (see forinstance Diamantaras & Kung, 1996). To generalize to a nonlinear setting, one usesnonlinear activation functions and additional layers.4 While this of course can beconsidered a form of nonlinear PCA, it should be stressed that the resulting networktraining consists in solving a hard nonlinear optimization problem, with the possibilityto get trapped in local minima, and thus with a dependence of the outcome on thestarting point of the training. Moreover, in neural network implementations there isoften a risk of getting over�tting. Another drawback of neural approaches to nonlinearPCA is that the number of components to be extracted has to be speci�ed in advance.As an aside, note that hyperbolic tangent kernels can be used to extract neural networktype nonlinear features using kernel PCA (Fig. 3.6). The principal components of atest point x in that case take the form (Fig. 3.2) Pi �ni tanh(�(xi;x) + �).Principal Curves. An approach with a clear geometric interpretation in inputspace is the method of principal curves (Hastie & Stuetzle, 1989), which iterativelyestimates a curve (or surface) capturing the structure of the data. The data areprojected onto (i.e. mapped to the closest point on) a curve, and the algorithm triesto �nd a curve with the property that each point on the curve is the average of alldata points projecting onto it. It can be shown that the only straight lines satisfyingthe latter are principal components, so principal curves are indeed a generalization ofthe latter. To compute principal curves, a nonlinear optimization problem has to besolved. The dimensionality of the surface, and thus the number of features to extract,is speci�ed in advance. Some authors (e.g. Ritter, Martinetz, and Schulten, 1990) havediscussed parallels between the Principal Curve algorithm and self-organizing featuremaps (Kohonen, 1982) for dimensionality reduction.4Simply using nonlinear activation functions in the hidden layer would not su�ce: already thelinear activation functions lead to the best approximation of the data (given the number of hiddennodes), so for the nonlinearities to have an e�ect on the components, the architecture needs to bechanged (see e.g. Diamantaras & Kung, 1996).



3.4. FEATURE EXTRACTION EXPERIMENTS 89Kernel PCA. Kernel PCA is a nonlinear generalization of PCA in the sense that (a)it is performing PCA in feature spaces of arbitrarily large (possibly in�nite) dimension-ality, and (b) if we use the kernel k(x;y) = (x �y), we recover original PCA. Comparedto the above approaches, kernel PCA has the main advantage that no nonlinear opti-mization is involved | it is essentially linear algebra, as simple as standard PCA. Inaddition, we need not specify the number of components that we want to extract inadvance. Compared to neural approaches, kernel PCA could be disadvantageous if weneed to process a very large number of observations, as this results in a large matrixK. Compared to principal curves, kernel PCA is so far harder to interpret in inputspace; however, at least for polynomial kernels, it has a very clear interpretation interms of higher-order features.3.4 Feature Extraction ExperimentsIn this section, we present a set of experiments where we used kernel PCA (in the formgiven in Appendix D.2.2) to extract principal components. First, we shall take a lookat a simple toy example; following that, we describe real-world experiments where weassess the utility of the extracted principal components by classi�cation tasks.Toy Examples. To provide some intuition on how PCA in F behaves in input space,we show a set of experiments with an arti�cial 2-D data set, using polynomial kernels(cf. Eq.( 2.26)) of degree 1 through 4 (see Fig. 3.3). Linear PCA (on the left) onlyleads to 2 nonzero Eigenvalues, as the input dimensionality is 2. In contrast, nonlinearPCA allows the extraction of further components. In the �gure, note that nonlinearPCA produces contour lines of constant feature value which reect the structure inthe data better than in linear PCA. In all cases, the �rst principal component variesmonotonically along the parabola which underlies the data. In the nonlinear cases,also the second and the third components show behaviour which is similar for di�er-ent polynomial degrees. The third component, which comes with small Eigenvalues(rescaled to sum to 1), seems to pick up the variance caused by the noise, as can benicely seen in the case of degree 2. Dropping this component would thus amount tonoise reduction.In Fig. 3.3, it can be observed that for larger polynomial degrees, the principalcomponent extraction functions become increasingly at around the origin. Thus,di�erent data points not too far from the origin would only di�er slightly in the valueof their principal components. To understand this, consider the following example:suppose we have two data pointsx1 =  10 ! ; x2 =  20 ! ; (3.23)and a kernel k(x;y) := (x � y)2: Then the di�erences between the entries of x1 and
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FIGURE 3.3: Two-dimensional toy example, with data generated in the following way: x-values have uniform distribution in [�1; 1], y-values are generated from yi = x2i + �, were� is normal noise with standard deviation 0.2. From left to right, the polynomial degreein the kernel (2.26) increases from 1 to 4; from top to bottom, the �rst 3 Eigenvectorsare shown, in order of decreasing Eigenvalue size. The �gures contain lines of constantprincipal component value (contour lines); in the linear case, these are orthogonal to theEigenvectors. We did not draw the Eigenvectors, as in the general case, they live in ahigher-dimensional feature space.x2 get scaled up by the kernel, namely k(x1;x1) = 1, but k(x2;x2) = 16. We cancompensate for this by rescaling the individual entries of each vector xi by(xi)k 7! sign ((xi)k) � j(xi)kj 12 : (3.24)Indeed, Fig. 3.4 shows that when the data are preprocessed according to (3.24) (wherehigher degrees are treated correspondingly), the �rst principal component extractorsdo hardly depend on the degree anymore, as long as it is larger than 1. If necessary,
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FIGURE 3.4: PCA with kernel (2.26), degrees d = 1; : : : ; 5. 100 points ((xi)1; (xi)2) weregenerated from (xi)2 = (xi)21+ noise (Gaussian, with standard deviation 0.2); all (xi)jwere rescaled according to (xi)j 7! sgn((xi)j) � j(xi)jj1=d. Displayed are contour lines ofconstant value of the �rst principal component. Nonlinear kernels (d > 1) extract featureswhich nicely increase along the direction of main variance in the data; linear PCA (d = 1)does its best in that respect, too, but it is limited to straight directions.

FIGURE 3.5: Two-dimensional toy example with three data clusters (Gaussians with stan-dard deviation 0.1, depicted region: [�1; 1] � [�0:5; 1]): �rst 8 nonlinear principal com-ponents extracted with k(x;y) = exp (�kx� yk2=0:1). Note that the �rst 2 principalcomponent (top left) nicely separate the three clusters. The components 3 { 5 split up theclusters into halves. Similarly, the components 6 { 8 split them again, in a way orthogonalto the above splits. Thus, the �rst 8 components divide the data into 12 regions.we can thus use (3.24) to preprocess our data. Note, however, that the above scalingproblem is irrelevant for the character and object databases to be considered below:there, most entries of the patterns are �1.Further toy examples, using radial basis function kernels (1.28) and neural networktype sigmoid kernels (1.29), are shown in �gures 3.5 { 3.8.Object Recognition. In this set of experiments, we used the MPI chair databasewith 89 training views per object (Appendix A). We computed the matrix K from all
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FIGURE 3.6: Two-dimensional toy example with three data clusters (Gaussians with stan-dard deviation 0.1, depicted region: [�1; 1] � [�0:5; 1]): �rst 6 nonlinear principal com-ponents extracted with k(x;y) = tanh (2(x � y)� 1) (the gain and threshold values werechosen according to the values used in SV machines, cf. Table 2.4). Note that the �rst 2principal components are su�cient to separate the three clusters, and the third and fourthcomponent simultaneously split all clusters into halves.2225 training examples, and used polynomial kernel PCA to extract nonlinear principalcomponents from the training and test set. To assess the utility of the components, wetrained a soft margin hyperplane classi�er (Sec. 2.1.3) on the classi�cation task. This isa special case of Support Vector machines, using the standard dot product as a kernelfunction. Table 3.1 summarizes our �ndings: in all cases, nonlinear components asextracted by polynomial kernels (Eq. (2.26) with d > 1) led to classi�cation accuraciessuperior to standard PCA. Speci�cally, the nonlinear components a�orded top testperformances between 2% and 4% error, whereas in the linear case we obtained 17%.Character Recognition. To validate the above results on a widely used pattern re-cognition benchmark database, we repeated the same experiments on the US postalservice database of handwritten digits (Appendix C). This database contains 9298examples of dimensionality 256; 2007 of them make up the test set. For computa-tional reasons, we decided to use a subset of 3000 training examples for the matrix K.Table 3.2 illustrates two advantages of using nonlinear kernels: �rst, performance of alinear classi�er trained on nonlinear principal components is better than for the samenumber of linear components; second, the performance for nonlinear components canbe further improved by using more components than possible in the linear case. Thelatter is related to the fact that of course there are many more higher-order featuresthan there are pixels in an image. Regarding the �rst point, note that extracting acertain number of features in a 1010-dimensional space constitutes a much higher reduc-



3.4. FEATURE EXTRACTION EXPERIMENTS 93

FIGURE 3.7: For di�erent threshold values � (from top to bottom: � = �4;�2;�1; 0; 2),kernel PCA with hyperbolic tangent kernels k(x;y) = tanh (2(x � y) + �) exhibits qual-itatively similar behaviour (data as in the previous �gures). In all cases, the �rst twocomponents capture the main structure of the data, whereas the third components splitthe clusters.
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FIGURE 3.8: A smooth transition from linear PCA to nonlinear PCA is obtained by usinghyperbolic tangent kernels k(x;y) = tanh (�(x � y) + 1) with varying gain �: from topto bottom, � = 0:1; 1; 5; 10 (data as in the previous �gures). For � = 0:1, the �rst twofeatures look like linear PCA features. For large �, the nonlinear region of the tanh functionbecomes e�ective. In that case, kernel PCA can exploit this nonlinearity to allocate thehighest feature gradients to regions where there are data points, as can be seen nicely inthe case � = 10.



3.4. FEATURE EXTRACTION EXPERIMENTS 95Test Error Rate for degree# of components 1 2 3 4 5 6 764 23.0 21.0 17.6 16.8 16.5 16.7 16.6128 17.6 9.9 7.9 7.1 6.2 6.0 5.8256 16.8 6.0 4.4 3.8 3.4 3.2 3.3512 n.a. 4.4 3.6 3.9 2.8 2.8 2.61024 n.a. 4.1 3.0 2.8 2.6 2.6 2.42048 n.a. 4.1 2.9 2.6 2.5 2.4 2.2TABLE 3.1: Test error rates on the MPI chair database for linear Support Vector machinestrained on nonlinear principal components extracted by PCA with polynomial kernel (2.26),for degrees 1 through 7. In the case of degree 1, we are doing standard PCA, with thenumber of nonzero Eigenvalues being at most the dimensionality of the space, 256; thus,we can extract at most 256 principal components. The performance for the nonlinear cases(degree > 1) is signi�cantly better than for the linear case, illustrating the utility of theextracted nonlinear components for classi�cation.Test Error Rate for degree# of components 1 2 3 4 5 6 732 9.6 8.8 8.1 8.5 9.1 9.3 10.864 8.8 7.3 6.8 6.7 6.7 7.2 7.5128 8.6 5.8 5.9 6.1 5.8 6.0 6.8256 8.7 5.5 5.3 5.2 5.2 5.4 5.4512 n.a. 4.9 4.6 4.4 5.1 4.6 4.91024 n.a. 4.9 4.3 4.4 4.6 4.8 4.62048 n.a. 4.9 4.2 4.1 4.0 4.3 4.4TABLE 3.2: Test error rates on the USPS handwritten digit database for linear SupportVector machines trained on nonlinear principal components extracted by PCA with kernel(2.26), for degrees 1 through 7. In the case of degree 1, we are doing standard PCA, withthe number of nonzero Eigenvalues being at most the dimensionality of the space, 256.Clearly, nonlinear principal components a�ord test error rates which are superior to thelinear case (degree 1).tion of dimensionality than extracting the same number of features in 256-dimensionalinput space.For all numbers of features, the optimal degree of kernels to use is around 4, whichis compatible with Support Vector machine results on the same data set (cf. Sec. 2.3and Fig. 2.16). Moreover, with only one exception, the nonlinear features are superiorto their linear counterparts. The resulting error rate for the best of our classi�ers(4.0%) is competitive with convolutional 5-layer neural networks (5.0% were reportedby LeCun et al., 1989) and nonlinear Support Vector classi�ers (4.0%, Table 2.4); it



