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Abstract

A local learning rule is shown to be able to account for the association of images together

on the basis of temporal order rather than spatial con�guration, as described in single cell

recording results published by Miyashita (1988). Possible reasons for requiring such learning

are then given in the context of invariant object recognition
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1 Introduction

The primate temporal lobe has long been impli-

cated in the recognition of objects (Ungerleider &

Mishkin, 1982; Goodale & Milner, 1992). Sin-

gle cell recording in this area has revealed neu-

rons responsive to images of faces (Desimone, 1991;

Rolls, 1992) and other, more abstract image fea-

tures (Tanaka et al., 1991; Miyashita & Chang,

1988). Of particular interest is the ability of these

cells to demonstrate a robustly invariant response

to a preferred stimulus object as it undergoes large

rigid transformations in size, rotation in depth and

location. This raises the question of how a single

neuron might learn to associate spatially very dis-

similar images together as belonging to the same

object. Any approach based solely upon physical

appearance cannot hope to capture all of the invari-

ances which have been described in the literature,

one of which forms the basis for the learning de-

scribed and implemented here.

The experiment in question was carried out

by Miyashita (1988) in which randomly generated

colour fractal patterns were presented to macaque

monkeys. The animals' task was to observe a pat-

tern and then indicate whether a subsequent pat-

tern was the same or not. Testing proceeded from

trial to trial with a consistent order of testing being

maintained throughout. Examples of the types of

patterns used appear in �gure 1 and an overview

of the testing regime appears in �gure 3. Although

the experimental paradigm did not explicitly re-

quire the overall test sequence to be remembered,

Miyashita discovered that neurons within inferior

temporal lobe became responsive to an ordered

subset of the 96 images in the test set.

The fact that the images were generated ran-

domly meant that there was no particular reason -

on the grounds of spatial similarity - why these im-

ages should have become associated together by a

single neuron. Instead the results indicate the im-

portance of the temporal order in controlling the

learning of neural selectivity.

In this work I shall be presenting a paradigm in

which neurons are able to associate images appear-

ing in spatio-temporal sequences from a set of im-

ages in the manner which Miyashita has described,

explaining why his results may be a special case

of a more general learning mechanism. I shall also

compare the work to earlier research on the topic by

Griniasty, Tsodyks & Amit (1993) as well as other

recent work on object recognition. Since the neu-

rons which Miyashita studied lie in temporal lobe,

temporal order based association learning I will �n-

ish by describing possible important consequences

for invariant object recognition.

2 Learning from spatio-temporal

associations

2.1 Introduction

The �rst aim of this paper is to propose a biologi-

cally justi�able learning mechanism and neural ar-

chitecture for implementing the temporal aspect of

the learning which Miyashita describes.

One interpretation of Miyashita's results is that

they can be implemented in the dynamics of an at-

tractor neural network in which attractor states of

patterns close in temporal presentation order over-

lap (Griniasty et al., 1993). Although this work did

not include simulation results it did describe how

the network of connections required might be set

up with some form of time averaging �lter acting

either on the inputs or outputs of each neuron. The

applicability of Hebbian dynamics which Griniasty

et al. described is echoed in the simulations de-

scribed here, although I will propose a much sim-

pler neural architecture capable of producing the

time based correlations sought and will describe

reasons for questioning their recurrent processing

model.

2.2 Learning rule

A suitable time averaging learning rule has already

been described with reference to object recognition

(F�oldi�ak, 1991; Wallis & Rolls, 1996). The learn-

ing rule works by replacing the current neural ac-

tivation term found in standard Hebbian learning

paradigms, with a running, time averaged measure

- called the `trace' value.

The trace learning rule used is equivalent to

F�oldi�ak's (1991) , and can be summarised as fol-

lows:
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where xj is the j
th input to the neuron, yi is

the output of the i
th neuron, wij is the j

th weight

on the i
th neuron, � = 0:6 governs the relative in-


uence of the trace and the new input, and yi
(t)

represents the value of the i
th cell's trace at time t.

