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Abstract

Several models for parameterized face representations have been proposed in the last
years. A simple coding scheme treats the image of a face as a long vector with each entry
coding for the intensity of one single pixel in the image (e.g. Sirovich & Kirby 1987).
Although simple and straightforward, such pixel-based representations have several disad-
vantages. We propose a representation for images of faces that separates texture and 2D
shape by exploiting pixel-by-pixel correspondence between the images. The advantages of
this representation compared to pixel-based representations are demonstrated by means of
the quality of low-dimensional reconstructions derived from principal component analysis
and by means of the performance that a simple linear classifier can achieve for sex classifi-
cation.
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1 Introduction

Few object classes have been examined as
extensively as the class of human faces. Investiga-
tions have been carried out in several different
scientific disciplines. Psychologists and human-
ethologists are interested in the way our percep-
tual system deals with faces when performing
tasks such as recognizing individual persons or
rating gender, age, attractiveness or facial expres-
sion. Computer scientists work with human faces
in different areas. In machine vision, much effort
has been put into constructing artificial face rec-
ognition systems that are able to generalize
between different appearances of the same face.
In computer graphics, faces play an important
role for modelling and animation purposes. Faces
also make interesting objects for the study of effi-
cient coding schemes, as this information is rele-
vant for video conferencing and
telecommunication.

Most of the problems that have to be solved in
face recognition are shared by other visual object
recognition tasks. In the following paragraphs, we
will discuss these problems in more general
terms, speaking about “object recognition” rather
than about “face recognition”. We will come back
to human faces, however, when discussing con-
crete examples for different representations.

The input information for our brain are the reti-
nal images. Artificial systems usually also have to
rely on two-dimensional images. Object recogni-
tion can be described as the process of finding an
appropriate measure for the distance between
stored representations and an incoming image. If
the task is object identification, then such a mea-
sure should provide a relatively small distance
between views of the same objects, regardless of
orientation, illumination and other scene
attributes not related to the object’s identity. It
also should provide a relatively large distance
between views of different objects even if they
share common properties, such as illumination or
orientation. If the task is to estimate the orienta-
tion, the size, or the colour of an object, then a
distance measure is needed that clusters images of
different objects with the same orientation, size or
colour, irrespective of their identity.

The search for an efficient distance measure
depends strongly on the choice of an appropriate
representation of the images. The simplest and
most straightforward representation of an image
is a representation that will be calledpixel-based
representation throughout this paper. In this rep-

resentation, the image is coded by simply concat-
enating all the intensity values of a number of
sample points into a large vector. The sample
points can correspond to the regular grid of pixels
provided by a digitized image on the computer
screen, or they can correspond to the photorecep-
tor array in our retina. A 256x256 pixel image
thus results in a 65536 dimensional vector located
in a vector space of equal dimensionality.

A distance measure in such a simple pixel-
based image space must have a fairly complex
structure to provide for object identification or
classification. Imagine only the locations of two
views of the same object in such a space that dif-
fer only by a slight translation of the object in the
image. Although a human observer could hardly
perceive the difference between the two images,
their locations in pixel space would be very dis-
tinct from each other.

A space that much better fits the requirements
of object (and face) recognition is a space in
which the objects are coded by means of complex
high-level features. If the features are chosen such
that they are diagnostic for one attribute (such as
identity) but invariant to others (such as illumina-
tion or orientation), it is easy to construct simple
metrics that cluster views of identical objects irre-
spective of the viewing conditions. Identification
as well as classification with respect to other
object attributes can then be carried out by using
simple linear classifiers.

Contrasting the pixel-based representation with
a representation based on high-level features
illustrates the trade-off between the complexity of
the representation and the complexity of an
appropriate distance measure. Using a simple rep-
resentation of the image of an object requires
sophisticated distance measures and complex
classifiers, whereas with a complex representa-
tion, simpler distance measures and linear classi-
fiers may be sufficient.

