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4.1 Introduction
4.1.1 The Bayesian decision theory approach to vision

We define vision as perceptual inference, the estimation of scene properties from
an image or a sequence of images. Vision is ill-posed in the sense that the retinal
image is potentially an arbitrarily complicated function of the visual scene and so
there is insufficient information in the image to uniquely determine the scene. The
brain, or any artificial vision system, must make assumptions about the real world.
These assumptions must be sufficiently powerful to ensure that vision is well-posed
for those properties in the scene that the visual system needs to estimate.” In this
Chapter we argue that Bayesian decision theory provides a natural framework for
modeling perceptual inference. We will discuss the theoretical problems that arise,
in particular when combining different visual cues, and propose solutions.

How are these assumptions about the world imposed in vision systems? The
Bayesian formulation, see also the introductory Chapter to this book, gives us an
elegant way to impose constraints in terms of prior probabilistic assumptions about
the world. This approach is based on Bayes formula (Bayes, 1783):

p18)p(S)

S|[) = ————. 4.1
p(SII) () 4.1

Here S represents the visual scene, the shape and location of the viewed objects, and
I represents the retinal image. p(I|S) is the likelihood function for the scene and it
specifies the probability of obtaining image / from a given scene S. It incorporates a
model of image formation and of noise and hence is the subject of computer graphics.
p(S) is the prior distribution which specifies the relative probability of different
scenes occurring in the world, and formally expresses the prior assumptions about

T The issue of precisely which scene properties need be estimated is still an open one. We will briefly discuss this
in Section 4.6.
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the scene structure including the geometry, the lighting and the material properties.
p(I) can be thought of as a normalization constant and it can be derived from p(I]|S)
and p(S) by elementary probability theory, p(I) = J pI18)p(S)[dS]. Finally, the
posterior distribution p(S|I) is a function giving the probability of the scene being
S if the observed image is /.

In words (4.1) states: the probability of the scene S given the image / is the
product of the probability of the image given the scene, p([|S), times the a priori
probability p(S) of the scene, divided by a normalization constant p().

To specify a unique interpretation of the image / we must make a decision based
on our probability distribution, p(S|/), and determine an estimate, § *(I), of the
scene. In Bayesian decision theory (Berger, 1985; DeGroot, 1970) this estimate
is derived by choosing a loss function which specifies the penalty paid by the
system for producing an incorrect estimate.” Standard estimators like the maximum
a posteriori (MAP) estimator, S* = argmaxgs p(S|/) (i.e. $* is the most probable
value of S given the posterior distribution p(S|/)), correspond to specific choices
of loss function. The loss function emphasizes that the interpretation of the image
cannot be divorced from the purpose of the visual system.* In Section 4.4 we will
illustrate the idea of loss functions by analyzing the generic viewpoint assumption
(Binford, 1981; Freeman, 1993; and chapter 9 by Freeman).

The Bayesian framework is sufficiently general to encompass many aspects of
visual perception including depth estimation, object recognition and scene under-
standing. However, to specify a complete Bayesian theory of visual perception is,
at present, completely impractical. Instead we will restrict ourselves to model in-
dividual visual cues for estimating the depth and material properties of objects and
the ways these cues can be combined. It has become standard practice for computa-
tional theories of vision to separate such cues into modules (Marr, 1982) which only
weakly interact with each other. From the Bayesian perspective, this modularization
is often inappropriate, due to the interdependence between visual cues. Hence we
argue in Section 4.3 that the visual cues should be more strongly coupled.

The choice of prior assumptions in the Bayesian framework is very important.
Each visual cue, as standardly defined, contains built-in prior assumptions. If these
assumptions are being used by the visual system they will inevitably bias perception,
particularly for the impoverished stimuli favoured by psychophysicists. Indeed the
perceptual biases detected in psychophysical experiments offer clues about the
nature of the prior assumptions being used by the visual system.’ However the prior

T For other applications of decision theory to vision see (Sperling & Dosher, 1986).

* Decision theory can also be used to couple vision directly to action (Dean & Wellman, 1970).

§ The human visual system is very good at performing the visual tasks necessary for us to interact effectively with
the world. Thus the prior assumptions used must be fairly accurate, at least for those scenes which we need to
perceive and interpret correctly.
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assumptions used by theorists to model one visual cue may conflict with those used
to model another, and consistency should be imposed when cues are combined.

Moreover, the prior assumptions may be context dependent and correspond to
the categorical structure of the world. Each visual module, or coupled groups of
modules, will have to determine automatically which priors should be used. This
can lead to a system of competitive prior assumptions, see Section 4.5. Bayesian
Decision Theory (Berger, 1985) standardly deals with both competing models of this
type and also complex systems of elementary priors indexed by hyper-parameters.

In this Chapter we first describe in Section 4.2 Bayesian theories for individual
cues and argue that several psychophysical experiments can be interpreted in terms
of biases towards prior assumptions. Next, in Section 4.3, we describe ways of
combining different depth cues and argue that strong coupling between different
modules is often desirable. In Section 4.4 we introduce the concept of loss function
by analyzing the generic view assumption and argue that this concept is crucial
for specifying the purpose of the visual system. Then in Section 4.5 we argue that
it is preferable to use competing, often context dependent, priors rather than the
single generic priors commonly used. Implications of this approach are described
in Section 4.6.

4.2 Bayesian theories of individual visual cues

We now briefly describe some Bayesian theories of individual visual cues and argue
that psychophysical experiments can be interpreted as perceptual biases towards
prior assumptions. From (4.1) we see that the influence of the prior is determined
by the specificity of the likelihood function p(/|S). In principle, as described in
Section 4.1, the likelihood function should make no prior assumptions about the
scene (though, as we will see, this is often not the case in practice).

In the following we will specifically discuss theories of stereo, shape from shad-
ing and shape from texture. All these modules require prior assumptions about the
scene geometry, the material properties of the objects being viewed, and, in some
cases, the light source direction(s). We will concentrate on the assumptions used
by the theories rather than the specific algorithms. A number of theories described
here were originally formulated in terms of energy functions (Horn, 1986) or regu-
larization theory (Poggio et al., 1985). Yet the Bayesian approach incorporates, by
use of the Gibbs distribution (Paris, 1988), these previous approaches (see also the
Appendix).

Let us now look at one specific example. (See chapter 5, section 5.16 for an
extensive commentary.) Shape from shading models typically assume that the scene

Although it is conceivable that the human visual system uses conflicting prior assumptions for different cues.
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consists of a single object with known reflectance function. It is usually assumed
that there is a single light source direction § which can be estimated and that the
reflectance function is Lambertian with constant albedo. This leads to an imaging
model I = 5 -7 + N where 7 denotes the surface normals and N is additive
Gaussian noise. In this case the likelihood function can be written as p(/|S) =
(1/Z)e~ W 20 =57 \where o2 is variance of the noise and Z is a normalization
factor. The prior model for the surface geometry p(S) typically assumes that the
surface is piecewise smooth and biases towards a thin plate or membrane.

Observe that this likelihood function contains the prior assumption that the re-
flectance function is Lambertian with constant albedo. Moreover, it ignores effects
such as mutual illumination and self-shadowing. The model is therefore only appli-
cable for a certain limited class of scenes and only works within a certain context*(see
Figure 4.1). A visual system using this module would require a method for auto-
matically checking whether the context was correct. In this section we will assume
that the context is fixed and leave the discussion of context selection to our later
Section on competitive priors.?

What predictions would models of this type make for psychophysical experi-
ments? Clearly, they would predict that the perception of geometry for shape from
shading would be biased by the prior assumption of piecewise smoothness (see
Figure 4.2). If we use the models of piecewise smoothness typically used in com-
puter vision then we would find a bias towards frontoparallel surfaces. Such a bias
is found in the psychophysical shape from shading experiments by Biilthoff and
Mallot (Biilthoff & Mallot, 1988).

Existing shape from texture models also make similar assumptions about the
scenes they are viewing. They typically assume that the scene consists of texture
elements scattered on piecewise smooth surfaces. The distribution of these elements
on the surface is typically assumed to be statistically homogeneous. Therefore the
imaging model or likelihood function will assume that these texture elements are
generated from a homogeneous distribution on the surface and then projected onto
the image plane. Assumptions about the geometry, such as piecewise smoothness,
are then placed in the prior.

Once again, the nature of the likelihood term means that the models will only

-

These theories also assume that the occluding boundaries of the object is known. This is helpful for giving
boundary conditions.

