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Abstract

The view based approach to object recognition relies upon the co-activation of 2-D pictorial
elements or features. This approach is limited to generalising recognition across transforma-
tions of objects in which considerable physical similarity is present in the stored 2-D images
to which the object is being compared. It is, therefore, unclear how completely novel views
of objects might correctly be assigned to known views of an object so as to allow correct
recognition from any viewpoint.
The answer to this problem may lie in the fact that in the real world we are presented with a
further cue as to how we should associate these images, namely that we tend to view objects
over extended periods of time. In this paper, neural network and human psychophysics data
on face recognition are presented which support the notion that recognition learning can be
a�ected by the order in which images appear, as well as their spatial similarity.
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Introduction

To successfully interact with the everyday objects
that surround us we must be able to recognise these
objects under widely di�ering conditions, such as
novel viewpoints or changes in retinal size and lo-
cation. Only if we can do this correctly can we
determine the behavioural signi�cance of these ob-
jects and decide whether the sphere in front of us
should, for example, be kicked or eaten. Similar, al-
though often �ner, discriminations are required in
face recognition. One might be presented with the
task of deciding which side of the aisle is reserved
for the groom's family at your cousin's wedding -
a decision of familiar verses unfamiliar categorisa-
tion. On the other hand, the faces may be familiar
and the task becomes one of distinguishing family
members, such as your aunt and your sister. Such
decisions have clear social signi�cance and are cru-
cial in deciding how to interact with other people.
The question of how we manage this remains open.

Theories for how we represent objects and ul-
timately solve object recognition abound. Exam-
ples include the building and matching of mental
3D models (Marr, 1982; Marr & Nishihara, 1978),
decomposition into locally interrelated basic geo-
metric primitives (Biederman, 1987; Biederman &
Gerhardstein, 1993), and template matching algo-
rithms (Ullman, 1989; Yuille, 1991). However, the
proposal that I shall be considering here suggests
that recognition is supported by a series of pic-
ture elements or features associated into 2D views
of an object. Support for this theory comes both
from psychophysical (Tarr & B�ultho�, 1995; Tarr &
Pinker, 1989; B�ultho� & Edelman, 1992) and neu-
rophysiological (Logothetis & Pauls, 1994) sources.

These models propose that generalisation of
recognition to novel views could be achieved by
a large number of broadly tuned feature sensitive
units each tolerant to small deformations of their
preferred features. This would then be su�cient
to perform recognition over small transformations
(Poggio & Edelman, 1990) - at least given some
form of supervised training regime. Ultimately,
however, there has to be a limit to the amount of
generalisation one can a�ord to make from a set of
feature sensitive cells before they lose their power
to discriminate. Even assuming some scheme for
the pre-normalisation of object size and transla-
tion (a big assumption!), one would still require
separate feature detectors for large view changes.
In the absence of a supervised training signal, it is
not clear how a series of di�erent views of an object
- which may share very few, if any, of the features
supporting the recognition - might be associated
together.

To describe a potential solution to this problem

it is worth re
ecting on what clues our environ-
ment gives us about how to associate the stream of
images that we normally perceive. The fact that
our natural environment is full of higher-order spa-
tial correlations has received considerable attention
(Field, 1987), whereas the existence of statistical
regularity in the temporal domain (Dong & At-
ick, 1995), has not. Temporal regularity emerges
from the simple fact that we often study objects
for extended periods, resulting in correlations in
the appearance of the retinal image from one mo-
ment to the next. This regularity may provide us
with a simple heuristic for deciding how to associate
novel images of objects with stored object represen-
tations. Since objects are often seen over extended
periods, any unrecognised view coming straight af-
ter a recognised one is most probably of the same
object. This heuristic will work as long as acci-
dental associations from one object to another are
random and associations from one view of an ob-
ject to another are experienced regularly. There is
every reason to suppose that this is actually what
will happen under normal viewing conditions, and
that by approaching an object, watching it move, or
rotating it in our hand, for example, we will receive
a consistent associative signal capable of bringing
all of the views of the object together.

In the last few years both neurophysiologists
(Perrett & Oram, 1993; Rolls, 1992) and neu-
ral network theorists (Edelman & Weinshall, 1991;
F�oldi�ak, 1991; Wallis & Rolls, 1996) have been ex-
ploring this theme on the basis of neurophysiolog-
ical recordings in the infero-temporal lobe (IT) of
primates. Recording in this area, Miyashita and his
colleagues (Miyashita, 1988, Miyashita & Chang,
1988) studied the e�ect of repeatedly showing a se-
quence of randomly selected fractal images. They
discovered that cells in IT would learn to respond
to one stimulus in the series very strongly, but also
to images appearing in close succession, purely as a
function of temporal and not spatial disparity be-
tween stimuli.