The transformation from the pixel space into a
feature space involves complex operations, often
including a priori information about the object
class the system is dealing with. A crucial point of
feature-based representations is how to define and
how to extract relevant features from the images.
The same set of indexed features should be avail-
able in all images in order to be able to compare
them. This means that correspondence between
the features of different images has to be estab-
lished. As a consequence, a high-level feature
space tends to be model specific. Searching for a
nose, for instance, only makes sense if the algo-
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rithm is confronted with a face.
A disadvantage of high-level feature spaces

may be a loss of information due to the feature
extraction process. A representation coding fea-
tures such as the size of eyes, nose and mouth,
distances and distance ratios between these fea-
tures, etc., may serve for identification and classi-
fication tasks, but it might be difficult to
reconstruct the original image from this informa-
tion.

In the past few years, different researchers have
developed feature-based representations of human
faces (Beymer, Shashua, & Poggio, 1993; Beymer
& Poggio, 1996; Costen et al., 1996; Craw &
Cameron, 1991; Hancock et al. 1996; Perrett,
May, & Yoshikawa, 1994; Vetter, 1996; Vetter &
Troje, 1995). The features used for establishing
correspondence span the whole range between
semantically meaningful features, such as the cor-
ners of the eyes and mouth, to pixel level features
that are defined by the local grey level structure of
the image. Establishing correspondence between
the images has been done by either hand-selecting
a limited set of features or by using adapted opti-
cal flow algorithms that define correspondence on
the single pixel level.

In this paper, we will present a particular way
of establishing a representation of human faces
that we have developed (Vetter & Troje, 1995).
This representation is a feature-based representa-
tion, but nevertheless retains all of the informa-
tion contained in the original image. It can thus be
used not only for recognition purposes but also
for modelling new faces. Since this representation
is based on a pixel-by-pixel correspondence
between two images, we call it acorrespondence-
based representation.

We will compare this representation with a
simple pixel-based representation and evaluate it
by means of three different issues that we con-
sider to be important criteria for a representation
flexible enough to serve many of the purposes
occurring when processing human faces. These
criteria are:
• The set of faces should be convex. If two vec-

tors in the corresponding space are natural
faces, then any vector on the line connecting
these vectors should also correspond to a
proper face.

• The representation should provide an efficient
coding scheme. Redundancies should be
reduced.

• Important attributes (identity, sex, age, facial
expression, orientation) should be easily sepa-

rable.
That convexity is fulfilled for the correspon-

dence-based representation will become directly
evident in the next section, in which we develop
our representation step by step starting from a
simple pixel-based representation. In section 3,
we address the question of coding efficiency by
evaluating low-dimensional reconstructions based
on principal component analysis. In section 4, we
use sex classification as an example of a classifi-
cation task. The generalization performance of a
simple linear classifier using the different repre-
sentations as input is investigated.

2 Developing a correspondence-based
representation

As mentioned above, it would be desirable for
a number of different purposes to develop a repre-
sentation of faces that makes it possible to treat
them as objects in a linear vector space. Such a
“face space” is the basis for developing metrics
that correspond to differences in identity, gender,
age, etc.

An image of a face (as any other image) can be
coded in terms of a vector that has as many coor-
dinates as the image has pixels. Each coordinate
codes the intensity of one particular pixel in the
image (Figure 1), so that the vector contains all of
the information in the image. The space spanned
by such image vectors, however, has some very
unpleasant properties. An important property of a
linear space is the existence of an addition and a
scalar multiplication which define linear combi-
nations of existing objects. All such linear combi-
nations are objects of the space. In a pixel-based
representation, this is typically not the case. One
of the simplest linear combinations - the mean of
two faces - will in general not result in a single
intermediate face, but rather as two superimposed
images. Any linear combination of a larger set of
faces will appear blurry. The set of faces is not
closed under addition.

These disadvantages can be reduced by care-
fully standardizing the faces in the images, for
instance, by providing for a common position of
the eyes. As can be seen from Figure 2, the mean
of two faces in this representation looks better
than it did with no alignment. Nevertheless, there
are still plenty of errors in the image. The eyes
look good now, but the mean face contains two
mouths and most other parts do not match either.
To match the mouths while still keeping the eyes
matched, a scaling operation is needed in addition
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to the translation. This scaling must be done inde-
pendently in the horizontal and vertical directions,
leading not only to a change in size, but also to a
distortion of the face.