Indeed the likelihood functions used in most visual theories often make strong context dependent assumptions.
This fact will be briefly illustrated in this Section and we will describe its implications in Sections 4.3 and 4.5.
We also point out that ideal observer theories by necessity also operate within a specific context (see the chapter 6
by Kanill & Kersten and chapter 7 by Blake, Biilthoff & Sheinberg) . The experimenter chooses a specific visual
task and set of stimuli. He then models the performance of an ideal observer, who knows everything about the
task and the stimuli, and compares it to that of a human observer. For the human’s performance to be anywhere
close to that of the ideal observer would require that humans have visual abilities tuned to this context and are
able to automatically adapt to them.
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Fig. 4.1 Cues are valid only in certain contexts. In (a) we sketch a Lambertian object
illuminated by a single light source and no mutual illumination, so standard shape from
shading algorithms will work. However, in (b) the mutual illumination will prevent shape
from shading from working. Similarly, shape from texture is possible for (c) but not for (d)
where the homogeneity assumption for the texture elements is violated. Thus both shading
and texture depth cues are only valid in certain contexts.

be appropriate in certain contexts, see Figure 4.1. To become well-posed, shape
from texture must make strong assumptions about the world which are only valid
for a limited class of scenes. If standard piecewise smoothness priors are used
then texture models will also predict biases towards the frontoparallel plane, as
observed experimentally (Biilthoff & Mallot, 1988). Stronger predictions can be
made by testing the predictions of a specific model, see for example that presented
in chapter 7 by Blake, Biilthoff & Sheinberg.

Finally, we consider a model of stereopsis that is a simplified version of one
developed in more detail by Belhumeur in chapter 8. Again, this model assumes that
the world consists of piecewise smooth Lambertian surfaces. The imaging model
is defined by saying that a surface with disparity d(x) and intensity / (x) will be
mapped to the left and right images /;, and /g sothat I (x+d(x)/2) = I (x)+N(x)
and Ig(x — d(x)/2) = I(x) + Ng(x), where N, and Ny are additive Gaussian
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Fig.4.2 Prior assumption bias perception. (a) shows the true depth D7 (x) and (b) shows .the
biased depth percept D} (x) after smoothing. In (c) we assume that the likelihood function
pilD(x)] is weakly peaked at the true depth D7 (x). The prior in (d), however, is peaked
at D3 (x). The resulting posterior distribution p3[D(x)] is shown in (e) and yields a biased
percept D3 (x).

noise (Cernushi-Frias et al., 1989). This defines a distribution P (I, Ir|l,d) and
by introducing a prior p(/, d) and applying Bayes theorem we get
p(IL«IRII,d)P(Ld)' @2)
p(Ir, 1)
If we assume that the prior p(/, d) is uniform in / then we can integrate out’ the
surface intensity / to compute the marginal distribution

p(l,d|IL, Ig) =

p(IIL, Ig) =/p<1,d|1L,1R)[d11
= (l/Z)e_ﬁ f(IL(-\‘+d(-f)/?-)—lk('\'—(1(-\')/2))2!1‘\‘p(d), (4.3)

T This is possible because our assumptions have made p(I,d\l, Ig) a Gaussian in / — which is straightforward
to integrate analytically.

Bayesian decision theory and psychophysics 129

(@) (b) ©
IL(X)t Ixx) t Bld(x)] ‘
X X d(x)
(@ ) 0}
I (x) IL(x) Bd(x)]
X X d(x)
® (h) @
IL(X)t ,\/\/U) IR(X)t /\/\/U\ PL[d(X)]t JL
X X d(x)

Fig. 4.3 The ambiguity of the likelihood function for binocular stereo. For the intensity
profiles of left (a) and right (b) eye there is considerable matching ambiguity and so the
likelihood function p, [d(x)] is almost flat in (c). For the inputs in (d) and (e) there is less
ambiguity, because the bumps in the two images must match, yet there are several possible
correspondences and hence the likelihood function has several peaks in (f). However, the
images in (g) and (h) are sufficiently structured so that only one match is likely and therefore
the likelihood function has only a single peak as shown in (i).

where p(d) is the prior for the disparity, Z is a normalization constant, and B is
proportional to the inverse of the variance of the noise models.

Such a model, using standard piecewise smoothness priors for p(d), will once
again predict the observed biases towards the frontoparallel plane, see (Biilthoff &
Mallot, 1988). Moreover, the strength of these biases will depend on the ambiguity of
the matching between the images, see Figure 4.3. If the images have little variation
then the likelihood function gives little constraint on d(x) (many functions d(x)
will have non-zero probability) and the perception is strongly biased towards the
prior assumptions on the geometry. Conversely, if the images have a lot of variation
then there will be little ambiguity in the matching and so the likelihood function
p(Ir, Ig|d) will put strong constraints on the form of d (x) (only one function d(x)
will have non-zero probability). If the image variations are periodic or semi-periodic
then the likelihood function will have several peaks and there will be matching
ambiguity which can result in the well-known wallpaper illusion.

This suggests that the less the matching ambiguity then the weaker the bias
towards prior assumptions. Experimental support for this comes from (Biilthoff
et al., 1991), see Figure 4.4, who tested the perceived depth gradient between a
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Fig. 4.4 Perceptual bias and matching ambiguity. Perceived depth in percent of displayed
depth as a function of depth gradient for points (P), lines (L), small symbols (SS) and
large symbols (LS). Each data item represents the mean of nine different disparities (3 —
27 arc min) tested with 10 subjects. The standard errors of the means are in the order of the
symbol size. Redrawn from (Biilthoff ez al., 1991).

pair of feature points as a function of the dissimilarity between the features. The
greater the dissimilarity between features then the less the perceived bias towards
the frontoparallel plane. These experiments were consistent with a Bayesian theory
(Yuille et al., 1991) which formulated stereo as a surface reconstruction problem
and interpreted the experiments as a bias towards prior assumptions which weakens
as the likelihood function puts stronger constraints on the disparities.

It seems difficult for other types of stereo theories to explain these experiments.
Most theories based on feature matching (e.g. Pollard et al., 1985) obtain depth by
trigonometry after matching. They will either match the features correctly, getting
one percept, or incorrectly, getting another. There seems to be no mechanism by
which they can get the observed differential bias depending on the form of the
features.

We stress that Bayesian theories described in this Section are intended as illus-
trations and only give qualitative explanations for these experiments. To give a full
quantitive explanation would require precise specifications of all the adjustable pa-
rameters in the Bayesian theory. Attempts of this type are underway, see work by
Yuille & Grzywacz (1989), Grzywacz et al. (1989), Watamaniuk et al. (1993) on
motion perception and by Blake, Biilthoff and Sheinberg (1993) on texture. This is
an important research direction but it is not the main focus of this Chapter. Instead
our goal is to give an overview of Bayesian theories for visual perception which
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contrasts them with alternative formulations and focusses on qualitative agreement
with experiments.

The main focus of this Section is to give examples af visual modules, to show
that it is possible to interpret some psychophysical experiments as biases towards
“reasonable” prior assumptions and to stress that the less constraint the likelihood
function places on the scene then the stronger the bias. Finally, we emphasize that
all these theories make strong contextual assumptions and the visual system must
be able to automatically verify whether the context is correct before believing the
output of the model.

4.3 Integration of visual cues

It has become standard practice for computational theorists and psychophysicists to
assume that different visual cues are computed in separate modules (Marr, 1982) and
thereafter only weakly interact with each other. Marr’s theory (Marr, 1982) did not
fully specify this weak interaction but seemed to suggest that each module separately
estimated scene properties, such as depth and surface orientation, and then combined
the results in some way." A more quantitive theory, which has experimental support
(Bruno & Cutting, 1988; Dosher et al., 1986; Maloney & Landy, 1989), involves
taking weighted averages of cues which are mutually consistent and using a vetoing
mechanism for inconsistent cues. A further approach by Poggio and collaborators
(Poggio et al., 1988) based on Markov Random fields has been implemented on
real data.

The Bayesian approach suggests an alternative viewpoint for the fusion of vi-
sual information (Clark & Yuille, 1990). This approach stresses the necessity of
taking into account the prior assumptions used by the individual modules. These
assumptions may conflict or be redundant. In either case it seems that better results
can often be achieved by strongly coupling the modules in contrast to the weak
methods proposed by Marr or the weighted averages theories (Bruno & Cutting,
1988; Dosher et al., 1986; Maloney & Landy, 1989). See Figure 4.5 for an overview
of weak and strong coupling.