96 CHAPTER 3. KERNEL PRINCIPAL COMPONENT ANALYSISis much better than linear classi�ers operating directly on the image data (a linearSupport Vector machine achieves 8.9%; Table 2.4). Our results were obtained withoutusing any prior knowledge about symmetries of the problem at hand, explaining whythe performance is inferior to Virtual Support Vector classi�ers (3.2%, Table 4.1),and Tangent Distance Nearest Neighbour classi�ers (2.6%, Simard, LeCun, & Denker,1993). We believe that adding e.g. local translation invariance, be it by generating\virtual" translated examples (cf. Sec. 4.2.1) or by choosing a suitable kernel (e.g. asthe ones that we shall describe in Sec. 4.3), could further improve the results.3.5 DiscussionFeature Extraction for Classi�cation. This chapter was devoted to the presentationof a new technique for nonlinear PCA. To develop this technique, we made use of akernel method so far only used in supervised learning (Vapnik, 1995; Sec. 1.3). KernelPCA constitutes a mere �rst step towards exploiting this technique for a large class ofalgorithms.In experiments comparing the utility of kernel PCA features for pattern recognitionusing a linear classi�er, we found two advantages of nonlinear kernels: �rst, nonlinearprincipal components a�orded better recognition rates than corresponding numbers oflinear principal components; and second, the performance for nonlinear componentscan be further improved by using more components than possible in the linear case.We have not yet compared kernel PCA to other techniques for nonlinear feature extrac-tion and dimensionality reduction. We can, however, compare results to other featureextraction methods which have been used in the past by researchers working on theUSPS classi�cation problem (cf. Sec. 3.4). Our system of kernel PCA feature extrac-tion plus linear support vector machine for instance performed better than LeNet1(LeCun et al., 1989). Even though the latter result has been obtained a number ofyears ago, it should be stressed that LeNet1 provides an architecture which contains agreat deal of prior information about the handwritten character classi�cation problem.It uses shared weights to improve transformation invariance, and a hierarchy of featuredetectors resembling parts of the human visual system. These feature detectors werefor instance used by Bottou and Vapnik (1992) as a preprocessing stage in their exper-iments in local learning. Note that, in addition, our features were extracted withouttaking into account that we want to do classi�cation. Clearly, in supervised learning,where we are given a set of labelled observations (x1; y1); : : : ; (x`; y`), it would seemadvisable to make use of the labels not only during the training of the �nal classi�er,but already in the stage of feature extraction.To conclude this paragraph on feature extraction for classi�cation, we note that asimilar approach could be taken in the case of regression estimation.Feature Space and the Curse of Dimensionality. We are doing PCA in 1010-dimensional feature spaces, yet getting results in �nite time which are comparableto state-of-the-art techniques. In fact, of course, we are not working in the full feature



3.5. DISCUSSION 97space, but just in a comparably small linear subspace of it, whose dimension equalsat most the number of observations. The method automatically chooses this subspaceand provides a means of taking advantage of the lower dimensionality | an approachwhich consisted in explicitely mapping into feature space and then performing PCAwould have severe di�culties at this point: even if PCA was done based on anM �Mdot product matrix (M being the sample size) whose diagonalization is tractable, itwould still be necessary to evaluate dot products in a 1010-dimensional feature spaceto compute the entries of the matrix in the �rst place. Kernel-based methods avoidthis problem | they do not explicitely compute all dimensions of F (loosely speaking,all possible features), but only work in a relevant subspace of F .Note, moreover, that we did not get over�tting problems when training the linearSV classi�er on the extracted features. The basic idea behind this two-step approachis very similar in spirit to nonlinear SV machines: one maps into a very complex spaceto be able to approximate a large class of possible decision functions, and then uses alow VC-dimension classi�er in that space to control generalization.Conclusion. Compared to other techniques for nonlinear feature extraction, kernelPCA has the advantages that it does not require nonlinear optimization, but only thesolution of an Eigenvalue problem, and by the possibility to use di�erent kernels, itcomprises a fairly general class of nonlinearities that can be used. Clearly, the lastpoint has yet to be evaluated in practice, however, for the support vector machine, theutility of di�erent kernels has already been established. Di�erent kernels (polynomial,sigmoid, Gaussian) led to �ne classi�cation performances (Table 2.4). The generalquestion of how to select the ideal kernel for a given task (i.e. the appropriate featurespace), however, is an open problem.We conclude this chapter with a twofold outlook. The scene has been set forusing the kernel method to construct a wide variety of rather general and still feasiblenonlinear variants of classical algorithms. It is beyond the scope of the present workto explore all the possibilities, including many distance-based algorithms, in detail.Some of them are currently being investigated, for instance nonlinear forms of k-means clustering and kernel-based independent component analysis (Sch�olkopf, Smola,& M�uller, 1996). Other domains where researchers have recently started to investigatethe use of Mercer kernels include Gaussian Processes (Williams, 1997).Linear PCA is being used in numerous technical and scienti�c applications, includ-ing noise reduction, density estimation, image indexing and retrieval systems, and theanalysis of natural image statistics. Kernel PCA can be applied to all domains wheretraditional PCA has so far been used for feature extraction, and where a nonlinearextension would make sense.
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Chapter 4Prior Knowledge in Support Vector MachinesIn 1995, LeCun et al. published a pattern recognition performance comparison notingthe following:\The optimal margin classi�er [i.e. SV machine, the author] has excellentaccuracy, which is most remarkable, because unlike the other high per-formance classi�ers, it does not include a priori knowledge about theproblem. In fact, this classi�er would do just as well if the image pix-els were permuted by a �xed mapping. [...] However, improvements areexpected as the technique is relatively new."One of the key points in developing SV technology is thus the incorporation of priorknowledge about given tasks. Moreover, it is also a key point if we want to learnanything general about the processing of visual information in animals from SV ma-chines: having been exposed to the world for all their life, animals extensively exploitany available knowledge on regularities and invariances of the world.Two years after the above statement was published, we are now in the position to beable to devote the present chapter to three techniques for incorporating task-speci�cprior knowledge in SV machines (Sch�olkopf, Burges, and Vapnik, 1996a; Sch�olkopf,Simard, Smola, and Vapnik, 1997a).4.1 IntroductionWhen we are trying to extract regularities from data, we often have additional knowl-edge about functions that we estimate (for a review, see Abu-Mostafa, 1995). Forinstance, in image classi�cation tasks, there exist transformations which leave classmembership invariant (e.g. translations); moreover, it is usually the case that imageshave a local structure in the sense that not all correlations between image regions carryequal amounts of information. We presently investigate the question how to make useof these two sources of knowledge.We �rst present the Virtual SV method of incorporating prior knowledge abouttransformation invariances by applying transformations to Support Vectors, the train-ing examples most critical for determining the classi�cation boundary (Sec. 4.2.1).99



100 CHAPTER 4. PRIOR KNOWLEDGE IN SUPPORT VECTOR MACHINESIn Sec. 4.2.2, we design kernel functions which lead to invariant classi�cation hyper-planes. This method is applicable to invariances under the action of di�erentiable local1-parameter groups of local transformations, e.g. translational invariance in patternrecognition; the Virtual SV method is applicable to any type of invariance. In thethird method proposed in this chapter, we also modify the kernel functions; however,this time not to incorporate transformation invariance, but to take into account im-age locality by using localized receptive �elds (Sec. 4.3). Following that, Sec. 4.4 andSec. 4.5 give experimental results and a discussion, respectively.4.2 Incorporating Transformation InvariancesIn many applications of learning procedures, certain transformations of the input areknown to leave function values unchanged. At least three di�erent ways of exploitingthis knowledge have been used (illustrated in Fig. 4.1):In the �rst case, the knowledge is used to generate arti�cial training examples (\vir-tual examples", Poggio and Vetter, 1992; Baird, 1990) by transforming the trainingexamples accordingly. It is then hoped that given su�cient time, the learning machinewill extract the invariances from the arti�cially enlarged training data.In the second case, the learning algorithm itself is modi�ed. This is typically doneby using a modi�ed error function which forces a learning machine to construct afunction with the desired invariances (Simard et al., 1992).Finally, in the third case, the invariance is achieved by changing the representationof the data by �rst mapping them into a more suitable space; an approach pursued forinstance by Segman, Rubinstein, and Zeevi (1992), or Vetter and Poggio (1997). Thedata representation can also be changed by using a modi�ed distance metric, ratherthan actually changing the patterns (e.g. Simard, LeCun, and Denker, 1993).Simard et al. (1992) compare the �rst two techniques and �nd that for the con-sidered problem | learning a function with three plateaus where function values arelocally invariant | training on the arti�cially enlarged data set is signi�cantly slower,due to both correlations in the arti�cial data and the increase in training set size.Moving to real-world applications, the latter factor becomes even more important. Ifthe size of a training set is multiplied by a number of desired invariances (by generatinga corresponding number of arti�cial examples for each training pattern), the resultingtraining sets can get rather large (as the ones used by Drucker, Schapire, and Simard,1993). However, the method of generating virtual examples has the advantage of beingreadily implemented for all kinds of learning machines and symmetries. If instead ofLie groups of symmetry transformations one is dealing with discrete symmetries, as thebilateral symmetries of Vetter, Poggio, and B�ultho� (1994); Vetter and Poggio (1994),derivative-based methods such as the ones of Simard et al. (1992) are not applicable.It would thus be desirable to have an intermediate method which has the advantagesof the virtual examples approach without its computational cost.The two methods described in the following try to combine merits of all the ap-proaches mentioned above. The Virtual SV method (Sec. 4.2.1) retains the exibility
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representationtangentsvirtual examplesFIGURE 4.1: Di�erent ways of incorporating invariances in a decision function. The dashedline marks the \true" boundary, disks and circle are the training examples. We assumethat prior information tells us that the classi�cation function only depends on the norm ofthe input vector (the origin being in the center of each picture). Lines crossing an exampleindicate the type of information conveyed by the di�erent methods of incorporating priorinformation. Left: generating virtual examples in a localized region around each trainingexample; middle: incorporating a regularizer to learn tangent values (cf. Simard, Victorri,LeCun, and Denker, 1992); right: changing the representation of the data by �rst mappingeach example to its norm. If feasible, the latter method yields the most information.However, if the necessary nonlinear transformation cannot be found, or if the desiredinvariances are of localized nature, one has to resort to one of the former techniques.Finally, the reader may note that examples close to the boundary allow us to exploitprior knowledge very e�ectively: given a method to get a �rst approximation of the trueboundary, the examples closest to it would allow good estimation of the true boundary. Asimilar two-step approach is pursued in Sec. 4.2.1. (From Sch�olkopf, Burges, and Vapnik(1996a).)and simplicity of virtual examples approaches, while cutting down on their computa-tional cost signi�cantly. The Invariant Hyperplane method (Sec. 4.2.2), on the otherhand, is comparable to the method of Simard et al. (1992) in that it is applicable for alldi�erentiable local 1-parameter groups of local symmetry transformations, comprisinga fairly general class of invariances. In addition, it has an equivalent interpretationas a preprocessing operation applied to the data before learning. In this sense, it canalso be viewed as changing the representation of the data to a more invariant one, ina task-dependent way.4.2.1 The Virtual SV MethodIn Sec. 2.4, it has been argued that the SV set contains all information necessaryto solve a given classi�cation task. It particular, it was possible to train any oneof three di�erent types of SV machines solely on the Support Vector set extracted



102 CHAPTER 4. PRIOR KNOWLEDGE IN SUPPORT VECTOR MACHINESby another machine, with a test performance not worse than after training on thefull database. Using this �nding as a starting point, we now investigate the questionwhether it might be su�cient to generate virtual examples from the Support Vectorsonly. After all, one might hope that it does not add much information to generatevirtual examples of patterns which are not close to the boundary. In high-dimensionalcases, however, care has to be exercised regarding the validity of this intuitive picture.Thus, an experimental test on a high-dimensional real-world problem is imperative.In our experiments, we proceeded as follows (cf. Fig. 4.2):1. Train a Support Vector machine to extract the Support Vector set.2. Generate arti�cial examples by applying the desired invariance transformationsto the Support Vectors. In the following, we will refer to these examples asVirtual Support Vectors (VSVs).3. Train another Support Vector machine on the generated examples.1If the desired invariances are incorporated, the curves obtained by applying Lie sym-metry transformations to points on the decision surface should have tangents parallelto the latter (cf. Simard et al., 1992). If we use small small Lie group transformationsto generate the virtual examples, this implies that the Virtual Support Vectors shouldbe approximately as close to the decision surface as the original Support Vectors.Hence, they are fairly likely to become Support Vectors after the second training run.Vice versa, if a substantial fraction of the Virtual Support Vectors turn out to becomesupport vectors in the second run, we have reason to expect that the decision surfacedoes have the desired shape.4.2.2 Constructing Invariance KernelsInvariance by a Self-Consistency Argument. We face the following problem: toexpress the condition of invariance of the decision function, we already need to knowits coe�cients which are found only during the optimization, which in turn shouldalready take into account the desired invariances. As a way out of this circle, we usethe following ansatz: consider decision functions f = sgn � g, where g is de�ned asg(xj) := X̀i=1 �iyi(Bxj �Bxi) + b; (4.1)with a matrix B to be determined below. This follows Vapnik (1995b), who suggestedto incorporate invariances by modifying the dot product used: any nonsingular Bde�nes a dot product, which can equivalently be written in the form (xj � Axi), witha positive de�nite matrix A = B>B.1Clearly, the scheme can be iterated; however, care has to exercised, since the iteration of localinvariances would lead to global ones which are not always desirable | cf. the example of a '6'rotating into a '9' (Simard, LeCun, and Denker, 1993).
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?
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problem separating hyperplanes