Figure 3 shows the representation after this
improved alignment. The first part of the vector
encodes the image resulting from the alignment
process. The last four coefficients account for the
translation and scaling operations needed for the
alignment. Note that we did not enter the transla-
tion and scaling factors themselves but their
inverse values. The original image can thus be
reconstructed from the vector representation by
drawing the image encoded in the first part of the
vector and then performing translation and scal-
ing operations according to the last part of the
vector. The simple mean of the two sample faces
using this latter representation is much better now.

Not only are the eyes aligned, but, at least
roughly, the mouths are aligned as well. However,
a more careful look at the images still reveals sig-
nificant errors. Since the shapes of the two
mouths were very different, a closer inspection
shows that there are still two superimposed
mouths rather than one. The noses are not aligned
and other features including the outline of the face
are stillnotmatched.

Continuing with this approach leads to the cor-
respondence-based representation described in
more detail by Vetter and Troje (1995). Rather
than allowing only simple image operations such
as translation or scaling, any image deformation
can be used to align a sample face with a second
face that serves as a common prototype. Figure 4
illustrates the resulting representation. The first
part of the vector again codes the image resulting
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Figure 1: Pixel-based representation. The image of a
face is coded as a vector by concatenating all the pixel
values. The mean of two faces in this representation
does not yield a “mean face” but rather a superposition
of two single faces.

Figure 2: Here, the images are first aligned with respect
to a common position of the symmetry plane and a
commen height of the eyes. Then they are coded as in
the pixel-based representation. The two factors describ-
ing the necessary translation are also added. The mean
of two such representations still contains most features
twice.
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Figure 3: In this representation, the images are first
aligned using two translations and two scaling opera-
tions. The image resulting from this alignment is coded
together with the parameters describing the alignment.
Although hardly visible in these small reproductions,
the mean face still contains errors due to misalignment.

Figure 4: Correspondence-based representation. The
images are deformed to match a common prototype.
The vector contains the image after that deformation
and the deformation field itself. The mean of two faces
in this representation is one single face consisting of the
mean texture on the mean shape.
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after aligning the face to the prototype. The sec-
ond part of the vector codes the deformation that
has to be applied to this image in order to recover
the original image. The deformation is not
encoded in a parameterized form. Rather, it sim-
ply describes for each pixeli in the image the dis-
placement vector (dxi, dyi) necessary to match the
corresponding pixel in the original image. The
rule that decodes the image from this representa-
tion simply reads as follows: Draw the image
given by the first part of the vector and apply the
deformation field given by the second part of the
vector. We will refer to the first part of the vector
as thetexture of the face and to the second part as
theshape of the face.

The correspondence-based representation is
completely smooth and convex in the sense that a
linear combination of two or more faces cannot be
identified as being synthetic. The mean of two
faces results in a face with the mean texture
applied to the mean shape. In computer graphics
this hybrid face is often referred to as themorph
between the two faces.

In fact, any inner1 linear combination of exist-
ing textures reveals a new valid texture and any
inner linear combination of existing shapes
reveals a new valid shape. Furthermore, any valid
texture can be combined with any valid shape to
reveal a new face. The subspaces coding for tex-
ture and for shape can thus be treated indepen-
dently.

A critical element of this approach is establish-
ing pixel-by-pixel correspondence between the
sample face and the common prototype. We used
a coarse-to-fine gradient-based optical flow algo-
rithm (Adelson & Bergen, 1986) applied to the
Laplacians of the images following an implemen-
tation described in Bergen and Hingorani (1990).
The Laplacian of the images were computed from
the Gaussian pyramid adopting the algorithm pro-
posed by Burt and Adelson (1983). For more
details, see Vetter and Troje (1995).

3 The quality of low-dimensional
reconstructions

3.1 Images
The images of the faces were generated from a

data base of 100 three-dimensional head models
obtained by using a 3D laser scanner. All head
models were sampled from persons between 20

1. That means, a linear combination in which
all coefficients sum up to one.

and 40 years, without make-up, facial hair or
accessories such as earrings or glasses. Half of
them were male, and the other half were female.
Head hair was digitally erased from the models.
For details about the acquisition and the prepro-
cessing of the models, see Troje and Bülthoff
(1996).