To see the distinction between weak and strong coupling suppose we have two
sources of depth information f and g. Marr’s theory would involve specifying two
posterior distributions, p1(S|f) and p2(S|g), for the individual modules. Two MAP
estimates of the scene S} and S;i would be determined by each module and the
results would be combined in some unspecified fashion.

T “The principle of modular design does not forbid weak interactions between different modules in a task, but it
does insist that the overall organization must, to a first approximation, be modular” (Marr, 1982, page 102.)

* We assume for the moment that all estimates are MAP, $* = arg maxs p(S|f), but alternative estimates will be
discussed in Section 6.
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Fig. 4.5 Different types of coupling between modules. (a) shows a form of weak coupling
where the two modules act independently, with their own likelihood functions p(/ |§ ) and
priors p(S), producing MAP estimators, S* = argmaxg p(/|S) p(S), as outputs \f‘/hl(?l’l are
then combined in an unspecified manner. (b) shows weak coupling where the likelihood
functions and priors of the two modules are multiplied together and then the MAP est.imator
is calculated. Such coupling would yield a weighted combination of cues in some circum-
stances, see Appendix 2. In (c) the likelihood functions of the modules are combmgd with
a single prior for the combined modules and then the MAP estimator is found. This case
is on the borderline between weak and strong coupling. It is weak if the prior p(S) is the
same as that used for the individual modules and it is strong otherwise. (d) shows strong
coupling where it is impossible to factor the likelihood function of the combined modules
into the likelihood functions for the individual modules.
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The weighted averages theories are not specified in a Bayesian framework.
But one way to obtain them would be to multiply the models together to obtain
p(SIf, @) = p1(S|f)p2(S|g). If the MAP estimates, S} and S3, from the two the-
ories are similar then it is possible to do perturbation theory and find, to first order,
that the resulting combined MAP estimate S} , is a weighted average of S| and
S5. (See Appendix to this chapter and section 5.16 of the following chapter by
Bennett et al.)

Both Marr’s and the weighted averages approach would be characterized as weak
(Clark & Yuille, 1990) because they assume that the information conveyed by the a
posteriori distributions of the two modules is independent. But, as we have argued,
the forms of the prior assumptions may cause the information to be dependent or
even contradictory.

The Markov Random Field approach by Poggio and collaborators is slightly dif-
ficult to classify in our scheme. A specific implementation (Poggio et al., 1988)
says that “individual modules are therefore only integrated with each other indi-
rectly, through the brightness constraint”, which would mean weak coupling. Yet
the system may be improved to include feedback between the modules, which might
correspond to strong coupling. This Markov Random Field approach is certainly
close in spirit to the one we are advocating.

By contrast the Bayesian approach would require us to specify a combined like-
lihood function p(f, g|S) for the two cues and a single prior assumption p(S) for
the combined system. This will give rise to a distribution p(S|f, g) given by

p(f. glS)p(S)
S § = —
P11 8) p(f. 8

and in general will not reduce to p; (S| f) p2(S|g). A model like (4.4) (which cannot
be factorized) is considered a form of strong coupling (Clark & Yuille, 1990). An
important intermediate case between weak and strong coupling occurs when the
likelihood function can be factored as p(f, g|S) = p(f1S)p(glS), see Figure 4.5c.
If the two individual cues have identical priors and the combined system is given
the same prior, i.e. p(S) = p1(S) = pa(S), then the coupling is considered weak
— though it still differs from Marr’s theory or the weighted averages approach. But
if the combined prior differs from either of the two individual priors then the cou-
pling is strong. It should be emphasized that it is not unusual for two modules, as
formulated by Marr, to have different priors. For example, stereo uses piecewise
smoothness and structure from motion uses rigidity. Moreover, because more infor-
mation is available, the combined prior for two visual modules may not need to be
as strong as the priors for the individual modules.’

: 4.4)

+

" Astrict Bayesian would argue that you should never weaken your prior just because more information is available
and that the additional information should decrease the dependence on the prior automatically. However, this
argument is correct only if the prior is highly accurate. Any visual prior that we can currently imagine is likely
to be, at best, a poor approximation and it is sensible to try to reduce the dependence on it.
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The need for formulating cue combination by (4.4) may seem obvious to statisti-
cians. Indeed some might argue that the need for strong coupling is only an artifact
of incorrect modularization of early vision. We have sympathy for such a viewpoint.

Observe also that there is no need for a veto mechanism between cues in our
framework. Such a mechanism is only needed when two cues appear to conflict.
But this conflict is merely due to using mutually inconsistent priors when modeling
the two cues. If we combine the cues using (4.4) then this conflict vanishes.

In the next two subsections we will consider some examples of cue integration.
We will demonstrate that for shading and texture the likelihood function usually
cannot be factored and so strong coupling is required. Next we will describe a
system for coupling stereo and monocular cues so that the resulting system has no
need for a prior.

4.3.1 Examples of strong coupling

We now give two examples where we argue that strong coupling is advantageous.
The first example is for a case where the likelihood function of two cues are not
independent. The second example shows that when coupling two modules the prior
assumptions about the geometry can be significantly altered.

4.3.1.1 Shape from shading and texture

We now consider coupling shading with texture. Firstly, we argue that in this case the
likelihood functions are not independent and that strong coupling is usually required.
Secondly, we describe an experiment from (Biilthoff & Mallot, 1988), which shows
how the integration of shading and texture information gives a significantly more
accurate depth perception than that attained by shading and texture independently.

As we discussed in the previous Section, standard theories of shape from shading
and texture, in particular their likelihood functions, are only valid in certain contexts.
Moreover, these contexts are mutually exclusive. Shape from shading assumes that
the image intensity is due purely to shading effects (no albedo variations) while
shape from texture assumes that it is due only to the presence of texture.

To couple shading with texture we must consider a context where the image
intensity is generated both by shading and textural processes. Such a context may
be modeled by a simple reflectance model

I(x) = a(x)R (7 (x)) 4.5)

where the texture information is conveyed by the albedo term a(x) and the shading
information is captured by R((x)). It is typically assumed that the reflectance
function is Lambertian 5 - 7. There are a variety of different texture assumptions
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Fig. 4.6 The difficulty of decoupling shading and texture cues. (a) shows a typical intensity
proﬁ}e for a Lambertian surface with constant albedo, the context in which shape from
sha.du.lg can be computed. (b) shows the intensity profile for a surface with strong albedo
variation, the context for shape from texture. (c) shows the intensity profile when both cues
are presgnt. Separating this profile into its shading in (a), and textural components in (b),
is hard in general. In Bayesian terms this is because the likelihood function for combined
shading and texture cannot, in general, be factored into the likelihood functions for the two
individual cues.

which typically assume that there are a class of elementary texture elements that
are painted onto the surface in a statistically uniform distribution. This will induce
a distribution on the albedo, a(x), that depends on the geometry of the surface in
space.

Typically texture modules assume that R (7i(x)) = 1, Vx, while shading modules
set a(x) = 1, Yx. For the coupled system these assumptions are invalid, see Fig-
ure 4.6. The shading module has to filter out the albedo a(x), or texture, while the
texture information must ignore the shading information R (7(x)). For some images
it may be possible to do this filtering independently (i.e. the texture model can filter
out R(7(x)) without any input from the shading module, and vice versa). In gen-
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eral, however, distinguishing between R (71(x)) and a(x) isnot at all strai ghtforward.
Consider an object made up of many surface patches with Lambertian reflectance
functions and differing albedos. For such a stimulus it seems impossible to separate
the intensity into albedo and shading components before computing the surface ge-
ometry. Thus we argue that the likelihood functions for the combined shading and
texture module usually cannot be factored as the product of the likelihood functions
for the individual modules and hence strong coupling is required.”#

In addition we argue that, because more information is available in the likelihood
term of the combined module, the prior assumption on the surface geometry can be
weakened. Hence there is both less bias towards the fronto-parallel plane from the
priors and more bias towards the correct perception from the shading and texture
cues.

In the experiment reported below, see Figure 4.7, shape from shading and shape
from texture alone gave strong underestimations of orientation yet the combined
cues gave almost perfect orientation. Such a result seems inconsistent with Marr’s
theory or with coupling by weighted averages. Instead it seems plausible that this
is an example of strong coupling between texture and shading with a weak prior
towards piecewise smooth surfaces.’

4.3.1.2 Coupling stereo with controlled motion

Our second example describes theoretical results where the coupling of two cues
can significantly reduce the dependence on prior assumptions about the geometry
of the scene.