There is good evidence from single cell record-
ings (Rolls, 1992; Desimone, 1991; Tanaka et al.,
1991) and anatomical studies (Ungerleider &
Mishkin, 1982; Plaut & Farah, 1990) that the neu-
rons in IT play an important role in object recogni-
tion. It thus seems plausible that what Miyashita
et. al. have observed is the functioning of a sys-
tem for associating views of objects simply on the
basis of their appearance in time. It is this hypoth-
esis that serves to motivate the work described in
this paper. Evidence to support the hypothesis is
presented as a signi�cant e�ect of temporal order
in establishing the perceived similarity and identity
of the views of faces.
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Psychophysical Experiments

Introduction

If object recognition is a�ected by the temporal
order in which images of objects appear, it seems
reasonable to test for an e�ect psychophysically.
This �rst section sets out to describe just such an
e�ect in face recognition.

The �eld of face recognition has been very exten-
sively studied and several researchers have reported
that we make recognition errors when the viewing
position is changed from view to test - especially
if the faces are unfamiliar (Krouse, 1981; Logie
et al., 1987; Patterson & Baddeley, 1977; Wogalter
& Laughery, 1987; Troje & B�ultho�, 1996). The ex-
periment described in this section exploits this fact
by testing recognition performance on a set of inter-
leaved faces presented in smooth sequences. These
sequences consisted of �ve views of a face, presented
in even steps from left pro�le to right. The time-
based association hypothesis described above, pre-
dicts that the visual system would associate these
images together as being views of the same face.

If, however, the subject's task is to identify in-
dividuals, any associations made across di�erent
faces would be erroneous. This should then become
apparent by the increased number of discrimination
errors for these faces in comparison with faces not
seen in sequences. Figure 1 puts this hypothesis in
a more graphical light by displaying three possible
sequences each containing �ve di�erent faces seen
from �ve evenly spaced viewing angles. The tem-
poral association hypothesis would be supported if
confusion rates for faces within sequences S1, S2
and S3 are higher than for faces selected between
the sequences.

Methods

After a brief familiarisation phase using a sep-
arate set of faces, subjects viewed three sequences
of faces each containing �ve poses of �ve di�erent
faces - see �gure 1 - with the distribution of faces
varying randomly between subjects. The faces were
displayed on a black background, on an SGI Indigo
workstation. Each image subtended approximately
10�� 6� at a viewing distance of 50cm. In any one
sequence the pose of the face was altered smoothly
from left pro�le to right pro�le and back, with each
of the �ve sequence member faces appearing in one
of the �ve poses. Each sequence was seen �ve times
such that each face was shown from each one of the
�ve viewpoints. Each view within a sequence was
seen for 300ms with no delay between images. The
delay between sequences was set at 2500ms. Before
viewing the sequences, subjects were instructed to
`Attend closely to the faces as they turn'.

After viewing the �ve permutations of each
sequence, subjects were tested in a standard

same/di�erent 2AFC paradigm. One face was pre-
sented for 150ms, then a colour mask was presented
for 150ms, and then �nally a second face was pre-
sented for 150ms. The subjects' task was to re-
spond by pressing a key to indicate `same' or `dif-
ferent' to each of the pairs shown. Each trial fell
under one of three possible conditions.

A The same face was shown
from di�erent viewpoints.

B Two di�erent faces from the
same sequence were shown.

C Two di�erent faces from dif-
ferent sequences were shown.

To balance the number of `same' and `di�erent'
trials, condition A contained 30 trials whilst the
B and C conditions contained 15 trials each. Tri-
als from the three conditions were interleaved and
repeated three times, making a total of 180 trials
per trial block. The entire block - including both
the training and testing phases - was then repeated
twice more, yielding a total of 540 trials per sub-
ject.

Results

Twelve naive subjects participated in the exper-
iments. The data of 2 subjects were excluded from
the analysis because their recognition rates did not
exceed chance. The overall performance is shown
averaged over all three blocks in �gure 2 and broken
down into individual blocks in �gure 3.