SV hyperplane VSV hyperplaneFIGURE 4.2: Suppose we have prior knowledge indicating that the decision function shouldbe invariant with respect to horizontal translations. The true decision boundary is drawnas a dotted line (top left); however, as we are just given a limited training sample, di�erentseparating hyperplanes are conveivable (top right). The SV algorithm �nds the uniqueseparating hyperplane with maximal margin (bottom left, which in this case is quite dif-ferent from the true boundary. For instance, it would lead to wrong classi�cation of theambiguous point indicated by the question mark. Making use of the prior knowledge bygenerating Virtual Support Vectors from the Support Vectors found in a �rst tranining run,and retraining on these, yields a more accurate decision boundary (bottom right). Note,moreover, that for the considered example, it is su�cient to train the SV machine only onvirtual examples generated from the Support Vectors.Clearly, invariance of g under local transformations of all xj is a su�cient conditionfor the same invariance to hold for f = sgn�g, which is what we are aiming for. Strictlyspeaking, however, invariance of g is not necessary at points which are not SupportVectors, since these lie in a region where (sgn � g) is constant.The above notion of invariance refers to invariance when evaluating the decisionfunction. A di�erent notion could ask the question whether the separating hyperplane,



104 CHAPTER 4. PRIOR KNOWLEDGE IN SUPPORT VECTOR MACHINESincluding its margin, would change if the training examples were transformed. Itturns out that when discussing the invariance of g rather than f , these two conceptsare closely related. In the following argument, we restrict ourselves to the optimalmargin case (�i = 0 for all i = 1; : : : ; `), where the margin is well-de�ned. As theseparating hyperplane and its margin are expressed in terms of Support Vectors, locallytransforming a Support Vector xi will change the hyperplane or the margin if g(xi)changes: if jgj gets smaller than 1, the transformed pattern will lie in the margin, andthe recomputed margin will be smaller; if jgj gets larger than 1, the margin mightbecome bigger, depending on whether the pattern can be expressed in terms of theother SVs (cf. the remark in point 2 of the enumeration preceding Proposition 2.1.2).In terms of the mechanical analogy of Sec. 2.1.2: moving Support Vectors changesthe mechanical equilibrium for the sheet separating the classes. Conversely, a localtransformation of a non-Support Vector will never change f , even if the value of gchanges, as the solution of the programming problem is expressed in terms of theSupport Vectors only.In this sense, invariance of f under local transformations of the given data corre-sponds to invariance of (4.1) for the Support Vectors. Note, however, that this criterionis not readily applicable: before �nding the Support Vectors in the optimization, wealready need to know how to enforce invariance. Thus the above observation cannotbe used directly, however it could serve as a starting point for constructing heuristicsor iterative solutions. In the Virtual SV method (Sec. 4.2.1), a �rst run of the stan-dard SV algorithm is carried out to obtain an initial SV set; similar heuristics couldbe applied in the present case.Local invariance of g for each pattern xj under transformations of a di�erentiablelocal 1-parameter group of local transformations Lt,@@t ���t=0g(Ltxj) = 0; (4.2)can be approximately enforced by minimizing the regularizer1̀ X̀j=1 @@t ���t=0g(Ltxj)!2 : (4.3)Note that the sum may run over labelled as well as unlabelled data, so in principle onecould also require the decision function to be invariant with respect to transformationsof elements of a test set. Moreover, we could use di�erent transformations for di�erentpatterns.For (4.1), the local invariance term (4.2) becomes@@t ���t=0g(Ltxj) = @@t ���t=0  X̀i=1 �iyi(BLtxj �Bxi) + b!= X̀i=1 �iyi @@t ���t=0(BLtxj �Bxi)



4.2. INCORPORATING TRANSFORMATION INVARIANCES 105= X̀i=1 �iyi@1(BL0xj �Bxi) �B @@t ���t=0Ltxj; (4.4)using the chain rule. Here, @1(BL0xj �Bxi) denotes the gradient of (x �y) with respectto x, evaluated at the point (x � y) = (BL0xj �Bxi).As a side remark, note that a su�cient, albeit rather strict condition for invarianceis thus that @@t ���t=0(BLtxj � Bxi) vanish for all i; j; however, we will proceed in ourderivation, with the goal to impose weaker conditions, which apply for one speci�cdecision function rather than simultaneously for all decision functions expressible bydi�erent choices of the coe�cients �iyi.Substituting (4.4) into (4.3), using the facts that L0 = I and @1(x;y) = y>, yieldsthe regularizer1̀ X̀j=1 X̀i=1 �iyi(Bxi)>B @@t ���t=0Ltxj!2= 1̀ X̀j=1 X̀i=1 �iyi(Bxi)>B @@t ���t=0Ltxj! X̀k=1�kyk(B @@t ���t=0Ltxj)>(Bxk)!= X̀i;k=1�iyi�kyk(Bxi �BCB>Bxk) (4.5)where C := 1̀ X̀j=1 @@t ���t=0Ltxj! @@t ���t=0Ltxj!> : (4.6)We now choose B such that (4.5) reduces to the standard SV target function (2.7)in the form obtained by substituting (2.11) into it (cf. the quadratic term of (2.13)),utilizing the dot product chosen in (4.1), i.e. such that(Bxi �BCB>Bxk) = (Bxi �Bxk): (4.7)Assuming that the xi span the whole space, this condition becomesB>BCB>B = B>B; (4.8)or, by requiring B to be nonsingular, i.e. that no information get lost during thepreprocessing, BCB> = I. This can be satis�ed by a preprocessing matrixB = C� 12 ; (4.9)the nonnegative square root of the inverse of the nonnegative matrix C de�ned in(4.6). In practice, we use a matrixC� := (1� �)C + �I; (4.10)



106 CHAPTER 4. PRIOR KNOWLEDGE IN SUPPORT VECTOR MACHINESwith 0 < � � 1; instead of C. As C is nonnegative, C� is invertible. For � = 1, werecover the standard SV optimal hyperplane algorithm, other values of � determine thetrade-o� between invariance and model complexity control. It can be shown that usingC� corresponds to using an objective function �(w) = (1 � �)Pi(w � @@t jt=0Ltxi)2 +�kwk2 (see Appendix D.3).By choosing the preprocessing matrix B according to (4.9), we have obtained aformulation of the problem where the standard SV quadratic optimization techniquedoes in e�ect minimize the tangent regularizer (4.3): the maximum of (2.13) subjectto (2.14) and (2.15), using the modi�ed dot product as in (4.1), coincides with theminimum of (4.3) subject to the separation conditions yi �g(xi) � 1, where g is de�nedas in (4.1).Note that preprocessing with B does not a�ect classi�cation speed: since (Bxj �Bxi) = (xj � B>Bxi), we can precompute B>Bxi for all SVs xi and thus obtain amachine (with modi�ed SVs) which is as fast as a standard SV machine (cf. (4.1)).In the nonlinear case, where kernel functions k(x;y) are substituted for everyoccurence of a dot product, the above analysis of transformation invariance leads tothe regularizer 1̀ X̀j=1 X̀i=1 �iyi@1k(Bxj; Bxi) �B @@t ���t=0Ltxj!2 : (4.11)The derivative of k must be evaluated for speci�c kernels, e.g. for k(x;y) = (x � y)d,@1k(x;y) = d � (x � y)d�1 � y>: To obtain a kernel-speci�c constraint on the matrix B,one would need to equate the result with the quadratic term in the nonlinear objectivefunction, Xi;k �iyi�kykk(Bxi; Bxk): (4.12)Relationship to Principal Component Analysis. Let us now provide some interpre-tation of (4.9) and (4.6). The tangent vectors � @@t jt=0Ltxj have zero mean, thus C is asample estimate of the covariance matrix of the random vector s � @@t jt=0Ltx, s 2 f�1gbeing a random sign. Based on this observation, we call C (4.6) the Tangent Covari-ance Matrix of the data set fxi : i = 1; : : : ; `g with respect to the transformationsLt. Being positive de�nite,2 C can be diagonalized, C = SDS>, with an orthogo-nal matrix S consisting of C's Eigenvectors and a diagonal matrix D containing thecorresponding positive Eigenvalues. Then we can computeB = C� 12 = SD� 12S>; (4.13)where D� 12 is the diagonal matrix obtained from D by taking the inverse square2it is understood that we use C� if C is not de�nite (cf. (4.10))



4.2. INCORPORATING TRANSFORMATION INVARIANCES 107roots of the diagonal elements. Since the dot product is invariant under orthogonaltransformations, we may drop the leading S and (4.1) becomesg(xj) = X̀i=1 �iyi(D� 12S>xj �D� 12S>xi) + b: (4.14)A given pattern x is thus �rst transformed by projecting it onto the Eigenvectors ofthe tangent covariance matrix C, which are the rows of S>. The resulting featurevector is then rescaled by dividing by the square roots of C's Eigenvalues.3 In otherwords, the directions of main variance of the random vector @@t jt=0Ltx are scaled back,thus more emphasis is put on features which are less variant under Lt. For example, inimage analysis, if the Lt represent translations, more emphasis is put on the relativeproportions of ink in the image rather than the positions of lines. The PCA inter-pretation of our preprocessing matrix suggests the possibility to regularize and reducedimensionality by discarding part of the features, as it is common usage when doingPCA. As an aside, note that the resulting matrix will still satisfy (4.8).4Combining the PCA interpretation with the considerations following (4.1) leadsto an interesting observation: by computing the tangent covariance matrix from theSVs only, rather than from the full data set, it can be rendered a task-dependentcovariance matrix. Although the summation in (4.6) does not take into account classlabels yi, it then implicitely depends on the task to be solved via the SV set, whichis computed for given the task. Thus, it allows the extraction of features which areinvariant in a task-dependent way: it does not matter whether features for \easy"patterns change with transformations, it is more important that the \hard" patterns,close to the decision boundary, lead to invariant features.The Nonlinear Tangent Covariance Matrix. We are now in a position to describea feasible way how to generalize to the nonlinear case. To this end, we use kernelprincipal component analysis (Chapter 3). This technique allows us to compute prin-cipal components in a space F nonlinearly related to input space. The kernel functionk plays the role of the dot product in F , i.e. k(x;y) = (�(x) � �(y)). To generalize(4.14) to the nonlinear case, we compute the tangent covariance matrix C (Eq. 4.6)in feature space F , and its projection onto the subspace of F which is given by thelinear span of the tangent vectors in F . There, the considerations of the linear case3As an aside, note that our goal to build invariant SV machines has thus serendipitously providedus with an approach for an open problem in SV learning, namely the one of scaling: in SV machines,there has so far been no way of automatically assigning di�erent weight to di�erent directions in inputspace | in a trained SV machine, the weights of the �rst layer (the SVs) form a subset of the trainingset. Choosing these Support Vectors from the training set only gives rather limited possibilities forappropriately dealing with di�erent scales in di�erent directions of input space.4To see this, �rst note that if B solves B>BCB>B = B>B, and B's polar decomposition isB = UBs, with UU> = 1 and Bs = B>s , then Bs also solve it. Thus, we may restrict ourselves tosymmetrical solutions. For our choice B = C� 12 , B commutes with C, hence they can be diagonalizedsimultaneously. In this case, B2CB2 = B2 clearly can also be satis�ed by any matrix which is obtainedfrom B by setting an arbitrary selection of Eigenvalues to 0 (in the diagonal representation).