We restrict ourselves to a world consisting of isolated point features in space.
The two depth cues are binocular stereo and monocular depth cues obtained by
motion parallax from small head or eye movements. This Section is based on work
described in Geiger & Yuille (1989).

Consider the two cues independently. For binocular stereo there is the well known
correspondence problem, which is illustrated in Figure 4.8. All the assumptions used
to make stereo well-posed — the ordering constraint, piecewise smooth surfaces, the
disparity gradient limit — will tend to bias the system towards a single depth plane.
Although it is true that the disparity gradient limit theories have some ability to

A similar point is made by Adelson and Pentland’s parable of the painter, the carpenter and the gaffer (lights
technician) — see chapter 11 by Adelson & Pentland.

This is also closely related to the concept of cooperative processes (Knill & Kersten, 1991) where the perception
of shape from shading depends very strongly on contour cues or on stereo curvature cues (Buckley et al., 1993),
see Chapter by Kersten and Knill.

The only way that these results might be consistent with weak coupling would be if simple filters could decompose
the image into texture and shading parts, hence factorizing the likelihood function, and then combining the cues
using the same prior used by both modules. This prior would have to be so weak that the likelihood functions
of the two modules dominate it.
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Eig. 4.7 Psychophysical experiments on the integration of shading and texture. In an ad-
justment task subjects interactively adjusted the shading or texture of a simulated ellipsoid
of rotation (seen by one eye) in order to match the form of a given ellipsoid seen with both
eyes (in stereo). The ellipsoids were seen end-on so that the outline was the same for both
s.urfaces. Shape from shading and shape from texture individually lead to a strong underes-
timation of shape, i.e., shading or texture of an ellipsoid with much larger elongation had
to be simulated in order to match a given ellipsoid (slope >> 1). If shading and texture
are presented simultaneously the shape is adjusted almost correctly (slope = 1). Redrawn
from (Biilthoff & Mallot, 1990).
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(a) (b) O

()

(d)
R_p(s)

®
For®

S, S S, S

Fig. 4.8 Monocular and stereo cues can combine to solve the double nail illusion. The s
variable represents the positions of the two dots in space with s; and s, denoting the hpn-
zontal (frontoparallel) and vertical configurations respectively. The dots are in the vertical
configuration s. Binocular stereo has a correspondence problem and (a) shovx{s the two
possible solutions sy and s3, illustrated by the grey and white ellipses respectively. The
monocular cues (b) have no correspondence problem but only yield approximate depth
estimates, the sizes of the ellipses show the magnitude of the uncertainty. (c) shows that
the stereo likelihood function ps— (s) has two maxima corresponding to the two possible
solutions. A typical prior ps_,(s) for stereo (d) will favour the frontoparallel interpretation
s1. So the stereo module with posterior distribution p;(s) Ps—1(8) ps—p(s) will be biased
towards the incorrect solution s; shown in (e). The monocular likelihood function pu—r (s)
is peaked at the correct interpretation s but the distribution is so broad that there is con-
siderable uncertainty in the estimated position, see (f). However, combining the likelihood
functions for the stereo and monocular cues, ps—m(s), yields a sharp peak at the correct
solution 57, see (g).
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perceive transparent surfaces they will still be fooled by the double nail illusion,
see Figure 4.8.

On the other hand, the monocular depth cues caused by motion parallax will not
have a correspondence problem since they will be able to track the feature points.
The estimation of depth can then be performed by trigonometry. This estimation,
however, is likely to be very inaccurate because the eye/head movements are small,
so the baseline for the triangulation is small, and there may be additional uncer-
tainty in the amount of eye/head movement. Nevertheless it is possible to define a
probabilistic model for this system to give both the estimated depth values and an
estimate of their variability.

Suppose we attempt to weakly couple the stereo and monocular cues for the
transparent stimuli shown in Figure 4.8. The monocular cues would give roughly
the correct depth estimates but with large variances. By contrast, the prior used by
the stereo system would tend to force the data into a single surface, typically as
frontoparallel as possible. Thus the monocular estimates would be more accurate
than the stereo estimates but they would have larger variance. So if weak coupling
is used we would expect the stereo module to override the monocular cues and the
system would yield an incorrect answer.

By contrast if we strongly couple the two cues, by multiplying together the
likelihood functions for both modules, then the information from the monocular
cues will be available to help solve the correspondence problem of stereo hence
giving a highly nonlinear interaction between the monocular and the stereo cues.
The monocular cues do not need to localize the depths of the features precisely,
they only need to be accurate enough to disambiguate the stereo correspondence
problem, see Figure 4.8.

This example illustrates several key features of the strong coupling approach:
(i) the interaction between modules can become highly nonlinear, (ii) cues that
contain little, or inaccurate, information may nevertheless significantly strengthen
the performance of another module provided the inaccuracy can be quantified, and
(iii) the dependence on priors can be reduced if more cues are available.

This example is atypical of strong coupling because the resulting combined sys-
tem does not need a prior assumption. We stress that this is only because we are
working in a limited context, of isolated feature points, and will not be true in
general.

4.3.1.3 Mathematics of monocular and binocular strong coupling

This Section gives mathematical details of the theory for strongly coupling binocular
and monocular cues. It can be skipped by readers who are not interested in these
details.

Consider a system which has both monocular and binocular depth cues where
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the scenes consist of isolated feature points. Let there be N feature points, xf =

1,..., N, visible in the left image and M points, x, :a =1,..., M, visible in
the right image. Suppose we have a set of monocular depth values {x,{ , d,! ; U,-’ 1=
l,...,N}and {x},d}, 05 :a=1,..., M where the x’s are the positions in the

two eyes, the d’s are the corresponding monocular depth estimates, and the o’s are
the standard deviations of these estimates. For details about how these estimates
can be derived see Geiger & Yuille (1989). So the monocular depth estimates f (x)
are given by Gaussian distributions:

N 5 .
n{F DN = ZL, I1 o~ (FGD=d))' 20
i=1

M 2 2
pr({(fC{xg)) = ZL H o~ (f)=d) /2000 (4.6)
r a=1

where Z; and Z, are normalization constants (i.e. Z; = H,N:1 {ﬂZn)}a,! ). For these
monocular cues no priors are needed and so the distributions p;({ f(xf )}I{x,{ }) and
pr({f (X2)}{x,)) correspond to the likelihood functions of the monocular cues.
Priors are not needed because we are assuming as context that the scene consists
of isolated feature points. It is straightforward to track these features and estimate
their depth by motion parallax induced by eye/head movements. This is, however,
a big uncertainty in the depth estimates of these points owing to the difficulty in
estimating the eye/head movements (see Geiger, 1989).

The binocular stereo system computes depth estimates and standard deviations
{ds (x! , X"), 04} assuming that a point labeled i the left image corresponds to a point
labeled « in the right image. Let {Vig 1 i = l,...,Na= 1,..., M} be binary
matching elements which can specify the correspondences between the points in
the two eyes. In other words we set Vi, = 1 if we decide that point i matches point
a and set V;, = 0 otherwise.

For binocular stereo the likelihood function ps({x,{ ,XIV, f) is given by
(1/Z)e PEs(V.1) where Z is a normalization constant and

1 .
Es(Vair ) =Y —= Vaild(xl, x) = f ()

a,i (O'iu)2

+2 (1= Vi) +2 20 =2 _Via), @.7)

where we require that points in each image have either one or no matches. Hence
the terms 3_, Viq and 3_; Vi, take values of either 0 or 1. The constant A is therefore
a penalty for unmatched points.

For binocular stereo the matching is ambiguous and so prior assumptions on f
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or V are needed. Thus the Bayesian theory is of form

ps(V, FIxL, XD = ps(xl, XNV, Hpp(V, f) (4.8)

where p,(V, f) is a prior assumption on V and f. As discussed previously, most
standard choices for p,(V, f) will attempt to reconstruct a piecewise smooth surface
(often biased towards the frontoparallel plane).

When strongly coupling the monocular and stereo cues the prior p,(V, f) be-
comes unnecessary and can be discarded. The reason is that, in this context of
isolated feature points, there will usually be enough information in the likelihood
functions to determine the correct matches. Thus the prior required by the stereo
system becomes redundant and can be dropped. Observe that this differs from stan-
dard Bayesian statistics where the prior is always kept in and its influence merely
degrades gracefully as the likelihood function becomes more specific.