A 2-way ANOVA was used to analyse percent
correct with test condition and trial block num-
ber as independent variables. There was a signi�-
cant e�ect of test condition (F (2; 18) = 14:978; p <
0:01). Tukey's Honestly Signi�cant Di�erence Test
indicated a signi�cant di�erence between all three
condition means with condition A signi�cantly
greater than condition C which was signi�cantly
greater than condition B (p < 0:05). The fact that
performance on same trials (condition A) was bet-
ter than for di�erent trials (conditions B and C)
has been described in the face recognition litera-
ture before (Patterson & Baddeley, 1977).

Of particular interest here, however, was the sig-
ni�cant e�ect of sequence on the di�erent trials.
Subjects confused di�erent faces from the same se-
quence (condition B) more often than they con-
fused di�erent faces from di�erent sequences (con-
dition C) - see �gure 2. The results also appear to
show that the e�ect increases across trial blocks,
because the performance in condition B decreases
over the three blocks - see �gure 3. This e�ect was
not, however, signi�cant at the 5% level.

Sensitivity and response bias was also computed
over all three trial blocks and all ten subjects used
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Figure 1: Example of the faces used and the sequences (S1,S2,S3) presented.
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Figure 2: Average recognition perfor-
mance under the three test conditions.

Figure 3: Subject performance broken
down into consecutive trial blocks.
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in the analysis. Hit rates were established from
condition A and correct rejection rates from the av-
erage of conditions B and C. Sensitivity was fairly
high (d0 = 1:424) and no strong biasing e�ects were
measured (c = �0:027; � = 0:96).

Neural Network Simulations

Introduction

As described above, the psychophysical experi-
ments conducted here were inspired by both neuro-
physiological �ndings and theoretical results using
neural network models. In this section a short ex-
periment is presented in which the same faces used
in the previous experiment are presented to a sim-
ple neural network. This network utilises a learning
rule similar to that proposed by Hebb (1949), but
which is designed to establish neurons selective for
images appearing in sequences as well as simply on
the basis of physical appearance.

The learning rule in question was �rst used in the
context of invariant object recognition by F�oldi�ak
(1991), who demonstrated its use for associating
sequences of parallel lines1. More recently, I have
extended these ideas by tying them more closely to
neurophysiological data (Wallis & Rolls, 1996), and
exploring the theoretical basis of how the learning
rule works (Wallis, 1996a,b).

By presenting the same faces used in the previ-
ous experiment to a simple network utilising this
learning rule, the hope is to con�rm that the type
of e�ects seen here in the human data can indeed
be replicated by virtue of this unsupervised learn-
ing rule.

The version of the learning rule used in this work
is equivalent to F�oldi�ak's (1991) and can be sum-
marized as follows:

�wij
(t) = �yi

(t)xj (1)

X
j

wij
2 = 1 for each ith neuron (2)

yi
(t) = (1� �)yi

(t) + �yi
(t�1) (3)

yi = �

2
4X

j

xjwij

3
5 (4)

where xj is the jth input to the neuron, yi is the
output of the ith neuron, wij is the jth weight on
the ith neuron, � governs the relative in
uence of
the trace and the new input, and yi

(t) represents
the value of the ith cell's recent activity at time

1The rule was originally proposed by Klopf (1972;
1988) and �rst implemented in its current form by Sut-
ton & Barto (1981) in Pavlovian conditioning.

t. The function � implements lateral inhibition
within a local region of neurons and transforms
input activation into a �ring rate by passing it
through a sigmoidal activation function.

Equation 1 has the familiar form of Hebb learn-
ing except that the standard instantaneous neural
activity term yi has been replaced with the term
yi

(t). The value is related to yi but is now time
dependent indicated by the (t) superscript and is
also an average, indicated by the line above the y.
What yi

(t) actually represents is the running av-
erage, that is, the recent average activity of the
neuron. This average is calculated by the recursive
formula for yi

(t) given in equation 3. This serves
to make learning in a neuron dependent on previ-
ous neural activity as well as current activity. This
allows neurons to generalise to novel inputs given
strong recent activation.

Network architecture

A two layer network was constructed - see �gure
4. The �rst layer acts as a local feature extraction
layer and consists of a 40x40 grid of neurons ar-
ranged in 100 4x4 inhibitory pools. Each pool fully
samples a corresponding 4x4 patch of the 40x40 in-
put image2. Competition within these pools is of
the `winner take most ' type, otherwise referred to
as leaky learning (Hertz et al., 1990). In the con-
text of this network, this implies establishing which
neuron within each pool is �ring most strongly and
electing it the winner. All other neurons within
the same pool then have their �ring rate reduced
to one third of their initial rate so as to implement
local inhibition. All learning in this layer is simple
Hebbian.