The images showed the faces from a frontal
view. The orientations of the head models in 3D
space were aligned to each other by minimizing
the sum-squared distances between corresponding
locations of a set of selected features such as the
pupils, the tip of the nose, and the corners of the
mouth. Images were black and white and had a
size of 256x256 pixels with a resolution of 8 bits.

3.2 Principal component analysis
Principal component analysis (PCA) is a tool

that has been widely used to reduce the dimen-
sionality of a given data set. PCA is based on the
Karhunen-Loeve expansion -- a linear transforma-
tion resulting in an orthogonal basis with the axes
ordered according to their contribution to the
overall variance of the data set. Truncating the
expansion yields low-dimensional representations
of the data with a minimized mean squared error
(Ahmed & Goldstein, 1975).

PCA was first used with images of faces by
Sirovich and Kirby (1987) and has been applied
successfully to different tasks, such as face recog-
nition (Turk & Pentland, 1991; O’Toole, Abdi,
Deffenbacher, & Valentin, 1993; Abdi, Valentin,
Edelman, & O’Toole, 1995) and gender classifi-
cation (O’Toole, Abdi, Deffenbacher, & Barlett,
1991). In all of these investigations, PCA was
applied directly to the pixel-based representation
of images, which were only aligned by means of
simple transformations (translation, Sirovich and
Kirby also used scaling) that do not change the
character of the face.

Vetter and Troje (1995) applied PCA to the cor-
respondence-based representation of faces. For
the present investigation, we used the same tech-
nique, applying PCA separately to the subspaces
that code for the texture and for the shape of the
faces, respectively. In addition, we ran PCA on
the images themselves.

3.3 Theoretical evaluation of the reconstructions
PCA yields an orthogonal basis with the axes

ordered according to their overall variance. The
principal components equal the eigenvectors of
the covariance matrix of the data. The corre-
sponding eigenvalues are equal to the variances
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along each component. The decrease of the vari-
ances associated with the principal components
indicates the applicability of PCA for dimension-
ality reduction.

In Figure 5a, we plotted one minus the relative
cumulative variance accounted for by the firstk
principal components for the three different
PCAs. The relative cumulative variances were
calculated by successively summing up the firstk
eigenvaluesυi and dividing them by the sum of all
eigenvalues:

(1)

This term is equivalent to the expected value
for the mean squared distance between a recon-
structionXk and the original imageX divided by
the overall varianceσ2. By Xk we denote the
reconstruction yielded using only the firstk prin-
cipal components.

(2)

It is thus an appropriate measure for the recon-
struction error. Since it depends on the set of faces
used to construct the principal component space
from which the reconstructions were made, we
call this kind of error thetraining error.

For a training error of 10% (i.e. to recover 90%
of the overall variance), the first 47 principal com-
ponents are needed in the pixel-based representa-
tion, 22 principal components are needed in the
texture representation, and 15 are needed in the
shape representation. Because the test face was
contained in the set from which the principal
components were derived, the training error
approaches zero when using all available princi-
pal components for the reconstruction.

To evaluate how well the representation gener-
alizes to new faces, we performed a leave-one-out
procedure in which one face was taken out of the
data base and PCA was performed on the remain-
ing 99 faces yielding 98 principal components.
Then, the single face was projected into various
principal component subspaces ranging from
dimensionalityk=1 to 98 to yield the reconstruc-
tion Xk . This was done for every face in the data

base.
In Figure 5b, the quality of the reconstructions

resulting from this procedure is illustrated. The
plot shows the generalization performance of the
different representations in terms of thetesting
error. Like the training error, the testing error is
defined by the mean squared difference between
reconstruction and original image divided by the
varianceσ2 of the whole data set:

(3)

The testing error using the pixel-based repre-
sentation is never smaller than 28%, even if all 98
principal components are used for the reconstruc-
tion. A testing error of 28% is reached with only 5
principal components for the texture space and 5
principal components for the shape space. If all
principal components are used, the testing error
can be reduced to 6% for the shape and to 12% for
the texture.