When combining the cues we need to express all the cues in one coordinate
system. We choose a coordinate system based on the left eye only and use the
V variables to perform this transformation. This gives a strongly coupled theory
Psc(V, flixt, x}) = (1/Z)e~PEV-1) where

L
(0','1)2

EV.H=Y

i

1 9
+ Z va-(f(xb —d)?

(Fxh) — al)?

1
1 o

- F&)?, 4.9)
and V is a normalization constant.

In this case weak coupling will simply correspond to multiplying the distribution
psc by the prior p,. This gives

pw Vs it xy = PseVs fl{x!Z. )PV, f)

(4.10)

where Z,, is the normalization factor.

. Thus the weakly coupled system will show a bias towards the prior assumptions
in p,(V, f) but the strongly coupled system will show no bias.

4.4 Decision theory

.In this Section we develop the concept of a loss function which we briefly mentioned
in the Introduction. This is a key ingredient of Bayesian Decision theory and, by
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specifying a penalty for making an incorrect perceptual inference, emphasizes the
task dependent nature of vision. We illustrate the importance of the choice of loss
function by reformulating Freeman'’s original Bayesian treatment of the generic
viewpoint assumption (Freeman, 1993). We argue that decision theory gives the
correct framework for treating this assumption. Freeman and Brainard (Brainard &
Freeman, 1994) have independently reached a similar conclusion, making similar
choices of Gaussian loss functions, see Freeman’s chapter in this book.

Given a Bayesian distribution p(S|I) we must make a decision about the viewed
scene. Let the set of allowable decisions be D = {d, - n € A} (e labels a
decision d, and these labels lie in a set A.). These decisions will correspond to the
set {S} of possible scenes. We introduce a loss function I (S, d), which is the penalty
for making a decision d when the true scene is S. The loss function can be used
to specify which scenes the visual system considers important or the type of errors
that it considers acceptable.

If we have enough visual information to determine the scene S uniquely then
the optimal decision corresponds to the d* which minimizes [(S, d). Typically,
however, we will only have a probability distribution p(S|I) for the scene. In this
case the Bayes’ decision minimizes the expected loss, or risk, defined by:

R(d) = /l(S,d)p(S]I)[dS]. 4.11)

Conventional statistical estimators can be obtained by an appropriate choice of
loss function. If we decide to penalize equally every time we make the incorrect
decision and set/(d, S) = —8(S —d) (where § is the Dirac delta function), then we
find that R(d) = —p(d|I) and the Bayes decision is the scene d* that maximizes
p(d|I), the maximum a posteriori (MAP) estimator.

The MAP estimator, i.e. the mode of the posterior distribution, is often used
in vision but, because it only rewards the system if it attains precisely the right
solution, it is suspect to statisticians.t If the task requires us only to get precisely
the right solution then it should be used, otherwise alternatives are better. One
alternative is the minimal variance (MV) estimator whose loss functionis I(S, d) =
(S - d)?. Thus decisions which are close, but not identical, to the right solution
get rewarded. In this case the risk function becomes R(d) = [ (S — d)? p(SIN[dS]
and so, by differentiating with respect to d, we see that the optimal decision d* =
[ Sp(S|1)[dS] is simply the mean of the distribution. Some typical loss functions
are shown in Figure 4.9.

It should be emphasized that the choice of loss function depends on the visual
task that the system is designed to accomplish. To illustrate this we consider Free-

t « _ This means that the mode is hard to find and need not be a good summary of the posterior distribution. It
is a Bayes rule, but under a rather perculiar loss function ...” page 95, Ripley (1992).
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\ L(d-S)

(i)/

Fig: 4}.9 Several standard loss functions. They depend only on the difference between the
deCLS}on d and thf.! scene S so we write them as functions of (d — §). The quadratic loss
functlonzllabeletli.g), has/(d—S) = (S—d)?, and its estimator is the mean of the distribution.
Curves (ii) and (iii) are the negatives of a Gaussian and a delta function respectively. Observe
tha.t the delta function, which corresponds to MAP estimation, only rewards interpretations
which are absolutely correct, with d = S, while the other two loss functions are more
tolerant. Unle.ss the probability distribution p(S) is very sharply peaked it is unrealistic to
attempt to estimate S to absolute precision, so MAP estimation is often inappropriate.

man’s original formulation of generic viewpoint assumption (Freeman, 1993). This
assumption states that the interpretation of the image should not be sensitive to
some of the variables, the generic variables, which are estimated. Freeman gives an
example of shape from shading with unknown light source direction (see chapter 9).
Thus the image / is considered to be a function of the surface geometry G and the
light source direction S. He defines a Bayesian theory

p|G, S)p(G, S)
p()

We must now decide on what we want the system to do. Do we want it to estimate
the geometry only and ignore the light source direction? Or do we want to estimate
both geometry and source direction simultaneously? If so, how accurate do we
want. to estimate these variables? Do we want to estimate the light source direction
precisely, or do we only need to know them to within a few degrees? Is there
sufficient information in p(G, S|I) to provide reliable answers to these questions?

Clearly there are many possible tasks we could ask the system to do and we must
choose a loss function suitable for the task. We should also only consider tasks for
which we believe that p(G, S|I) contains enough information to accomplish it.

p(G.SII) = (4.12)
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Fie. 4.10 Loss functions can enforce generic viewpoint constraints. The p(f)stenorlpr\()‘)/l;':ll—t
biﬁiy p(S|I) in (a) has a high narrow peak, at §*, anq a lower br?ad Qegk. Ifwe orll zon o
to estimate S to within a certain broad tolerance, as in Freeman’s original formulati

oeneric viewpoints, then we should prefer the broad peak to the thin one. Using a negative
o

i i i ill i he necessary tolerance because
an loss function —G(d — §) in (b) will introduce t _ ary t ‘beca
SéurSl:;( obtained by multiplying p(S |I) by —=G(d — S) and integrating, 1S now m;mhmlz'ei
near thé broad peak —G (d — S). This is demonstrated by plotting the negative of the r1s

in (c). Note that, because the loss function is a function of (d — S), the risk is obtained by
convolving the posterior with the loss function.

that we should attempt to find the geometry exactly but oply
estimate the light source direction approximately. Thus we C(?uld picka .1oss funct.lon
1dg,ds, G, S) = —Gass(ds — S)8(dG — G) where Ga.n is a Gaussian funf:tlorrll.
This strongly penalizes errors in the geometry, dg, but is tolerant to errors 1n the

ig direction, ds. ' .
ha}Sl:lz(l)lu;ClZss function ii consistent with the generic viewpoint assu.mptlf)n. It will
effectively prefer fat peaks in the probability distl‘ibl‘ltIOL"l of S .to thin sp1l.<es - siz
Figure 4.10. Thin peaks clearly do not obey the generic v1'ewpomEr assumption sin
small changes in the estimators Jead to very improbable 1m.ages'.

Thus from a decision theoretical standpoint the generic VIews as

One possibility is

sumption is

is diff g similar inter-
¥ Observe that Freeman's original interpretation (Freeman, 1993) is different put, W(-)UIddl lead.t(t);. gl:;;(ima(ion,
pretation for this example. He proposes integrating out the S variable by dom_g a s‘u‘i e point app
This yields a generic viewpoint factor which would also favour fat peaks to thin ones.
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equivalent to saying that some parameters need to be measured very accurately
and others need only be estimated roughly. This can be achieved by picking the
appropriate loss function.

For another example remember the double nail illusion in the previous Section.
Consider a Bayesian theory which tries to estimate the orientation of a line joining
the two dots in space. Suppose that the variable we are interested in is the precise
orientation of the line. There are two possibilities, frontoparallel and frontoperpen-
dicular, depending on the correspondence between features — and each is equally
likely if we use a MAP estimator. Now suppose we are only interested in estimat-
ing the orientation of the line to within a few degrees, and use a loss function that
only penalizes errors greater than this. Then the frontoparallel interpretation (plus
or minus a few degrees) becomes far more likely since it is far more stable with
respect to orientation changes, see Figure 4.11.

Finally, we should add that picking the correct loss function is necessary for any
Bayesian theory and is far more general than the generic viewpoint assumption. It
critically depends on what task the visual system wants to achieve and how badly
the system will be penalized if the task is not completed successfully.

4.5 Contexts and competitive priors

As we have seen, the current models for visual cues make prior assumptions about
the scene. In particular, the likelihood function often assumes a particular context
— for example Lambertian surfaces. The choices of priors and contexts is very
important. They correspond to the “knowledge” about the world used by the visual
system. In particular, the visual system will only function well if the priors and the
contexts are correct.