108 CHAPTER 4. PRIOR KNOWLEDGE IN SUPPORT VECTOR MACHINESapply. The whole procedure reduces to computing dot products in F , which can bedone using k, without explicitly mapping into F :In rewriting (4.6) for the nonlinear case, we substitute �nite di�erences, with t > 0,for derivatives: C := 1̀t2 X̀j=1 (�(Ltxj)� �(xj)) (�(Ltxj)� �(xj))> : (4.15)For the sake of brevity, we have omitted the summands corresponding to derivativesin the opposite direction, which ensure that the data set is centered. For the �naltangent covariance matrix C, they do not make a di�erence, as the two negative signscancel out.In high-dimensional feature spaces, C cannot be computed explicitely. In completeanalogy to Chapter 3, we compute another matrix whose Eigenvalues and Eigenvectorswill allow us to extract features corresponding to Eigenvectors and Eigenvalues ofC. This is done by taking dot products from both sides with �(Ltxi) � �(xi) (theEigenvectors in F can be expanded in terms of the latter, by the same argument asthe one leading to (3.10)). De�ningKij = k(xi;xj); (4.16)Ktij = k(xi;Ltxj) + k(Ltxi;xj); (4.17)and Kttij = k(Ltxi;Ltxj); (4.18)we get (�(Ltxi)� �(xi))>C(�(Ltxk)� �(xk))= 1`t2 X̀j=1(Kttij �Ktij +Kij)(Kttjk �Ktjk +Kjk)= � 1`t2 (Ktt �Kt +K)2�ik : (4.19)Using (4.19), and Eigenvector expansionsV = X̀k=1�k(�(Ltxk)� �(xk)); (4.20)the Eigenvalue problem that we need to solve (cf. (3.9)),�(�(Ltxi)� �(xi))> X̀k=1�k(�(Ltxk)� �(xk))= (�(Ltxi)� �(xi))>C X̀k=1�k(�(Ltxk)� �(xk)); (4.21)



4.3. IMAGE LOCALITY AND LOCAL FEATURE EXTRACTORS 109then takes the form �(Ktt �Kt +K)� = 1̀t2 (Ktt �Kt +K)2�: (4.22)To �nd solutions of (4.22), we solve the Eigenvalue problem (cf. (3.14))5�� = 1̀t2 (Ktt �Kt +K)�: (4.23)Normalization of each Eigenvector (4.20) is carried out by requiring (V �V ) = 1, which,as in (3.16), translates into �(� ��) = 1; (4.24)using the corresponding Eigenvalue �.Feature extraction for a test point x is done by computing the projection of �(x)onto Eigenvectors V,V>�(x) = X̀k=1�k(�(Ltxk)� �(xk))>�(x)= X̀k=1�k(k(Ltxk;x)� k(xk;x)): (4.25)In Appendix D.3, we give an alternative justi�cation of this procedure, whichnaturally arises from requiring invariance in feature space, without the need for aPCA interpretation.4.3 Image Locality and Local Feature ExtractorsBy using a kernel k(x;y) = (x � y)d, one implicitly constructs a decision boundaryin the space of all possible products of d pixels. This may not be desirable, since innatural images, correlations over short distances are much more reliable as featuresthan long-range correlations are. To take this into account, we de�ne a kernel kd1;d2pas follows (cf. Fig. 4.3):1. compute a third image z, de�ned as the pixel-wise product of x and y2. sample z with pyramidal receptive �elds of diameter p, centered at all locations(i; j), to obtain the values zij3. raise each zij to the power d1, to take into account local correlations within therange of the pyramid5If we expand V in a di�erent set of vectors, we instead arrive at a problem of simultaneousdiagonalization of two matrices.
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FIGURE 4.3: Kernel utilizing local correlations in images. To compute k(x;y) for twoimages x and y, we sum over products between corresponding pixels of the two imagesin localized regions (in the �gure, this is indicated by dot products (: � :)), weighed bypyramidal receptive �elds. To the outputs, a �rst nonlinearity in form of an exponent d1is applied. The resulting numbers for all patches (only two are displayed) are summed,and the d2-th power of the result is taken as the value k(x;y). This kernel correspondsto a dot product in a polynomial space which is spanned mainly by localized correlationsbetween pixels (see Sec. 4.3).4. sum zd1ij over the whole image, and raise the result to the power d2 to allow forlonge-range correlations of order d2The resulting kernel will be of order d1 � d2, however, it will not contain all possiblecorrelations of d1 � d2 pixels.4.4 Experimental Results4.4.1 Virtual Support VectorsUSPS Digit Recognition. The �rst set of experiments was conducted on the USPSdatabase of handwritten digits (Appendix C). This database has been used extensivelyin the literature, with a LeNet1 Convolutional Network achieving a test error rate of5.0% (LeCun et al., 1989). As in Sec. 2.3, we used  = 10.Virtual Support Vectors were generated for the set of all di�erent Support Vectorsof the ten classi�ers. Alternatively, one can carry out the procedure separately forthe ten binary classi�ers, thus dealing with smaller training sets during the training ofthe second machine. Table 4.1 shows that incorporating only translational invariance



112 CHAPTER 4. PRIOR KNOWLEDGE IN SUPPORT VECTOR MACHINESalready improves performance signi�cantly, from 4.0% to 3.2% error rate. For othertypes of invariances (Fig. 4.4), we also found improvements, albeit smaller ones: gen-erating Virtual Support Vectors by rotation or by the line thickness transformationof Drucker, Schapire, and Simard (1993), we constructed polynomial classi�ers with3.7% error rate (in both cases).Note, moreover, that generating Virtual examples from the full database ratherthan just from the SV sets did not improve the accuracy, nor did it enlarge the SV set ofthe �nal classi�er substantially. This �nding was reproduced for the Virtual SV systemmentioned in Sec. 2.5.3: in that case, similar to Table 4.1, generating Virtual examplesfrom the full database led to identical performance, and only slightly increased SV setsize (861 instead of 806). From this, we conclude that for the considered recognitiontask, it is su�cient to generate Virtual examples only from the SVs |Virtual examplesgenerated from the other patterns do not add much useful information.MNIST Digit Recognition. The larger a database, the more information aboutinvariances of the decision function is already contained in the di�erences betweenpatterns of the same class. To show that it is nevertheless possible to improve classi�-TABLE 4.2: Application of the Virtual SV method to the MNIST database. Virtual SVswere generated by translating the original SVs in all four principal directions (by 1 pixel).Results are given for the original SV machine, and two VSV systems utilizing di�erentkernel degrees; in all cases, we used  = 10 (cf. (2.19)). SV: degree 5 polynomial SVclassi�er; VSV1: VSV machine with degree 5 polynomial kernel; VSV2: same with degree9 kernel. The �rst table gives the performance: for the ten binary recognizers, as numbersof errors; for multi class-classi�cation (T1), in terms of error rates (in %), both on the60000 element test set. The second multi-class error rate (T2) was computed by testingonly on a 10000 element subset of the full 60000 element test set. These results are givenfor reference purpose, they are the ones usually reported in MNIST performance studies.The second table gives numbers of SVs for all ten binary digit recognizers.Errorsbinary recognizers 10-classsystem 0 1 2 3 4 5 6 7 8 9 T1 T2SV 131 97 243 240 212 241 195 259 343 409 1.6 1.4VSV1 95 84 186 176 173 171 127 217 233 289 1.1 1.0VSV2 81 66 164 146 141 147 119 179 196 254 1.0 0.8Support Vectorssystem 0 1 2 3 4 5 6 7 8 9SV 1206 757 2183 2506 1784 2255 1347 1712 3053 2720VSV1 2938 1887 5015 4764 3983 5235 3328 3968 6978 6348VSV2 3941 2136 6598 7380 5127 6466 4128 5014 8701 7720



4.4. EXPERIMENTAL RESULTS 113cation accuracies with our technique, we applied the method to the MNIST database(Appendix C) of 60000 handwritten digits. This database has become the standardfor performance comparisons at AT&T Bell Labs; the error rate record of 0.7% is heldby a boosted LeNet4 (Bottou et al., 1994; LeCun et al., 1995), i.e. by an ensembleof learning machines. The best single machine in the performance comparisons so farwas a LeNet5 convolutional neural network (0.9%); other high performance systemsinclude Tangent Distance nearest neighbour classi�ers (1.1%), and LeNet4 with a lastlayer using methods of local learning (1.1%, cf. Bottou and Vapnik, 1992).Using Virtual Support Vectors generated by 1-pixel translations, we improved adegree 5 polynomial SV classi�er from 1.4% to 1.0% error rate on the 10000 elementtest set (Table 4.2). In this case, we applied our technique separately for all ten SupportVector sets of the binary classi�ers (rather than for their union) in order to avoidhaving to deal with large training sets in the retraining stage. Note, moreover, thatfor the MNIST database, we did not compare results of the VSV technique to those forgenerating Virtual examples from the whole database: the latter is computationallyexceedingly expensive, as it entails training on a very large training set. We did,however, make a comparison for the small MNIST database (Appendix C). There, adegree 5 polynomial classi�er was improved from 3:8% to 2:5% error by the Virtual SVmethod, with an increase of the average SV set sizes from 324 to 823. By generatingVirtual examples from the full training set, and retraining on these, we obtained asystem which had slightly more SVs (939), but an unchanged error rate.After retraining, the number of SVs more than doubled (Table 4.2). Thus, althoughthe training sets for the second set of binary classi�ers were substantially smaller thanthe original database (for four Virtual SVs per SV, four times the size of the originalSV sets, in our case amounting to around 104), we concluded that the amount ofdata in the region of interest, close to the decision boundary, had more than doubled.Therefore, we reasoned that it should be possible to use a more complex decisionfunction in the second stage (note that the risk bound (1.5) depends on the ratio ofVC-dimension and training set size). Indeed, using a degree 9 polynomial led to anerror rate of 0.8%, very close to the record performance of 0.7%.Another interesting performance measure is the rejection error rate, de�ned as thepercentage of patterns that would have to be rejected to attain a speci�ed error rate (inthe benchmark studies of Bottou et al. (1994) and LeCun et al. (1995), 0.5%). Notethat this percentage is computed on the test set. In our case, using the con�dencemeasure of Sec. 2.1.6, it was measured to be 0.9%, realizing a large improvementcompared to the original SV system (2.4%). In the above benchmark studies, only theboosted LeNet4 ensemble performed better (0.5%).Further improvements can possibly be achieved by combining di�erent types ofinvariances. Another intriguing extension of the scheme would be to use techniquesbased on image correspondence (e.g. Vetter and Poggio, 1997) to extract invariancetransformations from the training set. Those transformations can then be used togenerate Virtual Support Vectors.66Together with Thomas Vetter, we have recently started working on this approach.



114 CHAPTER 4. PRIOR KNOWLEDGE IN SUPPORT VECTOR MACHINESFIGURE 4.5: Virtual SVs in gender classi�cation. A: 2-D image of a 3-D head model (fromthe MPI head database (Troje and B�ultho�, 1996; Vetter and Troje, 1997)); B: 2D imageof the rotated 3D head; C: arti�cial image, generated from A using the assumption that itbelongs to a cylinder-shaped 3D object (rotation by the same angle as B).A B C
TABLE 4.3: Numbers of test errors for gender classi�cation in novel pose, using VirtualSVs (qualitatively similar to Fig. 4.5). The training set contained 100 views of male andfemale heads (divided 49:51), taken at an azimuth of 24�, downsampled to 32� 32. Thetest set contained 100 frontal views of the same heads. We used polynomial SV classi�ersof di�erent degrees, generating one virtual SV per original SV. Clearly, training and testviews are di�erently distributed, however, the amount of rotation (24�) was known to theclassi�er in the sense that it was used for generating the Virtual SVs (Fig. 4.5): �rst, asimpli�ed head model was inferred by averaging over in-depth revolutions of all the 2Dviews. VSVs were generated by projecting the original SVs onto the head model, thenrotating the head to the frontal view, and computing the new 2-D view.degreeprior knowledge 1 2 3 4 5no virtual SVs 25 24 23 21 19virtual SVs from 3D model 11 10 10 9 10Face Classi�cation. Certain types of transformations, as the above used translationsand rotations, apply equally well to object recognition as they do to character recog-nition. There are, however, types of transformations which are speci�c to the class ofimages considered (cf. Sec. 1.1). For instance, line thickness transformations (Fig. 4.4)are speci�c to character recognition. To provide an example of Virtual SVs which arespeci�c to object recognition, we generated virtual SVs corresponding to object rota-tions in depth, by making assumptions about the 3D shape of objects. Clearly, such anapproach would have a hard time if applied to complex objects as chairs (Appendix A).For human heads, however, it is possible to formulate 2-D image transformations whichcan be applied to generate approximate novel views of heads (Fig. 4.5). Using theseviews improved accuracies in a small gender classi�cation experiment. Table 4.3 givesdetails and results of the experiment.