A single image of a face can be used to code
either one principal component in the pixel-based
representation or one principal component of the
shape subspaceand one principal component of
the texture subspace of the correspondence-based
representation. Thus the information contained in
five images is enough to code for 72% of the vari-
ance in a correspondence-based representation,
whereas 98 images are needed in the pixel-based
representation.

The reconstruction errors in Figures 5a and 5b
were measured in terms of the squared Euclidian
distance between reconstruction and original in
the respective representation. To make the three
distances comparable, we normalized them with
respect to the overall variance of the data base in
the respective representation. Texture and shape
parts of the correspondence-based representation
were treated separately.

To directly compare the reconstruction quali-
ties achieved with the pixel-based and with the
correspondence-based representation, we com-
bined reconstructed texture and reconstructed
shape to yield a reconstructed image. This was
done by applying the deformation field, coded in
the reconstructed shape to the images coded in the
reconstructed texture. The distance between this
reconstruction and the corresponding original
image can be measured by means of the squared
Euclidian distance in the pixel-based image space,
and thus in the same space, and with the same
metric as the reconstruction error of the pixel-
based representations. Figure 5c shows the results
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of this calculation. To achieve a reconstruction
error of 28% - the best that can be reached with 99
faces using a pixel-based representation - only 12
principal components have to be used in the cor-
respondence-based representation. If all principal
components of the correspondence-based repre-
sentation are used, a reconstruction error of 13%
can be achieved.

3.4 Psychophysical evaluation of the reconstruc-
tions

Purpose

The above distance measures are all based on
the Euclidian distance in the different face spaces
used. These distances, however, might only
approximately reflect the perceptual distance used
by the human face recognition system. Consider,
for instance, the fact that human sensitivity to dif-

ferences between faces is not at all homogeneous
within the whole image. Changes in the region of
the eyes are more likely to be detected than
changes of the same size (with respect to any of
our distance measures) in the region of the ears.
Since it seems to be very difficult to formulate an
image distance that exactly reflects human dis-
crimination performance, we use human discrimi-
nation performance directly and evaluate the
reconstruction quality by means of a psychophys-
ical experiment.

In the experiment, subjects were simulta-
neously presented with three images on a com-
puter screen. In the upper part of the screen, an
original face from our data base was shown.
Below this target face, two further images were
shown. One of them was again the same original
target face, the other was a reconstruction of it.
The subjects indicated which of the two lower
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Fig. 5: (a) Training error. In this diagram,
one minus the relative cumulative
variance has been plotted. The cumulative
variance is equal to the mean of the
squared Euclidian distance between the
original face and reconstructions derived
by truncating the principal component
expansion. The calculation was performed
for the two parts of the correspondence-
based representation and for the pixel-
based representation.
(b) Testing error (A). The relative mean
squared Euclidian distance between the
original and its reconstructions. In this
case, the reconstruction was derived by
projecting the data into spaces spanned by
principal components computed from the
set of remaining faces which did not
contain the original face. The calculation
was performed for the two parts of the
correspondence-based representation and
for the pixel-based representation.
(c) Training error (B). As for the
calculation of testing error A the faces
were projected into principal component
spaces derived from the remaining faces.
The error for the pixel-based
representation is the same as the one
plotted in Figure 5. The error
corresponding to the correspondence-
based representation is measured by the
squared Euclidian distance in the pixel
space after combining the reconstructed
shape with the reconstructed texture to
yield an image (for details, see text).
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images was identical to the upper one. The time
they needed for this task makes an issue about the
reconstruction quality.

Methods

The reconstructions tested in this experiment
were all made by projecting faces into spaces
spanned by the principal components derived
from all theother faces in our data base. We thus
used the same “leave-one-out” procedure as
described in the context of calculating the testing
error (see previous section). Four different kinds
of reconstructions were used. To investigate the
reconstruction quality within the texture subspace
we combined reconstructed textures with the orig-
inal shape. Similarly, we showed images with
reconstructed shape in combination with the orig-
inal texture. The third kind of reconstruction was
made from a combination of reconstructed shape
and reconstructed texture. Finally, we used recon-
structions using the principal components derived
from the pixel-based representation. In each of the
four reconstruction modes, reconstructions using
the first 5, 15 and all 98 principal components
were shown. We chose these values because 5 and
15 principal components cover approximately one
and two thirds, respectively, of the overall vari-
ance.