The function � implements a non-linear activation

function as well as local inhibition details of which

are described in the next section.

The essence of how object invariance might be

learned with such a rule can be seen by considering

the situation in which a single neuron is strongly

activated by some element of a real world object.

In such a case the short-term average activity of
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the neuron will be high, and if a new aspect of the

object is seen before the e�ects of this activity die

away - in the order of 0.5s - then not only will the

initially active a�erent synapses modify onto the

neuron, but so also will the synapses activated by

the transformed version of this stimulus. In this

way the cell will learn to respond to either appear-

ance of the original stimulus. Making such associa-

tions works in practice because it is very likely that

within short time periods di�erent aspects of the

same object will be being inspected. The cell will

not, however, tend to make spurious links across

stimuli that are part of di�erent objects because

of the unlikelihood in the real world of one object

consistently following another.

Several means for implementing this learning

rule in real neurons have been described (Wallis

& Rolls, 1996), however one of particular relevance

here makes use of the prolonged �ring of tempo-

ral lobe neurons for 100{200ms even after very

rapid presentations of an e�ective stimulus (Rolls

& Tovee, 1994). It is suggested that this would,

in natural circumstances, be time enough for new

views of the e�ective stimulus object to be seen and

learnt. This supposes that �ring at the soma should

not only propagate along the axon but also be capa-

ble of a�ecting learning in the dendritic tree. Ev-

idence to support this claim has in fact recently

been reported in rat neocortical layer V pyramidal

neurons (Markram et al., 1995).

Before proceeding it is important to discuss

a problem with applying this form of learning

paradigm to the case studied by Miyashita. Mak-

ing associations between stimuli over the long delay

period of 16s which he describes, would not nor-

mally be desirable - since the viewer would typically

have moved his attention to a new object. This in

turn might lead to the spurious linking of objects

mentioned above. In order to explain this, it is

worth considering Miyashita & Chang's earlier pa-

per (1988) in which they explicitly describe greatly

extended periods of maintained �ring throughout

the delay period which would in fact allow learning

to proceed by the associative mechanism described

above.

Under normal viewing conditions neural activ-

ity only proceeds for a few hundred milliseconds

after the removal of the activating stimulus (Rolls

& Tovee, 1994). So why might neurons be �ring for

so long in experiments reported by Miyashita and

Chang? There is now reasonable evidence that the

delayed match to sample (DMS) paradigm used in

Miyashita's experiments represent a rather special

case in image analysis. It seems that the animals'

solution to the DMS experiment involves maintain-

ing activity in selective cells during the delay pe-

riod. This maintenance of activity is itself proba-

bly mediated by neurons outside the temporal lobe,

in prefrontal cortex (Desimone et al., 1995; Fuster

et al., 1985). In addition, even in the case of a

DMS experiment, the appearance of other images

during the delay period quickly abolishes any main-

tained activity (Baylis & Rolls, 1987; Miller & Des-

imone, 1994). In other words, under normal view-

ing conditions associations would not be made over

the large delay periods used in Miyashita's exper-

iments. However, if the memory of the activity of

the neuron is explicitly maintained then such asso-

ciations can indeed be made.

The absence of long periods of maintained activ-

ity under normal viewing conditions calls into ques-

tion the general applicability of the recurrent pro-

cessing model proposed by Griniasty et al. Further

reasons for preferring the feed-forward architecture

used here - on the grounds of speed of processing

and absence of gradual adaptation in neural activ-

ity - have also been described (Rolls & Tovee, 1994;

Thorpe & Imbert, 1989).

2.3 Network architecture

A two layer network was constructed - see �gure

2. The �rst layer acts as a local feature extrac-

tion layer and consists of a three (one per colour

channel) 32x32 grids of neurons arranged in 64 4x4

inhibitory pools. Each pool fully samples a cor-

responding 4x4 patch of the 32x32 input image.