4.4. EXPERIMENTAL RESULTS 115TABLE 4.4: Test error rates for two object recognition databases, for views of resolution16�16, using di�erent types of approximate invariance transformations to generate VirtualSVs, and polynomial kernels of degree 20 (cf. Table 2.1). The second training run in theVirtual SV systems was done on the original SVs and the generated Virtual SVs. Thetraining sets with 25 and 89 views per object are regularly spaced; for them, mirroring doesnot provide additional information. The interesting case is the one where we trained on the100-view-per-object sets. Here, a combination of virtual SVs from mirroring and rotationsubstantially improves accuracies on both databases.database: animal entry leveltraining set: views per objectVirtual SVs 25 89 100 25 89 100none (orig. system) 13.0 1.7 4.8 13.0 1.8 2.4mirroring 13.6 1.8 4.8 14.2 2.8 3.2translations 16.4 1.6 4.3 17.1 11.1 4.8rotations 9.0 0.7 3.0 10.3 1.8 2.5rotations & mirroring 9.0 0.7 1.7 9.6 0.9 1.7Discrete Symmetries in Object Recognition. As mentioned above, rigid transfor-mations of 3-D objects, however, do not in general correspond to simple transfor-mations of the produced 2-D images (cf. Sec. 4.4.1). For the MPI object databases(Appendix A), however, there exists a type of invariance transformation which caneasily be computed from the images: as all the objects used are (approximately) bilat-erally symmetric, we can easily produce another valid view of the same object, witha di�erent viewing angle, by performing a mirror operation with respect to a verticalaxis in the center of the images, say (Vetter, Poggio, and B�ultho�, 1994). If the ob-jects were exactly symmetric, we would not expect any additional information to begained in the case of the regularly spaced object sets (25 and 89 views per object),as in these the snapshots are already sampled symmetrically around the zero viewdirection, which in most cases coincided with the symmetry plane. The slight decreasein performance in that case (Table 4.4) indicates that for some objects, the symmetryonly holds approximately (for snapshots, see Appendix A).To get more robust, we tried combining this type of invariance transformationwith other types. As in the case of character recognition, we simply used translations(by 1 pixel in all four directions) and image-plane rotations (by 10 degrees in bothdirections). Even though these transformation are but very crude approximations oftransformations which occur when a 3-D object is rotated in space, they did in somecases yield signi�cant performance improvements.77The following may serve as a partial explanation why rotations were more useful than translations.First, di�erent snapshots at large elevations can be transformed into each other by an approximateimage plane rotation, and second, image plane rotations retain the centering which was applied to



116 CHAPTER 4. PRIOR KNOWLEDGE IN SUPPORT VECTOR MACHINESTo examine the e�ect of the mirror symmetry Virtual SVs, we need to focus on thenon-regularly spaced training set with 100 views per object. There, by far the bestperformance for both the entry level and the animal database was obtained by usingboth mirroring and rotations (Table 4.4).TABLE 4.5: Speed improvement using the Reduced Set method. The second throughfourth columns give numbers of errors on the 10000 element MNIST test set for theoriginal system, the Virtual Support Vector system, and the reduced set system (for the10-class classi�ers, the error is given in %). The last three columns give, for each system,the number of vectors whose dot product must be computed in the test phase.Digit SV err VSV1 err RS err SV # VSV1 # RS #0 17 15 18 1206 2938 591 15 13 12 757 1887 382 34 23 30 2183 5015 1003 32 21 27 2506 4764 954 30 30 35 1784 3983 805 29 23 27 2255 5235 1056 30 18 24 1347 3328 677 43 39 57 1712 3968 798 47 35 40 3053 6978 1409 56 40 40 2720 6348 12710-class 1.4% 1.0% 1.1%Virtual SV Combined with Reduced Set. Apart from the increase in overall trainingtime (by a factor of two, in our experiments), the VSV technique has the computationaldisadvantage that many of the Virtual Support Vectors become Support Vectors forthe second machine, increasing the cost of evaluating the decision function (2.25).However, the latter problem can be solved with the Reduced Set (RS) method (Burges,1996, see Appendix D.1.1), which reduces the complexity of the decision functionrepresentation by approximating it in terms of fewer vectors. In a study combiningthe VSV and RS methods, we achieved a factor of �fty speedup in test phase over theVirtual Support Vector machine, with only a small decrease in performance (Burgesand Sch�olkopf, 1997). We next briey report the results of this study. The RS resultsreported were obtained by Chris Burges.As a starting point for the RS computation, we used the VSV1 machine (Ta-ble 4.2), which achieved 1.0% error rate on the 10000 element MNIST test set.8 Thethe original images. Both points suggest that virtual examples generated by rotations should be more\realistic" than those generated by translations.8At the time when the described study was carried out, VSV1 was our best system; VSV2 wasnot available yet.



4.4. EXPERIMENTAL RESULTS 117improvement in accuracy compared to the SV machine (Table 4.2) comes at a cost inclassi�cation speed of approximately a factor of 2. Furthermore, the speed of SV wascomparatively slow to start with (cf. LeCun et al., 1995), requiring approximately 14million multiply adds for one classi�cation. In order to become competitive with sys-tems with comparable accuracy (LeCun et al., 1995), we need approximately a factorof �fty improvement in speed. We therefore approximated VSV1 with a reduced setsystem RS with a factor of �fty fewer vectors than the number of Support Vectors inVSV1.Table 4.5 compares results on the 10000 element test set for the three systems.Overall, the SV machine performance of 1.4% error is improved to 1.1%, with a ma-chine requiring a factor of 22 fewer multiply adds (RS). For details on the computationof the RS solution, see (Burges and Sch�olkopf, 1997).4.4.2 Invariant Hyperplane MethodIn the experiments exploring the invariant hyperplane method (Sec. 4.2.2), we used thesmall MNIST database (Appendix C). We start by giving some baseline classi�cationresults.Using a standard linear SV machine (i.e. a separating hyperplane, Sec. 2.1.3), weobtain a test error rate of 9:8%; by using a polynomial kernel of degree 4, this dropsto 4:0%. In all of the following experiments, we use degree 4 kernels of various types.The number 4 was chosen as it can be written as a product of two integers, thus wecould compare results to a kernel kd1;d2p with d1 = d2 = 2 (cf. sections 4.3 and 4.4.3).For the considered classi�cation task, results for higher polynomial degrees are verysimilar.In a series of experiments with a homogeneous polynomial kernel k(x;y) = (x �y)4,using preprocessing with Gaussian smoothing kernels of standard deviation in therange 0:1; 0:2; : : : ; 1:0, we obtained error rates which gradually increased from 4:0%to 4:3%. We concluded that no improvement of the original 4:0% performance waspossible by a simple smoothing operation.Invariant Hyperplanes Results. Table 4.6 reports results obtained by preprocessingall patterns with B (cf. (4.9)), choosing di�erent values of � (cf. Eq. (4.10)). In theTABLE 4.6: Classi�cation error rates for modifying the kernel k(x;y) = (x � y)4 with theinvariant hyperplane preprocessing matrix B� = C� 12� ; cf. Eqs. (4.9) { (4.10). Enforcinginvariance with � = 0:2; 0:3; : : : ; 0:9 leads to improvements over the original performance(� = 1). � 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0error rate in % 4.2 3.8 3.6 3.6 3.7 3.8 3.8 3.9 3.9 4.0
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FIGURE 4.6: The �rst pattern in the small MNIST database, preprocessed with B� =C� 12� (cf. equations (4.9) { (4.10)), enforcing various amounts of invariance. Top row:� = 0:1; 0:2; 0:3; 0:4; bottom row: � = 0:5; 0:6; 0:7; 0:8. For some values of , thepreprocessing resembles a smoothing operation, however, it leads to higher classi�cationaccuracies (see Sec. 4.4.2) than the latter.experiments, the patterns were �rst rescaled to have entries in [0; 1], then B wascomputed, using horizontal and vertical translations, and preprocessing was carriedout; �nally, the resulting patterns were scaled back again (for snapshots of the resultingpatterns, see Fig. 4.6). The scaling was done to ensure that patterns and derivativeslie in comparable regions ofRN (note that if the pattern background level is a constant�1, then its derivative is 0). The results show that even though (4.6) was derived forthe linear case, it leads to improvements in the nonlinear case (here, for a degree 4polynomial).Dimensionality Reduction. The above [0; 1] scaling operation is a�ne rather thanlinear, hence the argument leading to (4.14) does not hold for this case. We thus onlyreport results on dimensionality reduction for the case where the data is kept in [0; 1]scaling during the whole procedure. Dropping principal components which are lessimportant leads to substantial improvements (Table 4.7); cf. the explanation following(4.14)).The results in Table 4.7 are somewhat distorted by the fact that the polynomialkernel is not translation invariant, and performs poorly when none of the principalTABLE 4.7: Dropping directions corresponding to small Eigenvalues of C, i.e. droppingless important principal components (cf. (4.14)), leads to substantial improvements. Allresults given are for the case � = 0:4 (cf. Table 4.6); degree 4 homogeneous polynomialkernel. PCs discarded 0 50 100 150 200 250 300 350error rate in % 8.7 5.4 4.9 4.4 4.2 3.9 3.7 3.9



4.4. EXPERIMENTAL RESULTS 119components are discarded. Hence this result should not be compared to the perfor-mance of the polynomial kernel on the data in [�1; 1] scaling. (Recall that we obtained3.6% in that case, for � = 0:4.) In practice, of course, we may choose the scaling of thedata as we like, in which case it would seem pointless to use a method which is onlyapplicable for a rather disadvantageous representation of the data. However, nothingprevents us from using a translation invariant kernel. We opted for a radial basis func-tion kernel (2.27) with c = 0:5. On the [�1; 1] data, for � = 0:4, this leads to the sameperformance as the degree 4 polynomial, 3.6% (without invariance preprocessing, i.e.for � = 1, the performance is 3.9%). To get the identical system on [0; 1] data, theRBF width was rescaled accordingly, to c = 0:125. Table 4.8 shows that discardingprincipal components can further improve performance, up to 3.3%.TABLE 4.8: Dropping directions corresponding to small Eigenvalues of C, i.e. droppingless important principal components (cf. (4.14)), for the translation invariant RBF kernel(see text). All results given are for the case � = 0:4 (cf. Table 4.6).PCs discarded 0 50 100 150 200 250 300 350error rate in % 3.6 3.6 3.6 3.5 3.5 3.4 3.3 3.64.4.3 Kernels Using Local CorrelationsCharacter Recognition. As in Sec. 4.4.2, the present results were obtained on thesmall MNIST database (Appendix C). As a reference result, we use the degree 4polynomial SV machine, performing at 4:0% error (Sec. 4.4.2). To exploit locality inimages, we used pyramidal receptive �eld kernel kd1;d2p with diameter p = 9 (cf. Sec. 4.3)and d1 � d2 = 4, i.e. degree 4 polynomials kernels which do not use all products of 4pixels (Sec. 4.2.2). For d1 = d2 = 2, we obtained an improved error rate of 3:1%,another degree 4 kernel with only local correlations (d1 = 4; d2 = 1) led to 3:4%(Table 4.9).Albeit better than the 4:0% for the degree 4 homogeneous polynomial, this isstill worse than the Virtual SV result: generating Virtual SVs by image translations,the latter led to 2:8%. As the two methods, however, exploit di�erent types of priorknowledge, it could be expected that combining them leads to still better performance;and indeed, this yielded the best performance of all (2:0%), halving the error rate ofthe original system.For the purpose of benchmarking, we also ran our system on the USPS database.In that case, we obtained the following test error rates: SV with degree 4 polynomialkernel 4:2% (Table 2.4), Virtual SV (same kernel) 3:5%, SV with k2;27 3.6% (for thesmaller USPS images, we used a k7 kernel rather than k9), Virtual SV with k2;27 3:0%.The latter compares favourably to almost all known results on that database, and issecond only to a memory-based tangent-distance nearest neighbour classi�er at 2:6%(Simard, LeCun, and Denker, 1993).