A two-factor mixed block design was used.
The first factor was a within-subject factor named
QUALITY that coded for the quality of the recon-
struction. It had the levels REC05, REC15 and
REC98, corresponding to reconstructions made
by using either only 5, 15 or of all 98 principal
components. The second factor was a between-

subjects factor named MODE that had the four
levels TEX, SHP, BTH, and PIX. TEX corre-
sponds to trials using images with only the texture
reconstructed, SHP to trials with only the shape
reconstructed, BTH to trials with both recon-
structed texture and shape, and PIX to trials using
reconstructions in the pixel-based space.

Twenty four subjects were randomly divided
into four groups, each assigned to one of the lev-
els of the factor MODE. Each subject performed
3 blocks. Each block contained 100 trials using
either REC05, REC15 or REC98 reconstructions.
The order of the blocks was completely counter-
balanced. There are six possible permutations and
each of them was used once for one of the six sub-
jects in each group. Each of the 100 faces was
used exactly once in each block.

Each stimulus presentation was preceded by a
fixation cross that was presented for 1 sec. Then,
the three images were simultaneously presented
on the computer screen. Together they covered a
visual angle of 12 degrees. The subject indicated
which of the two bottom images was identical
with the image on the top by pressing either the
left or the right arrow key on the keyboard. Sub-
jects were instructed to respond “as accurately
and as quickly as possible”. The images were pre-
sented until the subject pressed one of the
response keys. We measured the subjects error
rate as well as the time they needed to perform the
task.

Results

Figure 6 illustrates the results of this experi-
ment. Accuracy was generally very high as
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Fig. 6: Psychophysical evaluation of the different kinds of reconstructions. Error rates (a) and response times
(b) are plotted. TEX: Reconstructed texture combined with original shape. SHP: Reconstructed shape
combined with original texture. BTH: Reconstructed texture combined with reconstructed shape. PIX:
Reconstruction in the pixel-based space. REC05: Reconstructions based on the first 5 principal components.
REC15: Reconstructions based on the first 15 principal components. REC98: Reconstructions based on all 98
principal components.



9

expressed by the low error rates (mean: 5.9%) and
differences due to the factor MODE did not reach
significance (two-factor ANOVA on the error rate,
F3,20= 1.49, p > 0.05). We found an increase in
the error rate with the number of principal compo-
nents used for the reconstruction (main effect of
the factor QUALITY: F2,40= 14.05, p < 0.01) and
no interaction between the two factors.

The response times were effected strongly by
both the factor MODE (F3,20= 10.9, p < 0.01)
and the factor QUALITY (F2,40= 21.8, p < 0.01).
The interaction between the factors was margin-
ally significant (F6,40= 2.6, p < 0.05). The mean
response time needed to discriminate between an
original image and its reconstruction in the pixel-
based representation (condition PIX) was 606
msec. The mean response times in conditions
TEX and SHP were 3488 msec and 3385 msec,
respectively. In condition BTH the mean response
time was 1872 msec. In all four conditions of the
factor MODE, response times increased with the
number of principal components, although only
very slightly in condition PIX. Note that the time
needed to identify the worst reconstruction in the
correspondence-based representation (BTH,
REC05) from the original was still almost twice
the time needed for the best reconstruction in the
pixel-based space (PIX, REC98).

3.1 Reconstruction quality and coding efficiency
The results clearly demonstrate an improve-

ment in the coding efficiency and generalization
to new face images of the correspondence-based
image representation over pixel-based techniques
previously proposed (Kirby & Sirovich, 1990;
Turk & Pentland, 1991). The correspondence,
here computed automatically using an optical
flow algorithm, allows the separation of two-
dimensional shape and texture information in
images of human faces. The image of a face is
represented by its projection coefficients in sepa-
rate linear vector spaces for shape and texture.
The improvement was demonstrated computa-
tionally as well as in a psychophysical experi-
ment.