What types of priors or contexts should be used? The influential work of Marr
(Marr, 1982) proposed that vision should proceed in a feedforward way. Low level
vision should be performed by vision modules which each used a single general
purpose prior’ such as rigidity for structure from motion and surface smoothness
for stereo. Low level vision culminated in the 2-1/2 D sketch, a representation of
the world in terms of surfaces. Finally, object specific knowledge was used to act on
the 2-1/2 D sketch to perform object recognition and scene interpretation. Because
the types of priors suggested for low level vision are general purpose we will refer
to them as generic priors.

The question naturally arises whether models of early vision should have one
generic prior. It is clear that when designing a visual system for performing a

T We are grateful for discussions with P. Belhumeur, S. Geman, D. Mumford and B. Ripley which helped clarify
these points.

" Such priors were called natural constraints by Marr (1982).
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Fig.4.11 Using the generic viewpoint assumption to “solve” the‘double r_)ail illlusmn sh.ow.n
in (a). The “black solution” in (b), is less stable than the white solun‘on in (c).. Thls is
because small rotations of the black solution will induce larger chan.ges in the positions of
the image points than will corresponding rotations of the white SOlLl.[lOH. In Bayesian term;
the posterior distribution is narrowly peaked about the black solution but broadly peake

about the white solution.
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specific visual task the prior assumptions should be geared towards achieving the
task. Hence it can be argued (Clark & Yuille, 1990; Yuille & Clark, 1993) that a set
of different systems geared towards different tasks and competing with each other
is preferable to a single generic prior.

These competitive priors should apply both to the material properties of the
objects and their surface geometries. We will first sketch how the idea applies to
competing models for prior geometries, then develop the theory more rigorously
and give an example of competing priors for material properties.

To make this more precise consider the specific example of shape from shading.
Methods based on energy function,’ such as Horn and Brooks (1986), assume a spe-
cific form of smoothness for the surface. The algorithm is therefore biased towards
the class of surfaces defined by the exact form of the smoothness constraint. This
prevents it from correctly finding the shape of surfaces such as spheres, cylinders
and cones.

On the other hand there already exist algorithms that are guaranteed to work for
specific types of surfaces. Pentland (1989) designed a local shape from shading
algorithm which, by the nature of its prior assumptions, is ensured to work for
spherical surfaces. Similarly Woodham (1981) has designed a set of algorithms that
are guaranteed to work on developable surfaces, a class of surfaces which includes
cones and cylinders.

Thus instead of a single generic prior it would seem more sensible to use different
theories, in this case Horn and Brooks, Pentland and Woodham’s, in parallel. A
goodness of fitness criterion is required for each theory to determine how well it fits
the data. These fitness criteria can then be used to determine which theory should
be applied.

4.5.1 Theory of competitive priors

More precisely, let pi(f), p2(f), ..., pn(f) be the prior assumptions of a set
of competing models with corresponding imaging models pi(Z|f),, pn(I|f)-
We assume prior probabilities p,(a) that the a’" model is the correct choice, so
2[7:1 pp(a) = 1. This leads to a set of different modules, each trying to find the
solution that maximizes their associated conditional probability:

pi|f)pi1(f)
I = —-———_—
pi(fID) o)
e PN(”f)PN(f). @.13)

pn(I)

¥ Which can therefore be directly interpreted as Bayesian by using the Gibbs distribution, see the Appendix.
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OuUTPUT:
MODEL i. ESTIMATE S

Fig. 4.12 Competitive priors. Three models with different pr.iors compete to explaip the
input /. The winner is decided by a decision rule. The output 1s the choice of model i and

the estimate given by the winner S;.

Our space of decisions D = {d, i} where d specifies the scene and i labels the
model that we choose to describe it. We must specify a loss function id,i:f a,
the loss for using model i to obtain scene d when the true model should be a and

the scene is f, and define a risk

R@.i) =Y [1.i: f.apalfIDPH@LS, (4.14)

where, for example, we might seti(d,i: f,a)= —8(f—d)biq (ie.we a.re penall.zed
by 8i, for not finding the right model and by —4( f — d) for not finding the right
surface). Here §(f — d) denotes the Dirac delta function and J;, is the Kronecker
delta, where §;, = 1ifi = a and is 0 otherwise.

The Bayes decision corresponds to picking the model i and the scene d that
minimizes the risk, see Figure 4.12. ‘

It is straightforward to adapt this model if a input sequence of images are available
as will usually be the case. We simply replace [ in the formulae abov'e by the set
(I, Iz, - . ., In} of images. For some scenes a single image may not yield enough
information to decide between competing models and yet an image sequence n?ay
give the correct result (see Clark et al. (1992) for preliminary results showing. this).
In some situations the system may initially make an incorrect decision which it later
corrects as more information becomes available, see Section 4.5.3.
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4.5.2 Determining the fitness of prior models for material properties

We now give a specific example for determining the shading model for a surface
(Clark & Yuille, 1990). In this example the two competing image formation models
are Lambertian reflectance and specular reflectance.

We label the competing models by a and the surface shape by f. Let p(/|f, a)
be the probability of generating the image by model @ when the surface shape is f.
Let pp(a) be the prior probability that model a is correct.

For simplicity, we initially assume that the surface shape is known (this assump-
tion will be relaxed later in this Section). The problem of deciding which model is
most appropriate is now considered as one of deciding, in the presence of noise,
whether we have one signal or another (the binary decision problem of statistical
communication theory). This involves specifying a decision rule A(i|I') which tells
us which model i to pick as a function of the input image /.

The optimal Bayesian decision rule, A(i|/) for this problem is that which mini-
mizes the expected risk Middleton, 1987):

R(A) =) ppla) /[dllp(llf, a) Zl(a, DHAGIT) (4.15)

This differs from our previous formulation because: (i) we are finding a decision
rule A(i|/) for a class of images instead of making a single decision for a single
image (these are equivalent — DeGroot, 1970) and (ii) we are not interested in
determining the scene so we have fixed the f variable.

We label the possibilities a = 1, 2 for whether the surface is Lambertian or specu-
lar. p(I| f, @) is the image formation model—hence p(I| f, 1) = (1/Z)e_f[d"'](l_'—"})z
and p(I|f,2) = (l/Z)e'f[""](]'(""‘)"')z, where m, k, h, 5, 7i take their standard
meanings for the Phong shading model. The surface normal 7 can be calculated
directly from the surface shape f.Let p,(1) = p and p,(2) =gq.

It is straightforward algebra to derive the optimal Bayes rule for this problem. It
corresponds to deciding that the image is specular if A(/) < K, and Lambertian
otherwise. A (/) is the likelihood ratio, and is given by

Al = (5) (%) (4.16)

and K is a decision threshold given by
12, H=-12,2)
1(1,2) —I(1,1)
Suppose we set /(1,1) = [(2,2) = 0 (i.e. no cost for correct decision) and

I(1,2) = [(2, 1) (i.e. both possible errors have equal cost), then K = 1. The decision
rule can be rephrased as: decide specular when log A(/) < 0 and Lambertian

(4.17)
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otherwise, where
log A(I) = U[dx](l — 7572 —log pil
- [ / [dx]1(I — (h - b)™)* — log q] . (4.18)

log A(I) is a very intuitive quantity because it depends on the difference in ener-
oies of the two possible reflectance models. Essentially, we choose the Lambertian
1=

model if its energy is lower than that of the specular model, with a correction factor

to adjust for the priors p and . .
This discussion has assumed that the surface shape, represented by f, is already

known. We now relax this assumption and show how to estimate f and a simultafle-
ously. First we define prior distributions p(f|a) for the surface shape as a fl%nctlon
of the model a. The posterior distribution for the model and the surface shape is now:

_ pUlf,a)p(fla)pp(@) 4.19)
p(foall) = o) :
Our risk function becomes:
R, =Y [1di: fpfalDif] (420)
a=1

Letus set[(d,i : f,a) = =8(f — d)l(a,i), where [(a, i) is the loss functi.on
defined above (i.e. 1(1,1) =1(2,2) =0 and /(0,1) = [(1,0) = 1). Then the risk
simplifies to

R, 1) =—p, 1),
R(d,?2) = —p(d,2|I). 4.21)

To find the optimal decision we calculate d* = argmaxy p(d, 1/I) and d5 =
argmaxy p(d, 2|1). Then, if [ df, 1) < 1(d3,2) we choose model 1 and surface
shape d}, otherwise we pick model 2 and shape dj. In other words, we find the.: .bt-ast
estimate for the surface shape for each of the models and compare the probabilities
of these estimates to determine which model is correct.