Above the input layer is a second layer consist-
ing of a single inhibitory pool of 15 neurons (one
per face) each of which fully samples the �rst layer.
Neurons in this layer are trained with the Hebb-like
rule described in equations 1 to 4 above. All neu-
rons in both layers also have a separate, non-linear
activation function which transforms the cell's cal-
culated weighted input into an output �ring rate.
This was achieved by scaling the outputs within
each inhibitory pool to 1 and then passing the re-
sult through a sigmoidal activation function. The
action of the inhibition and non-linear activation
function are represented by the function � in equa-
tion 4. The rescaling was intended to keep the
amount of learning taking place for each stimulus
roughly constant.

Methods

The same 75 face images (5 views each of 15
faces) used in the previous psychophysical exper-

2Subsampled versions of the faces shown to the sub-
jects earlier.
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Figure 4: The hierarchical network archi-
tecture used in the simulations.

Figure 5: Results obtained in the
network simulations for the same
test conditions used in the human
psychophysics experiments.

iment were prepared for presentation to the net-
work by reducing their resolution to 40x40 pix-
els from the 200x200 pixels seen by the subjects.
This was done to reduce the number of free pa-
rameters in the network and hence training time.
The new image size was believed to be su�cient
because the network was still able to identify the
faces to 95% accuracy if each of the �fteen output
neurons was trained on the �ve views of one par-
ticular face. Earlier pilot studies for the previous
experiment suggested that this was already better
than the peak in human performance of 90% under
the same training conditions.

The use of a time based learning rule requires
some concept of time to be built into the simula-
tions - since the value of yi

(t) in equations 1 to 4
will change over time. The basic unit of time was
taken as the time for the presentation of a single
view of a single face, namely 150ms. The value of �
in equation 3 was set to 0.6 such that the e�ect of
a single image on learning would decrease by a fac-
tor of around 10 after �ve subsequent presentations
- a period of 750ms. This was chosen partly as a
reasonable period for signi�cant image association
and also to ensure that the inter-sequence interval
of 2500ms was su�cient to erase any residual e�ects
of the previous image on learning. The overall in-
tention of this was to restrict any association due
to temporal order to within sequences rather than
across them - as was the intention of the 2500ms
inter-sequence delay used in the human training.
In other words, the neurons e�ectively forget all
previous activity during the long delay period.

Training then proceeded exactly as in the human
case with the network exposed to a total of 90 se-
quences - equivalent to the full training received by
a subject after all three training blocks. The enire
process was repeated a total of 10 times using dif-

ferent combinations of faces to yield 10 di�erent
results from the network.

Results

The network was assumed to have responded
`same' if the winning neuron in the output layer was
the same for the target and probe faces and `di�er-
ent' if the winning neurons di�ered between target
and probe image. Figure 5 shows how the net-
work performed on the same-di�erent recognition
task originally posed to the subjects. The results
found in the psychophysical experiment have in-
deed been reproduced - namely, good performance
for same trials and a strong distinction between
performance on discriminating faces trained within
sequences compared with faces from separate se-
quences.

Discussion

The underlying hypothesis of this paper is that ob-
ject recognition learning can be a�ected by the or-
der in which images of objects appear as well as
by their physical appearance. This hypothesis was
con�rmed in a psychophysical experiment with hu-
man observers. Faces were more easily confused
if the subject had previously seen them presented
in interleaved smooth sequences than if they were
seen separately. This �nding is, to my knowledge,
the �rst evidence for a such a psychophysical e�ect.

I have also used a simple Hebb-like learning rule
in a small neural network simulation. The net-
work itself is obviously not intended to reproduce
the sophistication of face recognition in humans.
Its winner-take-all output is far from the repre-
sentation described in IT cortex (Rolls & Tovee,
1995). However, despite its simplicity the network
was shown to be capable of reproducing the psy-
chophysical results described here, supporting the
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idea that the type of learning rule used may under-
lie time-based association learning3.

The ability of a time-based association mecha-
nism to correctly associate arbitrary views of ob-
jects without an explicit external training signal
means that it could overcome many of the weak-
nesses of using supervised training schemes or as-
sociating views simply on the basis of physical ap-
pearance. Its discovery in neurophysiological and
now human psychophysical experiments may well
represent a signi�cant new step in establishing the
2-D multiple view approach to object recognition
within a uni�ed model of object representation and
recognition learning.
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