Competition within these pools is of the `winner

take most ' type, otherwise referred to as leaky

learning (Hertz et al., 1990). In the context of

this network, this implies establishing which neu-

ron within each pool is �ring most strongly and

electing it the winner. All other neurons within

the same pool then have their �ring rate reduced

to one third of their initial rate so as to implement

local inhibition. All learning in this layer is simple

Hebbian.

Above the input layer is a second layer consist-

ing of a single inhibitory pool of 16 neurons which

fully samples the �rst layer. Neurons in this layer

are trained with the trace rule. All neurons in

both layers also have a separate, non-linear acti-

vation function which transforms the cell's calcu-

lated weighted input into an output �ring rate.

This was achieved by scaling the outputs within

each inhibitory pool to 1 and then passing the re-

sult through a sigmoidal activation function. The

action of the inhibition and non-linear activation

function are represented by the function � in the

previous trace rule equations. The rescaling was in-

tended to keep the amount of learning taking place

for each stimulus roughly constant.
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GREEN BLUERED

Figure 1: Nine example fractal
images.

Figure 2: The two layer network used in the simula-
tions, containing three separate input layers, one for
each colour channel.

3 Simulating fractal image learning

3.1 Introduction

This section describes a series of experiments car-

ried out to discover whether the results described

Miyashita could be implemented using the network

and learning rule described above.

3.2 Methods

The stimuli presented during training appear in �g-

ure 1. They were generated using the algorithm

used described by Miyashita et al. (1991). A stim-

ulus was presented to the network long enough for

the running average activity (the trace value, y in

the earlier equations) to saturate. This activity was

then maintained at this level during the delay pe-

riod. A second stimulus was then presented which

was either the same as the �rst stimulus, or cho-

sen at random from the 96 other images, both with

probability 0.5. Activity was similarly maintained

onto the next trial in which the next image in the

set sequence was trained. After training the net-

work for 800 complete cycles the net was tested on

both the original training set and a further 97 novel

fractal images generated by the same algorithm.

3.3 Results

Figure 4 show the responses of two cells to the

97 trained stimuli as well as the 97 novel stimuli.

The bunching of strong responses along the image

number axis clearly demonstrate the preference of

these neurons for groups of stimuli which appeared

closely in time. The more sporadic form of the re-

sponses to the novel images also con�rms that this

is an e�ect of learning. These results are in gen-

eral agreement with the form of curves plotted in

Miyashita's paper (1988). A more direct compari-

son is provided by the autocorrelation function for

these responses, which appear averaged over all 16

output cells in �gure 5. The smoothly decaying

curve seen for the learned stimuli demonstrates a

strong correlation between responses to neighbour-

ing images in the sequence and is in stark contrast

to the correlation for responses to the novel stimuli.

Correlation becomes indistinguishable from zero at

around �ve image steps away from the the central

stimulus, a �gure also in close accord with those

provided in Miyashita's paper.

4 Conclusions

This paper has demonstrated that a local Hebb-

like learning rule can train neurons to associate im-

ages appearing in time, in accordance with single

cell recording data described by Miyashita (1988)

. By reproducing Miyashita's results, the earlier

work of both Foldiak and Wallis concerning the use

of a time based learning rule in object recognition

(F�oldi�ak, 1991; Wallis & Rolls, 1996; Wallis, 1996)

, has found strong support in data from real neu-

rophysiological recordings.

I have argued that a reason for associating im-

ages on the basis of consistent correlations in their

appearance in time would be to help solve the prob-

lem of invariant object recognition. As a corollary

to this, it might be possible for humans to gener-

alise between objects if views of them appear in

arti�cial repetitive sequences. This type of over-

generalisation forms the basis for psychophysical

work currently underway.
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16 Seconds

97 Images

Figure 3: Overview of the testing paradigm used by Miyashita (1988) showing the presentation timing and repeating
sequence of 97 fractal image test stimuli.
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Figure 4: The response of two neurons to all 97 test images and 97 novel fractal images. The contrast in the degree
of clustering and amplitude of responses demonstrates e�ective learning.
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Figure 5: Average autocorrelation function for the responses of all 16 cells to the trained and novel test sets.
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