4.5.3 Psychophysics of competitive priors

It seems that a number of psychophysical experiments, some of which are .described
in other Chapters, seem to require explanations in terms of competitive priors. In a.ll
cases the perception of the stimuli can be made to change greatly .by small change.s in
the stimuli. Some of these experiments would also seem to require strong coupling.

Kersten et al. (1991) describe a transparency experiment in which the scene can

. s : -
be interpreted as a pair of rectangles rotating rigidly around a common axl1s or as
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(a) ‘ ‘
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Fig. 4.13 Different types of motion are perceived depending on transparency cues. In (a)
the two planes are perceived to rotate rigidly together. However in (b) they are seen to slide
across each other in a periodic motion.

independent rigid rectangles rotating around their own axis (Fig. 4.13). The com-
petitive priors correspond to assuming that the rectangles are coupled together to
form a rigid object or that the rectangles are uncoupled and move independently. By
adjusting the transparency cues either perception can be achieved. Interestingly, the
perception of the uncoupled motion is only temporary and seems to be replaced by
the perception of the coupled motion. We conjecture that this is due to the build up of
support for the coupled hypothesis over time, as described in Section 4.5.1. The un-
coupled interpretation is initially supported because it agrees with the transparency
cue. Over a long period of time, however, the uncoupled motion is judged less likely
than coupled motion. This hypothesis does require a relative ordering of competing
explanations, which could be implemented by prior probabilities (see chapter 3 by
Richards et al.). It is not hard to persuade oneself that coupled motion is more
natural, and hence should have higher prior probability, than uncoupled motion.
Blake and Biilthoff’s (1991) work on specular stereo, see Figure 4.14, shows
how small changes in the stimuli can dramatically change the perception. In these
experiments a sphere is given a Lambertian reflectance function and is viewed
binocularly. A specular component is simulated and is adjusted so that it can lie in
front of the sphere, between the center and the surface of the sphere, or at the center
of the sphere. If the specularity is at the center it is seen as a light bulb and the
sphere appears transparent. If the specularity lies in the physical correct position
within the sphere (halfway between the center and the surface) then the sphere is
perceived as being a glossy, metallic object.” If the specularity lies in front of the

¥ Itis interesting that, before doing the experiment, most people think that the specularity should lie on the convex
surface and not behind. You can convince yourself otherwise by looking, for example, at the reflection of a
candle appearing inside a wineglass at a candle light dinner.
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Stimulus Perception
a
(a) -
e
/ "

(b)

Fig. 4.14 Specular stereo where a hemisphere is viewed binocularly. In (a) the specularity,
the white ellipsoid, is adjusted to lie behind the center of the sphere. It is perceived as a
light bulb lying behind a transparent sphere. In (b) the specularity lies in approximately
the correct position and the hemisphere is perceived to be metallic with the specularity
appearing as the image of the light source. If the specularity lies in front of the hemisphere
(¢), then it is perceived as a cloud floating in front of the hemisphere.

sphere then it is seen as a cloud floating in front of a matte sphere. We can interpret
this as saying that there are three competing assumptions for the material of the
sphere: (i) transparent, (ii) glossy, (iii) matte. The choice of model depends on the
data. In addition if the sphere is arranged so that its Lambertian part has no disparity
then the stereo cue for the specularity resolves the concave/convex ambiguity from
the shading cues, see Blake & Biilthoff (1991) for details.

Nakayama and Shimojo (Nakayama & Shimojo, 1990; Nakayama & Shimojo,
1992) describe an impressive set of stereo experiments which seem to imply that
the visual system attempts to interpret the world in terms of surfaces that can par-
tially occluded each other (see chapter 10 by Nakayama and Shimojo). The visual
system often performs significant interpolation in regions that are partially hidden.
For example, one can obtain a strong perception of a Japanese flag, see Figure 4.15,
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Fig. 415d Binocular stereo cues for surfaces occluding each other. The stereo pair (a), is
perceived as a plgnar surface, with a cross-shaped hole in its central region, floating above
a surface with a circle at its center, see (b). ;

even when the stimulus contains very little information, provided that the missing
parts of the flag are occluded by another surface. Nakayama and Shimojo them-
selves (_Nakayama & Shimojo, 1992) argue that their experiments can be described
by having a set of competing hypotheses i = 1, ..., N about the possible scene
and corr'esponding image formation models p; (/|S;). They suggest picking the in-
terpretation j that maximizes p;(S;|1) = p;(I|S;)/{>x p(1|Sk)} — which can be
_seen as a special case of our competitive prior formulation. They also argue that this
is related to the generic viewpoint hypothesis: if a regularity appears in an image
then the regularity is due to a regularity in the scene rather than being an accidental
result of the viewpoint.
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4.6 Discussion

The competitive prior approach assumes that there is a large set of possible hy-
potheses about scenes in the world and that these scenes must be interpreted by the
set of hypotheses, competing priors, that best fit the data. We envision a far larger
and richer set of competing priors than the natural constraints proposed in Marr
(1982) or the regularizers occurring in regularization theory (Poggio et al., 1985).
These priors arise from the categorical structure of the world, as discussed in the
Introduction and preceding chapters of this book.

How sophisticated must these contextural priors be? Here we have only consid-
ered priors for low level tasks such as surface estimation. But we see no reason
why they should not reach up to object recognition and scene interpretation. At an
intermediate stage we should mention the interesting results of Kersten et al. (1991)
which showed that humans make use of shadow information for depth perception
(see chapter 6). In these experiments the perceived motion of a ball in a box was
strongly affected by the motion of its shadow. But for this shadow information to
be meaningful the visual system must have decided that the geometry of the scene
was a box. In other words, that the shadow was projected from a ball onto the planar
surface at the bottom of the box.

Itis clear that the most effective computer vision systems are those which strongly
exploit contextural knowledge and are geared to achieving specific tasks. To what
extent should the competing priors be geared towards specific tasks? Ideally one
would like to have priors which accurately model all aspects of the visual scene, but
this may be unrealistic. Instead it would be simpler to have priors which accurately
model the aspects of the world that the visual system needs to know about. Though
this will mean that the decision rules must be sophisticated enough to prevent the
system from constantly hallucinating the things that it desires to see.” Building up
priors in this task dependent way seems a sensible strategy for designing a visual
system, but is there any evidence that biological systems are designed like this? It
may be hard to test for humans, since our visual system appears very general purpose,
but it is possible that experiments might be designed for animals with simpler visual
systems. This emphasize on task dependence is at the heart of recent work on active
vision (Blake & Yuille, 1992). By making very specific prior assumptions about

certain structures in the scene, and ignoring everything else, it has proven possible
to design automatic vehicles capable of driving at high speeds on the Autobahn
(Dickmanns et al., 1990). In this case the outputs of the visual system are used
directly to control the vehicle, thereby giving another link to decision theory.*

T Itis tempting to consider the hallucinations induced by sensory deprivation as an example of the prior imposing
nonexistent structure on the data.

 Control theory and decision theory are equivalent when app!
steering wheel of a car.

lied to such problems as how much to turn the
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Decision theory can also be used at a higher level for planning tasks (Dean &
Wellman, 1991). We argue that it is also useful for vision itself because, by means
of loss functions, it builds in the preferences of the system and hence can i,ncorporate
task dependent vision.

Clearly the range of visual tasks that we can achieve is determined by the in-
formation, p(S|/), we have about the scene. A cleverly chosen loss function can
at best, allow us to make the most use of the information available. Thus the iSSllf;
9f what visual tasks we can achieve, or what scene parameters we can estimate
is determined by the form of p(S|/), assuming we have exploited all our prior,
knowledge. It may well be that p(S|/) contains enough information for us to make
a reliable decision about whether one object is in front of another, but not enough
to decide on the absolute depth values of the objects themselves.

In its current formulation the competitive prior approach leaves many questions
unan.swered. In particular, how many priors should there be and how can one search
efﬁc.le.ntly through them. We believe that the answer to the first question is largely
empirical and that by building increasingly sophisticated artificial vision syst:ms
and b).] performing more psychophysical experiments it will be possible to determine
the priors required. To search efficiently between competing priors seems to require
a sophisticated mixed bottom up and top down strategy of the type described in
Mumford’s Chapter. In such an approach, low level vision is constantly generating
possible interpretations while simultaneously high level vision is hypothesizing
them and attempting to verify them.