120 CHAPTER 4. PRIOR KNOWLEDGE IN SUPPORT VECTOR MACHINESTABLE 4.9: Summary: error rates for various methods of incorporating prior knowledge,on the small MNIST database (Appendix C). In all cases, degree 4 polynomial kernels wereused, either of the local type (Sec. 4.3), or (by default) of the complete polynomial type(2.26). In all cases, we used  = 10 (cf. (2.19)).Classi�er Test Error / %SV 4.0Virtual SV (Sec. 4.2.1), with translations 2.8Invariant hyperplane (Sec. 4.2.2), � = 0:4 3.6same, on �rst 100 principal components (Table 4.7) 3.7semi-local kernel k2;29 (Sec. 4.4.3) 3.1purely local kernel k4;19 (Sec. 4.4.3) 3.4Virtual SV with k2;29 2.0Object Recognition. The above results have been con�rmed on the two object re-cognition databases used in Sec. 2.2.1 (cf. Appendix A). As in the case of the smallMNIST database, we used kd1;d29 . In the present case, we chose d1 = d2 = 3, whichyields a degree 9 (= 3 � 3) polynomial classi�er which di�ers from a standard poly-nomial (2.26) in that it does not utilize all products of 9 pixels, but mainly localones. Comparing the results to those obtained with standard polynomials of equal de-gree shows that this pre-selection of useful features signi�cantly improves recognitionresults (Table 4.10).As in the case of digit recognition, we combined this method with the Virtual SVmethod (Sec. 4.2.1). Based on the fact that prior knowledge about image localityis di�erent from prior knowledge on invariances, we expected the possibility to getfurther improvements. We used the same types of Virtual SVs as in Sec. 4.4.1. Theresults (Table 4.11) further improve upon Table 4.10, con�rming the digit recognition�ndings reported above. In 4 of 6 cases, the resulting classi�ers are better than thoseof Table 4.4.94.5 DiscussionFor Support Vector learning machines, invariances can readily be incorporated by gen-erating virtual examples from the Support Vectors, rather than from the whole trainingset. The method yields a signi�cant gain in classi�cation accuracy at a moderate costin time: it requires two training runs (rather than one), and it constructs classi�cationrules utilizing more Support Vectors, thus slowing down classi�cation speed (cf. (2.25))| in our case, both points amounted to a factor of about 2. Given that Support Vector9Note that in Table 4.4, the VSV method was used for degree 20 kernels, which on the objectrecognition tasks does far better than degree 9, cf. Table 2.1.



4.5. DISCUSSION 121TABLE 4.10: Test error rates for two object recognition tasks, comparing kernels local inthe image to complete polynomial kernels. Local kernels of degree 9 outperform completepolynomial kernels of corresponding degree. Moreover, they performed at least as well asthe best polynomial classi�er out of all degrees in f1; 3; 6; 9; 12; 15; 20; 25g (cf. Table 2.1).kernel: degree 9 polyn. best polynomial k3;39 (cf. Sec. 4.3)entry level:25 grey scale 13.9 13.0 12.089 grey scale 2.0 1.8 1.8100 grey scale 3.5 2.4 2.025 silhouettes 16.7 15.4 15.089 silhouettes 2.7 2.2 2.1100 silhouettes 4.8 4.0 3.9animals:25 grey scale 14.8 13.0 12.089 grey scale 2.5 1.7 1.6100 grey scale 5.2 4.4 4.025 silhouettes 17.0 15.6 15.289 silhouettes 2.8 2.2 2.0100 silhouettes 6.3 5.2 4.9TABLE 4.11: Test error rates for two object recognition databases, using di�erent types ofapproximate invariance transformations to generate Virtual SVs (as in Table 4.4), and localpolynomial kernels k3;39 of degree 9 (cf. Sec. 4.3, Table 4.10, Table 4.4, and Table 2.1).The second training run in the Virtual SV systems was done on the original SVs and thegenerated Virtual SVs. The training sets with 25 and 89 views per object are regularlyspaced; for them, mirroring does not provide additional information. For the non-regularlyspaced 100-view-per-object sets, a combination of virtual SVs from mirroring and rotationsubstantially improves accuracies on both databases.database: animal entry leveltraining set: views per objectVirtual SVs 25 89 100 25 89 100none (orig. system) 12.0 1.6 4.0 12.0 1.8 2.0mirroring 12.5 1.7 4.6 13.1 2.9 3.3rotations & mirroring 8.8 1.0 1.4 8.5 1.2 1.6



122 CHAPTER 4. PRIOR KNOWLEDGE IN SUPPORT VECTOR MACHINESmachines are known to allow for short training times (Bottou et al., 1994), the �rstpoint is usually not critical. Certainly, training on virtual examples generated fromthe whole database would be signi�cantly slower. To compensate for the second point,we used the reduced set method of Burges (1996) for increasing speed. This way, weobtained a system which was both fast and accurate.As an alternative approach, we have built in known invariances directly into theSVM objective function via the choice of a kernel. With its rather general class ofadmissible kernel functions, the SV algorithm provides ample possibilities for con-structing task-speci�c kernels. We have considered two forms of domain knowledge:�rst, pattern classes were required to be locally translationally invariant, and second,local correlations in the images were assumed to be more reliable than long-range corre-lations. The second requirement can be seen as a more general form of prior knowledge| it can be thought of as arising partially from the fact that patterns possess a wholevariety of transformations; in object recognition, for instance, we have object rotationsand deformations. Mostly, these transformations are continuous, which implies thatlocal relationships in an image are fairly stable, whereas global relationships are lessreliable.Both types of domain knowledge led to improvements on the considered patternrecognition tasks.The method for constructing kernels for transformation invariant SV machines(invariant hyperplanes), put forward to deal with the �rst type of domain knowledge,so far has only been applied in the linear case, which probably explains why it only ledto moderate improvements, especially when compared with the large gains achievedby the Virtual SV method. It is applicable for di�erentiable transformations | othertypes, e.g. for mirror symmetry, have to be dealt with using other techniques, as theVirtual Support Vector method. Its main advantages compared to the latter techniqueis that it does not slow down testing speed, and that using more invariances leavestraining time almost unchanged. In addition, it is more attractive from a theoreticalpoint of view, establishing a surprising connection to invariant feature extraction,preprocessing, and principal component analysis.The proposed kernels respecting locality in images, on the other hand, led to largeimprovements; they are applicable not only in image classi�cation but to all cases wherethe relative importance of subsets of products features can be speci�ed appropriately.They do, however, slow down both training and testing by a constant factor whichdepends on the cost of evaluating the speci�c kernel used.Clearly, SV machines have not yet been developed to their full potential, whichcould explain the fact that our highest accuracies are still slightly worse that therecord on the MNIST database. However, SVMs present clear opportunities for furtherimprovement. More invariances (for example, for the pattern recognition case, smallrotations, or varying ink thickness) could be incorporated, possibly combined withtechniques for dealing with optimization problems involving very large numbers ofSVs (Osuna, Freund, and Girosi, 1997). Further, one might use only those VirtualSupport Vectors which provide new information about the decision boundary, or use a



4.5. DISCUSSION 123measure of such information to keep only the most important vectors. Finally, if localkernels (Sec. 4.3) will prove to be as useful on the full MNIST database as they wereon the small version of it, accuracies could be substantially increased | at a cost inclassi�cation speed, though.We conclude this chapter by noting that all three described techniques should bedirectly applicable to other kernel-based methods as SV regression (Vapnik, 1995b) andkernel PCA (Chapter 3). Future work will include the nonlinear Tangent CovarianceMatrix (cf. our considerations in Sec. 4.2.2), the incorporation of invariances otherthan translation, and the construction of kernels incorporating local feature extractors(e.g. edge detectors) di�erent from the pyramids described in Sec. 4.3.



124 CHAPTER 4. PRIOR KNOWLEDGE IN SUPPORT VECTOR MACHINES



Chapter 5ConclusionWe believe that Support Vector machines and Kernel Principal Component Analysisare only the �rst examples of a series of potential applications of Mercer-kernel-basedmethods in learning theory. Any algorithm which can be formulated solely in termsof dot products can be made nonlinear by carrying it out in feature spaces induced byMercer kernels. However, already the above two �elds are large enough to render anexhaustive discussion in this thesis infeasible. Thus, we have tried to focus on someaspects of SV learning and Kernel PCA, hoping that we have succeeded in illustratinghow nonlinear feature spaces can bene�cially be used in complex learning tasks.On the Support Vector side, we presented two chapters. Apart from a tutorialintroduction to the theory of SV learning, the �rst one focused on empirical resultsrelated to the accuracy and the Support vector sets of di�erent SV classi�ers. Con-sidering three well-known classi�er types which are included in the SV approach asspecial cases, we showed that they lead to similarly high accuracies and constructtheir decision surface from almost the same Support Vectors. Our �rst question raisedin the Preface was which of the observations should be used to construct the decisionboundary? Against the backdrop of our empirical �ndings, we can now take the po-sition that the Support Vectors, if constructed in an appropriate nonlinear featurespace, constitute such a subset of observations. The second SV chapter focused onalgorithms and empirical results for the incorporation of prior knowledge in SV ma-chines. We showed that this can be done both by modifying kernels and by generatingVirtual examples from the set of Support Vectors. In view of the high performancesobtained, we can reinforce and generalize the above answer, to include also VirtualSupport Vectors, and specialize it, saying that the appropriate feature space should beconstructed using prior knowledge of the task at hand. Our best performing systemsused both methods simultaneously, Virtual Support Vectors and kernels incorporatingprior knowledge about the local structure of images.On Kernel Principal Component Analysis, we presented one chapter, de-scribing the algorithm and giving �rst experimental results on feature extraction forpattern recognition. We saw that features extracted in nonlinear feature spaces led torecognition performances much higher than those extracted in input space (i.e. withtraditional PCA). This lends itself to an answer of the second question raised in the125



126 CHAPTER 5. CONCLUSIONPreface, which features should be extracted from each observation? From our presentpoint of view, these should be nonlinear Kernel PCA features. As Kernel PCA op-erates in the same types of feature spaces as Support Vector machines, the choice ofthe kernel, and the design of kernels to incorporate prior knowledge, should also be ofimportance here. As the Kernel PCA method is very recent, however, these questionshave not been thoroughly investigated yet. We hope that given a few years time, wewill be in a position to specialize our answer to the second question exactly as it wasdone for the �rst one.We conclude with an outlook, revisiting the question of visual processing in biolog-ical systems. If the Support Vector set should prove to be a characteristic of the datalargely independent of the type of learning machine used (which we have shown forthree types of learning machines), one would hope that it could also be of relevancein biological learning. If a subset of observations characterizes a task rather than aparticular algorithm's favourite examples, there is reason to hope that every systemtrying to solve this task | in particular animals | should make use of this subsetin one way or another. Regarding Kernel PCA, it would be interesting to study thetypes of feature extractors that Kernel PCA constructs when performed on collectionsof images resembling those that animals are naturally exposed to. Comparing thosewith the ones found in neurophysiological studies could potentially assist us in try-ing to understand natural visual systems. If applied on the same data, and similartasks, optimal machine learning algorithms could be as fruitful to biological thinkingas biological solutions can be to engineering.Support Vector Learning!



Appendix AObject DatabasesIn this section, we briey describe three object recognition databases (chairs, entrylevel objects, and animals) generated at the Max-Planck-Institut f�ur biologische Ky-bernetik (Liter et al., 1997). We start by describing the procedure for creating thedatabases, and then show some images of the resulting patterns.The training and test data was generated according to the following procedure(Blanz et al., 1996; Liter et al., 1997):Database GenerationSnapshot Sampling. 25 di�erent object models with uniform grey surface were ren-dered in perspective projection in front of a white background on a Silicon Graphicsworkstation using Inventor software. The initial images had a resolution of 256� 256pixels. In all viewing directions, the image plane orientation was such that the verticalaxis of the object was projected in an upright orientation. Thus, each view of anobject is fully characterised by two camera position angles, the elevation � (0� at thehorizon, and 90� from the top) and the azimuth � 2 [0�; 360�) (increasing clockwisewhen viewed from the top). Only views on the upper half of the viewing sphere wereused, i.e. � 2 [0�; 90�]. The directions of lighting and camera were chosen to coincide.For each database, we generated di�erent training sets: two of them consisted of 25and 89 equally spaced views of each object, respectively; the other one contained 100random views per object (cf. Fig. A.1).1 Thus, we obtained training sets of sizes 625,2225 and 2500, respectively. The test set of size 2500 comprised 100 random views ofeach object, independent from the above sets.Centering. The resulting grey level pictures were centered with respect to the centerof mass of the binarized image. As the objects were shown on a white background,the binarized image separates �gure from ground.Edge Detection. Four one-dimensional di�erential operators (vertical, horizontal,and two diagonal ones) were applied to the images, followed by taking the modulus.1In one case, we also generated a set with 400 random views per object.127



128 APPENDIX A. OBJECT DATABASESDownsampling. In all �ve resulting images, the resolution was reduced to 16� 16,leading to �ve images r0 : : : r4. In this representation, each view requires 5 � 16 � 16 =1280 pixels.Containing edge detection data, the parts r1 : : : r4 already provide useful featuresfor recognition algorithms. To study the ability of an algorithm to extract features byitself, one can alternatively use only the actual image part r0 of the data, and thustrain on the 256-dimensional downsampled images rather than on the 1280-dimensionalinputs. In our experiments, we used both variants of the databases.Standardization. On the chair database, the standard deviation of the 16�16 imageswith pixel values in [0; 1] was around 30 (measured on the training sets). We rescaledall databases, separately for each part r0 : : : r4, such that each part separately gives riseto training sets with standard deviation 30. This hardly a�ects the r0 part, however,it does change the edge detection parts r1; : : : ; r4. In the resulting 5�256-dimensionalrepresentation, the di�erent parts arising from edge detection, or just downsampling,have comparable scaling.Pixel Rescaling. Before we ran the algorithms on the databases, each pixel valuex was rescaled according to x 7! 2x � 1. Thus, the background level was �1, andmaximal intensities were about 1.DatabasesUsing the above procedure, three object recognition databases were generated.MPI Chair Database. The �rst object recognition database contains 25 di�erentchairs (�gures A.2, A.3, A.4). For benchmarking purposes, the downsampled views areavailable via ftp://ftp.mpik-tueb.mpg.de/pub/chair dataset/. As all 25 objects belongto the same object category, recognition of chairs in the database is a subordinate leveltask.MPI Entry Level Database. The entry level databases contains 25 objects (�guresA.5, A.6, A.7), for which psychophysical evidence suggests that they belong to di�erententry levels in object recognition (cf. Sec. 2.2.1).MPI Animal Database. The animal database contains 25 di�erent animals (�guresA.8, A.9, A.10). Note that some of these animals are also contained in the entry leveldatabase (Fig. A.5).