The results of the different evaluations indicate
the utility of the proposed representation as an
efficient coding of face images. We have demon-
strated the coding efficiency within a given set of
images as well as the generalizability to new test
images not contained in the data set from which
the representations were originally obtained. In
comparison to a pixel-based image representation,
the number of principal components needed for

the same image quality is strongly reduced.
Human observers could discriminate a recon-

struction derived from the pixel-based representa-
tion much faster from the original face than a
reconstruction derived from the correspondence-
based representation. The results from the psy-
chophysical experiments are important, since it is
well known that the Euclidian distance used to
optimize the reconstructions as well as to com-
pute the principal components by itself does not
in general reflect perceived image distance (Xu &
Hauske, 1994).

4 Sex classification

4.1 Purpose
According to the criteria developed in section

1, we would expect an efficient and flexible repre-
sentation of faces to cluster together groups of
images that share common attributes. Images
showing the same individual should be closer to
each other than images of different faces, accord-
ing to some simple metric. Also, images of faces
of the same age, gender or race should cluster
according to other metrics.

In this section, we investigate how well a sim-
ple linear classifier can distinguish between male
and female faces, using either the pixel-based or
the correspondence-based representation as an
input. To examine how robust the respective rep-
resentations are against miss-alignment of the
faces, we generated different image sets differing
in the degree of their mutual alignment.

4.2 Material and Methods
An extended data base consisting of 200 three-

dimensional head models was used for these sim-
ulations. Half of them were male and half of them
were female. Preprocessing of the models was
performed as described in section 3.1. The initial
alignment was also performed as described previ-
ously and frontal view images were rendered. In
addition, we rendered two other sets of images by
systematically misaligning the heads. For the first
set, we applied small translations adding Gauss-
ian noise with a standard deviation of 0.5 cm (cor-
responding to 5 pixels in the image) to the
position of the head in the image plane. For the
second set, we misaligned the faces by applying
small rotations in 3D space before rendering the
images. We added Gaussian noise with a standard
deviation of 3 degrees to the orientation of the
head around the vertical axis and around the hori-
zontal axis perpendicular to the line of sight.
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Correspondence-based representations were
computed from the aligned face set and from the
set that had been misaligned by rotations in 3D.
The correspondence-based representation of the
image set misaligned by small translations was
derived directly by adding the constant translation
vector to the flow field.

This procedure yielded nine different data sets:
Each of the three sets of images existed now in
terms of the pixel-based representation and in
terms of the texture and the shape part of the cor-
respondence-based representation.

Sex classification was performed on each of the
nine data sets in the following way:

The 200 faces were randomly divided into two
groups (A and B), each containing 50 males and
50 females. Two simulations were run. In the first,
group A served as the training set and group B as
the test set. In a second simulation the two groups
were exchanged using group B for training and
group A for testing. Each simulation began with
the calculation of a principal component analysis
on the training set. Then both training and test
sets were projected on the first 50 principal com-
ponents, yielding 50 coefficients for each face.
We also tested the performance of the classifier
when using all 99 principal components, but the
results were never better than with 50 compo-
nents.

The 50 coefficients were used as input for a lin-
ear classifier. The classifier itself was formulated
as a linear system:

(4)

Ptrain is a matrix containing the coefficients of
the ith face of the training set in theith column.
atrain is a row vector containing the desired out-
puts (ai

train = 1 if Pi
train male,ai

train = -1 if Pi
train

female). ω is the row vector containing the
weights corresponding to the first 50 principal
components andω0 accounts for a constant bias.
The coefficientsωi were optimized by using sin-
gular value decomposition in order to minimize
the sum-squared error between the desired and the
actual output. Note that this is equivalent to train-
ing a simple perceptron with linear transfer func-
tion.

After training, the test set was projected on the
vectorω:

(5)

The output  was compared with the desired
output atest to yield the error rate. An error was

recorded if sgn(ai
test ) ≠ sgn( ).

In addition, we ran three further simulations to
classify the three different image sets by using the
coefficients corresponding to the first 25 principal
components of the shape subspace together with
the first 25 coefficients for the texture subspace as
input data.

For all the simulations, the mean error of the
two reciprocal simulations (exchanging training
and test sets) is reported.