.In this Bayesian framework we have said nothing about the algorithms which
might be used to make the decisions. In this we are following Marr’s levels of
explantation (Marr, 1982) where a distinction is made between the high level in-
formation Processing description of a visual system and the detailed algorithms
for computing it. Thus we may hypothesize that a specific visual ability can be
modeled by a Bayesian theory without having to specify the algorithm. In a similar
style, Bialek (1987) describes various experiments showing that the human visual
system approaches optimal performance for certain tasks, such as estimating the
number of photons arriving at the retina (Sakitt, 1972), even though precise models
for how these computational tasks are achieved is often currently lacking. Certainly
t}.Ie algorithms used to compute a decision may be complex and require interme-
diate levels of representation. For example, a shape from texture algorithm might
require first extracting textural features which are then used to deter?nined surface
shape..Thus Bayesian theories certainly do not imply “direct perception” (Gibson
1979) in any meaningful sense. The issues of when to introduce intermediate level;
.Of representations and of finding algorithms to implement Bayesian theories are
important unsolved problems.

Finally, in this Chapter we have been using a broad brush and have not given



156 A.L. Yuille & H.H. Biilthoff

specific details of many theories. Though much progress has been made existing
vision theories are still not as successful as one would like when implemented on real
images. Bayesian decision theory gives a framework but there are many details that
need to be filled in. For example, the Bayesian approach emphasizes the importance
of priors but does not give any prescription for finding them. Although workers in
computational vision have developed a number of promising priors for modeling the
world, it is an open research task to try to refine and extend these models in order to
build systems of the type outlined here. Fortunately the Bayesian framework is able
to incorporate learning.”, see Kersten et al. (1987), and the success of (Bayesian)
Hidden Markov Models for speech recognition (Paul, 1990) suggests that it may be
practical to learn Bayesian theories.

4.7 Conclusion

In this Chapter we have argued for a framework for Vision based on Bayesian De-
cision theory. From this perspective, vision consists of specifying priors, likelihood
functions and decision rules. Such theories will inevitably causes biases towards
the prior assumptions of the theory, particularly for the impoverished stimuli used
by psychophysicists.

This approach suggests that when coupling visual cues care must be taken with
the dependence between the cues and, in particular, on the prior assumptions which
they use. In many cases this will lead to strong coupling between visual cues rather
than the weak coupling proposed by other theorists.

We also argue that the prior assumptions used by the visual system must be con-
siderably more complex than the natural constraints and generic priors commonly
used. Instead there seems to be evidence for a competing sets of prior assumptions
or contexts. This also seems to be a sensible pragmatic way to design a visual system
to perform visual tasks. It may be better to design visual systems in terms of mod-
ules that are geared towards specific visual tasks in restricted contexts rather than
modules based on the traditional concepts of visual cues. This can be incorporated
into the Bayesian framework using hyperpriors (or priors with hyperparameters)
and decision rules to determine which prior is suitable.

Picking the correct decision rule is also important and is directly tied to the task
that the visual system is trying to solve. Certain properties of the visual scene need
only be known approximately and undesirable, non-generic, interpretations may
result if the decision rule is badly chosen.

¥ Neural network learning is also relevant here.
¥ Itis particularly interesting to ask whether priors can be learnt for new task.
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Appendix
Bayesian theory subsumming regularization theory

’The Bayesian approach subsumes work based on regularization theory and minimiz-
ing energy functions (Horn, 1986; Poggio et al., 1985). In such theories a problem
car? be made well-posed by adding a regularizing term. Once again we need to
estimate a scene S given an input /. The problem is “solved” by minimizing, with
respect to S, an energy function

E(S;I) = Eqaa(S; 1) + Eregularizer (S), (4.22)

where Ey4:4(S; I) measures the consistency of a scene S with the data [ and
Eeguiarizer (S) biases the solution to a particular set of scenes.
Minimizing (4.22) is equivalent to maximizin ili i
g a probability funct
defined by ’ ’ SRS

1 .
p(S|I) = Ee_E(S‘I), (4.23)

where Z is a normalization constant.

Observe that'by substituting (4.22) into (4.23) we can interpret the the data term
and thfe regularizer as corresponding to the likelihood function and the prior of a
Bayesian theory respectively. More precisely, Eqqq(S : 1) = —log p(I|S) and
E,-eg,.,/,,,‘;ze,v (S) = —1log p(S). Finding the MAP estimator of p(S|/) corresponds
to minimizing E (S; I).

We carll z_ﬂsc.) reverse this argument to re-express Bayesian theories in terms of
energy minimization. Take the logarithm of both sides of Bayes theorem

p1S)p(S)
p(S|) = ——F—,
o) (4.24)
to obtain
—log p(S|I) = —log p(1|S) — log p(S) + log p(I). (4.25)
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By comparing to (4.22) we can interpret this as an energy function theory where
—log p(11S) is the data term and — log p(S) is the prior. The term log p(I) is inde-
pendent of § and so can be ignored. Thus doing MAP on Bayes can be interpreted
as minimizing an energy which is the sum of a data term and a regularizer.

Thus regularization theory, in its energy function formulation, is simply a special
case of Bayes. But the Bayesian framework is far richer and gives greater insight
by making clear the statistical assumptions underlying regularization theory. For
example, many regularization theories in vision use quadratic energy functions.
From the Bayesian perspective this is equivalent to assuming Gaussian distributions
and is only justifiable if this assumption is correct. Similarly regularization theories
usually combine sources of evidence by adding together energy terms. This is
equivalent to multiplying probability distributions together and is only appropriate

if the sources are independent.

Weighted averages from weak coupling
We now show that some forms of weak coupling give a weighted combination of
cues to first order approximation provided that the MAP estimates S7 and S5 of the

two cues are similar.
We start with the formula for weak coupling, p(SIf, &) = p1(S1)p2(S18), and

take the logarithm of both sides to obtain
log p(SI £, g) = log p1(S|f) + log p2(S18)- (4.26)

Performing Taylor series expansions of log p1 (S| f) and log p2(S|g) about their
MAP estimators S; and S gives

log p(S|f, g) = log p1(S71f) — (1/D)(S — SHwi
+log pa(SE1F) — (/DS — S3)*wn
+0(S—SH(S— 251, 4.27)
where w; = —(d?log p1(S1£)/dS?)(S}) and w2 = —(d?log p2(S1£)/dS*)(S3).-

The first order terms in the Taylor expansion vanish because S and S are ex-
trema. Moreover w; and wy are positive since the extrema are maxima. Extremizing
log p(S|f, g), ignoring terms higher than second order, gives
w1 SF 4+ waS;
wiSy + Wady (4.28)
wy + w2
If the distributions are Gaussians then the higher order terms in (4.27) vanish
and (4.28) is exact. In this case the weights are proportional to the inverse of the
variances of the distributions. Thus the sharper the distribution then the more it is

weighted.

§*=
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A consequence of (4.28) is that the combined estimate S* is a convex combination
of §§ and Sj. Thus if S* represents a single number, such as depth, it must be bigger
than min(S}, S5) and smaller than max(Sy, S3).

We note that this analysis becomes invalid unless S I~ §3. Also the weighting
cor.1.°.ta'1n-ts wi and w, correspond to the Fisher information an<-i are a measure of the
reliability of the different cues.

cher forms of weak coupling such as setting p(S|f, g) & p1(f1S)p2(glS) p(S)
(with p(tS’) = p1(S) = p2(S)) might also lead to a weighted combinati(;n of cues.t
We revs{nte this as p(S|f, g) & p1(S|f)p2(S|g)/p(S) and perform a Taylor series
expansion of pi(S|f), p2(S|g), and p(S). This yields, to first order,

wlST + wy S5 — w3S;‘

S* =
w] + wy — w3 ’ (4.29)

VT/here S5 is the MAP of p(S) and w3 = —(d*log P (S)/dSz)(S;‘). This approxima-
tion, however, is less valid than that used to derive (4.28). It requires that not only
must S} and S5 be similar but also that both of these are close to the estimate given
from the prior S5, which is independent of the input data! Moreover, we might ex-
pect that the distributions p(S|f) and p(S|g) convey more information than P (S)
and hence are sharper. This would imply that w3 is much less than w; and w,. This
c.asts doubts on our ignoring the higher order terms in the Taylor series expansion
since the third order terms in the expansions of log pi (S| f) and log p>(S|g) may
be larger than the second order terms of log p(S). )
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