Appendix CHandwritten Character DatabasesUS Postal Service Database. The US Postal Service (USPS) database (see Fig. C.1)contains 9298 handwritten digits (7291 for training, 2007 for testing), collected frommail envelopes in Bu�alo (cf. LeCun et al., 1989). Each digit is a 16 � 16 image,represented as a 256-dimensional vector with entries between �1 and 1. Preprocessingconsisted of smoothing with a Gaussian kernel of width � = 0:75.It is known that the USPS test set is rather di�cult | the human error rate is 2.5%(Bromley and S�ackinger, 1991). For a discussion, see (Simard, LeCun, and Denker,1993). Note, moreover, that some of the results reported in the literature for theUSPS set have been obtained with an enhanced training set: for instance, Drucker,Schapire, and Simard (1993) used an enlarged training set of size 9709, containingsome additional machine-printed digits, and note that this improves accuracies. Inour experiments, only 7291 training examples were used.MNIST Database. The MNIST database (Fig. C.2) contains 120000 handwrittendigits, equally divided into training and test set. The database is a modi�ed versionof NIST Special Database 3 and NIST Test Data 1. Training and test set consist ofpatterns generated by di�erent writers. The images were �rst size normalized to �tinto a 20� 20 pixel box, and then centered in a 28� 28 image (Bottou et al., 1994).Test results on the MNIST database which are given in the literature (e.g. Bottouet al., 1994; LeCun et al., 1995) for some reason do not use the full MNIST test setof 60000 characters. Instead, a subset of 10000 characters is used, consisting of thetest set patterns from 24476 to 34475. To obtain results which can be compared tothe literature, we also use this test set, although the larger one is preferable from thepoint of view of obtaining more reliable test error estimates.Small MNIST Database. The USPS database has been criticised (Burges, LeCun,private communication; Bottou et al. (1994)) as not providing the most adequateclassi�er benchmark. First, it only comes with a small test set, and second, the test setcontains a number of corrupted patterns which not even humans can classify correctly.The MNIST database, which is the currently used classi�er benchmark in the AT&Tand Bell Labs learning research groups, does not have these drawbacks; moreover, its149



Appendix DTechnical AddendaD.1 Feature Space and KernelsIn this section, we collect some material related to Mercer kernels and the correspondigfeature spaces. If not stated otherwise, we assume that k is a Mercer kernel (cf.Proposition 1.3.2), and � is the corresponding map into a feature space F such thatk(x;y) = (�(x) ��(y)).D.1.1 The Reduced Set MethodGiven a vector 	 2 F , written in terms of images of input patterns,	 = X̀i=1 �i�(xi); (D.1)with �i 2 R, one can try to approximate it by	0 = NzXi=1 �i�(zi); (D.2)with Nz << `, �i 2 R. To this end, we have to minimize� = k	�	0k2: (D.3)The crucial point is that even if � is not given explicitely, � can be computed (andminimized) in terms of kernels, using (�(x) � �(y)) = k(x;y) (Burges, 1996).In Sec. 4.4.1, this method is used to approximate Support Vector decision bound-aries in order to speed up classi�cation.D.1.2 Inverting the Map �If � is nonlinear, the dimension of the linear span of the �-images of a set of inputvectors fx1; : : : ;x`g can exceed the dimension of their span in input space. Thus,153



154 APPENDIX D. TECHNICAL ADDENDAwe need not expect that there is a pre-image under � for each vector that can beexpressed as a linear combination of the vectors �(x1); : : : ;�(x`). Nevertheless, itmight be desirable to have a means of constructing the pre-image in the case where itdoes exist.To this end, suppose we have a vector in F given in terms of an expansion of imagesof input data, with an unknown pre-image x0 under � in input space RN , i.e.�(x0) = X̀j=1�j�(xj): (D.4)Then, for any x 2 RN , k(x0;x) = X̀j=1�jk(xj;x): (D.5)Assume moreover that the kernel k(x;y) is an invertible function fk of (x � y),k(x;y) = fk((x � y)); (D.6)e.g. k(x;y) = (x �y)d with odd d, or k(x;y) = �((x �y)+�) with a strictly monotonicsigmoid function � and a threshold �. Given any a priori chosen basis of input spacefe1; : : : ; eNg, we can then expand x0 asx0 = NXi=1(x0 � ei)ei= NXi=1 f�1k (k(x0; ei))ei= NXi=1 f�1k 0@X̀j=1�jk(xj; ei)1A ei: (D.7)By using (D.5), we thus reconstructed x0 from the values of dot products betweenimages (in F ) of training examples and basis elements.Clearly, a crucial assumption in this construction was the existence of the pre-imagex0. If this does not hold, then the discrepancyX̀j=1�j�(xj)� �(x0) (D.8)will be nonzero. There is a number of things that we could do to make the discrepancysmall:(a) We can try to �nd a suitable basis in which we expand the pre-images.(b) We can repeat the scheme, by trying to �nd a pre-image for the discrepancyvector. This problem has precisely the same structure as the original one (D.4), with



D.1. FEATURE SPACE AND KERNELS 155one more term in the summation on the right hand side. Iterating this method givesan expansion of the vector in F in terms of reconstructed approximate pre-images.(c) We have the freedom to choose the scaling of the vector in F . To see this, notethat for any nonzero �, we have, similar to (D.7),x0 = NXi=1 � � (x0 � ei=�)ei = NXi=1 �f�1k 0@X̀j=1�jk(xj; ei=�)1A ei: (D.9)(d) Related to this scaling issue, we could also have started with��(x0) = X̀j=1�j�(xj); (D.10)obtaining a reconstruction (cf. (D.7))x0 = NXi=1 f�1k 0@X̀j=1 �j� � k(xj; ei)1A ei (D.11)with the property that (D.10) holds if such an x0 exists.The success of using di�erent values of � or � could be monitored by computingthe squared norm of the discrepancy, X̀j=1�j�(xj)� ��(x0)2; (D.12)which can be evaluated in terms of the kernel function.Finally, we note that same approach can also be applied for more general kernelfunctions which cannot be written as an invertible function of (x � y). All we needis a kernel which allows the reconstruction of (x � y) | and nothing prevents usfrom requiring the evaluation of the kernel on several pairs of points for this purpose.Consider the following example: assume thatk(x;y) = fk �kx� yk2� (D.13)with an invertible fk (e.g., if k is a Gaussian RBF function, cf. (1.28)). Then, by thepolarization identity, we have(x0 � ei) = 14 �kx0 + eik2 � kx0 � eik2� = 14 �f�1k (k(x0;�ei))� f�1k (k(x0; ei))� :(D.14)The same also works if k(x;y) = fk(kx� yk), e.g.: we just have to raise the results off�1k to the power of 2.Similar methods can be applied to deal with other kernels.



156 APPENDIX D. TECHNICAL ADDENDAD.1.3 Mercer KernelsIn this section, we give some further material related to Sec. 1.3.First, we mention that if a �nite number of Eigenvalues is negative, the expansion(1.25) is still valid. In that case, k corresponds to a Lorentzian symmetric bilinearform in a space with inde�nite signature. For the SV algorithm, this would entailproblems, as the optimization problem would become inde�nite. The diagonalizationrequired for kernel PCA, however, can still be performed, and (3.16) can be modi�edsuch that it allows for negative Eigenvalues. The main di�erence is that we can nolonger interpret the method as PCA in some feature space. Nevertheless, it could stillbe viewed as a type of nonlinear factor analysis.Next, we note that the polynomial kernels given in (1.17) satisfy Mercer's conditionsof Proposition 1.3.2. As compositions of continuous functions, they are continuous,thus we only need to show positivity, which follows immediately if we consider theirdot product representation(x � y)d = NFXi=1 (�d(x))i (�d(y))i : (D.15)Namely, more generally, if an integral operator kernel k admits a uniformly convergentdot product representation on some compact set C � C,1Xi=1 �i(x)�i(y); (D.16)it is necessarily positive: for f 2 L2(C), we haveZC�C  1Xi=1 �i(x)�i(y)! f(x)f(y) dx dy= 1Xi=1 ZC�C �i(x)f(x)�i(y)f(y) dx dy (D.17)= 1Xi=1 �ZC �i(x)f(x) dx�2 � 0; (D.18)establishing the converse of Proposition 1.3.2.We conclude this section with some considerations on Proposition 1.3.3. Is itpossible to give a more general class of kernels, such that the expansion (1.25) is nolonger valid, but the mapping of Proposition 1.3.3 can still be constructed? One wouldexpect that if k does not correspond to a compact operator (as it did in the case ofMercer kernels, cf. Dunford and Schwartz (1963); in fact, in the Mercer case, we evenhave trace class operators, cf. Nashed and Wahba (1974)), with a discrete spectrum,then the mapping (1.26) should no longer map into an l2 space, but into some separableHilbert space of functions on a non-discrete measure space.



D.1. FEATURE SPACE AND KERNELS 157To this end, let � be a map from input space into some Hilbert space H,� : x 7! fx; (D.19)and T � 0 be a positive bounded operator on H. Moreover, de�ne a kernelkT (x;y) := (fx � Tfy): (D.20)Then � : x 7! pT fx (D.21)clearly is a map such that kT (x;y) = (�(x) � �(y)): (D.22)As an aside, to see the connection to Mercer's theorem, we may formally set fx to be�x, and assume that T is an integral operator with kernel k. In this case, the righthand side of (D.20) would equal k(x;y).The connection to (1.26) becomes clearer if we use the spectral representation ofT , and construct a � di�erent from the one in (D.21): T can be written asT = U�MvU; (D.23)where v is a continuous function with corresponding multiplication operator Mv, U isa unitary operator U : H ! L2(R; �); (D.24)and � is a probability measure (the spectral measure of T ) (e.g. Reed and Simon,1980). Since T � 0, we have Mv � 0 and v � 0. Then, for all x and y,kT (x;y) = (fx � U�MvUfy) (D.25)= (Ufx �MvUfy) (D.26)= (qMvUfx �qMvUfy) (D.27)= (MpvUfx �MpvUfy) (D.28)= (�(x) � �(y)); (D.29)de�ning � : RN ! L2(R; �) (D.30)�(x) = MpvUfx: (D.31)



158 APPENDIX D. TECHNICAL ADDENDATo see the relationship to (1.26), it should be noted that the spectrum of T coincideswith the essential range of v.For simplicity, we have above made the assumption that T is bounded. The sameargument, however, also works in the case of unbounded T (e.g. Reed and Simon,1980).For the purpose of practical applications, we are interested in maps � and operatorsT � 0 such that the kernel k de�ned by (D.20) can be computed analytically.Without going into detail, we briey mention an example of a map �. De�ne� : x 7! k(x; :); (D.32)where k is some a priori speci�ed kernel, and T = P �P , with a regularization operatorP (Tikhonov and Arsenin, 1977). ThenkT (x;y) = ((Pk)(x; :) � (Pk)(y; :)) (D.33)coincides with a dot product matrix arising in a kernel-based regularization frameworkfor learning problems (Smola and Sch�olkopf, 1997b). If k is chosen as Green's functionof P �P , then kT and k can be shown to coincide, and the regularization approach isequivalent to the SV approach (Smola, Sch�olkopf, and M�uller, 1997).D.1.4 Polynomial Kernels and Higher Order CorrelationsConsider the mappings corresponding to kernels of the form (1.20): suppose the mono-mials xi1xi2 : : : xid are written such that i1 � i2 � : : : � id. Then the coe�cients (asthe p2 in (1.21)), arising from the fact that di�erent combinations of indices occurwith di�erent frequencies, are largest for i1 < i2 < : : : < id (let us assume here thatthe input dimensionality is not smaller than the polynomial degree d): in that case, wehave a coe�cient of pd!. If i1 = i2, say, the coe�cient will be q(d� 1)!. In general, ifn of the xi are equal, and the remaining ones are di�erent, then the coe�cient in thecorresponding component of � is q(d� n + 1)!. Thus, the terms belonging to the d-thorder correlations will be weighted with an extra factor pd! compared to the termsxdi , and compared to the terms where only d� 1 di�erent components occur, they arestill weighted stronger by pd. Consequently, kernel PCA with polynomial kernels willtend to pick up variance in the d-th order correlations mainly.D.2 Kernel Principal Component AnalysisD.2.1 The Eigenvalue Problem in the Space of Expansion Coe�cientsWe presently give a justi�cation for solving (3.14) rather than (3.13) in computing theEigensystem of the covariance matrix in F (cf. Sec. 3.2).