4.3 Results
In Figure 7, the generalization errors resulting

from the classification experiments are presented.
Using the images showing the faces previously
aligned in 3D, classification on the pixel-based
representation yielded a relatively low error rate
of 4%. Using only the texture subspace of the cor-
respondence-based representation, the error was
somewhat higher (5.5%). With only the shape
subspace, the error rate was 3%. The best classifi-
cation (error rate 2%) was obtained when combin-
ing the coefficients corresponding to the first 25
principal components of the texture subspace with
the coefficients corresponding to the first 25 prin-
cipal components of the shape subspace.

Using images of faces that were misaligned,
the classification performance for the pixel-based
representation dropped significantly. In the first
example in which a misalignment was introduced

atrain ωPtrain ω0+=

â ωPtest ω0+=

â

â

PIX TEX SHP BTH
0

5

10

15

E
rr

or
 [%

]

aligned
misaligned (translation)
misaligned (rotation)

Figure 7: Generalization errors of the sex classifica-
tion experiments on three different image sets (see
text). As input for the classifier, the coefficients corre-
sponding to the first 50 principal components derived
from the pixel-based representation (PIX), the “tex-
ture” part (TEX) and the “shape” part (SHP) of the
correspondence-based representation were used.
Additionally, an input vector consisting of the first 25
principal components of “texture” and “shape” was
used (BTH).
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by applying a small translation to the images, the
error rate was 12%. In the other example in which
the misalignment was due to small rotations in
depth, an error rate of 8% was obtained. The cor-
respondence-based representation was much less
effected by misalignment. The error rates for the
classification using only the texture stayed con-
stant, the ones for the classification using the
shape increased only slightly. If a combination of
the first principal components of texture and
shape was used, the error rates also only slightly
increased.

4.4 Discussion
The advantage of the correspondence-based

representation is striking when using images of
faces that are misaligned. The good performance
on the classification for the pixel-based aligned
images, however, shows that the full pixel-by-
pixel correspondence is not needed for sex classi-
fication. What is needed is only enough informa-
tion to perform an alignment of the heads in
space. Sex classification is probably a relatively
easy task compared with other classification tasks
such as the classification of facial expression or
the identification of a person. For these latter
tasks, the advantage of the correspondence-based
representation is expected to be even more pro-
nounced and an optimal rigid alignment in 3D is
probably not sufficient.

5 General Discussion

We contrasted the properties of a correspon-
dence-based representation of images of human
faces with pixel-based techniques. The motivation
behind developing the correspondence-based rep-
resentation was the lack of convexity of the pixel-
based representation. The correspondence-based
representation copes with this problem by
employing pixel-by-pixel correspondence to per-
fectly match the images. This results in a repre-
sentation separating texture and shape
information.

We compared low-dimensional reconstruc-
tions derived from correspondence-based and
pixel-based representations to demonstrate the
advantage of the correspondence-based represen-
tation for efficient coding and modelling. Finally,
we tested the different representations in a simple
classification task. We trained a linear network to
classify the sex of faces in a training set and tested
for generalization performance using a separate
testing set of faces.

Clearly, the crucial step in the proposed tech-
nique is a dense correspondence field between the
images of the faces. The optical flow technique
used on our data set worked well; however, for
images obtained under less controlled conditions
a more sophisticated method for finding the corre-
spondence might be necessary. New correspon-
dence techniques based on active shape models
(Cootes et al., 1995, Jones & Poggio, 1995) are
more robust against local occlusions and larger
distortions when applied to a known object class.
Their shape parameters are optimized actively to
model the target image. These techniques thus
incorporate knowledge specific to the object class
directly into the correspondence computation.

The main result of this paper is that an image
representation in terms of separated shape and
texture is superior to a pixel-based image repre-
sentation for performing many useful tasks. Our
results complement other findings in which a sep-
arate texture and shape representation of three-
dimensional objects in general was used for visual
learning (Beymer & Poggio, 1996), enabling the
synthesis of novel views from a single image
(Vetter & Poggio, 1996). Finally, based on our
psychophysical experiments, we suggest that the
correspondence-based representation of faces is
much closer to a human description of faces than
a pixel-by-pixel comparison of images, which dis-
regards the spatial correspondence of features.
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