D.2. KERNEL PRINCIPAL COMPONENT ANALYSIS 159Being symmetric, K has an orthonormal basis of Eigenvectors (�i)i with corre-sponding Eigenvalues �i, thus for all i, we have K�i = �i�i (i = 1; : : : ;M). Tounderstand the relation between (3.13) and (3.14), we proceed as follows: �rst sup-pose �;� satisfy (3.13). We may expand � in K's Eigenvector basis as� = MXi=1 ai�i: (D.34)Equation (3.13) then reads M�Xi ai�i�i =Xi ai�2i�i; (D.35)or, equivalently, for all i = 1; : : : ;M ,M�ai�i = ai�2i : (D.36)This in turn means that for all i = 1; : : : ;M ,M� = �i or ai = 0 or �i = 0: (D.37)Note that the above are not exclusive or-s. We next assume that �;� satisfy (3.14).In that case, we �nd that (3.14) is equivalent toM�Xi ai�i =Xi ai�i�i; (D.38)i.e. for all i = 1; : : : ;M , M� = �i or ai = 0: (D.39)Comparing (D.37) and (D.39), we see that all solutions of the latter satisfy the former.However, they do not give its full set of solutions: given a solution of (3.14), we mayalways add multiples of Eigenvectors of K with Eigenvalue �i = 0 and still satisfy(3.13), with the same Eigenvalue.1 Note that this means that there exist solutionsof (3.13) which belong to di�erent Eigenvalues yet are not orthogonal in the space ofthe �k (for instance, take any two Eigenvectors with di�erent Eigenvalues, and add amultiple of the same Eigenvector with Eigenvalue 0 to both of them). This, however,does not mean that the Eigenvectors of �C in F are not orthogonal. Indeed, note that if� is an Eigenvector of K with Eigenvalue 0, then the corresponding vector Pi �i�(xi)is orthogonal to all vectors in the span of the �(xj) in F , since �(xj) �Xi �i�(xi)! = (K�)j = 0 for all j; (D.40)which means that Pi �i�(xi) = 0. Thus, the above di�erence between the solutionsof (3.13) and (3.14) is not relevant, since we are interested in vectors in F rather thanvectors in the space of the expansion coe�cients of (3.10). We therefore only need todiagonalize K in order to �nd all relevant solutions of (3.13).Note, �nally, that the rank of K determines the dimensionality of the span of the�(xj) in F , i.e. of the subspace that we are working in.1This observation could be used to change the vectors � of the solution, e.g. to make themmaximally sparse, without changing the solution.



160 APPENDIX D. TECHNICAL ADDENDAD.2.2 Centering in Feature SpaceIn Sec. 3.2, we made the assumption that our mapped data is centered in F , i.e.MXn=1�(xn) = 0: (D.41)We shall now drop this assumption. First note that given any � and any set ofobservations x1; : : : ;xM , the points~�(xi) := �(xi)� 1M MXi=1�(xi) (D.42)are centered. Thus, the assumptions of Sec. 3.2 now hold, and we go on to de�necovariance matrix and ~Kij = (~�(xi) � ~�(xj)) in F . We arrive at our already familiarEigenvalue problem ~�~� = ~K ~�; (D.43)with ~� being the expansion coe�cients of an Eigenvector (in F ) in terms of the points(D.42), ~V = MXi=1 ~�i ~�(xi): (D.44)We cannot compute ~K directly; however, we can express it in terms of its non-centeredcounterpart K. In the following, we shall use Kij = (�(xi) � �(xj)), in addition, weshall make use of the notation 1ij = 1 for all i; j.~Kij = (~�(xi) � ~�(xj)) (D.45)=  (�(xi)� 1M MXm=1�(xm)) � (�(xj)� 1M MXn=1�(xn))!= (�(xi) � �(xj))� 1M MXm=1(�(xm) ��(xj))� 1M MXn=1(�(xi) � �(xn)) + 1M2 MXm;n=1(�(xm) � �(xn))= Kij � 1M MXm=1 1imKmj � 1M MXn=1Kin1nj + 1M2 MXm;n=1 1imKmn1njUsing the matrix (1M)ij := 1=M , we get the more compact expression~Kij = K � 1MK �K1M + 1MK1M : (D.46)We thus can compute ~K from K, and then solve the Eigenvalue problem (D.43). Asin (3.16), the solutions ~�k are normalized by normalizing the corresponding vectors~Vk in F , which translates into ~�k( ~�k � ~�k) = 1: (D.47)



D.3. ON THE TANGENT COVARIANCE MATRIX 161For feature extraction, we compute projections of centered �-images of test patternst onto the Eigenvectors of the covariance matrix of the centered points,( ~Vk ��(t)) = MXi=1 ~�ki (~�(xk) � ~�(t)): (D.48)Consider a set of test points t1; : : : ; tL, and de�ne two L�M matrices byKtestij = (�(ti) � �(xj)) (D.49)and ~Ktestij =  ((�(ti)� 1M MXm=1�(xm)) � (�(xj)� 1M MXn=1�(xn)))! : (D.50)Similar to (D.45), we can express ~Ktest in terms of Ktest, and arrive at~Ktest = Ktest � 10MK �Ktest1M + 10MK1M ; (D.51)where 10M is the L �M matrix with all entries equal to 1=M . As the test points canbe chosen arbitrarily, we have thus in e�ect computed a centered version not only ofthe dot product matrix, but also of the kernel itself.D.3 On the Tangent Covariance MatrixIn this section, we give an alternative derivation of (4.10), obtained by modifyingthe analysis of Sec. 2.1.2 (Vapnik, 1998). There, we had to maximize (2.7) subjectto (2.6). When we want to construct invariant hyperplanes, the situation is slightlydi�erent. We do not only want to separate the training data, but we want to separateit in a way such that submitting a pattern to a transformation of an a priori speci�edLie group will not alter its class assignment. This can be achieved by enforcing thatthe classi�cation boundary be such that group actions move patterns parallel to thedecision boundary, rather than across it. A local statement of this property is therequirement that the Lie derivatives should be orthogonal to the normal w whichdetermines the separating hyperplane. Thus we modify (2.7) by adding a second termenforcing invariance:�(w) = 12 0@(1� �) 1̀ X̀i=1 w � @@t ���t=0Ltzi!2 + �kwk21A (D.52)For � = 1, we recover the original objective function; for values 1 > � � 0, di�erentamounts of importance are assigned to invariance with respect to the Lie group oftransformations Lt.The above sum can be rewritten as1̀ X̀i=1  w � @@t ���t=0Ltzi!2 = 1̀ X̀i=1 w � @@t ���t=0Ltzi! @@t ���t=0Ltzi �w!= (w �Cw); (D.53)



162 APPENDIX D. TECHNICAL ADDENDAwhere the matrix C is de�ned as in (4.6),C := 1̀ X̀i=1  @@t ���t=0Ltzi! @@t ���t=0Ltzi!> (D.54)(if we want to use more than one derivative operator, we also sum over these; in thatcase, we may want to orthonormalize the derivatives for each observation zi). To solvethe optimization problem, one introduces a LagrangianL(w; b;�) = 12 �(1� �)(w � Cw) + �kwk2�� X̀i=1 �i (yi((zi �w) + b)� 1) (D.55)with Lagrange multipliers �i. At the point of the solution, the gradient of L withrespect to w must vanish: (1� �)Cw+ �w� X̀i=1 �iyizi = 0 (D.56)As the left hand side of (D.53) is non-negative for anyw, C is a positive (not necessarilyde�nite) matrix. It follows that forC� := (1� �)C + �I (D.57)to be invertible (I denoting the identity), � > 0 is a su�cient condition. In that case,we get the following expansion for the solution vector:w = X̀i=1 �iyiC�1� zi (D.58)Together with (2.3), (D.58) yields the decision functionf(z) = sgn X̀i=1 �iyi(z �C�1� zi) + b! : (D.59)Substituting (D.58), and the fact that at the point of the solution, the partial derivativeof L with respect to b must vanish (Pì=1 �iyi = 0), into the Lagrangian (D.55), we getW (�) = 12 X̀i=1 �iyiz>i �C�1� �> �C�C�1� � X̀j=1�jyjzj�X̀i=1 �iyiziC�1� X̀j=1�jyjzj + X̀i=1 �i: (D.60)



D.3. ON THE TANGENT COVARIANCE MATRIX 163By virtue of the fact that C� and thus also C�1� is symmetric, the dual form of theoptimization problem takes the following form: maximizeW (�) = X̀i=1 �i � 12 X̀i;j=1�i�jyiyj(zi � C�1� zj) (D.61)subject to (2.14) and (2.15).The same derivation can be carried out for the nonseparable case, leading to thecorresponding result with modi�ed constraints (2.22) and (2.23) (cf. Sec. 2.1.3).We conclude by generalizing to the nonlinear case. As in Sec. 2.1.4, we now thinkof the patterns zi no longer as living in input space, but as patterns in some featurespace F related to input space by a nonlinear map� : RN ! F (D.62)xi 7! zi = �(xi): (D.63)Unfortunately, (D.59) and (D.61) are not simply written in terms of dot productsbetween images of input patterns under �. Hence, substituting kernel functions fordot products will not do. Note, moreover, that C� now is an operator in a possiblyin�nite-dimensional space, with C being de�ned as in (4.15). We cannot compute itexplicitely, but we can nevertheless compute (D.59) and (D.61), which is all we need.First note that for all x;y 2 RN ,(�(x) � C�1� �(y)) = (C� 12� �(x) � C� 12� �(y)); (D.64)with C� 12� being the positive square root of C�1� . At this point, methods similar tokernel PCA come to our rescue. As C� is symmetric, we may diagonalize it asC� = SDS>; (D.65)hence C� 12� = SD� 12S>: (D.66)Substituting (D.66) into (D.64), and using the fact that S is unitary, we obtain(�(x) � C�1� �(y)) = (SD� 12S>�(x) � SD� 12S>�(y)) (D.67)= (D� 12S>�(x) �D� 12S>�(y)): (D.68)This, however, is simply a dot product between kernel PCA feature vectors: S>�(x)computes projections onto Eigenvectors of C� (i.e. features), and D� 12 rescales them.Note that we have thus again arrived at the nonlinear tangent covariance matrix ofSec. 4.2.2; this time, however, the approach was motivated solely by constructing



164 APPENDIX D. TECHNICAL ADDENDAinvariant hyperplanes in feature space, and the nonlinear feature extraction by thetangent covariance matrix is a mere by-product.To carry out kernel PCA on C�, we essentially have to go through the analysisof kernel PCA using C� instead of the covariance matrix of the mapped data in F .The modi�cations arising from the fact that we are dealing with tangent vectors werealready described in Sec. 4.2.2, hence, we shall presently only sketch the additionalmodi�cations for � > 0: here, we are looking for solutions of the Eigenvalue equation�V = C�V with � > � (let us assume that � < 1, otherwise all Eigenvalues areidentical to �, the minimal Eigenvalue).2 These lie in the span of the tangent vectors.In complete analogy to (3.14), we then arrive at`�� = ((1� �)K + �I)�; (D.69)and the normalization condition for the coe�cients �k of the k-th Eigenvector reads1 = �k � �1� � (� ��); (D.70)where the �k > � are the Eigenvalues of (1� �)K + �I. Feature extraction is carriedout as in (4.25).We conclude by noting an essential di�erence to the approach of (4.11), which webelieve is an advantage of the present method: in (4.11), the pattern preprocessingwas assumed to be linear. In the present method, the goal to get invariant hyperplanesin feature space naturally led to a nonlinear preprocessing operation.

2If we want �I also to have an e�ect outside of the span of the tangent vectors, we have to modifythe set in which we expand our solutions.
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